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Short Communication

Abstract
In this study, partial contraction mapping with ω-order preservation (ω-OCPn,) is shown to provide a broad class of 
semilinear initial value issues. By starting with certain conclusions pertaining to such fractional powers, we investigated 
the application of fractional powers of unbounded linear opera- tors. The fractional powers of A for 0 < α ≤ 1 are defined 
on the assumption that A is the infinitesimal generator of an analytic semigroup in a Banach space X, 0 ∈ ρ(A). We 
demonstrated that the closed linear operator Aα with domain D(Aα) ⊃ D(A) is dense in X. Finally, we determined that the 
operator is Holder continuous, continuous, and bounded.
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Consider the Korteweg-de Vries equation
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1 Introduction

Consider the Korteweg-de Vries equation



u1 + uxxx + uux = 0 t ≥ 0 −∞ < x < ∞

u(0, x) = u0(x)
(1.1)

such that all function are real valued. For every real s we introduce a

Hilbert space Hs(R) as follows: Let u ∈ L2(R) and set

‖u‖s =
(∫

(1 + ξ2)s|û(ξ)2dξ
)1/2

(1.2)

The linear space of functions u ∈ L2(R) for which ‖u‖s is finite is a pre-

Hilbert space with the scalar product

(u, v) =

∫
(1 + ξ2)sû(ξ)û(ξ)dξ. (1.3)

The completion of this space with respect to norm ‖ ‖s is a Hilbert space

which is denoted by Hs(R). It is clear that H0(R) = L2(R). The scalar

product and norm in L2(R) is denoted by (, ) and ‖ ‖0. Furthermore, it

is easy to check that the spaces Hs(R) with s = n coincide with the spaces

Hn(R), n ≥ 1.

Suppose Br is the ball of radius r > 0 in Y centered at the origin and

consider the family of operators A(v), v ∈ Br. Because of the special form of

the family A(v), v ∈ Br, it follows that it suffices to state the following three

conditions:
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such that all function are real valued. For every real s we introduce a Hilbert space H s (ℝ) as follows: Let u ∈ L2 (ℝ) and set
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conditions:
(P1) The family A(v), v ∈ Br, is a stable family in X.
(P2) There is an isomorphism of Y onto X such that for every v ∈ Br SA(v)S −1 − A(v) is a bounded operator in X and

(P1) The family A(v), v ∈ Br, is a stable family in X.

(P2) There is an isomorphism of Y onto X such that for every v ∈ Br

SA(v)S−1 − A(v) is a bounded operator in X and

‖SA(v)S−1 − A(v)‖ ≤ C1 for all v ∈ Br. (1.4)

(P3) For each v ∈ Br, D(A(v)) ⊃ Y , A(v) is a bounded linear operator from

Y into X and

‖A(v1)− A(v2)‖Y→X ≤ C2‖v1 − v2‖. (1.5)

Furthermore, if ‖u0‖s < r and v ∈ Br, then

‖A(v)u0‖ ≤ ‖D3u0‖+ ‖vDu0‖

≤ ‖D3u0‖+ ‖v‖∞‖Du0‖

≤ ‖u0‖3(1 + r) ≤ r(1 + r) = k. (1.6)

Suppose X is a Banach space, Xn ⊆ X is a finite set, ω − OCPn the

ω-order preserving partial contraction mapping, Mm be a matrix, L(X) be a

bounded linear operator on X, Pn a partial transformation semigroup, ρ(A)

