
Volume 2 | Issue 3 | 1Eng OA, 2024

Schemes for Resource-Efficient Generation of Twiddle Factors for Fixed-Radix
FFT Algorithms

Research Article

Keith Jones*

Consultant Mathematician (Retired), Weymouth, Dorset, UK *Corresponding Author
Keith Jones, Consultant Mathematician (Retired), Weymouth, Dorset,
UK.

Submitted: 2024, Jun 25; Accepted: 2024, Jul 26; Published: 2024, Jul 30

Citation: Jones, K. (2024). Schemes for Resource-Efficient Generation of Twiddle Factors for Fixed-Radix FFT Algorithms.
Eng OA, 2(3), 01-08.

Abstract
The paper describes schemes for the resource-efficient generation of twiddle factors for the fixed-radix version of the ubiquitous
fast Fourier transform (FFT) algorithm. The schemes, which are targeted at a parallel implementation of the FFT, provide one with
the facility for trading off arithmetic complexity, as expressed in terms of the required numbers of multiplications and additions
(or subtractions), against the memory requirement, as expressed in terms of the amount of random access memory (RAM) required
for constructing the look-up tables (LUTs) needed for the storage of the two twiddle factor components – one component being
derived from the sine function and the other from the cosine function. Examples are provided which illustrate the advantages and
disadvantages of each scheme – which are very much dependent upon the length of the FFT to be computed – for both the single-
level and multi-level LUTs, highlighting those situations where their adoption might be most appropriate. More specifically, it is
seen that the adoption of a multi-level LUT scheme may be used to facilitate significant reductions in memory – namely, from O(N)
to an O requirement, for the case of an N-point FFT, where β ≥ 2 corresponds to the number of distinct angular resolutions
used – at a relatively small cost in terms of increased FFT latency and arithmetic complexity.

Engineering: Open Access

Keywords: Butterfly, Complexity, FFT, LUT, Parallel, Twiddle Factor

1. Introduction
The fixed-radix version of the ubiquitous fast Fourier transform
(FFT) algorithm [1,2] provides one with an efficient means of
solving the discrete Fourier transform (DFT) [1,2], as given for the
case of the N-point transform by the expression

for k = 0,1, … ,N-1, where the inputs/outputs are complex-valued
and

the primitive Nth complex root of unity [3]. The complex
exponential terms, WN, each comprise two trigonometric
components – with each pair being more commonly referred to
as twiddle factors – that are required to be fed into each instance
of the FFT’s butterfly, this being the computational engine used
for carrying out the algorithm’s repetitive arithmetic operations
[1,2]. Thus, an efficient implementation of the fixed-radix FFT –
particularly for the processing of large and ultra-large data sets
– invariably requires an efficient mechanism for the generation

of the twiddle factors which, for a decimation-in-time (DIT) type
FFT design, with digit-reversed inputs and naturally-ordered
outputs, are applied to the butterfly inputs, whilst for a decimation-
in-frequency (DIF) type FFT design, with naturally-ordered inputs
and digit-reversed outputs, are applied to the butterfly outputs
[1,2]. Note that a fixed-radix FFT such as this could also be used
to some effect as one component of a prime factor FFT algorithm,
where the lengths of the individual small-FFT components are
constrained to be relatively prime [3,4].

The twiddle factor requirement, more exactly, is that for a radix-2
FFT algorithm there will be one non-trivial twiddle factor to
be applied to each butterfly. The twiddle factor possesses two
components, one defined by the sine function and the other by the
cosine function, which may be either retrieved directly from the
coefficient memory or generated on-the-fly in order to be able to
carry out the necessary processing for the FFT butterfly which is,
after all, the workhorse for the fixed-radix FFT – as is used today
in multiple one-dimensional and multi-dimensional digital signal
processing (DSP) and image processing applications, in real time
fashion. With a radix-R version of the FFT, however, where R is
an arbitrary integer greater than one, there will be R-1 non-trivial
twiddle factors to be applied to each butterfly, rather than just one.

()β NO

 1

Schemes for Resource-Efficient Generation of Twiddle
Factors for Fixed-Radix FFT Algorithms

Dr. Keith Jones, Consultant Mathematician (Retired)

Weymouth, Dorset, UK

July 2024

Abstract
 The paper describes schemes for the resource-efficient generation of twiddle factors for the fixed-radix

version of the ubiquitous fast Fourier transform (FFT) algorithm. The schemes, which are targeted at a parallel

implementation of the FFT, provide one with the facility for trading off arithmetic complexity, as expressed in

terms of the required numbers of multiplications and additions (or subtractions), against the memory

requirement, as expressed in terms of the amount of random access memory (RAM) required for constructing the

look-up tables (LUTs) needed for the storage of the two twiddle factor components – one component being

derived from the sine function and the other from the cosine function. Examples are provided which illustrate the

advantages and disadvantages of each scheme – which are very much dependent upon the length of the FFT to be

computed – for both the single-level and multi-level LUTs, highlighting those situations where their adoption

might be most appropriate. More specifically, it is seen that the adoption of a multi-level LUT scheme may be

used to facilitate significant reductions in memory – namely, from NO to an NO requirement, for the

case of an N-point FFT, where β ≥ 2 corresponds to the number of distinct angular resolutions used – at a

relatively small cost in terms of increased FFT latency and arithmetic complexity.

Key Words: butterfly, complexity, FFT, LUT, parallel, twiddle factor

1. Introduction
 The fixed-radix version of the ubiquitous fast

Fourier transform (FFT) algorithm [1,2] provides one

with an efficient means of solving the discrete Fourier

transform (DFT) [1,2], as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
NW].n[x

N
1]k[X

 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

complex-valued and

)N/2iexp(WN , 1i , (2)

the primitive Nth complex root of unity [3]. The

complex exponential terms, nk
NW , each comprise two

trigonometric components – with each pair being more

commonly referred to as twiddle factors – that are

required to be fed into each instance of the FFT’s

butterfly, this being the computational engine used for

carrying out the algorithm’s repetitive arithmetic

operations [1,2]. Thus, an efficient implementation of

the fixed-radix FFT – particularly for the processing of

large and ultra-large data sets – invariably requires an

efficient mechanism for the generation of the twiddle

factors which, for a decimation-in-time (DIT) type

FFT design, with digit-reversed inputs and naturally-

ordered outputs, are applied to the butterfly inputs,

whilst for a decimation-in-frequency (DIF) type FFT

design, with naturally-ordered inputs and digit-

reversed outputs, are applied to the butterfly outputs

[1,2]. Note that a fixed-radix FFT such as this could

also be used to some effect as one component of a

prime factor FFT algorithm [4], where the lengths of

the individual small-FFT components are constrained

to be relatively prime [3].

 1

Schemes for Resource-Efficient Generation of Twiddle
Factors for Fixed-Radix FFT Algorithms

Dr. Keith Jones, Consultant Mathematician (Retired)

Weymouth, Dorset, UK

July 2024

Abstract
 The paper describes schemes for the resource-efficient generation of twiddle factors for the fixed-radix

version of the ubiquitous fast Fourier transform (FFT) algorithm. The schemes, which are targeted at a parallel

implementation of the FFT, provide one with the facility for trading off arithmetic complexity, as expressed in

terms of the required numbers of multiplications and additions (or subtractions), against the memory

requirement, as expressed in terms of the amount of random access memory (RAM) required for constructing the

look-up tables (LUTs) needed for the storage of the two twiddle factor components – one component being

derived from the sine function and the other from the cosine function. Examples are provided which illustrate the

advantages and disadvantages of each scheme – which are very much dependent upon the length of the FFT to be

computed – for both the single-level and multi-level LUTs, highlighting those situations where their adoption

might be most appropriate. More specifically, it is seen that the adoption of a multi-level LUT scheme may be

used to facilitate significant reductions in memory – namely, from NO to an NO requirement, for the

case of an N-point FFT, where β ≥ 2 corresponds to the number of distinct angular resolutions used – at a

relatively small cost in terms of increased FFT latency and arithmetic complexity.

Key Words: butterfly, complexity, FFT, LUT, parallel, twiddle factor

1. Introduction
 The fixed-radix version of the ubiquitous fast

Fourier transform (FFT) algorithm [1,2] provides one

with an efficient means of solving the discrete Fourier

transform (DFT) [1,2], as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
NW].n[x

N
1]k[X

 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

complex-valued and

)N/2iexp(WN , 1i , (2)

the primitive Nth complex root of unity [3]. The

complex exponential terms, nk
NW , each comprise two

trigonometric components – with each pair being more

commonly referred to as twiddle factors – that are

required to be fed into each instance of the FFT’s

butterfly, this being the computational engine used for

carrying out the algorithm’s repetitive arithmetic

operations [1,2]. Thus, an efficient implementation of

the fixed-radix FFT – particularly for the processing of

large and ultra-large data sets – invariably requires an

efficient mechanism for the generation of the twiddle

factors which, for a decimation-in-time (DIT) type

FFT design, with digit-reversed inputs and naturally-

ordered outputs, are applied to the butterfly inputs,

whilst for a decimation-in-frequency (DIF) type FFT

design, with naturally-ordered inputs and digit-

reversed outputs, are applied to the butterfly outputs

[1,2]. Note that a fixed-radix FFT such as this could

also be used to some effect as one component of a

prime factor FFT algorithm [4], where the lengths of

the individual small-FFT components are constrained

to be relatively prime [3]. 1

Schemes for Resource-Efficient Generation of Twiddle
Factors for Fixed-Radix FFT Algorithms

Dr. Keith Jones, Consultant Mathematician (Retired)

Weymouth, Dorset, UK

July 2024

Abstract
 The paper describes schemes for the resource-efficient generation of twiddle factors for the fixed-radix

version of the ubiquitous fast Fourier transform (FFT) algorithm. The schemes, which are targeted at a parallel

implementation of the FFT, provide one with the facility for trading off arithmetic complexity, as expressed in

terms of the required numbers of multiplications and additions (or subtractions), against the memory

requirement, as expressed in terms of the amount of random access memory (RAM) required for constructing the

look-up tables (LUTs) needed for the storage of the two twiddle factor components – one component being

derived from the sine function and the other from the cosine function. Examples are provided which illustrate the

advantages and disadvantages of each scheme – which are very much dependent upon the length of the FFT to be

computed – for both the single-level and multi-level LUTs, highlighting those situations where their adoption

might be most appropriate. More specifically, it is seen that the adoption of a multi-level LUT scheme may be

used to facilitate significant reductions in memory – namely, from NO to an NO requirement, for the

case of an N-point FFT, where β ≥ 2 corresponds to the number of distinct angular resolutions used – at a

relatively small cost in terms of increased FFT latency and arithmetic complexity.

Key Words: butterfly, complexity, FFT, LUT, parallel, twiddle factor

1. Introduction
 The fixed-radix version of the ubiquitous fast

Fourier transform (FFT) algorithm [1,2] provides one

with an efficient means of solving the discrete Fourier

transform (DFT) [1,2], as given for the case of the

N-point transform by the expression

 ∑
1N

0n

nk
NW].n[x

N
1]k[X

 (1)

for k = 0,1, … ,N-1, where the inputs/outputs are

complex-valued and

)N/2iexp(WN , 1i , (2)

the primitive Nth complex root of unity [3]. The

complex exponential terms, nk
NW , each comprise two

trigonometric components – with each pair being more

commonly referred to as twiddle factors – that are

required to be fed into each instance of the FFT’s

butterfly, this being the computational engine used for

carrying out the algorithm’s repetitive arithmetic

operations [1,2]. Thus, an efficient implementation of

the fixed-radix FFT – particularly for the processing of

large and ultra-large data sets – invariably requires an

efficient mechanism for the generation of the twiddle

factors which, for a decimation-in-time (DIT) type

FFT design, with digit-reversed inputs and naturally-

ordered outputs, are applied to the butterfly inputs,

whilst for a decimation-in-frequency (DIF) type FFT

design, with naturally-ordered inputs and digit-

reversed outputs, are applied to the butterfly outputs

[1,2]. Note that a fixed-radix FFT such as this could

also be used to some effect as one component of a

prime factor FFT algorithm [4], where the lengths of

the individual small-FFT components are constrained

to be relatively prime [3].

Volume 2 | Issue 3 | 2Eng OA, 2024

Thus, the results to be described in this paper – which are
targeted, for ease of analysis, at a radix-2 formulation of the FFT
– will need to be amended to cater for the increased coefficient
memory needed for the generation of the R-1 non-trivial twiddle
factors, particularly if a highly-parallel solution to the twiddle
factor generation (whereby all the non-trivial twiddle factors are
generated and applied simultaneously), and thus to the FFT, is to
be achieved.

A radix-R version of the N-point FFT involves a total of logR (N)
stages in the temporal domain – where the processing for a given
stage can only commence once that of its predecessor has been
completed – with each stage involving the computation of N/R

radix-R butterflies in the spatial domain. Being independent, in
terms of distinct input data sets, enables multiple butterflies to
be computed in parallel in the spatial domain via the use of sin-
gle-instruction multiple data (SIMD) type parallel processing
techniques [5]. For a fixed-radix version of the FFT such as this a
single butterfly design is required, with its name deriving from the
radix-2 design’s resemblance to that of a butterfly, as illustrated in
Figure 1 – although for a radix-4 algorithm its design more closely
resembles that of a dragonfly or, for a radix-8 algorithm, that of
a spider! Clearly, a mixed-radix version of the FFT [1,2], involv-
ing a combination of different radices, such as one exploiting both
radix-2 and radix-4 components, would require a commensurate
number of distinct butterfly designs.

 10

Figures & Tables

Task 1:

Compute LUT addresses and access corresponding trigonometric terms

Task 2:

Compute set of four trigonometric products from Task 1 outputs – see Eqtns. 8-9

Task 3:

Combine trigonometric product pairs additively to produce pair of twiddle factor

components – one sinusoidal & one cosinusoidal component – see Eqtns. 8-9

Note: parallel processing required for producing simultaneous outputs from each task

Figure 2 – twiddle factor generation using two-level LUT scheme

Figure 1 – illustration of butterfly for DIT version of radix-2 FFT algorithm –
twiddle factor applied to butterfly input

_

+

+

+

X[1]

X[0]

x[1]

x[0]

k
NW

Figure 1: Illustration of Butterfly for DIT Version of Radix-2 FFT Algorithm – Twiddle Factor Applied to Butterfly Input

Schemes are to be described which enable a simple trade-off in
computational complexity to be made between the arithmetic
requirement, as expressed in terms of the number of arithmetic
operations – denoted CM for multiplications and CA for additions
(or subtractions) – required for obtaining the twiddle factors when
one or more suitably sized look-up tables (LUTs) are used for
their storage, and the memory requirement, as expressed in terms
of the amount of random access memory (RAM) [6] – denoted
CLUT – required for constructing the one or more suitably sized
LUTs. The assessment of these schemes assumes the availability
of parallel computing equipment, such as that provided by means
of a field programmable gate array (FPGA) device, enabling the
efficient mapping of the twiddle factor generation – and thus of the
associated fixed-radix FFT – onto suitably defined computational
pipelines for optimum implementational efficiency [6,5].

Summarizing, when just one LUT is used for the twiddle factor
storage – as is discussed in Section 2 – the scheme is said to be
based upon the adoption of a single-level LUT, whereas when more
than one LUT is used for their storage – as is discussed in Section
3 – the scheme is said to be based upon the adoption of a multi-
level LUT, composed essentially of multiple single-level LUTs [7].
Following these descriptions of the single-level and multi-level
LUT schemes, the relative advantages and disadvantages of each,
which are very much dependent upon the length of the FFT to
be computed, are discussed in some detail in Section 4 together
with examples highlighting those situations where the adoption
of the single-level, two-level and three-level LUT schemes might
be most appropriate. Finally, a brief summary and conclusions is
provided in Section 5.

2. Single-Level LUT Scheme
As already stated, each twiddle factor comprises two trigonometric
components: one sinusoidal and the other cosinusoidal. To
minimize the arithmetic requirement for the generation of the
twiddle factors, a single LUT may be used whereby the sinusoidal
and cosinusoidal components are read from a sampled version of
the sine function with argument defined from 0 up to 2π radians.
As a result, the LUT may be accessed by means of a single, easy
to compute address which may be updated from one access to
another via simple control logic and one addition using a fixed
increment – that is, the addresses form an arithmetic sequence.

To achieve a memory-efficient implementation of the fixed-radix
FFT, however, it should be noted that the coefficient memory
requirement for the case of an N-point transform can be reduced
from N to just N/4 memory locations by exploiting the relationship
between the sine and cosine functions, as given by the expression

as well as the periodic nature of each, as given by the expressions

These properties enable the twiddle factors to be obtained from
a pre-computed trigonometric function defined over a single
quadrant of just π/2 radians rather than over the full range of 2π
radians.

 3

two-level and three-level LUT schemes might be most

appropriate. Finally, a brief summary and conclusions

is provided in Section 5.

2. Single-Level LUT Scheme
 As already stated, each twiddle factor comprises

two trigonometric components: one sinusoidal and the

other cosinusoidal. To minimize the arithmetic

requirement for the generation of the twiddle factors, a

single LUT may be used whereby the sinusoidal and

cosinusoidal components are read from a sampled

version of the sine function with argument defined

from 0 up to 2π radians. As a result, the LUT may be

accessed by means of a single, easy to compute

address which may be updated from one access to

another via simple control logic and one addition

using a fixed increment – that is, the addresses form an

arithmetic sequence.

 To achieve a memory-efficient implementation of

the fixed-radix FFT, however, it should be noted that

the coefficient memory requirement for the case of an

N-point transform can be reduced from N to just N/4

memory locations by exploiting the relationship

between the sine and cosine functions, as given by the

expression

 2
1xsinxcos , (3)

as well as the periodic nature of each, as given by the

expressions

 xsin2xsin (4)

 xsinxsin . (5)

These properties enable the twiddle factors to be

obtained from a pre-computed trigonometric function

defined over a single quadrant of just 2/ radians

rather than over the full range of 2π radians.

 Thus, for the case of an N-point FFT based upon

the adoption of a single LUT, the arithmetic

requirement is given by

 CM = 0 & CA = 2 (6)

that is, two additions for the generation of each

twiddle factor – one for the LUT address of the

sinusoidal component and one for the LUT address of

the cosinusoidal component – whilst the LUT needs to

be of length N/4, yielding a corresponding O(N)
memory requirement of

 N4
1CLUT (7)

words. This single-quadrant scheme, which exploits a

single-level LUT, would seem to offer a reasonable

compromise between the arithmetic requirement and

the memory requirement, using more than the

theoretical minimum amount of memory required for

the storage of the twiddle factors so as to keep the

arithmetic requirement, for the addressing of the LUT,

to a minimum. Most FFT algorithms would invariably

adopt such an approach, although as will be seen in the

following sections, when the FFT is sufficiently long a

multi-level scheme based upon the exploitation of

multiple small LUTs might prove more attractive.

