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Abstract
The General Relativity is the currently accepted theory of Gravitation in modern physics. Finding though similarities 
in formulas derived from other physical laws, with the well-known Newton’s universal gravitational law might give 
us hints on some properties and the nature of the forces and matter. This paper shows that the matter might be not 
as much an external entity placed inside the space-time, but instead can mostly be compressed space, and from that 
alone arises the gravitational force.

And more, it shows that with the increasing of mass in structures like Spiral Galaxies, or Filaments of Galaxies, the 
gravitational constant ‘G’ also increases. It could in part account for the Dark Matter. And in the end, presuming the 
initial state of the space was compressed, might also explain the expansion of the Universe.

*Corresponding Author
Mihail Ipati, Konigstr 76, Hof 95028, Bayern, Germany.

Submitted: 2024, Aug 14; Accepted: 2024, Sep 18; Published: 2024, Sep 23

Konigstr 76, Hof 95028, Bayern, Germany

1. The Elastic Potential of Two
Let’s consider an ideal elastic field (one-dimensional for convenience) in an equilibrium state. In this field consider 2 points A and 
B with the distance L0 between them, figure 1.0
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1.1 If we will concentrate this field in both parts with ΔLA and ΔLB we will get: 
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In this case, figure 1.1, the potential U will be equal to: [1,2,3,4] 
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Where E is the modulus of elasticity, A0 is the initial cross sectional area, that in our case will be 
a constant or equal to 1, L0 is the distance from A to B, and ΔL is equal to ∆LA + ∆LB , so: 
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If we will concentrate this field in both parts with ΔLA and ΔLB we will get:

In this case, figure 1.1, the potential U will be equal to: [1,2,3,4]

Where E is the modulus of elasticity, A0 is the initial cross sectional area, that in our case will be a constant or equal to 1, L0 is the 
distance from A to B, and ΔL is equal to ∆LA + ∆LB, so:
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The potential may be written as:

Where:

UA and UB are the potentials in the compressed A and B parts of the field (4), (5), and:

Uab is the potential in the stretched part of the field between A and B. (6)

Now let’s imagine that ΔLA and ΔLB can be kept constant, while the distance L0 between them is variable. For the moment we 
have no interest in the UA and UB potentials so let’s consider only the UAB potential. In this case the force produced on A and B 
centers by the UAB potential will be:

We’ll ignore the negative sign, since it only shows that the force is directed towards equilibrium. That gives us the resultant formula:

(*) If the initial state of the field is in equilibrium or stretched, the force FAB in this case will be repulsive. The concentrations A 
and B will try to reach regions with less stress and those are further from each other. Demo 1 on the last page shows a demonstration 
of this case.

1.1 Similarly, if the initial state of the field was already compressed to a degree, and we will concentrate this field in both parts A 
and B with ΔLA and ΔLB, figure 1.2:

The force FAB will be attractive, because the stress inside the AB segment of the field will be less than outside and decreasing with 
a smaller L0.

If we imagine A and B being ‘compressed space’ masses, with ΔLA and ΔLB as their magnitudes and with the L0 the distance 
between them, then the similarity of (8) with Newton’s universal gravitational force formula (8a) and (21) is obvious [4,5].

This way the matter in space could be nothing more but ‘compressions’ of that space, held concentrated (probably) by the 
electromagnetic forces. It would still fit and make perfect sense for the General Relativity, just considering that the matter doesn’t 
bend, but instead stretches (decompresses) the space around it, by concentrating (actually consisting of) that ‘extra’ space inside. 

Presuming the initial state of the space being compressed to a degree, to have the gravitational force attractive, will at least in part 
explain the expansion of the Universe, since the compressed space would naturally tend to expand, to arrive at an equilibrium state.
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The force FAB will be attractive, because the stress inside the AB segment of the field will be less 
than outside and decreasing with a smaller L0. 
If we imagine A and B being ‘compressed space’ masses, with ΔLA and ΔLB as their magnitudes 
and with the L0 the distance between them, then the similarity of (8) with Newton’s universal 
gravitational force formula (8a) and (21) is obvious [4,5]. 
This way the matter in space could be nothing more but ‘compressions’ of that space, held 
concentrated (probably) by the electromagnetic forces. It would still fit and make perfect sense 
for the General Relativity, just considering that the matter doesn’t bend, but instead stretches 
(decompresses) the space around it, by concentrating (actually consisting of) that ‘extra’ space 
inside. 
Presuming the initial state of the space being compressed to a degree, to have the gravitational 
force attractive, will at least in part explain the expansion of the Universe, since the compressed 
space would naturally tend to expand, to arrive at an equilibrium state. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.3 
Illustrations of flat space, (top left), compressed space in a point (top right), bodies in space 
consisting of compressed space, creating the decompressed region around them. 

Figure 1.3

Figure 2.1 

Figure 2.2 

Note: If we imagine the arc in fig 2.1 closing up on itself creating a circle, then it’s easy to see, that every next ΔLi in this chain will 
be taken from a finite L, the length of this imaginary circle in fig. 2.2.

Illustrations of flat space, (top left), compressed space in a point (top right), bodies in space consisting of compressed space, creating 
the decompressed region around them.
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Then the L0 in the equation number (8): 
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m𝐴𝐴m𝐵𝐵 
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Note: that in (20) and (21) although consisting of fractions of N terms of other masses in the structure, nonetheless, is the force 
between just 0 (A) and 1 (B).

2.2 The case shown in 2.1 is of an arc fig 2.1, that can be just one arm of a spiral galaxy or an arc of a filament of galaxies, fig. 2.3.

Then the Dark Matter can be at least in part accounted by the increased G term with the increasing of the amount of matter in the 
structures.
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The Dark Matter can be at least in part accounted by the increasing the gravitational constant G 
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3. Conclusions
This way the matter in space could be nothing more but 
‘compressions’ of the space, held concentrated (probably) 
by the electromagnetic forces, considering that these forces 
are stronger. It would still fit and make perfect sense with the 
General Relativity, just considering that the matter doesn’t bend 
the space, but instead stretches (decompresses) the space around 
it, by concentrating (and actually consisting of) that ‘extra’ space 
inside it. The Dark Matter can be at least in part accounted by the 
increasing the gravitational constant G term with the increasing 
of the amount of matter in the structures like Spiral Galaxies, or 
Filaments of Galaxies.

Presuming the initial state of the space being compressed to a 
degree, will give us the attractive gravitational force, and will 
at least in part explain the expansion of the Universe, since the 
compressed space would naturally tend to expand, to arrive at an 
equilibrium state.

4. The Visual Demonstration
In this last part a demonstration of the special case 1.1 (*) with 
an initially stretched medium is proposed.

It is very easy to reproduce. That requires:

1. Rubber sheet,
2. Frame, to keep the rubber sheet stretched,
3. Two small plastic cups.

4. Oil for minimizing the friction between sheet and cups.
To reproduce it:

First, fix the rubber sheet in the frame. Pour some oil on the 
rubber sheet.
Put the cups upside down on the rubber, previously pouring 
some oil inside them. It is important that the cups have rounded 
edges and are thick enough to keep their shape.
Create some vacuum by pressing the rubber sheet into the cups.
If the friction is small enough, then the cups repelling can be 
observed. 
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