a resolvent set, σ(A) a spectrum of A. This paper consist of results of ω-

order preserving partial contraction mapping generating a Korteweg-de Vries

equation. In [1] and [2], Akinyele et al. obtained differentiable and analytical

conclusions on ω-order preserving partial contraction mapping in semigroup

of linear operator. They also described ω-order reversing partial contraction

mapping as a compact semigroup of linear operator. An operator calculus for

infinitesimal semigroup generators was presented by Balakrishnan [3]. Ba-

nach [4] created and first proposed the idea of Banach spaces. The nonlinear
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Suppose X is a Banach space, Xn ⊆ X is a finite set, ω − OCPn the ω-order preserving partial contraction mapping, Mm be a matrix, 
L(X) be a bounded linear operator on X, Pn a partial transformation semigroup, ρ(A) a resolvent set, σ( ) a spectrum of A. This paper 
consist of results of ω- order preserving partial contraction mapping generating a Korteweg-de Vries equation. In and Akinyele et al. 
obtained differentiable and analytical conclusions on ω-order preserving partial contraction mapping in semigroup of linear operator 
[1,2]. They also described ω-order reversing partial contraction mapping as a compact semigroup of linear operator. An operator 
calculus for infinitesimal semigroup generators was presented by Balakrishnan [3]. Ba-nach created and first proposed the idea of 
Banach spaces [4]. The nonlinear Schrodinger evolution equation was created by Brezis and Gallouet [5]. A resolvent method to 
the stability operator semigroup was presented by Chill and Tomilov [6]. Davies discovered the spectrum of linear operators [7]. 
For equations of linear evolution, Engel and Nagel presented the one-parameter semigroup in their paper [8]. As well as introducing 
dual properties of ω-order reversing partial contraction mapping in semigroup of linear operator in Omosowon et al. produced some 
analytical results of semigroup of linear operator with dynamic boundary conditions [9,10]. Pazy reported asymptotic behavior 
of an abstract evolution’s solution and various applications, he obtained a class of evolution’s semi-linear equations [11,12]. Rauf 
and Akinyele created ω-order preserving partial contraction mapping and acquired its qualities [13]. Also in Rauf et al. established 
some results of stability and spectra properties on semigroup of linear operator [14]. Vrabie demonstrated a few applications of the 
C0-semigroup’s findings [15]. Yosida derived several conclusions on the differentiability and representation of a linear operator 
one-parameter semigroup [16]. 

2. Preliminaries	
Definition 2.1 (C0-Semigroup) [15]
A C0-Semigroup is a strongly continuous one parameter semigroup of bounded linear operator on Banach space.
 
Definition 2.2 (ω-OCPn) [13]
A transformation α ∈ Pn is called ω-order preserving partial contraction mapping if ∀x, y ∈ Domα: x ≤ y =⇒ αx ≤ αy and at least one 
of its transformation must satisfy αy = y such that T (t + s) = T (t) T(s) whenever t, s > 0 and otherwise for T (0) = I.

Definition 2.3 (Evolution Equation) [12]
An evolution equation is an equation that can be interpreted as the differ- ential law of the development (evolution) in time of a 
system. The class of evolution equations includes, first of all, ordinary differential equations and systems of the form

u = f (t, u), u = f (t, u, u),

etc., in the case where u(t) can be regarded naturally as the solution of the Cauchy problem; these equations describe the evolution 
of systems with finitely many degrees of freedom.

Definition 2.4 ( Mild Solution) [11]
A continuous solution u of the integral equation.

Definition 2.2 (ω-OCPn) [13]

A transformation α ∈ Pn is called ω-order preserving partial contraction

mapping if ∀x, y ∈ Domα : x ≤ y =⇒ αx ≤ αy and at least one of its

transformation must satisfy αy = y such that T (t+ s) = T (t)T (s) whenever

t, s > 0 and otherwise for T (0) = I.

Definition 2.3 (Evolution Equation) [12]

An evolution equation is an equation that can be interpreted as the differ-

ential law of the development (evolution) in time of a system. The class of

evolution equations includes, first of all, ordinary differential equations and

systems of the form

u = f(t, u), u = f(t, u, u),

etc., in the case where u(t) can be regarded naturally as the solution of

the Cauchy problem; these equations describe the evolution of systems with

finitely many degrees of freedom.

Definition 2.4 ( Mild Solution) [11]

A continuous solution u of the integral equation.

u(t) = T (t− t0)u0 +

∫ t

t0

T (t− s)f(s, u(s))ds

will be called a mild solution of the initial value problem



du(t)
dt

+ Au(t) = f(t, u(t)), t > t0

u(t0) = u0

if the solution is a Lipschitz continuous function.

Definition 2.5(Analytic Semigroup) [15]

We say that a C0-semigroup {T (t); t ≥ 0} is analytic if there exists 0 < θ ≤ π,

5
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Example 3

Let X = Cub(N∪{0}) be the space of all bounded and uniformly continuous

function from N ∪ {0} to R, endowed with the sup-norm ‖ · ‖∞ and let

{T (t); t ∈ R+} ⊆ L(X) be defined by
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For each f ∈ X and each t, s ∈ R+, one may easily verify that {T (t); t ∈ R+}
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Lemma 2.1