3. Multi-Level LUT Schemes
 The aim of the multi-level schemes – which,

essentially, involves the exploitation of multiple one-

level LUTs – is to reduce the total memory

requirement at the expense of increased arithmetic

complexity. The twiddle factors are obtained from the

contents of the multiple LUTs through the repeated

application of the standard trigonometric identities

 sinsincoscoscos (8)

 sincoscossinsin (9)

as will be applied directly for the two-level case,

where corresponds to the angle defined over a

coarse-resolution angular region and to the angle

defined over a fine-resolution angular region. In

achieving such a reduction in the memory requirement

it is necessary, given MR different angular resolutions

– where the mth resolution is represented by LUT(s) of

length Sm – that the product parameter, P, obtained

from the product of the MR LUT lengths, is such that

 N4
1SP

RM

1m
m

 (10)

 3

two-level and three-level LUT schemes might be most

appropriate. Finally, a brief summary and conclusions

is provided in Section 5.

2. Single-Level LUT Scheme
 As already stated, each twiddle factor comprises

two trigonometric components: one sinusoidal and the

other cosinusoidal. To minimize the arithmetic

requirement for the generation of the twiddle factors, a

single LUT may be used whereby the sinusoidal and

cosinusoidal components are read from a sampled

version of the sine function with argument defined

from 0 up to 2π radians. As a result, the LUT may be

accessed by means of a single, easy to compute

address which may be updated from one access to

another via simple control logic and one addition

using a fixed increment – that is, the addresses form an

arithmetic sequence.

 To achieve a memory-efficient implementation of

the fixed-radix FFT, however, it should be noted that

the coefficient memory requirement for the case of an

N-point transform can be reduced from N to just N/4

memory locations by exploiting the relationship

between the sine and cosine functions, as given by the

expression

 2
1xsinxcos , (3)

as well as the periodic nature of each, as given by the

expressions

 xsin2xsin (4)

 xsinxsin . (5)

These properties enable the twiddle factors to be

obtained from a pre-computed trigonometric function

defined over a single quadrant of just 2/ radians

rather than over the full range of 2π radians.

 Thus, for the case of an N-point FFT based upon

the adoption of a single LUT, the arithmetic

requirement is given by

 CM = 0 & CA = 2 (6)

that is, two additions for the generation of each

twiddle factor – one for the LUT address of the

sinusoidal component and one for the LUT address of

the cosinusoidal component – whilst the LUT needs to

be of length N/4, yielding a corresponding O(N)
memory requirement of

 N4
1CLUT (7)

words. This single-quadrant scheme, which exploits a

single-level LUT, would seem to offer a reasonable

compromise between the arithmetic requirement and

the memory requirement, using more than the

theoretical minimum amount of memory required for

the storage of the twiddle factors so as to keep the

arithmetic requirement, for the addressing of the LUT,

to a minimum. Most FFT algorithms would invariably

adopt such an approach, although as will be seen in the

following sections, when the FFT is sufficiently long a

multi-level scheme based upon the exploitation of

multiple small LUTs might prove more attractive.

3. Multi-Level LUT Schemes
 The aim of the multi-level schemes – which,

essentially, involves the exploitation of multiple one-

level LUTs – is to reduce the total memory

requirement at the expense of increased arithmetic

complexity. The twiddle factors are obtained from the

contents of the multiple LUTs through the repeated

application of the standard trigonometric identities

 sinsincoscoscos (8)

 sincoscossinsin (9)

as will be applied directly for the two-level case,

where corresponds to the angle defined over a

coarse-resolution angular region and to the angle

defined over a fine-resolution angular region. In

achieving such a reduction in the memory requirement

it is necessary, given MR different angular resolutions

– where the mth resolution is represented by LUT(s) of

length Sm – that the product parameter, P, obtained

from the product of the MR LUT lengths, is such that

 N4
1SP

RM

1m
m

 (10)

Volume 2 | Issue 3 | 3Eng OA, 2024

Thus, for the case of an N-point FFT based upon the adoption of a
single LUT, the arithmetic requirement is given by

that is, two additions for the generation of each twiddle factor –
one for the LUT address of the sinusoidal component and one for
the LUT address of the cosinusoidal component – whilst the LUT
needs to be of length N/4, yielding a corresponding O(N) memory
requirement of

words. This single-quadrant scheme, which exploits a single-level
LUT, would seem to offer a reasonable compromise between
the arithmetic requirement and the memory requirement, using
more than the theoretical minimum amount of memory required
for the storage of the twiddle factors so as to keep the arithmetic
requirement, for the addressing of the LUT, to a minimum.
Most FFT algorithms would invariably adopt such an approach,
although as will be seen in the following sections, when the FFT is
sufficiently long a multi-level scheme based upon the exploitation
of multiple small LUTs might prove more attractive.

3. Multi-Level LUT Schemes
The aim of the multi-level schemes – which, essentially, involves
the exploitation of multiple one-level LUTs – is to reduce the
total memory requirement at the expense of increased arithmetic
complexity. The twiddle factors are obtained from the contents of
the multiple LUTs through the repeated application of the standard
trigonometric identities

as will be applied directly for the two-level case, where θ
corresponds to the angle defined over a coarse-resolution angular
region and φ to the angle defined over a fine-resolution angular
region. In achieving such a reduction in the memory requirement
it is necessary, given MR different angular resolutions – where the
mth resolution is represented by LUT(s) of length Sm – that the
product parameter, P, obtained from the product of the MR LUT
lengths, is such that

as expressed by Eqtn. 7, so that the required angular resolution
is achieved, whilst at the same time ensuring that the summation
parameter, S, obtained from the sum of all the LUT lengths, is
such that

where αm represents the number of LUTs required by the mth angular

resolution region, so that the total coefficient memory requirement
is minimized. For each LUT-based scheme, the parameter α1 is
clearly equal to one, as there is only one LUT to consider for the
coarse-resolution region, whilst it will be seen in this section that
for the multi-level case, where m > 1, each parameter αm is equal
to two as there are two identically sized LUTs that need to be
considered for each fine-resolution region – namely, one for the
sine function and one for the cosine function.

3.1 Two-Level Scheme
The first multi-level scheme involves the adoption of a two-level
LUT, this comprising one coarse-resolution region of length N/4L
catering for both the sine and cosine functions, covering 0 up to
π/2 radians, and one fine-resolution region of length L for each of
the sine and cosine functions, covering 0 up to π/2L radians. The
required twiddle factors may then be obtained from the contents
of the two-level LUT through the application of the standard
trigonometric identities, as given by Eqtns. 8 and 9, where θ
corresponds to the angle defined over the coarse-resolution region
and φ to the angle defined over the fine-resolution region.

By expressing the combined size of the two-level LUT for the sine
function as having to cater for

words, where the LUTs are assumed for ease of analysis to be each
of length L, it can be seen from the application of the differential
calculus that the optimum LUT length is obtained when the
derivative

is set to zero, giving

and resulting in a total memory requirement of

words – that is, to cater for both the sine and cosine functions
defined over the coarse-resolution region and to cater for each
of the sine and cosine functions defined over the fine-resolution
region [8].

This scheme therefore yields a reduced memory requirement
(when compared to that for the single-level scheme) for the storage
of the twiddle factors at the expense of an increased arithmetic
requirement, namely

where four of the additions are for generating the LUT addresses –
that is, two to cater for both the sine and cosine functions defined
over the coarse-resolution region and two to cater for the sine and

 3

two-level and three-level LUT schemes might be most

appropriate. Finally, a brief summary and conclusions

is provided in Section 5.

2. Single-Level LUT Scheme
 As already stated, each twiddle factor comprises

two trigonometric components: one sinusoidal and the

other cosinusoidal. To minimize the arithmetic

requirement for the generation of the twiddle factors, a

single LUT may be used whereby the sinusoidal and

cosinusoidal components are read from a sampled

version of the sine function with argument defined

from 0 up to 2π radians. As a result, the LUT may be

accessed by means of a single, easy to compute

address which may be updated from one access to

another via simple control logic and one addition

using a fixed increment – that is, the addresses form an

arithmetic sequence.

 To achieve a memory-efficient implementation of

the fixed-radix FFT, however, it should be noted that

the coefficient memory requirement for the case of an

N-point transform can be reduced from N to just N/4

memory locations by exploiting the relationship

between the sine and cosine functions, as given by the

expression

 2
1xsinxcos , (3)

as well as the periodic nature of each, as given by the

expressions

 xsin2xsin (4)

 xsinxsin . (5)

These properties enable the twiddle factors to be

obtained from a pre-computed trigonometric function

defined over a single quadrant of just 2/ radians

rather than over the full range of 2π radians.

 Thus, for the case of an N-point FFT based upon

the adoption of a single LUT, the arithmetic

requirement is given by

 CM = 0 & CA = 2 (6)

that is, two additions for the generation of each

twiddle factor – one for the LUT address of the

sinusoidal component and one for the LUT address of

the cosinusoidal component – whilst the LUT needs to

be of length N/4, yielding a corresponding O(N)
memory requirement of

 N4
1CLUT (7)

words. This single-quadrant scheme, which exploits a

single-level LUT, would seem to offer a reasonable

compromise between the arithmetic requirement and

the memory requirement, using more than the

theoretical minimum amount of memory required for

the storage of the twiddle factors so as to keep the

arithmetic requirement, for the addressing of the LUT,

to a minimum. Most FFT algorithms would invariably

adopt such an approach, although as will be seen in the

following sections, when the FFT is sufficiently long a

multi-level scheme based upon the exploitation of

multiple small LUTs might prove more attractive.

3. Multi-Level LUT Schemes
 The aim of the multi-level schemes – which,

essentially, involves the exploitation of multiple one-

level LUTs – is to reduce the total memory

requirement at the expense of increased arithmetic

complexity. The twiddle factors are obtained from the

contents of the multiple LUTs through the repeated

application of the standard trigonometric identities

 sinsincoscoscos (8)

 sincoscossinsin (9)

as will be applied directly for the two-level case,

where corresponds to the angle defined over a

coarse-resolution angular region and to the angle

defined over a fine-resolution angular region. In

achieving such a reduction in the memory requirement

it is necessary, given MR different angular resolutions

– where the mth resolution is represented by LUT(s) of

length Sm – that the product parameter, P, obtained

from the product of the MR LUT lengths, is such that

 N4
1SP

RM

1m
m

 (10)

 3

two-level and three-level LUT schemes might be most

appropriate. Finally, a brief summary and conclusions

is provided in Section 5.

2. Single-Level LUT Scheme
 As already stated, each twiddle factor comprises

two trigonometric components: one sinusoidal and the

other cosinusoidal. To minimize the arithmetic

requirement for the generation of the twiddle factors, a

single LUT may be used whereby the sinusoidal and

cosinusoidal components are read from a sampled

version of the sine function with argument defined

from 0 up to 2π radians. As a result, the LUT may be

accessed by means of a single, easy to compute

address which may be updated from one access to

another via simple control logic and one addition

using a fixed increment – that is, the addresses form an

arithmetic sequence.

 To achieve a memory-efficient implementation of

the fixed-radix FFT, however, it should be noted that

the coefficient memory requirement for the case of an

N-point transform can be reduced from N to just N/4

memory locations by exploiting the relationship

between the sine and cosine functions, as given by the

expression

 2
1xsinxcos , (3)

as well as the periodic nature of each, as given by the

expressions

 xsin2xsin (4)

 xsinxsin . (5)

These properties enable the twiddle factors to be

obtained from a pre-computed trigonometric function

defined over a single quadrant of just 2/ radians

rather than over the full range of 2π radians.

 Thus, for the case of an N-point FFT based upon

the adoption of a single LUT, the arithmetic

requirement is given by

 CM = 0 & CA = 2 (6)

that is, two additions for the generation of each

twiddle factor – one for the LUT address of the

sinusoidal component and one for the LUT address of

the cosinusoidal component – whilst the LUT needs to

be of length N/4, yielding a corresponding O(N)
memory requirement of

 N4
1CLUT (7)

words. This single-quadrant scheme, which exploits a

single-level LUT, would seem to offer a reasonable

compromise between the arithmetic requirement and

the memory requirement, using more than the

theoretical minimum amount of memory required for

the storage of the twiddle factors so as to keep the

arithmetic requirement, for the addressing of the LUT,

to a minimum. Most FFT algorithms would invariably

adopt such an approach, although as will be seen in the

following sections, when the FFT is sufficiently long a

multi-level scheme based upon the exploitation of

multiple small LUTs might prove more attractive.

3. Multi-Level LUT Schemes
 The aim of the multi-level schemes – which,

essentially, involves the exploitation of multiple one-

level LUTs – is to reduce the total memory

requirement at the expense of increased arithmetic

complexity. The twiddle factors are obtained from the

contents of the multiple LUTs through the repeated

application of the standard trigonometric identities

 sinsincoscoscos (8)

 sincoscossinsin (9)

as will be applied directly for the two-level case,

where corresponds to the angle defined over a

coarse-resolution angular region and to the angle

defined over a fine-resolution angular region. In

achieving such a reduction in the memory requirement

it is necessary, given MR different angular resolutions

– where the mth resolution is represented by LUT(s) of

length Sm – that the product parameter, P, obtained

from the product of the MR LUT lengths, is such that

 N4
1SP

RM

1m
m

 (10)

 3

two-level and three-level LUT schemes might be most

appropriate. Finally, a brief summary and conclusions

is provided in Section 5.

2. Single-Level LUT Scheme
 As already stated, each twiddle factor comprises

two trigonometric components: one sinusoidal and the

other cosinusoidal. To minimize the arithmetic

requirement for the generation of the twiddle factors, a

single LUT may be used whereby the sinusoidal and

cosinusoidal components are read from a sampled

version of the sine function with argument defined

from 0 up to 2π radians. As a result, the LUT may be

accessed by means of a single, easy to compute

address which may be updated from one access to

another via simple control logic and one addition

using a fixed increment – that is, the addresses form an

arithmetic sequence.

 To achieve a memory-efficient implementation of

the fixed-radix FFT, however, it should be noted that

the coefficient memory requirement for the case of an

N-point transform can be reduced from N to just N/4

memory locations by exploiting the relationship

between the sine and cosine functions, as given by the

expression

 2
1xsinxcos , (3)

as well as the periodic nature of each, as given by the

expressions

 xsin2xsin (4)

 xsinxsin . (5)

These properties enable the twiddle factors to be

obtained from a pre-computed trigonometric function

defined over a single quadrant of just 2/ radians

rather than over the full range of 2π radians.

 Thus, for the case of an N-point FFT based upon

the adoption of a single LUT, the arithmetic

requirement is given by

 CM = 0 & CA = 2 (6)

that is, two additions for the generation of each

twiddle factor – one for the LUT address of the

sinusoidal component and one for the LUT address of

the cosinusoidal component – whilst the LUT needs to

be of length N/4, yielding a corresponding O(N)
memory requirement of

 N4
1CLUT (7)

words. This single-quadrant scheme, which exploits a

single-level LUT, would seem to offer a reasonable

compromise between the arithmetic requirement and

the memory requirement, using more than the

theoretical minimum amount of memory required for

the storage of the twiddle factors so as to keep the

arithmetic requirement, for the addressing of the LUT,

to a minimum. Most FFT algorithms would invariably

adopt such an approach, although as will be seen in the

following sections, when the FFT is sufficiently long a

multi-level scheme based upon the exploitation of

multiple small LUTs might prove more attractive.

3. Multi-Level LUT Schemes
 The aim of the multi-level schemes – which,

essentially, involves the exploitation of multiple one-

level LUTs – is to reduce the total memory

requirement at the expense of increased arithmetic

complexity. The twiddle factors are obtained from the

contents of the multiple LUTs through the repeated

application of the standard trigonometric identities

 sinsincoscoscos (8)

 sincoscossinsin (9)

as will be applied directly for the two-level case,

where corresponds to the angle defined over a

coarse-resolution angular region and to the angle

defined over a fine-resolution angular region. In

achieving such a reduction in the memory requirement

it is necessary, given MR different angular resolutions

– where the mth resolution is represented by LUT(s) of

length Sm – that the product parameter, P, obtained

from the product of the MR LUT lengths, is such that

 N4
1SP

RM

1m
m

 (10)
 3

two-level and three-level LUT schemes might be most

appropriate. Finally, a brief summary and conclusions

is provided in Section 5.

2. Single-Level LUT Scheme
 As already stated, each twiddle factor comprises

two trigonometric components: one sinusoidal and the

other cosinusoidal. To minimize the arithmetic

requirement for the generation of the twiddle factors, a

single LUT may be used whereby the sinusoidal and

cosinusoidal components are read from a sampled

version of the sine function with argument defined

from 0 up to 2π radians. As a result, the LUT may be

accessed by means of a single, easy to compute

address which may be updated from one access to

another via simple control logic and one addition

using a fixed increment – that is, the addresses form an

arithmetic sequence.

 To achieve a memory-efficient implementation of

the fixed-radix FFT, however, it should be noted that

the coefficient memory requirement for the case of an

N-point transform can be reduced from N to just N/4

memory locations by exploiting the relationship

between the sine and cosine functions, as given by the

expression

 2
1xsinxcos , (3)

as well as the periodic nature of each, as given by the

expressions

 xsin2xsin (4)

 xsinxsin . (5)

These properties enable the twiddle factors to be

obtained from a pre-computed trigonometric function

defined over a single quadrant of just 2/ radians

rather than over the full range of 2π radians.

 Thus, for the case of an N-point FFT based upon

the adoption of a single LUT, the arithmetic

requirement is given by

 CM = 0 & CA = 2 (6)

that is, two additions for the generation of each

twiddle factor – one for the LUT address of the

sinusoidal component and one for the LUT address of

the cosinusoidal component – whilst the LUT needs to

be of length N/4, yielding a corresponding O(N)
memory requirement of

 N4
1CLUT (7)

words. This single-quadrant scheme, which exploits a

single-level LUT, would seem to offer a reasonable

compromise between the arithmetic requirement and

the memory requirement, using more than the

theoretical minimum amount of memory required for

the storage of the twiddle factors so as to keep the

arithmetic requirement, for the addressing of the LUT,

to a minimum. Most FFT algorithms would invariably

adopt such an approach, although as will be seen in the

following sections, when the FFT is sufficiently long a

multi-level scheme based upon the exploitation of

multiple small LUTs might prove more attractive.