Let Ω be a bounded domain in Rn with boundary ∂Ω of class Cm and let

u ∈ Wm,r(Ω) ∩ Lq(Ω) where 1 ≤ r, q ≤ ∞. For any integer j, 0 ≤ j < m

and any j
m

≤ ϑ ≤ 1 we have

‖Dju‖0,p ≤ C‖u‖ϑm,r‖u‖1−ϑ
0,q (2.1)

provided that
1

p
=

j

n
+ ϑ

(
1

r
− m

n

)
+ (1− ϑ)

1

q
(2.2)
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and                        is not a nonnegative integer, the (2.1) holds with 

3. Main Results
This section presents the semigroup of linear operator’s results by creating a Korteweg-de Vries equation using ω-OCPn:

Theorem 3.1
Let A : D(A) ⊆ H s (ℝ) → H s (ℝ) be the infinitesimal generator of a C0- semigroup {T (t)t ≥ 0} where A ∈ ω − OCPn. Then we have:
(i) For t ≥ s, H s (ℝ) ⊃ H1(ℝ) and ǁuǁt ≥ ǁuǁs for u ∈ H t (ℝ).
(ii) For      H s (ℝ) ⊂ C(ℝ) and for u ∈ H s (ℝ),

and m− j − n
r
is not a nonnegative integer, the (2.1) holds with ϑ = j

m
.
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(i) For t ≥ s, Hs(R) ⊃ H1(R) and ‖u‖t ≥ ‖u‖s for u ∈ H t(R).

(ii) For s > 1
2
, Hs(R) ⊂ C(R) and for u ∈ Hs(R),

‖u‖∞ ≤ C‖u‖s (3.1)

where ‖u‖∞ = sup{|u(x)| : x ∈ R}.

Proof:

Part (i) is obvious from the definitions and the elementary inequality

(1 + ξ2)′ ≥ (1 + ξ2)s for t ≥ s and ξ ∈ R.

From the Cauchy-Schwarz inequality we have,

|u(x)| =
∣∣∣∣

1√
2π

∫
etxξû(ξ)dξ

∣∣∣∣ ≤
1√
2π

(∫
dξ

(1 + ξ2)

)1/2 (∫
(1 + ξ2)s|û(ξ|2dξ

)1/2

= C‖u‖s

so that the integral defining u in terms of û converges uniformly and u is

continuous. Moreover,

‖u‖∞ ≤ C‖u‖s.
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Hence the proof is completed.
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Proof:
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Choosing ε = 1
2
‖v‖∞ and substituting (3.4) into (3.3) yields

‖(A1(v) + βI)u‖ ≤ 1

2
‖A0u‖+ C‖u‖ (3.5)
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for every β ≥ β0 (v) = C0ǁvǁ, where C0 is a constant independent of v ∈ Y.

Proof
we note first tat since v ∈ H s (ℝ), Dv ∈ H s−1(ℝ) and since s ≥ 3, it follows from Theorem 3.1 that Dv ∈ L∞(ℝ) and that ǁDvǁ∞ ≤ 
CǁDvǁs−1 ≤ Cǁvǁs.

Now, for every u ∈ H 1(ℝ) we have

Therefore, A1(v) + βI is dissipative for all β ≥ β0(v) = C0ǁvǁs. Since A0 is skew-adjoint, A0 + A1(v) + βI is also dissipative for β ≥ β0(v). 
Moreover,

Using integration by parts, it is not difficult to show that for every u ∈ H 3 (ℝ) we have ǁDuǁ ≤ ǁuǁ2/3ǁD3uǁ1/3 and by polarization we 
obtain for every ε > 0,

Choosing                      and substituting (3.4) into (3.3) yields

for all u ∈ D(A0) and A ∈ ω − OCPn.

Therefore, we have that A0 + A1(v) + βI = A(v) + βI is the infinitesimal generator of a C0-semigroup of contractions of X for every β 
≥ β0 (v).

Hence, A(v) is the infinitesimal generator of a C0-semigroup Tv (t) and this achieved the proof.

Theorem 3.3
Assume A : D (A) ⊆ X → X is a real valued function such that A ∈ ω − OCPn. Let f ∈ H s (ℝ), s > 3 and let T = (∆s Mf − Mf ∆

3)∆1−s. 
Then
T is a bounded operator on X = L2 (ℝ) and

for all u ∈ D(A0) and A ∈ ω −OCPn.

Therefore, we have that A0 +A1(v) + βI = A(v) + βI is the infinitesimal

generator of a C0-semigroup of contractions of X for every β ≥ β0(v).

Hence, A(v) is the infinitesimal generator of a C0-semigroup Tv(t) and

this achieved the proof.