3. Multi-Level LUT Schemes
 The aim of the multi-level schemes – which,

essentially, involves the exploitation of multiple one-

level LUTs – is to reduce the total memory

requirement at the expense of increased arithmetic

complexity. The twiddle factors are obtained from the

contents of the multiple LUTs through the repeated

application of the standard trigonometric identities

 sinsincoscoscos (8)

 sincoscossinsin (9)

as will be applied directly for the two-level case,

where corresponds to the angle defined over a

coarse-resolution angular region and to the angle

defined over a fine-resolution angular region. In

achieving such a reduction in the memory requirement

it is necessary, given MR different angular resolutions

– where the mth resolution is represented by LUT(s) of

length Sm – that the product parameter, P, obtained

from the product of the MR LUT lengths, is such that

 N4
1SP

RM

1m
m

 (10)

 4

as expressed by Eqtn. 7, so that the required angular

resolution is achieved, whilst at the same time

ensuring that the summation parameter, S, obtained

from the sum of all the LUT lengths, is such that

RM

1m
mm SS is minimized, (11)

where m represents the number of LUTs required by

the mth angular resolution region, so that the total

coefficient memory requirement is minimized. For

each LUT-based scheme, the parameter 1 is clearly

equal to one, as there is only one LUT to consider for

the coarse- resolution region, whilst it will be seen in

this section that for the multi-level case, where m > 1,

each parameter m is equal to two as there are two

identically sized LUTs that need to be considered for

each fine-resolution region – namely, one for the sine

function and one for the cosine function.

3.1 Two-Level Scheme
 The first multi-level scheme involves the adoption

of a two-level LUT, this comprising one coarse-

resolution region of length N/4L catering for both the

sine and cosine functions, covering 0 up to 2/

radians, and one fine-resolution region of length L for

each of the sine and cosine functions, covering 0 up to

L2/ radians. The required twiddle factors may then

be obtained from the contents of the two-level LUT

through the application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, where

corresponds to the angle defined over the coarse-

resolution region and to the angle defined over the

fine-resolution region.

 By expressing the combined size of the two-level

LUT for the sine function as having to cater for

 LL4
N)L(f (12)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen from the

application of the differential calculus [8] that the

optimum LUT length is obtained when the derivative

 2L4
N1

dL
df

 (13)

is set to zero, giving

 N2
1L (14)

and resulting in a total NO memory requirement

of

 N2
3CLUT (15)

words – that is, 2/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 2/N to cater for each of the sine and

cosine functions defined over the fine-resolution

region.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level scheme) for the storage of the twiddle factors at

the expense of an increased arithmetic requirement,

namely

 CM = 4 & CA = 6 (16)

where four of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the

fine-resolution region.

 The two-level LUT thus consists of three separate

single-level LUTs, each of length 2/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from the two fine-resolution LUTs,

one per LUT. In addition, for the efficient mapping of

the FFT onto parallel computing equipment it will be

necessary for the twiddle factor generation to be

carried out by means of a suitably defined

computational pipeline. To achieve this, the problem

must first be decomposed into a number of

independent tasks to be performed in the specified

 4

as expressed by Eqtn. 7, so that the required angular

resolution is achieved, whilst at the same time

ensuring that the summation parameter, S, obtained

from the sum of all the LUT lengths, is such that

RM

1m
mm SS is minimized, (11)

where m represents the number of LUTs required by

the mth angular resolution region, so that the total

coefficient memory requirement is minimized. For

each LUT-based scheme, the parameter 1 is clearly

equal to one, as there is only one LUT to consider for

the coarse- resolution region, whilst it will be seen in

this section that for the multi-level case, where m > 1,

each parameter m is equal to two as there are two

identically sized LUTs that need to be considered for

each fine-resolution region – namely, one for the sine

function and one for the cosine function.

3.1 Two-Level Scheme
 The first multi-level scheme involves the adoption

of a two-level LUT, this comprising one coarse-

resolution region of length N/4L catering for both the

sine and cosine functions, covering 0 up to 2/

radians, and one fine-resolution region of length L for

each of the sine and cosine functions, covering 0 up to

L2/ radians. The required twiddle factors may then

be obtained from the contents of the two-level LUT

through the application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, where

corresponds to the angle defined over the coarse-

resolution region and to the angle defined over the

fine-resolution region.

 By expressing the combined size of the two-level

LUT for the sine function as having to cater for

 LL4
N)L(f (12)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen from the

application of the differential calculus [8] that the

optimum LUT length is obtained when the derivative

 2L4
N1

dL
df

 (13)

is set to zero, giving

 N2
1L (14)

and resulting in a total NO memory requirement

of

 N2
3CLUT (15)

words – that is, 2/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 2/N to cater for each of the sine and

cosine functions defined over the fine-resolution

region.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level scheme) for the storage of the twiddle factors at

the expense of an increased arithmetic requirement,

namely

 CM = 4 & CA = 6 (16)

where four of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the

fine-resolution region.

 The two-level LUT thus consists of three separate

single-level LUTs, each of length 2/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from the two fine-resolution LUTs,

one per LUT. In addition, for the efficient mapping of

the FFT onto parallel computing equipment it will be

necessary for the twiddle factor generation to be

carried out by means of a suitably defined

computational pipeline. To achieve this, the problem

must first be decomposed into a number of

independent tasks to be performed in the specified

 4

as expressed by Eqtn. 7, so that the required angular

resolution is achieved, whilst at the same time

ensuring that the summation parameter, S, obtained

from the sum of all the LUT lengths, is such that

RM

1m
mm SS is minimized, (11)

where m represents the number of LUTs required by

the mth angular resolution region, so that the total

coefficient memory requirement is minimized. For

each LUT-based scheme, the parameter 1 is clearly

equal to one, as there is only one LUT to consider for

the coarse- resolution region, whilst it will be seen in

this section that for the multi-level case, where m > 1,

each parameter m is equal to two as there are two

identically sized LUTs that need to be considered for

each fine-resolution region – namely, one for the sine

function and one for the cosine function.

3.1 Two-Level Scheme
 The first multi-level scheme involves the adoption

of a two-level LUT, this comprising one coarse-

resolution region of length N/4L catering for both the

sine and cosine functions, covering 0 up to 2/

radians, and one fine-resolution region of length L for

each of the sine and cosine functions, covering 0 up to

L2/ radians. The required twiddle factors may then

be obtained from the contents of the two-level LUT

through the application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, where

corresponds to the angle defined over the coarse-

resolution region and to the angle defined over the

fine-resolution region.

 By expressing the combined size of the two-level

LUT for the sine function as having to cater for

 LL4
N)L(f (12)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen from the

application of the differential calculus [8] that the

optimum LUT length is obtained when the derivative

 2L4
N1

dL
df

 (13)

is set to zero, giving

 N2
1L (14)

and resulting in a total NO memory requirement

of

 N2
3CLUT (15)

words – that is, 2/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 2/N to cater for each of the sine and

cosine functions defined over the fine-resolution

region.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level scheme) for the storage of the twiddle factors at

the expense of an increased arithmetic requirement,

namely

 CM = 4 & CA = 6 (16)

where four of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the

fine-resolution region.

 The two-level LUT thus consists of three separate

single-level LUTs, each of length 2/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from the two fine-resolution LUTs,

one per LUT. In addition, for the efficient mapping of

the FFT onto parallel computing equipment it will be

necessary for the twiddle factor generation to be

carried out by means of a suitably defined

computational pipeline. To achieve this, the problem

must first be decomposed into a number of

independent tasks to be performed in the specified

 4

as expressed by Eqtn. 7, so that the required angular

resolution is achieved, whilst at the same time

ensuring that the summation parameter, S, obtained

from the sum of all the LUT lengths, is such that

RM

1m
mm SS is minimized, (11)

where m represents the number of LUTs required by

the mth angular resolution region, so that the total

coefficient memory requirement is minimized. For

each LUT-based scheme, the parameter 1 is clearly

equal to one, as there is only one LUT to consider for

the coarse- resolution region, whilst it will be seen in

this section that for the multi-level case, where m > 1,

each parameter m is equal to two as there are two

identically sized LUTs that need to be considered for

each fine-resolution region – namely, one for the sine

function and one for the cosine function.

3.1 Two-Level Scheme
 The first multi-level scheme involves the adoption

of a two-level LUT, this comprising one coarse-

resolution region of length N/4L catering for both the

sine and cosine functions, covering 0 up to 2/

radians, and one fine-resolution region of length L for

each of the sine and cosine functions, covering 0 up to

L2/ radians. The required twiddle factors may then

be obtained from the contents of the two-level LUT

through the application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, where

corresponds to the angle defined over the coarse-

resolution region and to the angle defined over the

fine-resolution region.

 By expressing the combined size of the two-level

LUT for the sine function as having to cater for

 LL4
N)L(f (12)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen from the

application of the differential calculus [8] that the

optimum LUT length is obtained when the derivative

 2L4
N1

dL
df

 (13)

is set to zero, giving

 N2
1L (14)

and resulting in a total NO memory requirement

of

 N2
3CLUT (15)

words – that is, 2/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 2/N to cater for each of the sine and

cosine functions defined over the fine-resolution

region.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level scheme) for the storage of the twiddle factors at

the expense of an increased arithmetic requirement,

namely

 CM = 4 & CA = 6 (16)

where four of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the

fine-resolution region.

 The two-level LUT thus consists of three separate

single-level LUTs, each of length 2/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from the two fine-resolution LUTs,

one per LUT. In addition, for the efficient mapping of

the FFT onto parallel computing equipment it will be

necessary for the twiddle factor generation to be

carried out by means of a suitably defined

computational pipeline. To achieve this, the problem

must first be decomposed into a number of

independent tasks to be performed in the specified

 4

as expressed by Eqtn. 7, so that the required angular

resolution is achieved, whilst at the same time

ensuring that the summation parameter, S, obtained

from the sum of all the LUT lengths, is such that

RM

1m
mm SS is minimized, (11)

where m represents the number of LUTs required by

the mth angular resolution region, so that the total

coefficient memory requirement is minimized. For

each LUT-based scheme, the parameter 1 is clearly

equal to one, as there is only one LUT to consider for

the coarse- resolution region, whilst it will be seen in

this section that for the multi-level case, where m > 1,

each parameter m is equal to two as there are two

identically sized LUTs that need to be considered for

each fine-resolution region – namely, one for the sine

function and one for the cosine function.

3.1 Two-Level Scheme
 The first multi-level scheme involves the adoption

of a two-level LUT, this comprising one coarse-

resolution region of length N/4L catering for both the

sine and cosine functions, covering 0 up to 2/

radians, and one fine-resolution region of length L for

each of the sine and cosine functions, covering 0 up to

L2/ radians. The required twiddle factors may then

be obtained from the contents of the two-level LUT

through the application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, where

corresponds to the angle defined over the coarse-

resolution region and to the angle defined over the

fine-resolution region.

 By expressing the combined size of the two-level

LUT for the sine function as having to cater for

 LL4
N)L(f (12)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen from the

application of the differential calculus [8] that the

optimum LUT length is obtained when the derivative

 2L4
N1

dL
df

 (13)

is set to zero, giving

 N2
1L (14)

and resulting in a total NO memory requirement

of

 N2
3CLUT (15)

words – that is, 2/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 2/N to cater for each of the sine and

cosine functions defined over the fine-resolution

region.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level scheme) for the storage of the twiddle factors at

the expense of an increased arithmetic requirement,

namely

 CM = 4 & CA = 6 (16)

where four of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the

fine-resolution region.

 The two-level LUT thus consists of three separate

single-level LUTs, each of length 2/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from the two fine-resolution LUTs,

one per LUT. In addition, for the efficient mapping of

the FFT onto parallel computing equipment it will be

necessary for the twiddle factor generation to be

carried out by means of a suitably defined

computational pipeline. To achieve this, the problem

must first be decomposed into a number of

independent tasks to be performed in the specified

 4

as expressed by Eqtn. 7, so that the required angular

resolution is achieved, whilst at the same time

ensuring that the summation parameter, S, obtained

from the sum of all the LUT lengths, is such that

RM

1m
mm SS is minimized, (11)

where m represents the number of LUTs required by

the mth angular resolution region, so that the total

coefficient memory requirement is minimized. For

each LUT-based scheme, the parameter 1 is clearly

equal to one, as there is only one LUT to consider for

the coarse- resolution region, whilst it will be seen in

this section that for the multi-level case, where m > 1,

each parameter m is equal to two as there are two

identically sized LUTs that need to be considered for

each fine-resolution region – namely, one for the sine

function and one for the cosine function.

3.1 Two-Level Scheme
 The first multi-level scheme involves the adoption

of a two-level LUT, this comprising one coarse-

resolution region of length N/4L catering for both the

sine and cosine functions, covering 0 up to 2/

radians, and one fine-resolution region of length L for

each of the sine and cosine functions, covering 0 up to

L2/ radians. The required twiddle factors may then

be obtained from the contents of the two-level LUT

through the application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, where

corresponds to the angle defined over the coarse-

resolution region and to the angle defined over the

fine-resolution region.

 By expressing the combined size of the two-level

LUT for the sine function as having to cater for

 LL4
N)L(f (12)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen from the

application of the differential calculus [8] that the

optimum LUT length is obtained when the derivative

 2L4
N1

dL
df

 (13)

is set to zero, giving

 N2
1L (14)

and resulting in a total NO memory requirement

of

 N2
3CLUT (15)

words – that is, 2/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 2/N to cater for each of the sine and

cosine functions defined over the fine-resolution

region.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level scheme) for the storage of the twiddle factors at

the expense of an increased arithmetic requirement,

namely

 CM = 4 & CA = 6 (16)

where four of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the

fine-resolution region.

 The two-level LUT thus consists of three separate

single-level LUTs, each of length 2/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from the two fine-resolution LUTs,

one per LUT. In addition, for the efficient mapping of

the FFT onto parallel computing equipment it will be

necessary for the twiddle factor generation to be

carried out by means of a suitably defined

computational pipeline. To achieve this, the problem

must first be decomposed into a number of

independent tasks to be performed in the specified

 4

as expressed by Eqtn. 7, so that the required angular

resolution is achieved, whilst at the same time

ensuring that the summation parameter, S, obtained

from the sum of all the LUT lengths, is such that

RM

1m
mm SS is minimized, (11)

where m represents the number of LUTs required by

the mth angular resolution region, so that the total

coefficient memory requirement is minimized. For

each LUT-based scheme, the parameter 1 is clearly

equal to one, as there is only one LUT to consider for

the coarse- resolution region, whilst it will be seen in

this section that for the multi-level case, where m > 1,

each parameter m is equal to two as there are two

identically sized LUTs that need to be considered for

each fine-resolution region – namely, one for the sine

function and one for the cosine function.

3.1 Two-Level Scheme
 The first multi-level scheme involves the adoption

of a two-level LUT, this comprising one coarse-

resolution region of length N/4L catering for both the

sine and cosine functions, covering 0 up to 2/

radians, and one fine-resolution region of length L for

each of the sine and cosine functions, covering 0 up to

L2/ radians. The required twiddle factors may then

be obtained from the contents of the two-level LUT

through the application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, where

corresponds to the angle defined over the coarse-

resolution region and to the angle defined over the

fine-resolution region.

 By expressing the combined size of the two-level

LUT for the sine function as having to cater for

 LL4
N)L(f (12)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen from the

application of the differential calculus [8] that the

optimum LUT length is obtained when the derivative

 2L4
N1

dL
df

 (13)

is set to zero, giving

 N2
1L (14)

and resulting in a total NO memory requirement

of

 N2
3CLUT (15)

words – that is, 2/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 2/N to cater for each of the sine and

cosine functions defined over the fine-resolution

region.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level scheme) for the storage of the twiddle factors at

the expense of an increased arithmetic requirement,

namely

 CM = 4 & CA = 6 (16)

where four of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the

fine-resolution region.

 The two-level LUT thus consists of three separate

single-level LUTs, each of length 2/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from the two fine-resolution LUTs,

one per LUT. In addition, for the efficient mapping of

the FFT onto parallel computing equipment it will be

necessary for the twiddle factor generation to be

carried out by means of a suitably defined

computational pipeline. To achieve this, the problem

must first be decomposed into a number of

independent tasks to be performed in the specified

 4

as expressed by Eqtn. 7, so that the required angular

resolution is achieved, whilst at the same time

ensuring that the summation parameter, S, obtained

from the sum of all the LUT lengths, is such that

RM

1m
mm SS is minimized, (11)

where m represents the number of LUTs required by

the mth angular resolution region, so that the total

coefficient memory requirement is minimized. For

each LUT-based scheme, the parameter 1 is clearly

equal to one, as there is only one LUT to consider for

the coarse- resolution region, whilst it will be seen in

this section that for the multi-level case, where m > 1,

each parameter m is equal to two as there are two

identically sized LUTs that need to be considered for

each fine-resolution region – namely, one for the sine

function and one for the cosine function.

3.1 Two-Level Scheme
 The first multi-level scheme involves the adoption

of a two-level LUT, this comprising one coarse-

resolution region of length N/4L catering for both the

sine and cosine functions, covering 0 up to 2/

radians, and one fine-resolution region of length L for

each of the sine and cosine functions, covering 0 up to

L2/ radians. The required twiddle factors may then

be obtained from the contents of the two-level LUT

through the application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, where

corresponds to the angle defined over the coarse-

resolution region and to the angle defined over the

fine-resolution region.

 By expressing the combined size of the two-level

LUT for the sine function as having to cater for

 LL4
N)L(f (12)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen from the

application of the differential calculus [8] that the

optimum LUT length is obtained when the derivative

 2L4
N1

dL
df

 (13)

is set to zero, giving

 N2
1L (14)

and resulting in a total NO memory requirement

of

 N2
3CLUT (15)

words – that is, 2/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 2/N to cater for each of the sine and

cosine functions defined over the fine-resolution

region.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level scheme) for the storage of the twiddle factors at

the expense of an increased arithmetic requirement,

namely

 CM = 4 & CA = 6 (16)

where four of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the

fine-resolution region.

 The two-level LUT thus consists of three separate

single-level LUTs, each of length 2/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from the two fine-resolution LUTs,

one per LUT. In addition, for the efficient mapping of

the FFT onto parallel computing equipment it will be

necessary for the twiddle factor generation to be

carried out by means of a suitably defined

computational pipeline. To achieve this, the problem

must first be decomposed into a number of

independent tasks to be performed in the specified

()NO

Volume 2 | Issue 3 | 4Eng OA, 2024

cosine functions, one per LUT, defined over the fine-resolution
region.

The two-level LUT thus consists of three separate single-level
LUTs, each of length , rather than a single LUT, where an
efficient parallel solution to the FFT requires that: a) two locations
need to be accessed simultaneously from the coarse-resolution
LUT; and b) two locations need to be accessed simultaneously from
the two fine-resolution LUTs, one per LUT. In addition, for the

efficient mapping of the FFT onto parallel computing equipment it
will be necessary for the twiddle factor generation to be carried out
by means of a suitably defined computational pipeline. To achieve
this, the problem must first be decomposed into a number of
independent tasks to be performed in the specified temporal order
– the solution here involving three independent tasks, as outlined
in Figure 2 – so that a new twiddle factor may be produced on the
completion of the final task.

 4

as expressed by Eqtn. 7, so that the required angular

resolution is achieved, whilst at the same time

ensuring that the summation parameter, S, obtained

from the sum of all the LUT lengths, is such that

RM

1m
mm SS is minimized, (11)

where m represents the number of LUTs required by

the mth angular resolution region, so that the total

coefficient memory requirement is minimized. For

each LUT-based scheme, the parameter 1 is clearly

equal to one, as there is only one LUT to consider for

the coarse- resolution region, whilst it will be seen in

this section that for the multi-level case, where m > 1,

each parameter m is equal to two as there are two

identically sized LUTs that need to be considered for

each fine-resolution region – namely, one for the sine

function and one for the cosine function.

3.1 Two-Level Scheme
 The first multi-level scheme involves the adoption

of a two-level LUT, this comprising one coarse-

resolution region of length N/4L catering for both the

sine and cosine functions, covering 0 up to 2/

radians, and one fine-resolution region of length L for

each of the sine and cosine functions, covering 0 up to

L2/ radians. The required twiddle factors may then

be obtained from the contents of the two-level LUT

through the application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, where

corresponds to the angle defined over the coarse-

resolution region and to the angle defined over the

fine-resolution region.

 By expressing the combined size of the two-level

LUT for the sine function as having to cater for

 LL4
N)L(f (12)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen from the

application of the differential calculus [8] that the

optimum LUT length is obtained when the derivative

 2L4
N1

dL
df

 (13)

is set to zero, giving

 N2
1L (14)

and resulting in a total NO memory requirement

of

 N2
3CLUT (15)

words – that is, 2/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 2/N to cater for each of the sine and

cosine functions defined over the fine-resolution

region.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level scheme) for the storage of the twiddle factors at

the expense of an increased arithmetic requirement,

namely

 CM = 4 & CA = 6 (16)

where four of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the

fine-resolution region.

 The two-level LUT thus consists of three separate

single-level LUTs, each of length 2/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from the two fine-resolution LUTs,

one per LUT. In addition, for the efficient mapping of

the FFT onto parallel computing equipment it will be

necessary for the twiddle factor generation to be

carried out by means of a suitably defined

computational pipeline. To achieve this, the problem

must first be decomposed into a number of

independent tasks to be performed in the specified
 10

Figures & Tables

Task 1:

Compute LUT addresses and access corresponding trigonometric terms

Task 2:

Compute set of four trigonometric products from Task 1 outputs – see Eqtns. 8-9

Task 3:

Combine trigonometric product pairs additively to produce pair of twiddle factor

components – one sinusoidal & one cosinusoidal component – see Eqtns. 8-9

Note: parallel processing required for producing simultaneous outputs from each task

Figure 2 – twiddle factor generation using two-level LUT scheme

Figure 1 – illustration of butterfly for DIT version of radix-2 FFT algorithm –
twiddle factor applied to butterfly input

_

+

+

+

X[1]

X[0]

x[1]

x[0]

k
NW

Figure 2: Twiddle Factor Generation Using Two-Level LUT Scheme

Note, however, that with a flexible computing device, such as an
FPGA, each of the arithmetic operations within each task may
be efficiently carried out by means of a suitably defined internal
pipeline, designed around the clock cycle of the chosen computing
device. This, in turn, enables each task to be carried out with a
given latency, as expressed in terms of the required number of
clock cycles, with a new twiddle factor being thus produced with
every clock cycle at the cost of a time delay, due to the overall
latency, as represented by the combined duration in clock cycles
of the three short pipelines.

3.2 Three-Level Scheme
The next multi-level scheme involves the adoption of a three-
level LUT, this comprising one coarse-resolution region of length
N/4L2 for the sine function, covering 0 up to π/2 radians, and two
fine-resolution regions, each of length L, covering 0 up to π/2L
radians and 0 up to π/2L2 radians, respectively, for each of the
sine and cosine functions. The required twiddle factors may then
be obtained from the contents of the three-level LUT through the
double application of the standard trigonometric identities, as
given by Eqtns. 8 and 9, so that

where θ corresponds to the angle defined over the coarse-resolution
region and φ1 and φ2 to the angles defined over the first and second
fine-resolution regions, respectively. These equations may be
expanded and expressed as

where

By expressing the combined size of the three-level LUT for the
sine function as having to cater for

words, where the LUTs are assumed for ease of analysis to be each
of length L, it can be seen that the optimum LUT length is obtained
when the derivative

 5

temporal order – the solution here involving three

independent tasks, as outlined in Figure 2 – so that a

new twiddle factor may be produced on the

completion of the final task.

 Note, however, that with a flexible computing

device, such as an FPGA, each of the arithmetic

operations within each task may be efficiently carried

out by means of a suitably defined internal pipeline,

designed around the clock cycle of the chosen

computing device. This, in turn, enables each task to

be carried out with a given latency, as expressed in

terms of the required number of clock cycles, with a

new twiddle factor being thus produced with every

clock cycle at the cost of a time delay, due to the

overall latency, as represented by the combined

duration in clock cycles of the three short pipelines.
3.2 Three-Level Scheme
 The next multi-level scheme involves the

adoption of a three-level LUT, this comprising one

coarse-resolution region of length N/4L2 for the sine

function, covering 0 up to 2/ radians, and two fine-

resolution regions, each of length L, covering 0 up to

L2/ radians and 0 up to 2L2/ radians,

respectively, for each of the sine and cosine functions.

The required twiddle factors may then be obtained

from the contents of the three-level LUT through the

double application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, so that

)(cos 21

 2121 sinsincoscos (17)

)(sin 21

 2121 sincoscossin , (18)

where corresponds to the angle defined over the

coarse-resolution region and 1 and 2 to the angles

defined over the first and second fine-resolution

regions, respectively. These equations may be

expanded and expressed as

)(cos 21

 DCsinBAcos (19)

)(sin 21

 DCcosBAsin (20)

where

 21 coscosA (21)

 21 sinsinB (22)

 21 cossinC (23)

 21 sincosD . (24)

 By expressing the combined size of the three-

level LUT for the sine function as having to cater for

 L2
L4

N)L(f 2 (25)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 3L2
N2

dL
df

 (26)

is set to zero, giving

 3 4/NL (27)

and resulting in a total 3 NO memory requirement

of

 3
LUT 4/N5C (28)

words – that is, 3 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 3 4/N to cater for each of the sine and

cosine functions defined over each of the two

fine-resolution regions.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level and two-level schemes) for the storage of the

twiddle factors at the expense of an increased

arithmetic requirement, namely

 CM = 8 & CA = 10 (29)

where six of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

 5

temporal order – the solution here involving three

independent tasks, as outlined in Figure 2 – so that a

new twiddle factor may be produced on the

completion of the final task.

 Note, however, that with a flexible computing

device, such as an FPGA, each of the arithmetic

operations within each task may be efficiently carried

out by means of a suitably defined internal pipeline,

designed around the clock cycle of the chosen

computing device. This, in turn, enables each task to

be carried out with a given latency, as expressed in

terms of the required number of clock cycles, with a

new twiddle factor being thus produced with every

clock cycle at the cost of a time delay, due to the

overall latency, as represented by the combined

duration in clock cycles of the three short pipelines.
3.2 Three-Level Scheme
 The next multi-level scheme involves the

adoption of a three-level LUT, this comprising one

coarse-resolution region of length N/4L2 for the sine

function, covering 0 up to 2/ radians, and two fine-

resolution regions, each of length L, covering 0 up to

L2/ radians and 0 up to 2L2/ radians,

respectively, for each of the sine and cosine functions.

The required twiddle factors may then be obtained

from the contents of the three-level LUT through the

double application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, so that

)(cos 21

 2121 sinsincoscos (17)

)(sin 21

 2121 sincoscossin , (18)

where corresponds to the angle defined over the

coarse-resolution region and 1 and 2 to the angles

defined over the first and second fine-resolution

regions, respectively. These equations may be

expanded and expressed as

)(cos 21

 DCsinBAcos (19)

)(sin 21

 DCcosBAsin (20)

where

 21 coscosA (21)

 21 sinsinB (22)

 21 cossinC (23)

 21 sincosD . (24)

 By expressing the combined size of the three-

level LUT for the sine function as having to cater for

 L2
L4

N)L(f 2 (25)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 3L2
N2

dL
df

 (26)

is set to zero, giving

 3 4/NL (27)

and resulting in a total 3 NO memory requirement

of

 3
LUT 4/N5C (28)

words – that is, 3 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 3 4/N to cater for each of the sine and

cosine functions defined over each of the two

fine-resolution regions.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level and two-level schemes) for the storage of the

twiddle factors at the expense of an increased

arithmetic requirement, namely

 CM = 8 & CA = 10 (29)

where six of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

 5

temporal order – the solution here involving three

independent tasks, as outlined in Figure 2 – so that a

new twiddle factor may be produced on the

completion of the final task.

 Note, however, that with a flexible computing

device, such as an FPGA, each of the arithmetic

operations within each task may be efficiently carried

out by means of a suitably defined internal pipeline,

designed around the clock cycle of the chosen

computing device. This, in turn, enables each task to

be carried out with a given latency, as expressed in

terms of the required number of clock cycles, with a

new twiddle factor being thus produced with every

clock cycle at the cost of a time delay, due to the

overall latency, as represented by the combined

duration in clock cycles of the three short pipelines.
3.2 Three-Level Scheme
 The next multi-level scheme involves the

adoption of a three-level LUT, this comprising one

coarse-resolution region of length N/4L2 for the sine

function, covering 0 up to 2/ radians, and two fine-

resolution regions, each of length L, covering 0 up to

L2/ radians and 0 up to 2L2/ radians,

respectively, for each of the sine and cosine functions.

The required twiddle factors may then be obtained

from the contents of the three-level LUT through the

double application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, so that

)(cos 21

 2121 sinsincoscos (17)

)(sin 21

 2121 sincoscossin , (18)

where corresponds to the angle defined over the

coarse-resolution region and 1 and 2 to the angles

defined over the first and second fine-resolution

regions, respectively. These equations may be

expanded and expressed as

)(cos 21

 DCsinBAcos (19)

)(sin 21

 DCcosBAsin (20)

where

 21 coscosA (21)

 21 sinsinB (22)

 21 cossinC (23)

 21 sincosD . (24)

 By expressing the combined size of the three-

level LUT for the sine function as having to cater for

 L2
L4

N)L(f 2 (25)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 3L2
N2

dL
df

 (26)

is set to zero, giving

 3 4/NL (27)

and resulting in a total 3 NO memory requirement

of

 3
LUT 4/N5C (28)

words – that is, 3 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 3 4/N to cater for each of the sine and

cosine functions defined over each of the two

fine-resolution regions.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level and two-level schemes) for the storage of the

twiddle factors at the expense of an increased

arithmetic requirement, namely

 CM = 8 & CA = 10 (29)

where six of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

 5

temporal order – the solution here involving three

independent tasks, as outlined in Figure 2 – so that a

new twiddle factor may be produced on the

completion of the final task.

 Note, however, that with a flexible computing

device, such as an FPGA, each of the arithmetic

operations within each task may be efficiently carried

out by means of a suitably defined internal pipeline,

designed around the clock cycle of the chosen

computing device. This, in turn, enables each task to

be carried out with a given latency, as expressed in

terms of the required number of clock cycles, with a

new twiddle factor being thus produced with every

clock cycle at the cost of a time delay, due to the

overall latency, as represented by the combined

duration in clock cycles of the three short pipelines.
3.2 Three-Level Scheme
 The next multi-level scheme involves the

adoption of a three-level LUT, this comprising one

coarse-resolution region of length N/4L2 for the sine

function, covering 0 up to 2/ radians, and two fine-

resolution regions, each of length L, covering 0 up to

L2/ radians and 0 up to 2L2/ radians,

respectively, for each of the sine and cosine functions.

The required twiddle factors may then be obtained

from the contents of the three-level LUT through the

double application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, so that

)(cos 21

 2121 sinsincoscos (17)

)(sin 21

 2121 sincoscossin , (18)

where corresponds to the angle defined over the

coarse-resolution region and 1 and 2 to the angles

defined over the first and second fine-resolution

regions, respectively. These equations may be

expanded and expressed as

)(cos 21

 DCsinBAcos (19)

)(sin 21

 DCcosBAsin (20)

where

 21 coscosA (21)

 21 sinsinB (22)

 21 cossinC (23)

 21 sincosD . (24)

 By expressing the combined size of the three-

level LUT for the sine function as having to cater for

 L2
L4

N)L(f 2 (25)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 3L2
N2

dL
df

 (26)

is set to zero, giving

 3 4/NL (27)

and resulting in a total 3 NO memory requirement

of

 3
LUT 4/N5C (28)

words – that is, 3 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 3 4/N to cater for each of the sine and

cosine functions defined over each of the two

fine-resolution regions.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level and two-level schemes) for the storage of the

twiddle factors at the expense of an increased

arithmetic requirement, namely

 CM = 8 & CA = 10 (29)

where six of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

Volume 2 | Issue 3 | 5Eng OA, 2024

is set to zero, giving

and resulting in a total memory requirement of

words – that is, to cater for both the sine and cosine functions
defined over the coarse-resolution region and to cater for
each of the sine and cosine functions defined over each of the two
fine-resolution regions.

This scheme therefore yields a reduced memory requirement (when
compared to that for the single-level and two-level schemes) for
the storage of the twiddle factors at the expense of an increased
arithmetic requirement, namely

where six of the additions are for generating the LUT addresses –
that is, two to cater for both the sine and cosine functions defined
over the coarse-resolution region, two to cater for the sine and
cosine functions, one per LUT, defined over the first fine-resolution
region and two to cater for the sine and cosine functions, one per
LUT, defined over the second fine-resolution region.

The three-level LUT thus consists of five separate single-level
LUTs, each of length , rather than a single LUT, where an
efficient parallel solution to the FFT requires that: a) two locations
need to be accessed simultaneously from the coarse-resolution
LUT; and b) two locations need to be accessed simultaneously
from each of the two pairs of fine-resolution LUTs, one per LUT.
In addition, for the mapping of the FFT onto parallel computing
equipment it will be necessary, as with the two-level scheme,
for the twiddle factor generation to be carried out by means of
a suitably defined computational pipeline. To achieve this,
the problem is first decomposed into five independent tasks, as
outlined in Figure 3, so that a new twiddle factor may be produced
on the completion of the final task. The internal pipelining of the
arithmetic operations within each task then enables a new twiddle
factor to be produced with every clock cycle at the cost of a time
delay, due to the overall latency, as represented by the combined
duration in clock cycles of the five short pipelines.

 5

temporal order – the solution here involving three

independent tasks, as outlined in Figure 2 – so that a

new twiddle factor may be produced on the

completion of the final task.

 Note, however, that with a flexible computing

device, such as an FPGA, each of the arithmetic

operations within each task may be efficiently carried

out by means of a suitably defined internal pipeline,

designed around the clock cycle of the chosen

computing device. This, in turn, enables each task to

be carried out with a given latency, as expressed in

terms of the required number of clock cycles, with a

new twiddle factor being thus produced with every

clock cycle at the cost of a time delay, due to the

overall latency, as represented by the combined

duration in clock cycles of the three short pipelines.
3.2 Three-Level Scheme
 The next multi-level scheme involves the

adoption of a three-level LUT, this comprising one

coarse-resolution region of length N/4L2 for the sine

function, covering 0 up to 2/ radians, and two fine-

resolution regions, each of length L, covering 0 up to

L2/ radians and 0 up to 2L2/ radians,

respectively, for each of the sine and cosine functions.

The required twiddle factors may then be obtained

from the contents of the three-level LUT through the

double application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, so that

)(cos 21

 2121 sinsincoscos (17)

)(sin 21

 2121 sincoscossin , (18)

where corresponds to the angle defined over the

coarse-resolution region and 1 and 2 to the angles

defined over the first and second fine-resolution

regions, respectively. These equations may be

expanded and expressed as

)(cos 21

 DCsinBAcos (19)

)(sin 21

 DCcosBAsin (20)

where

 21 coscosA (21)

 21 sinsinB (22)

 21 cossinC (23)

 21 sincosD . (24)

 By expressing the combined size of the three-

level LUT for the sine function as having to cater for

 L2
L4

N)L(f 2 (25)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 3L2
N2

dL
df

 (26)

is set to zero, giving

 3 4/NL (27)

and resulting in a total 3 NO memory requirement

of

 3
LUT 4/N5C (28)

words – that is, 3 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 3 4/N to cater for each of the sine and

cosine functions defined over each of the two

fine-resolution regions.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level and two-level schemes) for the storage of the

twiddle factors at the expense of an increased

arithmetic requirement, namely

 CM = 8 & CA = 10 (29)

where six of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

 5

temporal order – the solution here involving three

independent tasks, as outlined in Figure 2 – so that a

new twiddle factor may be produced on the

completion of the final task.

 Note, however, that with a flexible computing

device, such as an FPGA, each of the arithmetic

operations within each task may be efficiently carried

out by means of a suitably defined internal pipeline,

designed around the clock cycle of the chosen

computing device. This, in turn, enables each task to

be carried out with a given latency, as expressed in

terms of the required number of clock cycles, with a

new twiddle factor being thus produced with every

clock cycle at the cost of a time delay, due to the

overall latency, as represented by the combined

duration in clock cycles of the three short pipelines.
3.2 Three-Level Scheme
 The next multi-level scheme involves the

adoption of a three-level LUT, this comprising one

coarse-resolution region of length N/4L2 for the sine

function, covering 0 up to 2/ radians, and two fine-

resolution regions, each of length L, covering 0 up to

L2/ radians and 0 up to 2L2/ radians,

respectively, for each of the sine and cosine functions.

The required twiddle factors may then be obtained

from the contents of the three-level LUT through the

double application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, so that

)(cos 21

 2121 sinsincoscos (17)

)(sin 21

 2121 sincoscossin , (18)

where corresponds to the angle defined over the

coarse-resolution region and 1 and 2 to the angles

defined over the first and second fine-resolution

regions, respectively. These equations may be

expanded and expressed as

)(cos 21

 DCsinBAcos (19)

)(sin 21

 DCcosBAsin (20)

where

 21 coscosA (21)

 21 sinsinB (22)

 21 cossinC (23)

 21 sincosD . (24)

 By expressing the combined size of the three-

level LUT for the sine function as having to cater for

 L2
L4

N)L(f 2 (25)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 3L2
N2

dL
df

 (26)

is set to zero, giving

 3 4/NL (27)

and resulting in a total 3 NO memory requirement

of

 3
LUT 4/N5C (28)

words – that is, 3 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 3 4/N to cater for each of the sine and

cosine functions defined over each of the two

fine-resolution regions.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level and two-level schemes) for the storage of the

twiddle factors at the expense of an increased

arithmetic requirement, namely

 CM = 8 & CA = 10 (29)

where six of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution
 5

temporal order – the solution here involving three

independent tasks, as outlined in Figure 2 – so that a

new twiddle factor may be produced on the

completion of the final task.