Theorem 3.3

Assume A : D(A) ⊆ X → X is a real valued function such that A ∈

ω − OCPn. Let f ∈ Hs(R), s > 3
2
and let T = (∆sMf −Mf∆

3)∆1−s. Then

T is a bounded operator on X = L2(R) and

‖T‖ ≤ C‖grad f‖s−1. (3.6)

Proof:

The Fourier transform of T is the integral operator with Kernel K(ξ, η) given

by

K(ξ, η) = {(1 + ξ2)s/2 − (1 + η2)s/2}f̂(ξ − η)(1 + η2)(s−1)/2

since

|(1 + ξ2)s/2 − (1 + η2)s/2| ≤ s|ξ − η|(1 + ξ2)(s−1)/2 + (1 + η2)(s−1)/2

we have

K(ξ, η) ≤ s(1+ξ2)(s−1)/2|ξ−η|f̂(ξ−η)(1+η2)(1−s)/2+s|ξ−η|f̂(ξ−η) = k1(ξ, η)+k2(ξ, η).

To show that T is bounded, it suffices to show that operators T1 and T2

with Kernels k1(ξ, η) and k2(ξ, η) are bounded. Using the inverse Fourier

transform we find that

T1 = s∆s−1Mg∆
1−s, T2 = sMg (3.7)
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and therefore A(v), v ∈ Br is a stable family in X.

Assume S = ∆s is an isomorphism of Y = Hs(R) onto X = L2(R). A

simple computation shows that for u, v ∈ Y we have

(SA(v)S−1 − A(v))u = (S(vD)S−1 − vD)u

= (Sv − vS)S−1Du
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|ξ|f̂(ξ). From (ii) of Theorem 3.1, it follows that

‖g‖∞ ≤ C‖g‖s−1 ≤ C‖grad f‖s−1. (3.8)

Now,

‖T1u‖ = s‖∆s−1Mg∆
1−su‖ = s‖Mg∆

1−su‖s−1 ≤ s‖g‖∞‖u‖ (3.9)

and

‖T2u‖ = s‖gu‖ ≤ s‖g‖∞‖u‖. (3.10)

Therefore both T1 and T2 are bounded operators in X. Combining (3.8)

with (3.7) and (3.10) yields the desired estimate (3.6). Hence the proof is

completed.

Theorem 3.4

Let A : D(A) ⊆ X → X be the infinitesimal generator of a C0-semigroup

{Tv(t)t≥0}. For every r > 0, the family of operators A(v), v ∈ Br satisfies

the conditions (P1)− (P3).

Proof:

Suppose r > 0 is fixed. From Theorem 3.2, it follows that if β ≥ C0r, A(v) is

the infinitesimal generator of a C0-semigroup Tv(t) satisfying ‖Tv(t)‖ ≤ eβt

and therefore A(v), v ∈ Br is a stable family in X.

Assume S = ∆s is an isomorphism of Y = Hs(R) onto X = L2(R). A

simple computation shows that for u, v ∈ Y we have

(SA(v)S−1 − A(v))u = (S(vD)S−1 − vD)u

= (Sv − vS)S−1Du

11

where Mg is the multiplication operator by the function g for which ĝ(ξ) =
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≤ C‖grad v‖s−1‖u‖ ≤ C‖v‖Y ‖u‖.

since Y is dense in X it follows that ‖SA(v)S−1 − A(v)‖ ≤ C‖v‖r ≤ Cr

and (P2) is satisfied. Finally, since s ≥ 3 , D(A(v)) ⊃ Y for every u ∈ Y ,

A ∈ ω −OCPn and v ∈ Br, we have

‖A(v)u‖ ≤ ‖∆3u‖+ ‖v∆u‖ ≤ ‖∆3u‖+ ‖v‖∞‖∆u‖

≤ (1 + C‖v‖s)‖u‖s ≤ (1 + Cr)‖u‖r

and therefore A(v) is bounded operator from Y into X. Moreover if v1, v2 ∈

Br, v ∈ Y , then

‖(A(v1)− A(v2))u‖ = ‖(v1 − v2)∆u‖

≤ ‖v1 − v2‖‖∆u‖∞ ≤ C‖v1 − v2‖‖u‖Y

and the proof is competed.

Conclusion
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tions can be generated by partial contraction mapping with ω-order preser-

vation.
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4. Conclusion
It has been demonstrated in this study that various Korteweg-de Vries equations can be generated by partial contraction mapping 
with ω-order preservation.
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