 Note, however, that with a flexible computing

device, such as an FPGA, each of the arithmetic

operations within each task may be efficiently carried

out by means of a suitably defined internal pipeline,

designed around the clock cycle of the chosen

computing device. This, in turn, enables each task to

be carried out with a given latency, as expressed in

terms of the required number of clock cycles, with a

new twiddle factor being thus produced with every

clock cycle at the cost of a time delay, due to the

overall latency, as represented by the combined

duration in clock cycles of the three short pipelines.
3.2 Three-Level Scheme
 The next multi-level scheme involves the

adoption of a three-level LUT, this comprising one

coarse-resolution region of length N/4L2 for the sine

function, covering 0 up to 2/ radians, and two fine-

resolution regions, each of length L, covering 0 up to

L2/ radians and 0 up to 2L2/ radians,

respectively, for each of the sine and cosine functions.

The required twiddle factors may then be obtained

from the contents of the three-level LUT through the

double application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, so that

)(cos 21

 2121 sinsincoscos (17)

)(sin 21

 2121 sincoscossin , (18)

where corresponds to the angle defined over the

coarse-resolution region and 1 and 2 to the angles

defined over the first and second fine-resolution

regions, respectively. These equations may be

expanded and expressed as

)(cos 21

 DCsinBAcos (19)

)(sin 21

 DCcosBAsin (20)

where

 21 coscosA (21)

 21 sinsinB (22)

 21 cossinC (23)

 21 sincosD . (24)

 By expressing the combined size of the three-

level LUT for the sine function as having to cater for

 L2
L4

N)L(f 2 (25)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 3L2
N2

dL
df

 (26)

is set to zero, giving

 3 4/NL (27)

and resulting in a total 3 NO memory requirement

of

 3
LUT 4/N5C (28)

words – that is, 3 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 3 4/N to cater for each of the sine and

cosine functions defined over each of the two

fine-resolution regions.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level and two-level schemes) for the storage of the

twiddle factors at the expense of an increased

arithmetic requirement, namely

 CM = 8 & CA = 10 (29)

where six of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

 5

temporal order – the solution here involving three

independent tasks, as outlined in Figure 2 – so that a

new twiddle factor may be produced on the

completion of the final task.

 Note, however, that with a flexible computing

device, such as an FPGA, each of the arithmetic

operations within each task may be efficiently carried

out by means of a suitably defined internal pipeline,

designed around the clock cycle of the chosen

computing device. This, in turn, enables each task to

be carried out with a given latency, as expressed in

terms of the required number of clock cycles, with a

new twiddle factor being thus produced with every

clock cycle at the cost of a time delay, due to the

overall latency, as represented by the combined

duration in clock cycles of the three short pipelines.
3.2 Three-Level Scheme
 The next multi-level scheme involves the

adoption of a three-level LUT, this comprising one

coarse-resolution region of length N/4L2 for the sine

function, covering 0 up to 2/ radians, and two fine-

resolution regions, each of length L, covering 0 up to

L2/ radians and 0 up to 2L2/ radians,

respectively, for each of the sine and cosine functions.

The required twiddle factors may then be obtained

from the contents of the three-level LUT through the

double application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, so that

)(cos 21

 2121 sinsincoscos (17)

)(sin 21

 2121 sincoscossin , (18)

where corresponds to the angle defined over the

coarse-resolution region and 1 and 2 to the angles

defined over the first and second fine-resolution

regions, respectively. These equations may be

expanded and expressed as

)(cos 21

 DCsinBAcos (19)

)(sin 21

 DCcosBAsin (20)

where

 21 coscosA (21)

 21 sinsinB (22)

 21 cossinC (23)

 21 sincosD . (24)

 By expressing the combined size of the three-

level LUT for the sine function as having to cater for

 L2
L4

N)L(f 2 (25)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 3L2
N2

dL
df

 (26)

is set to zero, giving

 3 4/NL (27)

and resulting in a total 3 NO memory requirement

of

 3
LUT 4/N5C (28)

words – that is, 3 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 3 4/N to cater for each of the sine and

cosine functions defined over each of the two

fine-resolution regions.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level and two-level schemes) for the storage of the

twiddle factors at the expense of an increased

arithmetic requirement, namely

 CM = 8 & CA = 10 (29)

where six of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution
 5

temporal order – the solution here involving three

independent tasks, as outlined in Figure 2 – so that a

new twiddle factor may be produced on the

completion of the final task.

 Note, however, that with a flexible computing

device, such as an FPGA, each of the arithmetic

operations within each task may be efficiently carried

out by means of a suitably defined internal pipeline,

designed around the clock cycle of the chosen

computing device. This, in turn, enables each task to

be carried out with a given latency, as expressed in

terms of the required number of clock cycles, with a

new twiddle factor being thus produced with every

clock cycle at the cost of a time delay, due to the

overall latency, as represented by the combined

duration in clock cycles of the three short pipelines.
3.2 Three-Level Scheme
 The next multi-level scheme involves the

adoption of a three-level LUT, this comprising one

coarse-resolution region of length N/4L2 for the sine

function, covering 0 up to 2/ radians, and two fine-

resolution regions, each of length L, covering 0 up to

L2/ radians and 0 up to 2L2/ radians,

respectively, for each of the sine and cosine functions.

The required twiddle factors may then be obtained

from the contents of the three-level LUT through the

double application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, so that

)(cos 21

 2121 sinsincoscos (17)

)(sin 21

 2121 sincoscossin , (18)

where corresponds to the angle defined over the

coarse-resolution region and 1 and 2 to the angles

defined over the first and second fine-resolution

regions, respectively. These equations may be

expanded and expressed as

)(cos 21

 DCsinBAcos (19)

)(sin 21

 DCcosBAsin (20)

where

 21 coscosA (21)

 21 sinsinB (22)

 21 cossinC (23)

 21 sincosD . (24)

 By expressing the combined size of the three-

level LUT for the sine function as having to cater for

 L2
L4

N)L(f 2 (25)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 3L2
N2

dL
df

 (26)

is set to zero, giving

 3 4/NL (27)

and resulting in a total 3 NO memory requirement

of

 3
LUT 4/N5C (28)

words – that is, 3 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 3 4/N to cater for each of the sine and

cosine functions defined over each of the two

fine-resolution regions.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level and two-level schemes) for the storage of the

twiddle factors at the expense of an increased

arithmetic requirement, namely

 CM = 8 & CA = 10 (29)

where six of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution
 5

temporal order – the solution here involving three

independent tasks, as outlined in Figure 2 – so that a

new twiddle factor may be produced on the

completion of the final task.

 Note, however, that with a flexible computing

device, such as an FPGA, each of the arithmetic

operations within each task may be efficiently carried

out by means of a suitably defined internal pipeline,

designed around the clock cycle of the chosen

computing device. This, in turn, enables each task to

be carried out with a given latency, as expressed in

terms of the required number of clock cycles, with a

new twiddle factor being thus produced with every

clock cycle at the cost of a time delay, due to the

overall latency, as represented by the combined

duration in clock cycles of the three short pipelines.
3.2 Three-Level Scheme
 The next multi-level scheme involves the

adoption of a three-level LUT, this comprising one

coarse-resolution region of length N/4L2 for the sine

function, covering 0 up to 2/ radians, and two fine-

resolution regions, each of length L, covering 0 up to

L2/ radians and 0 up to 2L2/ radians,

respectively, for each of the sine and cosine functions.

The required twiddle factors may then be obtained

from the contents of the three-level LUT through the

double application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, so that

)(cos 21

 2121 sinsincoscos (17)

)(sin 21

 2121 sincoscossin , (18)

where corresponds to the angle defined over the

coarse-resolution region and 1 and 2 to the angles

defined over the first and second fine-resolution

regions, respectively. These equations may be

expanded and expressed as

)(cos 21

 DCsinBAcos (19)

)(sin 21

 DCcosBAsin (20)

where

 21 coscosA (21)

 21 sinsinB (22)

 21 cossinC (23)

 21 sincosD . (24)

 By expressing the combined size of the three-

level LUT for the sine function as having to cater for

 L2
L4

N)L(f 2 (25)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 3L2
N2

dL
df

 (26)

is set to zero, giving

 3 4/NL (27)

and resulting in a total 3 NO memory requirement

of

 3
LUT 4/N5C (28)

words – that is, 3 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 3 4/N to cater for each of the sine and

cosine functions defined over each of the two

fine-resolution regions.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level and two-level schemes) for the storage of the

twiddle factors at the expense of an increased

arithmetic requirement, namely

 CM = 8 & CA = 10 (29)

where six of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution
 5

temporal order – the solution here involving three

independent tasks, as outlined in Figure 2 – so that a

new twiddle factor may be produced on the

completion of the final task.

 Note, however, that with a flexible computing

device, such as an FPGA, each of the arithmetic

operations within each task may be efficiently carried

out by means of a suitably defined internal pipeline,

designed around the clock cycle of the chosen

computing device. This, in turn, enables each task to

be carried out with a given latency, as expressed in

terms of the required number of clock cycles, with a

new twiddle factor being thus produced with every

clock cycle at the cost of a time delay, due to the

overall latency, as represented by the combined

duration in clock cycles of the three short pipelines.
3.2 Three-Level Scheme
 The next multi-level scheme involves the

adoption of a three-level LUT, this comprising one

coarse-resolution region of length N/4L2 for the sine

function, covering 0 up to 2/ radians, and two fine-

resolution regions, each of length L, covering 0 up to

L2/ radians and 0 up to 2L2/ radians,

respectively, for each of the sine and cosine functions.

The required twiddle factors may then be obtained

from the contents of the three-level LUT through the

double application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, so that

)(cos 21

 2121 sinsincoscos (17)

)(sin 21

 2121 sincoscossin , (18)

where corresponds to the angle defined over the

coarse-resolution region and 1 and 2 to the angles

defined over the first and second fine-resolution

regions, respectively. These equations may be

expanded and expressed as

)(cos 21

 DCsinBAcos (19)

)(sin 21

 DCcosBAsin (20)

where

 21 coscosA (21)

 21 sinsinB (22)

 21 cossinC (23)

 21 sincosD . (24)

 By expressing the combined size of the three-

level LUT for the sine function as having to cater for

 L2
L4

N)L(f 2 (25)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 3L2
N2

dL
df

 (26)

is set to zero, giving

 3 4/NL (27)

and resulting in a total 3 NO memory requirement

of

 3
LUT 4/N5C (28)

words – that is, 3 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 3 4/N to cater for each of the sine and

cosine functions defined over each of the two

fine-resolution regions.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level and two-level schemes) for the storage of the

twiddle factors at the expense of an increased

arithmetic requirement, namely

 CM = 8 & CA = 10 (29)

where six of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

 5

temporal order – the solution here involving three

independent tasks, as outlined in Figure 2 – so that a

new twiddle factor may be produced on the

completion of the final task.

 Note, however, that with a flexible computing

device, such as an FPGA, each of the arithmetic

operations within each task may be efficiently carried

out by means of a suitably defined internal pipeline,

designed around the clock cycle of the chosen

computing device. This, in turn, enables each task to

be carried out with a given latency, as expressed in

terms of the required number of clock cycles, with a

new twiddle factor being thus produced with every

clock cycle at the cost of a time delay, due to the

overall latency, as represented by the combined

duration in clock cycles of the three short pipelines.
3.2 Three-Level Scheme
 The next multi-level scheme involves the

adoption of a three-level LUT, this comprising one

coarse-resolution region of length N/4L2 for the sine

function, covering 0 up to 2/ radians, and two fine-

resolution regions, each of length L, covering 0 up to

L2/ radians and 0 up to 2L2/ radians,

respectively, for each of the sine and cosine functions.

The required twiddle factors may then be obtained

from the contents of the three-level LUT through the

double application of the standard trigonometric

identities, as given by Eqtns. 8 and 9, so that

)(cos 21

 2121 sinsincoscos (17)

)(sin 21

 2121 sincoscossin , (18)

where corresponds to the angle defined over the

coarse-resolution region and 1 and 2 to the angles

defined over the first and second fine-resolution

regions, respectively. These equations may be

expanded and expressed as

)(cos 21

 DCsinBAcos (19)

)(sin 21

 DCcosBAsin (20)

where

 21 coscosA (21)

 21 sinsinB (22)

 21 cossinC (23)

 21 sincosD . (24)

 By expressing the combined size of the three-

level LUT for the sine function as having to cater for

 L2
L4

N)L(f 2 (25)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 3L2
N2

dL
df

 (26)

is set to zero, giving

 3 4/NL (27)

and resulting in a total 3 NO memory requirement

of

 3
LUT 4/N5C (28)

words – that is, 3 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and 3 4/N to cater for each of the sine and

cosine functions defined over each of the two

fine-resolution regions.

 This scheme therefore yields a reduced memory

requirement (when compared to that for the single-

level and two-level schemes) for the storage of the

twiddle factors at the expense of an increased

arithmetic requirement, namely

 CM = 8 & CA = 10 (29)

where six of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

 11

Task 1:

Compute LUT addresses and access corresponding trigonometric terms

Task 2:

Compute first set of four trigonometric products from Task 1 outputs – see Eqtns. 21-24

Task 3:

Combine trigonometric product pairs additively to produce two outputs for use in Eqtns. 19-20

Task 4:

Compute second set of four trigonometric products from Task 3 outputs – see Eqtns. 19-20

Task 5:

Combine trigonometric product pairs additively to produce pair of twiddle factor

components – one sinusoidal & one cosinusoidal component – see Eqtns. 19-20

Note: parallel processing required for producing simultaneous outputs from each task

Figure 3 – twiddle factor generation using three-level LUT scheme

Radix-2
FFT

Length N
LUT-Based

Scheme

Arithmetic Requirement Memory
Requirement

(words)

Arithmetic +
Memory Sizing

(slices)

No
Independent

Tasks No Multiplies No Additions

210 ~ 103 1-Level 0 2 2.56×102 ~ 6.14×103 1

220 ~ 106
1-Level 0 2 ~ 2.62×105 ~ 6.29×106 1

2-Level 4 6 ~ 1.54×103 ~ 2.58×104 3

230 ~ 109
1-Level 0 2 ~ 2.63×108 ~ 6.44×109 1

3-Level 8 10 ~ 3.07×103 ~ 6.16×104 5

Note: wordlength adopted for silicon sizing = 24 bits

Table 1 – resource requirements for different LUT-based twiddle factor

generation schemes as required by radix-2 FFT algorithm

Figure 3: Twiddle Factor Generation Using Three-Level LUT Scheme

3.3 Arbitrary K-Level Scheme
Finally, the results obtained above for the two-level and three-level
schemes may be straightforwardly extended to the general case of
an arbitrary K-level scheme. By expressing the combined size of
the K-level LUT for the sine function as having to cater for

words, where the LUTs are assumed for ease of analysis to be each

of length L, it can be seen that the optimum LUT length is obtained
when the derivative

is set to zero, giving

 6

region, two to cater for the sine and cosine functions,

one per LUT, defined over the first fine-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the second

fine-resolution region.

 The three-level LUT thus consists of five separate

single-level LUTs, each of length 3 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the two pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

scheme, for the twiddle factor generation to be carried

out by means of a suitably defined computational

pipeline. To achieve this, the problem is first

decomposed into five independent tasks, as outlined in

Figure 3, so that a new twiddle factor may be

produced on the completion of the final task. The

internal pipelining of the arithmetic operations within

each task then enables a new twiddle factor to be

produced with every clock cycle at the cost of a time

delay, due to the overall latency, as represented by the

combined duration in clock cycles of the five short

pipelines.
3.3 Arbitrary K-Level Scheme
 Finally, the results obtained above for the two-

level and three-level schemes may be

straightforwardly extended to the general case of an

arbitrary K-level scheme. By expressing the combined

size of the K-level LUT for the sine function as having

to cater for

 L)1K(
L4

N)L(f 1K (30)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 KL4

N1)1K(
dL
df

 (31)

is set to zero, giving

 K 4/NL (32)

(since K > 1) and resulting in a total K NO memory

requirement of

 K
LUT 4/N)1K2(C (33)

words – that is, K 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and K 4/N to cater for each of the sine and

cosine functions defined over each of the K-1

fine-resolution regions.

 The computational cost of adopting such a

scheme, however, for K > 3 would increase to

 CM = 4K-4 & CA = 4K-2 (34)

where 2K of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over each of the K-1

fine-resolution regions.

 The K-level LUT thus consists of 2K-1 separate

single-level LUTs, each of length K 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the K-1 pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

and three-level schemes, for the twiddle factor

generation to be carried out by means of a suitably

defined computational pipeline. To achieve this, the

problem is first decomposed into 2K-1 independent

tasks so that a new twiddle factor may be produced on

the completion of the final task. The internal

 6

region, two to cater for the sine and cosine functions,

one per LUT, defined over the first fine-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the second

fine-resolution region.

 The three-level LUT thus consists of five separate

single-level LUTs, each of length 3 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the two pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

scheme, for the twiddle factor generation to be carried

out by means of a suitably defined computational

pipeline. To achieve this, the problem is first

decomposed into five independent tasks, as outlined in

Figure 3, so that a new twiddle factor may be

produced on the completion of the final task. The

internal pipelining of the arithmetic operations within

each task then enables a new twiddle factor to be

produced with every clock cycle at the cost of a time

delay, due to the overall latency, as represented by the

combined duration in clock cycles of the five short

pipelines.
3.3 Arbitrary K-Level Scheme
 Finally, the results obtained above for the two-

level and three-level schemes may be

straightforwardly extended to the general case of an

arbitrary K-level scheme. By expressing the combined

size of the K-level LUT for the sine function as having

to cater for

 L)1K(
L4

N)L(f 1K (30)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 KL4

N1)1K(
dL
df

 (31)

is set to zero, giving

 K 4/NL (32)

(since K > 1) and resulting in a total K NO memory

requirement of

 K
LUT 4/N)1K2(C (33)

words – that is, K 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and K 4/N to cater for each of the sine and

cosine functions defined over each of the K-1

fine-resolution regions.

 The computational cost of adopting such a

scheme, however, for K > 3 would increase to

 CM = 4K-4 & CA = 4K-2 (34)

where 2K of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over each of the K-1

fine-resolution regions.

 The K-level LUT thus consists of 2K-1 separate

single-level LUTs, each of length K 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the K-1 pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

and three-level schemes, for the twiddle factor

generation to be carried out by means of a suitably

defined computational pipeline. To achieve this, the

problem is first decomposed into 2K-1 independent

tasks so that a new twiddle factor may be produced on

the completion of the final task. The internal

 6

region, two to cater for the sine and cosine functions,

one per LUT, defined over the first fine-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the second

fine-resolution region.

 The three-level LUT thus consists of five separate

single-level LUTs, each of length 3 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the two pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

scheme, for the twiddle factor generation to be carried

out by means of a suitably defined computational

pipeline. To achieve this, the problem is first

decomposed into five independent tasks, as outlined in

Figure 3, so that a new twiddle factor may be

produced on the completion of the final task. The

internal pipelining of the arithmetic operations within

each task then enables a new twiddle factor to be

produced with every clock cycle at the cost of a time

delay, due to the overall latency, as represented by the

combined duration in clock cycles of the five short

pipelines.
3.3 Arbitrary K-Level Scheme
 Finally, the results obtained above for the two-

level and three-level schemes may be

straightforwardly extended to the general case of an

arbitrary K-level scheme. By expressing the combined

size of the K-level LUT for the sine function as having

to cater for

 L)1K(
L4

N)L(f 1K (30)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 KL4

N1)1K(
dL
df

 (31)

is set to zero, giving

 K 4/NL (32)

(since K > 1) and resulting in a total K NO memory

requirement of

 K
LUT 4/N)1K2(C (33)

words – that is, K 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and K 4/N to cater for each of the sine and

cosine functions defined over each of the K-1

fine-resolution regions.

 The computational cost of adopting such a

scheme, however, for K > 3 would increase to

 CM = 4K-4 & CA = 4K-2 (34)

where 2K of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over each of the K-1

fine-resolution regions.

 The K-level LUT thus consists of 2K-1 separate

single-level LUTs, each of length K 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the K-1 pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

and three-level schemes, for the twiddle factor

generation to be carried out by means of a suitably

defined computational pipeline. To achieve this, the

problem is first decomposed into 2K-1 independent

tasks so that a new twiddle factor may be produced on

the completion of the final task. The internal

Volume 2 | Issue 3 | 6Eng OA, 2024

(since K > 1) and resulting in a total memory requirement of

words – that is, to cater for both the sine and cosine functions
defined over the coarse-resolution region and to cater for
each of the sine and cosine functions defined over each of the K-1
fine-resolution regions.

The computational cost of adopting such a scheme, however, for
K > 3 would increase to

where 2K of the additions are for generating the LUT addresses –
that is, two to cater for both the sine and cosine functions defined
over the coarse-resolution region and two to cater for the sine and
cosine functions, one per LUT, defined over each of the K-1 fine-
resolution regions.

The K-level LUT thus consists of 2K-1 separate single level LUTs,
each of length , rather than a single LUT, where an efficient
parallel solution to the FFT requires that: a) two locations need to
be accessed simultaneously from the coarse-resolution LUT; and
b) two locations need to be accessed simultaneously from each of
the K-1 pairs of fine-resolution LUTs, one per LUT. In addition,
for the mapping of the FFT onto parallel computing equipment it
will be necessary, as with the two-level and three-level schemes,
for the twiddle factor generation to be carried out by means of
a suitably defined computational pipeline. To achieve this, the
problem is first decomposed into 2K-1 independent tasks so that a
new twiddle factor may be produced on the completion of the final
task. The internal pipelining of the arithmetic operations within
each task then enables a new twiddle factor to be produced with
every clock cycle at the cost of a time delay, due to the overall
latency, as represented by the combined duration in clock cycles
of the 2K-1 short pipelines.

3.4 Discussion
Note that with each of the multi-level schemes discussed in this
section, which involves the use of a suitably defined computational
pipeline, there is a latency associated with the twiddle factor
generation which is dependent upon the length of the FFT and thus
upon the length of the pipeline. With regard to the case of a radix-R
version of the N-point FFT, regardless of how it is implemented
– whether via the adoption of a pipeline or a memory-based
architecture – the latency has to account for the computation
of radix-R butterflies, so that the effect of the additional
latency due to the twiddle factor generation on the overall latency
of the fixed-radix FFT will be expected to be minimal [9].

Also, with each such scheme it is possible that the fixed length
assigned to each LUT may not necessarily prove to be a positive
integer, as is required, so that one or more of the LUT lengths
may need to be modified in order for integer LUT lengths to be
obtained that still satisfy the product and summation constraints
of Eqtns. 10 and 11. For example, with the three-level scheme
discussed in Section 3.2, if rather than constraining all LUTs to be
of length (as given by Eqtn. 27), one used instead a coarse-
resolution LUT, of length , and fine-resolution LUTs, each of
length , then the constraint on the product (or multiplicative)
parameter, P, will still be met whilst the size of the summation (or
additive) parameter, S, will actually be marginally reduced from
approximately (which is clearly not an integer), for the
fixed-length case, to just

4. Complexity Results for LUT-Based Schemes
To illustrate the trade-off of arithmetic complexity against memory
requirement, for both the single-level and multi-level LUT
schemes, a set of results is provided – see Table 1 – which deal with
a range of radix-2 FFT lengths: 210 (1024), 220 (1,048,576) and 230
(1,073,741,824) which may be regarded as close approximations
to 103, 106 and 109, respectively, and which may each be tackled
with a suitably defined radix-2K algorithm such as a radix-2 or
radix-4 FFT.

 6

region, two to cater for the sine and cosine functions,

one per LUT, defined over the first fine-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the second

fine-resolution region.

 The three-level LUT thus consists of five separate

single-level LUTs, each of length 3 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the two pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

scheme, for the twiddle factor generation to be carried

out by means of a suitably defined computational

pipeline. To achieve this, the problem is first

decomposed into five independent tasks, as outlined in

Figure 3, so that a new twiddle factor may be

produced on the completion of the final task. The

internal pipelining of the arithmetic operations within

each task then enables a new twiddle factor to be

produced with every clock cycle at the cost of a time

delay, due to the overall latency, as represented by the

combined duration in clock cycles of the five short

pipelines.
3.3 Arbitrary K-Level Scheme
 Finally, the results obtained above for the two-

level and three-level schemes may be

straightforwardly extended to the general case of an

arbitrary K-level scheme. By expressing the combined

size of the K-level LUT for the sine function as having

to cater for

 L)1K(
L4

N)L(f 1K (30)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 KL4

N1)1K(
dL
df

 (31)

is set to zero, giving

 K 4/NL (32)

(since K > 1) and resulting in a total K NO memory

requirement of

 K
LUT 4/N)1K2(C (33)

words – that is, K 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and K 4/N to cater for each of the sine and

cosine functions defined over each of the K-1

fine-resolution regions.

 The computational cost of adopting such a

scheme, however, for K > 3 would increase to

 CM = 4K-4 & CA = 4K-2 (34)

where 2K of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over each of the K-1

fine-resolution regions.

 The K-level LUT thus consists of 2K-1 separate

single-level LUTs, each of length K 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the K-1 pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

and three-level schemes, for the twiddle factor

generation to be carried out by means of a suitably

defined computational pipeline. To achieve this, the

problem is first decomposed into 2K-1 independent

tasks so that a new twiddle factor may be produced on

the completion of the final task. The internal

 6

region, two to cater for the sine and cosine functions,

one per LUT, defined over the first fine-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the second

fine-resolution region.

 The three-level LUT thus consists of five separate

single-level LUTs, each of length 3 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the two pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

scheme, for the twiddle factor generation to be carried

out by means of a suitably defined computational

pipeline. To achieve this, the problem is first

decomposed into five independent tasks, as outlined in

Figure 3, so that a new twiddle factor may be

produced on the completion of the final task. The

internal pipelining of the arithmetic operations within

each task then enables a new twiddle factor to be

produced with every clock cycle at the cost of a time

delay, due to the overall latency, as represented by the

combined duration in clock cycles of the five short

pipelines.
3.3 Arbitrary K-Level Scheme
 Finally, the results obtained above for the two-

level and three-level schemes may be

straightforwardly extended to the general case of an

arbitrary K-level scheme. By expressing the combined

size of the K-level LUT for the sine function as having

to cater for

 L)1K(
L4

N)L(f 1K (30)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 KL4

N1)1K(
dL
df

 (31)

is set to zero, giving

 K 4/NL (32)

(since K > 1) and resulting in a total K NO memory

requirement of

 K
LUT 4/N)1K2(C (33)

words – that is, K 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and K 4/N to cater for each of the sine and

cosine functions defined over each of the K-1

fine-resolution regions.

 The computational cost of adopting such a

scheme, however, for K > 3 would increase to

 CM = 4K-4 & CA = 4K-2 (34)

where 2K of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over each of the K-1

fine-resolution regions.

 The K-level LUT thus consists of 2K-1 separate

single-level LUTs, each of length K 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the K-1 pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

and three-level schemes, for the twiddle factor

generation to be carried out by means of a suitably

defined computational pipeline. To achieve this, the

problem is first decomposed into 2K-1 independent

tasks so that a new twiddle factor may be produced on

the completion of the final task. The internal

 6

region, two to cater for the sine and cosine functions,

one per LUT, defined over the first fine-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the second

fine-resolution region.

 The three-level LUT thus consists of five separate

single-level LUTs, each of length 3 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the two pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

scheme, for the twiddle factor generation to be carried

out by means of a suitably defined computational

pipeline. To achieve this, the problem is first

decomposed into five independent tasks, as outlined in

Figure 3, so that a new twiddle factor may be

produced on the completion of the final task. The

internal pipelining of the arithmetic operations within

each task then enables a new twiddle factor to be

produced with every clock cycle at the cost of a time

delay, due to the overall latency, as represented by the

combined duration in clock cycles of the five short

pipelines.
3.3 Arbitrary K-Level Scheme
 Finally, the results obtained above for the two-

level and three-level schemes may be

straightforwardly extended to the general case of an

arbitrary K-level scheme. By expressing the combined

size of the K-level LUT for the sine function as having

to cater for

 L)1K(
L4

N)L(f 1K (30)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 KL4

N1)1K(
dL
df

 (31)

is set to zero, giving

 K 4/NL (32)

(since K > 1) and resulting in a total K NO memory

requirement of

 K
LUT 4/N)1K2(C (33)

words – that is, K 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and K 4/N to cater for each of the sine and

cosine functions defined over each of the K-1

fine-resolution regions.

 The computational cost of adopting such a

scheme, however, for K > 3 would increase to

 CM = 4K-4 & CA = 4K-2 (34)

where 2K of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over each of the K-1

fine-resolution regions.

 The K-level LUT thus consists of 2K-1 separate

single-level LUTs, each of length K 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the K-1 pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

and three-level schemes, for the twiddle factor

generation to be carried out by means of a suitably

defined computational pipeline. To achieve this, the

problem is first decomposed into 2K-1 independent

tasks so that a new twiddle factor may be produced on

the completion of the final task. The internal

 6

region, two to cater for the sine and cosine functions,

one per LUT, defined over the first fine-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the second

fine-resolution region.

 The three-level LUT thus consists of five separate

single-level LUTs, each of length 3 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the two pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

scheme, for the twiddle factor generation to be carried

out by means of a suitably defined computational

pipeline. To achieve this, the problem is first

decomposed into five independent tasks, as outlined in

Figure 3, so that a new twiddle factor may be

produced on the completion of the final task. The

internal pipelining of the arithmetic operations within

each task then enables a new twiddle factor to be

produced with every clock cycle at the cost of a time

delay, due to the overall latency, as represented by the

combined duration in clock cycles of the five short

pipelines.
3.3 Arbitrary K-Level Scheme
 Finally, the results obtained above for the two-

level and three-level schemes may be

straightforwardly extended to the general case of an

arbitrary K-level scheme. By expressing the combined

size of the K-level LUT for the sine function as having

to cater for

 L)1K(
L4

N)L(f 1K (30)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 KL4

N1)1K(
dL
df

 (31)

is set to zero, giving

 K 4/NL (32)

(since K > 1) and resulting in a total K NO memory

requirement of

 K
LUT 4/N)1K2(C (33)

words – that is, K 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and K 4/N to cater for each of the sine and

cosine functions defined over each of the K-1

fine-resolution regions.

 The computational cost of adopting such a

scheme, however, for K > 3 would increase to

 CM = 4K-4 & CA = 4K-2 (34)

where 2K of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over each of the K-1

fine-resolution regions.

 The K-level LUT thus consists of 2K-1 separate

single-level LUTs, each of length K 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the K-1 pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

and three-level schemes, for the twiddle factor

generation to be carried out by means of a suitably

defined computational pipeline. To achieve this, the

problem is first decomposed into 2K-1 independent

tasks so that a new twiddle factor may be produced on

the completion of the final task. The internal

 6

region, two to cater for the sine and cosine functions,

one per LUT, defined over the first fine-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over the second

fine-resolution region.

 The three-level LUT thus consists of five separate

single-level LUTs, each of length 3 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the two pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

scheme, for the twiddle factor generation to be carried

out by means of a suitably defined computational

pipeline. To achieve this, the problem is first

decomposed into five independent tasks, as outlined in

Figure 3, so that a new twiddle factor may be

produced on the completion of the final task. The

internal pipelining of the arithmetic operations within

each task then enables a new twiddle factor to be

produced with every clock cycle at the cost of a time

delay, due to the overall latency, as represented by the

combined duration in clock cycles of the five short

pipelines.
3.3 Arbitrary K-Level Scheme
 Finally, the results obtained above for the two-

level and three-level schemes may be

straightforwardly extended to the general case of an

arbitrary K-level scheme. By expressing the combined

size of the K-level LUT for the sine function as having

to cater for

 L)1K(
L4

N)L(f 1K (30)

words, where the LUTs are assumed for ease of

analysis to be each of length L, it can be seen that the

optimum LUT length is obtained when the derivative

 KL4

N1)1K(
dL
df

 (31)

is set to zero, giving

 K 4/NL (32)

(since K > 1) and resulting in a total K NO memory

requirement of

 K
LUT 4/N)1K2(C (33)

words – that is, K 4/N to cater for both the sine and

cosine functions defined over the coarse-resolution

region and K 4/N to cater for each of the sine and

cosine functions defined over each of the K-1

fine-resolution regions.

 The computational cost of adopting such a

scheme, however, for K > 3 would increase to

 CM = 4K-4 & CA = 4K-2 (34)

where 2K of the additions are for generating the LUT

addresses – that is, two to cater for both the sine and

cosine functions defined over the coarse-resolution

region and two to cater for the sine and cosine

functions, one per LUT, defined over each of the K-1

fine-resolution regions.

 The K-level LUT thus consists of 2K-1 separate

single-level LUTs, each of length K 4/N , rather than

a single LUT, where an efficient parallel solution to

the FFT requires that: a) two locations need to be

accessed simultaneously from the coarse-resolution

LUT; and b) two locations need to be accessed

simultaneously from each of the K-1 pairs of

fine-resolution LUTs, one per LUT. In addition, for

the mapping of the FFT onto parallel computing

equipment it will be necessary, as with the two-level

and three-level schemes, for the twiddle factor

generation to be carried out by means of a suitably

defined computational pipeline. To achieve this, the

problem is first decomposed into 2K-1 independent

tasks so that a new twiddle factor may be produced on

the completion of the final task. The internal

 7

pipelining of the arithmetic operations within each

task then enables a new twiddle factor to be produced

with every clock cycle at the cost of a time delay, due

to the overall latency, as represented by the combined

duration in clock cycles of the 2K-1 short pipelines.
3.4 Discussion
 Note that with each of the multi-level schemes

discussed in this section, which involves the use of a

suitably defined computational pipeline, there is a

latency associated with the twiddle factor generation

which is dependent upon the length of the FFT and

thus upon the length of the pipeline. With regard to the

case of a radix-R version of the N-point FFT,

regardless of how it is implemented – whether via the

adoption of a pipeline or a memory-based architecture

[9] – the latency has to account for the computation of

NlogR
N

R radix-R butterflies, so that the effect of

the additional latency due to the twiddle factor

generation on the overall latency of the fixed-radix

FFT will be expected to be minimal.

 Also, with each such scheme it is possible that the

fixed length assigned to each LUT may not necessarily

prove to be a positive integer, as is required, so that

one or more of the LUT lengths may need to be

modified in order for integer LUT lengths to be

obtained that still satisfy the product and summation

constraints of Eqtns. 10 and 11. For example, with the

three-level scheme discussed in Section 3.2, if rather

than constraining all LUTs to be of length 3 4/N (as

given by Eqtn. 27), one used instead a coarse-

resolution LUT, of length 3 N , and fine-resolution

LUTs, each of length 2/N3 , then the constraint on

the product (or multiplicative) parameter, P, will still

be met whilst the size of the summation (or additive)

parameter, S, will actually be marginally reduced from

approximately 3 N16.3 (which is clearly not an

integer), for the fixed-length case, to just 3 N3 .

4. Complexity Results for LUT-Based Schemes
 To illustrate the trade-off of arithmetic complexity

against memory requirement, for both the single-level

and multi-level LUT schemes, a set of results is

provided – see Table 1 – which deal with a range of

radix-2 FFT lengths: 210 (1024), 220 (1,048,576) and

230 (1,073,741,824) which may be regarded as close

approximations to 103, 106 and 109, respectively, and

which may each be tackled with a suitably defined

radix-2K algorithm such as a radix-2 or radix-4 FFT.

 For implementation in silicon of both long and

ultra-long FFTs – as are becoming of increasing

interest with the trend in large scale, big data

applications – such as those transforms of approximate

lengths 220 (as might be encountered in processing of

astronomical data) and 230 (as might be encountered in

processing of cosmic microwave data [10]),

respectively, considerable resources will inevitably be

required, as is evidenced from the memory

requirements obtained via the single-level LUT

scheme listed in the table. Ways of reducing these

requirements, therefore, such as via the adoption of

one or other of the multi-level LUT schemes discussed

here, need to be carefully considered, as the increased

arithmetic complexity and pipeline delay (as will be

required for a real-time parallel implementation) may

be a cost worth paying for such large reductions in

memory – namely, from O(N) to an NO

requirement, for the case of an N-point FFT, where

β ≥ 2 corresponds to the number of distinct angular

resolutions used.
 Note that Table 1 lists the number of arithmetic

operations involved for various combinations of FFT

length and LUT-based scheme. With a fully parallel

hardware implementation of the FFT, however, the

number of multiplications would be equivalent to the

required number of hardware multipliers – which, with

the availability of fast embedded multipliers as

provided by an FPGA manufacturer, are particularly

resource and energy efficient – namely one hardware

 7

pipelining of the arithmetic operations within each

task then enables a new twiddle factor to be produced

with every clock cycle at the cost of a time delay, due

to the overall latency, as represented by the combined

duration in clock cycles of the 2K-1 short pipelines.
3.4 Discussion
 Note that with each of the multi-level schemes

discussed in this section, which involves the use of a

suitably defined computational pipeline, there is a

latency associated with the twiddle factor generation

which is dependent upon the length of the FFT and

thus upon the length of the pipeline. With regard to the

case of a radix-R version of the N-point FFT,

regardless of how it is implemented – whether via the

adoption of a pipeline or a memory-based architecture

[9] – the latency has to account for the computation of

NlogR
N

R radix-R butterflies, so that the effect of

the additional latency due to the twiddle factor

generation on the overall latency of the fixed-radix

FFT will be expected to be minimal.

 Also, with each such scheme it is possible that the

fixed length assigned to each LUT may not necessarily

prove to be a positive integer, as is required, so that

one or more of the LUT lengths may need to be

modified in order for integer LUT lengths to be

obtained that still satisfy the product and summation

constraints of Eqtns. 10 and 11. For example, with the

three-level scheme discussed in Section 3.2, if rather

than constraining all LUTs to be of length 3 4/N (as

given by Eqtn. 27), one used instead a coarse-

resolution LUT, of length 3 N , and fine-resolution

LUTs, each of length 2/N3 , then the constraint on

the product (or multiplicative) parameter, P, will still

be met whilst the size of the summation (or additive)

parameter, S, will actually be marginally reduced from

approximately 3 N16.3 (which is clearly not an

integer), for the fixed-length case, to just 3 N3 .

4. Complexity Results for LUT-Based Schemes
 To illustrate the trade-off of arithmetic complexity

against memory requirement, for both the single-level

and multi-level LUT schemes, a set of results is

provided – see Table 1 – which deal with a range of

radix-2 FFT lengths: 210 (1024), 220 (1,048,576) and

230 (1,073,741,824) which may be regarded as close

approximations to 103, 106 and 109, respectively, and

which may each be tackled with a suitably defined

radix-2K algorithm such as a radix-2 or radix-4 FFT.

 For implementation in silicon of both long and

ultra-long FFTs – as are becoming of increasing

interest with the trend in large scale, big data

applications – such as those transforms of approximate

lengths 220 (as might be encountered in processing of

astronomical data) and 230 (as might be encountered in

processing of cosmic microwave data [10]),

respectively, considerable resources will inevitably be

required, as is evidenced from the memory

requirements obtained via the single-level LUT

scheme listed in the table. Ways of reducing these

requirements, therefore, such as via the adoption of

one or other of the multi-level LUT schemes discussed

here, need to be carefully considered, as the increased

arithmetic complexity and pipeline delay (as will be

required for a real-time parallel implementation) may

be a cost worth paying for such large reductions in

memory – namely, from O(N) to an NO

requirement, for the case of an N-point FFT, where

β ≥ 2 corresponds to the number of distinct angular

resolutions used.
 Note that Table 1 lists the number of arithmetic

operations involved for various combinations of FFT

length and LUT-based scheme. With a fully parallel

hardware implementation of the FFT, however, the

number of multiplications would be equivalent to the

required number of hardware multipliers – which, with

the availability of fast embedded multipliers as

provided by an FPGA manufacturer, are particularly

resource and energy efficient – namely one hardware
 7

pipelining of the arithmetic operations within each

task then enables a new twiddle factor to be produced

with every clock cycle at the cost of a time delay, due

to the overall latency, as represented by the combined

duration in clock cycles of the 2K-1 short pipelines.
3.4 Discussion
 Note that with each of the multi-level schemes

discussed in this section, which involves the use of a

suitably defined computational pipeline, there is a

latency associated with the twiddle factor generation

which is dependent upon the length of the FFT and

thus upon the length of the pipeline. With regard to the

case of a radix-R version of the N-point FFT,

regardless of how it is implemented – whether via the

adoption of a pipeline or a memory-based architecture

[9] – the latency has to account for the computation of

NlogR
N

R radix-R butterflies, so that the effect of

the additional latency due to the twiddle factor

generation on the overall latency of the fixed-radix

FFT will be expected to be minimal.

 Also, with each such scheme it is possible that the

fixed length assigned to each LUT may not necessarily

prove to be a positive integer, as is required, so that

one or more of the LUT lengths may need to be

modified in order for integer LUT lengths to be

obtained that still satisfy the product and summation

constraints of Eqtns. 10 and 11. For example, with the

three-level scheme discussed in Section 3.2, if rather

than constraining all LUTs to be of length 3 4/N (as

given by Eqtn. 27), one used instead a coarse-

resolution LUT, of length 3 N , and fine-resolution

LUTs, each of length 2/N3 , then the constraint on

the product (or multiplicative) parameter, P, will still

be met whilst the size of the summation (or additive)

parameter, S, will actually be marginally reduced from

approximately 3 N16.3 (which is clearly not an

integer), for the fixed-length case, to just 3 N3 .

4. Complexity Results for LUT-Based Schemes
 To illustrate the trade-off of arithmetic complexity

against memory requirement, for both the single-level

and multi-level LUT schemes, a set of results is

provided – see Table 1 – which deal with a range of

radix-2 FFT lengths: 210 (1024), 220 (1,048,576) and

230 (1,073,741,824) which may be regarded as close

approximations to 103, 106 and 109, respectively, and

which may each be tackled with a suitably defined

radix-2K algorithm such as a radix-2 or radix-4 FFT.

 For implementation in silicon of both long and

ultra-long FFTs – as are becoming of increasing

interest with the trend in large scale, big data

applications – such as those transforms of approximate

lengths 220 (as might be encountered in processing of

astronomical data) and 230 (as might be encountered in

processing of cosmic microwave data [10]),

respectively, considerable resources will inevitably be

required, as is evidenced from the memory

requirements obtained via the single-level LUT

scheme listed in the table. Ways of reducing these

requirements, therefore, such as via the adoption of

one or other of the multi-level LUT schemes discussed

here, need to be carefully considered, as the increased

arithmetic complexity and pipeline delay (as will be

required for a real-time parallel implementation) may

be a cost worth paying for such large reductions in

memory – namely, from O(N) to an NO

requirement, for the case of an N-point FFT, where

β ≥ 2 corresponds to the number of distinct angular

resolutions used.
 Note that Table 1 lists the number of arithmetic

operations involved for various combinations of FFT

length and LUT-based scheme. With a fully parallel

hardware implementation of the FFT, however, the

number of multiplications would be equivalent to the

required number of hardware multipliers – which, with

the availability of fast embedded multipliers as

provided by an FPGA manufacturer, are particularly

resource and energy efficient – namely one hardware

 7

pipelining of the arithmetic operations within each

task then enables a new twiddle factor to be produced

with every clock cycle at the cost of a time delay, due

to the overall latency, as represented by the combined

duration in clock cycles of the 2K-1 short pipelines.
3.4 Discussion
 Note that with each of the multi-level schemes

discussed in this section, which involves the use of a

suitably defined computational pipeline, there is a

latency associated with the twiddle factor generation

which is dependent upon the length of the FFT and

thus upon the length of the pipeline. With regard to the

case of a radix-R version of the N-point FFT,

regardless of how it is implemented – whether via the

adoption of a pipeline or a memory-based architecture

[9] – the latency has to account for the computation of

NlogR
N

R radix-R butterflies, so that the effect of

the additional latency due to the twiddle factor

generation on the overall latency of the fixed-radix

FFT will be expected to be minimal.

 Also, with each such scheme it is possible that the

fixed length assigned to each LUT may not necessarily

prove to be a positive integer, as is required, so that

one or more of the LUT lengths may need to be

modified in order for integer LUT lengths to be

obtained that still satisfy the product and summation

constraints of Eqtns. 10 and 11. For example, with the

three-level scheme discussed in Section 3.2, if rather

than constraining all LUTs to be of length 3 4/N (as

given by Eqtn. 27), one used instead a coarse-

resolution LUT, of length 3 N , and fine-resolution

LUTs, each of length 2/N3 , then the constraint on

the product (or multiplicative) parameter, P, will still

be met whilst the size of the summation (or additive)

parameter, S, will actually be marginally reduced from

approximately 3 N16.3 (which is clearly not an

integer), for the fixed-length case, to just 3 N3 .

4. Complexity Results for LUT-Based Schemes
 To illustrate the trade-off of arithmetic complexity

against memory requirement, for both the single-level

and multi-level LUT schemes, a set of results is

provided – see Table 1 – which deal with a range of

radix-2 FFT lengths: 210 (1024), 220 (1,048,576) and

230 (1,073,741,824) which may be regarded as close

approximations to 103, 106 and 109, respectively, and

which may each be tackled with a suitably defined

radix-2K algorithm such as a radix-2 or radix-4 FFT.

 For implementation in silicon of both long and

ultra-long FFTs – as are becoming of increasing

interest with the trend in large scale, big data

applications – such as those transforms of approximate

lengths 220 (as might be encountered in processing of

astronomical data) and 230 (as might be encountered in

processing of cosmic microwave data [10]),

respectively, considerable resources will inevitably be

required, as is evidenced from the memory

requirements obtained via the single-level LUT

scheme listed in the table. Ways of reducing these

requirements, therefore, such as via the adoption of

one or other of the multi-level LUT schemes discussed

here, need to be carefully considered, as the increased

arithmetic complexity and pipeline delay (as will be

required for a real-time parallel implementation) may

be a cost worth paying for such large reductions in

memory – namely, from O(N) to an NO

requirement, for the case of an N-point FFT, where

β ≥ 2 corresponds to the number of distinct angular

resolutions used.
 Note that Table 1 lists the number of arithmetic

operations involved for various combinations of FFT

length and LUT-based scheme. With a fully parallel

hardware implementation of the FFT, however, the

number of multiplications would be equivalent to the

required number of hardware multipliers – which, with

the availability of fast embedded multipliers as

provided by an FPGA manufacturer, are particularly

resource and energy efficient – namely one hardware

 7

pipelining of the arithmetic operations within each

task then enables a new twiddle factor to be produced

with every clock cycle at the cost of a time delay, due

to the overall latency, as represented by the combined

duration in clock cycles of the 2K-1 short pipelines.
3.4 Discussion
 Note that with each of the multi-level schemes

discussed in this section, which involves the use of a

suitably defined computational pipeline, there is a

latency associated with the twiddle factor generation

which is dependent upon the length of the FFT and

thus upon the length of the pipeline. With regard to the

case of a radix-R version of the N-point FFT,

regardless of how it is implemented – whether via the

adoption of a pipeline or a memory-based architecture

[9] – the latency has to account for the computation of

NlogR
N

R radix-R butterflies, so that the effect of

the additional latency due to the twiddle factor

generation on the overall latency of the fixed-radix

FFT will be expected to be minimal.

 Also, with each such scheme it is possible that the

fixed length assigned to each LUT may not necessarily

prove to be a positive integer, as is required, so that

one or more of the LUT lengths may need to be

modified in order for integer LUT lengths to be

obtained that still satisfy the product and summation

constraints of Eqtns. 10 and 11. For example, with the

three-level scheme discussed in Section 3.2, if rather

than constraining all LUTs to be of length 3 4/N (as

given by Eqtn. 27), one used instead a coarse-

resolution LUT, of length 3 N , and fine-resolution

LUTs, each of length 2/N3 , then the constraint on

the product (or multiplicative) parameter, P, will still

be met whilst the size of the summation (or additive)

parameter, S, will actually be marginally reduced from

approximately 3 N16.3 (which is clearly not an

integer), for the fixed-length case, to just 3 N3 .

4. Complexity Results for LUT-Based Schemes
 To illustrate the trade-off of arithmetic complexity

against memory requirement, for both the single-level

and multi-level LUT schemes, a set of results is

provided – see Table 1 – which deal with a range of

radix-2 FFT lengths: 210 (1024), 220 (1,048,576) and

230 (1,073,741,824) which may be regarded as close

approximations to 103, 106 and 109, respectively, and

which may each be tackled with a suitably defined

radix-2K algorithm such as a radix-2 or radix-4 FFT.

 For implementation in silicon of both long and

ultra-long FFTs – as are becoming of increasing

interest with the trend in large scale, big data

applications – such as those transforms of approximate

lengths 220 (as might be encountered in processing of

astronomical data) and 230 (as might be encountered in

processing of cosmic microwave data [10]),

respectively, considerable resources will inevitably be

required, as is evidenced from the memory

requirements obtained via the single-level LUT

scheme listed in the table. Ways of reducing these

requirements, therefore, such as via the adoption of

one or other of the multi-level LUT schemes discussed

here, need to be carefully considered, as the increased

arithmetic complexity and pipeline delay (as will be

required for a real-time parallel implementation) may

be a cost worth paying for such large reductions in

memory – namely, from O(N) to an NO

requirement, for the case of an N-point FFT, where

β ≥ 2 corresponds to the number of distinct angular

resolutions used.
 Note that Table 1 lists the number of arithmetic

operations involved for various combinations of FFT

length and LUT-based scheme. With a fully parallel

hardware implementation of the FFT, however, the

number of multiplications would be equivalent to the

required number of hardware multipliers – which, with

the availability of fast embedded multipliers as

provided by an FPGA manufacturer, are particularly

resource and energy efficient – namely one hardware

 7

pipelining of the arithmetic operations within each

task then enables a new twiddle factor to be produced

with every clock cycle at the cost of a time delay, due

to the overall latency, as represented by the combined

duration in clock cycles of the 2K-1 short pipelines.
3.4 Discussion
 Note that with each of the multi-level schemes

discussed in this section, which involves the use of a

suitably defined computational pipeline, there is a

latency associated with the twiddle factor generation

which is dependent upon the length of the FFT and

thus upon the length of the pipeline. With regard to the

case of a radix-R version of the N-point FFT,

regardless of how it is implemented – whether via the

adoption of a pipeline or a memory-based architecture

[9] – the latency has to account for the computation of

NlogR
N

R radix-R butterflies, so that the effect of

the additional latency due to the twiddle factor

generation on the overall latency of the fixed-radix

FFT will be expected to be minimal.

 Also, with each such scheme it is possible that the

fixed length assigned to each LUT may not necessarily

prove to be a positive integer, as is required, so that

one or more of the LUT lengths may need to be

modified in order for integer LUT lengths to be

obtained that still satisfy the product and summation

constraints of Eqtns. 10 and 11. For example, with the

three-level scheme discussed in Section 3.2, if rather

than constraining all LUTs to be of length 3 4/N (as

given by Eqtn. 27), one used instead a coarse-

resolution LUT, of length 3 N , and fine-resolution

LUTs, each of length 2/N3 , then the constraint on

the product (or multiplicative) parameter, P, will still

be met whilst the size of the summation (or additive)

parameter, S, will actually be marginally reduced from

approximately 3 N16.3 (which is clearly not an

integer), for the fixed-length case, to just 3 N3 .

4. Complexity Results for LUT-Based Schemes
 To illustrate the trade-off of arithmetic complexity

against memory requirement, for both the single-level

and multi-level LUT schemes, a set of results is

provided – see Table 1 – which deal with a range of

radix-2 FFT lengths: 210 (1024), 220 (1,048,576) and

230 (1,073,741,824) which may be regarded as close

approximations to 103, 106 and 109, respectively, and

which may each be tackled with a suitably defined

radix-2K algorithm such as a radix-2 or radix-4 FFT.

 For implementation in silicon of both long and

ultra-long FFTs – as are becoming of increasing

interest with the trend in large scale, big data

applications – such as those transforms of approximate

lengths 220 (as might be encountered in processing of

astronomical data) and 230 (as might be encountered in

processing of cosmic microwave data [10]),

respectively, considerable resources will inevitably be

required, as is evidenced from the memory

requirements obtained via the single-level LUT

scheme listed in the table. Ways of reducing these

requirements, therefore, such as via the adoption of

one or other of the multi-level LUT schemes discussed

here, need to be carefully considered, as the increased

arithmetic complexity and pipeline delay (as will be

required for a real-time parallel implementation) may

be a cost worth paying for such large reductions in

memory – namely, from O(N) to an NO

requirement, for the case of an N-point FFT, where

β ≥ 2 corresponds to the number of distinct angular

resolutions used.
 Note that Table 1 lists the number of arithmetic

operations involved for various combinations of FFT

length and LUT-based scheme. With a fully parallel

hardware implementation of the FFT, however, the

number of multiplications would be equivalent to the

required number of hardware multipliers – which, with

the availability of fast embedded multipliers as

provided by an FPGA manufacturer, are particularly

resource and energy efficient – namely one hardware

 11

Task 1:

Compute LUT addresses and access corresponding trigonometric terms

Task 2:

Compute first set of four trigonometric products from Task 1 outputs – see Eqtns. 21-24

Task 3:

Combine trigonometric product pairs additively to produce two outputs for use in Eqtns. 19-20

Task 4:

Compute second set of four trigonometric products from Task 3 outputs – see Eqtns. 19-20

Task 5:

Combine trigonometric product pairs additively to produce pair of twiddle factor

components – one sinusoidal & one cosinusoidal component – see Eqtns. 19-20

Note: parallel processing required for producing simultaneous outputs from each task

Figure 3 – twiddle factor generation using three-level LUT scheme

Radix-2
FFT

Length N
LUT-Based

Scheme

Arithmetic Requirement Memory
Requirement

(words)

Arithmetic +
Memory Sizing

(slices)

No
Independent

Tasks No Multiplies No Additions

210 ~ 103 1-Level 0 2 2.56×102 ~ 6.14×103 1

220 ~ 106
1-Level 0 2 ~ 2.62×105 ~ 6.29×106 1

2-Level 4 6 ~ 1.54×103 ~ 2.58×104 3

230 ~ 109
1-Level 0 2 ~ 2.63×108 ~ 6.44×109 1

3-Level 8 10 ~ 3.07×103 ~ 6.16×104 5

Note: wordlength adopted for silicon sizing = 24 bits

Table 1 – resource requirements for different LUT-based twiddle factor

generation schemes as required by radix-2 FFT algorithm

Note: word length adopted for silicon sizing = 24 bits

Table 1: Resource Requirements for Different LUT-Based Twiddle Factor Generation Schemes as Required by Radix-2 FFT
Algorithm

()K NO

Volume 2 | Issue 3 | 7Eng OA, 2024

For implementation in silicon of both long and ultra-long
FFTs – as are becoming of increasing interest with the trend in
large scale, big data applications – such as those transforms of
approximate lengths 220 (as might be encountered in processing of
astronomical data) and 230 (as might be encountered in processing
of cosmic microwave data), respectively, considerable resources
will inevitably be required, as is evidenced from the memory
requirements obtained via the single-level LUT scheme listed in
the table. Ways of reducing these requirements, therefore, such as
via the adoption of one or other of the multi-level LUT schemes
discussed here, need to be carefully considered, as the increased
arithmetic complexity and pipeline delay (as will be required for
a real-time parallel implementation) may be a cost worth paying
for such large reductions in memory – namely, from O(N) to
an requirement, for the case of an N-point FFT, where β ≥
2 corresponds to the number of distinct angular resolutions used
[10].

Note that Table 1 lists the number of arithmetic operations
involved for various combinations of FFT length and LUT-based
scheme. With a fully-parallel hardware implementation of the
FFT, however, the number of multiplications would be equivalent
to the required number of hardware multipliers – which, with
the availability of fast embedded multipliers as provided by an
FPGA manufacturer, are particularly resource and energy efficient
– namely one hardware multiplier per multiplication, whilst the
number of additions (or subtractions) would, in turn, be equivalent
to the required number of hardware adders, namely one hardware
adder per addition (or subtraction).

Thus, with a fully-parallel hardware implementation, the num-
bers of arithmetic operations also defines the associated hardware
complexity which, with an FPGA, may be expressed very sim-
plistically in terms of the required number of ‘slices’ of program-
mable logic, where a slice comprises a number of LUTs (where
an LUT in this context is a collection of logic gates hard wired
on the device), flip-flops and multiplexers. With the adoption of
L-bit fixed-point processing, an L-bit adder may be implemented
with just L/2 slices and an (L-bit)×(L-bit) multiplier – whose size
equates, essentially, to that of L adders – with approximately L2/2
slices. With regard to memory, an L-bit word of single-port RAM
(as required for the single-sample addressing of the fine-resolution
LUTs) may be implemented with L/2 slices and an L-bit word of
dual-port RAM (as required for the double-sample addressing of
the coarse-resolution LUTs) with L slices.

Based upon these sizing figures the number of logic slices needed
for the combined resource requirements of arithmetic and memory
(but excluding associated control logic) may be expressed as in
Table 1, for various combinations of FFT length and LUT-based
scheme, where a wordlength of 24 bits has been assumed for purely
illustrative purposes. The results highlight the potential benefits
to be obtained through the adoption of one or other of the multi-
level LUT schemes, particularly for implementation in silicon of
both long and ultra-long FFTs. When compared to the single-level

scheme, the two-level scheme (for the long FFT example) offers an
approximate reduction in the total silicon sizing of O(102) whilst
the three-level scheme (for the ultra-long FFT example) offers a
reduction of O(105) – these results holding true regardless of the
adopted word length.

5. Summary and Conclusions
The paper has described schemes for the resource-efficient
generation of twiddle factors for the fixed-radix version of the
FFT algorithm. The schemes, which are targeted at a parallel
implementation of the FFT, provide one with the facility for trading
off arithmetic complexity, as expressed in terms of the required
numbers of multiplications and additions (or subtractions), against
the memory requirement, as expressed in terms of the amount of
RAM required for constructing the LUTs needed for the storage of
the two twiddle factor components – one component being derived
from the sine function and the other from the cosine function.
Examples have been provided which illustrate the advantages and
disadvantages of each scheme – which are very much dependent
upon the length of the FFT to be computed – for both the single-
level and multi-level LUTs, highlighting those situations where
their adoption might be most appropriate. More specifically, it
has been seen that the adoption of a multi-level LUT scheme may
be used to facilitate significant reductions in memory – namely,
from O(N) to an requirement, for the case of an N-point
FFT, where β ≥ 2 corresponds to the number of distinct angular
resolutions used – at a relatively small cost in terms of increased
FFT latency and arithmetic complexity [14].

Note that for a radix-R version of the FFT, there will be R-1 non-
trivial twiddle factors to be applied to each butterfly, rather than
just one, so that the results obtained and discussed in this paper
– which have been targeted, for ease of analysis, at a radix-2
formulation of the FFT – will need to be amended to cater for the
increased coefficient memory, in terms of additional LUTs, needed
for the generation of the R-1 non-trivial twiddle factors. This
replication of resources will be necessary, regardless of the LUT-
based scheme adopted, if a highly parallel solution to the twiddle
factor generation (whereby all the twiddle factors are generated
and applied simultaneously), and thus to the FFT, is to be achieved.

Finally, note that such techniques as those discussed here for dealing
with the fixed-radix FFT could also be used to the same effect with
the design of fast solutions to other commonly used orthogonal
transforms [11]. This includes the design and implementation
of fast algorithms for the efficient computation of the discrete
cosine transform (DCT) and the discrete Hartley transform
(DHT) where, for the case of the DHT, the regularized version
of the fast Hartley transform (FHT) [7,9] involves the design of a
single large double butterfly, with eight real-valued inputs/outputs,
for its efficient parallel computation. Nearly all such fixed-radix
transforms, except those based upon the adoption of non-standard
arithmetic techniques – such as CORDIC arithmetic [7,14] – will
rely upon the use of a pre-computed trigonometric function for
their implementational efficiency [12,13].

 7

pipelining of the arithmetic operations within each

task then enables a new twiddle factor to be produced

with every clock cycle at the cost of a time delay, due

to the overall latency, as represented by the combined

duration in clock cycles of the 2K-1 short pipelines.
3.4 Discussion
 Note that with each of the multi-level schemes

discussed in this section, which involves the use of a

suitably defined computational pipeline, there is a

latency associated with the twiddle factor generation

which is dependent upon the length of the FFT and

thus upon the length of the pipeline. With regard to the

case of a radix-R version of the N-point FFT,

regardless of how it is implemented – whether via the

adoption of a pipeline or a memory-based architecture

[9] – the latency has to account for the computation of

NlogR
N

R radix-R butterflies, so that the effect of

the additional latency due to the twiddle factor

generation on the overall latency of the fixed-radix

FFT will be expected to be minimal.

 Also, with each such scheme it is possible that the

fixed length assigned to each LUT may not necessarily

prove to be a positive integer, as is required, so that

one or more of the LUT lengths may need to be

modified in order for integer LUT lengths to be

obtained that still satisfy the product and summation

constraints of Eqtns. 10 and 11. For example, with the

three-level scheme discussed in Section 3.2, if rather

than constraining all LUTs to be of length 3 4/N (as

given by Eqtn. 27), one used instead a coarse-

resolution LUT, of length 3 N , and fine-resolution

LUTs, each of length 2/N3 , then the constraint on

the product (or multiplicative) parameter, P, will still

be met whilst the size of the summation (or additive)

parameter, S, will actually be marginally reduced from

approximately 3 N16.3 (which is clearly not an

integer), for the fixed-length case, to just 3 N3 .

4. Complexity Results for LUT-Based Schemes
 To illustrate the trade-off of arithmetic complexity

against memory requirement, for both the single-level

and multi-level LUT schemes, a set of results is

provided – see Table 1 – which deal with a range of

radix-2 FFT lengths: 210 (1024), 220 (1,048,576) and

230 (1,073,741,824) which may be regarded as close

approximations to 103, 106 and 109, respectively, and

which may each be tackled with a suitably defined

radix-2K algorithm such as a radix-2 or radix-4 FFT.

 For implementation in silicon of both long and

ultra-long FFTs – as are becoming of increasing

interest with the trend in large scale, big data

applications – such as those transforms of approximate

lengths 220 (as might be encountered in processing of

astronomical data) and 230 (as might be encountered in

processing of cosmic microwave data [10]),

respectively, considerable resources will inevitably be

required, as is evidenced from the memory

requirements obtained via the single-level LUT

scheme listed in the table. Ways of reducing these

requirements, therefore, such as via the adoption of

one or other of the multi-level LUT schemes discussed

here, need to be carefully considered, as the increased

arithmetic complexity and pipeline delay (as will be

required for a real-time parallel implementation) may

be a cost worth paying for such large reductions in

memory – namely, from O(N) to an NO

requirement, for the case of an N-point FFT, where

β ≥ 2 corresponds to the number of distinct angular

resolutions used.
 Note that Table 1 lists the number of arithmetic

operations involved for various combinations of FFT

length and LUT-based scheme. With a fully parallel

hardware implementation of the FFT, however, the

number of multiplications would be equivalent to the

required number of hardware multipliers – which, with

the availability of fast embedded multipliers as

provided by an FPGA manufacturer, are particularly

resource and energy efficient – namely one hardware

 7

pipelining of the arithmetic operations within each

task then enables a new twiddle factor to be produced

with every clock cycle at the cost of a time delay, due

to the overall latency, as represented by the combined

duration in clock cycles of the 2K-1 short pipelines.
3.4 Discussion
 Note that with each of the multi-level schemes

discussed in this section, which involves the use of a

suitably defined computational pipeline, there is a

latency associated with the twiddle factor generation

which is dependent upon the length of the FFT and

thus upon the length of the pipeline. With regard to the

case of a radix-R version of the N-point FFT,

regardless of how it is implemented – whether via the

adoption of a pipeline or a memory-based architecture

[9] – the latency has to account for the computation of

NlogR
N

R radix-R butterflies, so that the effect of

the additional latency due to the twiddle factor

generation on the overall latency of the fixed-radix

FFT will be expected to be minimal.

 Also, with each such scheme it is possible that the

fixed length assigned to each LUT may not necessarily

prove to be a positive integer, as is required, so that

one or more of the LUT lengths may need to be

modified in order for integer LUT lengths to be

obtained that still satisfy the product and summation

constraints of Eqtns. 10 and 11. For example, with the

three-level scheme discussed in Section 3.2, if rather

than constraining all LUTs to be of length 3 4/N (as

given by Eqtn. 27), one used instead a coarse-

resolution LUT, of length 3 N , and fine-resolution

LUTs, each of length 2/N3 , then the constraint on

the product (or multiplicative) parameter, P, will still

be met whilst the size of the summation (or additive)

parameter, S, will actually be marginally reduced from

approximately 3 N16.3 (which is clearly not an

integer), for the fixed-length case, to just 3 N3 .

4. Complexity Results for LUT-Based Schemes
 To illustrate the trade-off of arithmetic complexity

against memory requirement, for both the single-level

and multi-level LUT schemes, a set of results is

provided – see Table 1 – which deal with a range of

radix-2 FFT lengths: 210 (1024), 220 (1,048,576) and

230 (1,073,741,824) which may be regarded as close

approximations to 103, 106 and 109, respectively, and

which may each be tackled with a suitably defined

radix-2K algorithm such as a radix-2 or radix-4 FFT.

 For implementation in silicon of both long and

ultra-long FFTs – as are becoming of increasing

interest with the trend in large scale, big data

applications – such as those transforms of approximate

lengths 220 (as might be encountered in processing of

astronomical data) and 230 (as might be encountered in

processing of cosmic microwave data [10]),

respectively, considerable resources will inevitably be

required, as is evidenced from the memory

requirements obtained via the single-level LUT

scheme listed in the table. Ways of reducing these

requirements, therefore, such as via the adoption of

one or other of the multi-level LUT schemes discussed

here, need to be carefully considered, as the increased

arithmetic complexity and pipeline delay (as will be

required for a real-time parallel implementation) may

be a cost worth paying for such large reductions in

memory – namely, from O(N) to an NO

requirement, for the case of an N-point FFT, where

β ≥ 2 corresponds to the number of distinct angular

resolutions used.
 Note that Table 1 lists the number of arithmetic

operations involved for various combinations of FFT

length and LUT-based scheme. With a fully parallel

hardware implementation of the FFT, however, the

number of multiplications would be equivalent to the

required number of hardware multipliers – which, with

the availability of fast embedded multipliers as

provided by an FPGA manufacturer, are particularly

resource and energy efficient – namely one hardware

Volume 2 | Issue 3 | 8Eng OA, 2024

Copyright: ©2024 Keith Jones. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

https://opastpublishers.com

References
1. Brigham, E. O., & Morrow, R. E. (1967). The fast Fourier

transform. IEEE spectrum, 4(12), 63-70.
2. Chu, E., & George, A. (1999). Inside the FFT black box: serial

and parallel fast Fourier transform algorithms. CRC press.
3. Birkhoff, G., & Mac Lane, S. (2017). A survey of modern

algebra. AK Peters/CRC Press.
4. McClellen, J. H., & Rader, C. M. (1979). Number theory in

digital signal processing. Prentice Hall.
5. Akl, S. G. (1989). The design and analysis of parallel

algorithms. Prentice-Hall, Inc..
6. Maxfield, C. (2004). The design warrior's guide to FPGAs:

devices, tools and flows. Elsevier.
7. Jones, K. (2010). The regularized fast Hartley transform.

Netherlands: Springer.
8. Hardy, G. H. (1928). A course of pure mathematics. Cambridge

University Press.

9. Jones, K. J. (2023). A Comparison of Two Recent Approaches,
Exploiting Pipelined FFT and Memory-Based FHT
Architectures, for Resource-Efficient Parallel Computation of
Real-Data DFT. Journal of Applied Science and Technology
(Open Source), Vol. 1, No. 2, pp. 46-55, July 2023.

10. Bennett, C. L. (2007). Wilkinson microwave anisotropy
probe. Scholarpedia, 2(10), 4731.

11. Ahmed, N., & Rao, K. R. (2012). Orthogonal transforms for
digital signal processing. Springer Science & Business Media.

12. Rao, K. R., & Yip, P. (2014). Discrete cosine transform:
algorithms, advantages, applications. Academic press.

13. Bracewell, R. N. (Ed.). (1986). The Hartley transform. Oxford
University Press, Inc..

14. Volder, J. E. (1959). The CORDIC trigonometric computing
technique. IRE Transactions on electronic computers, (3),
330-334.

https://doi.org/10.1109/MSPEC.1967.5217220
https://doi.org/10.1109/MSPEC.1967.5217220
https://books.google.co.in/books?hl=en&lr=&id=30S3kRiX4xgC&oi=fnd&pg=IA1&dq=E.+Chu+%26+A.+George,+%E2%80%9CInside+the+FFT+Black+Box%E2%80%9D,+CRC+Press,+2000&ots=uInuCOcYSP&sig=dqfVhAuyTKwV6IxMEhvd0jMSyhk&redir_esc=y#v=onepage&q=E.%20Chu%20%26%20A.%20George%2C%20%E2%80%9CInside%20the%20FFT%20Black%20Box%E2%80%9D%2C%20CRC%20Press%2C%202000&f=false
https://books.google.co.in/books?hl=en&lr=&id=30S3kRiX4xgC&oi=fnd&pg=IA1&dq=E.+Chu+%26+A.+George,+%E2%80%9CInside+the+FFT+Black+Box%E2%80%9D,+CRC+Press,+2000&ots=uInuCOcYSP&sig=dqfVhAuyTKwV6IxMEhvd0jMSyhk&redir_esc=y#v=onepage&q=E.%20Chu%20%26%20A.%20George%2C%20%E2%80%9CInside%20the%20FFT%20Black%20Box%E2%80%9D%2C%20CRC%20Press%2C%202000&f=false
https://doi.org/10.1201/9781315275499
https://doi.org/10.1201/9781315275499
https://dl.acm.org/doi/abs/10.5555/578523
https://dl.acm.org/doi/abs/10.5555/578523
https://dl.acm.org/doi/abs/10.5555/63471
https://dl.acm.org/doi/abs/10.5555/63471
https://books.google.co.in/books?hl=en&lr=&id=dnuwr2xOFpUC&oi=fnd&pg=PP1&dq=C.+Maxfield,+%E2%80%9CThe+Design+Warrior%E2%80%99s+Guide+to+FPGAs%E2%80%9D,+Newnes+(Elsevier),+2004&ots=YoEcdAb8_t&sig=Ne35fIbYoZqDP1euRN-_XJFUcHY&redir_esc=y#v=onepage&q&f=false
https://books.google.co.in/books?hl=en&lr=&id=dnuwr2xOFpUC&oi=fnd&pg=PP1&dq=C.+Maxfield,+%E2%80%9CThe+Design+Warrior%E2%80%99s+Guide+to+FPGAs%E2%80%9D,+Newnes+(Elsevier),+2004&ots=YoEcdAb8_t&sig=Ne35fIbYoZqDP1euRN-_XJFUcHY&redir_esc=y#v=onepage&q&f=false
https://link.springer.com/book/10.1007/978-3-030-68245-3
https://link.springer.com/book/10.1007/978-3-030-68245-3
https://www.researchsquare.com/article/rs-3092888/v1
https://www.researchsquare.com/article/rs-3092888/v1
https://www.researchsquare.com/article/rs-3092888/v1
https://www.researchsquare.com/article/rs-3092888/v1
https://www.researchsquare.com/article/rs-3092888/v1
http://www.scholarpedia.org/article/Microwave_anisotropy_probe
http://www.scholarpedia.org/article/Microwave_anisotropy_probe
https://books.google.co.in/books?hl=en&lr=&id=F-nvCAAAQBAJ&oi=fnd&pg=PA1&dq=N.+Ahmed+%26+K.R.+Rao,+%E2%80%9COrthogonal+Transforms+for+Digital+Signal+Processing%E2%80%9D,+Springer,+2012&ots=D9E5O3QXB1&sig=vH_Sv5_dTPpX6XXWo0uZRsa79dk&redir_esc=y#v=onepage&q=N.%20Ahmed%20%26%20K.R.%20Rao%2C%20%E2%80%9COrthogonal%20Transforms%20for%20Digital%20Signal%20Processing%E2%80%9D%2C%20Springer%2C%202012&f=false
https://books.google.co.in/books?hl=en&lr=&id=F-nvCAAAQBAJ&oi=fnd&pg=PA1&dq=N.+Ahmed+%26+K.R.+Rao,+%E2%80%9COrthogonal+Transforms+for+Digital+Signal+Processing%E2%80%9D,+Springer,+2012&ots=D9E5O3QXB1&sig=vH_Sv5_dTPpX6XXWo0uZRsa79dk&redir_esc=y#v=onepage&q=N.%20Ahmed%20%26%20K.R.%20Rao%2C%20%E2%80%9COrthogonal%20Transforms%20for%20Digital%20Signal%20Processing%E2%80%9D%2C%20Springer%2C%202012&f=false
https://books.google.co.in/books?hl=en&lr=&id=fWviBQAAQBAJ&oi=fnd&pg=PP1&dq=K.R.+Rao+%26+P.C.+Yip,+%E2%80%9CDiscrete+Cosine+Transform:+Algorithms,+Advantages,+Applications%E2%80%9D,+Academic+Press,+1990&ots=1uIKGe4mFB&sig=w65zBQ7UVtAc4qQZ-36_wS4QSwg&redir_esc=y#v=onepage&q=K.R.%20Rao%20%26%20P.C.%20Yip%2C%20%E2%80%9CDiscrete%20Cosine%20Transform%3A%20Algorithms%2C%20Advantages%2C%20Applications%E2%80%9D%2C%20Academic%20Press%2C%201990&f=false
https://books.google.co.in/books?hl=en&lr=&id=fWviBQAAQBAJ&oi=fnd&pg=PP1&dq=K.R.+Rao+%26+P.C.+Yip,+%E2%80%9CDiscrete+Cosine+Transform:+Algorithms,+Advantages,+Applications%E2%80%9D,+Academic+Press,+1990&ots=1uIKGe4mFB&sig=w65zBQ7UVtAc4qQZ-36_wS4QSwg&redir_esc=y#v=onepage&q=K.R.%20Rao%20%26%20P.C.%20Yip%2C%20%E2%80%9CDiscrete%20Cosine%20Transform%3A%20Algorithms%2C%20Advantages%2C%20Applications%E2%80%9D%2C%20Academic%20Press%2C%201990&f=false
https://dl.acm.org/doi/abs/10.5555/5536
https://dl.acm.org/doi/abs/10.5555/5536
https://doi.org/10.1109/TEC.1959.5222693
https://doi.org/10.1109/TEC.1959.5222693
https://doi.org/10.1109/TEC.1959.5222693

