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Abstract
People believe that the Schrödinger equation cannot be used to describe macroscopic objects like the Earth, and Newtonian 
mechanics cannot be used to describe microscopic systems. The old concept of the relationship between the existing laws of 
quantum mechanics and classical mechanics undoubtedly has a serious impact on people's understanding of the natural world, 
the development of physics theories, and the application of existing physics theories. The continuous development of physics 
theory requires constant changes to some incorrect old concepts. The Schrödinger equation that can describe planetary motion 
was successfully obtained by replacing the potential energy in the Hamiltonian operator from electromagnetic interaction 
potential energy to gravitational interaction potential energy. If the distance between the sun and the earth is approximated 
as a constant, the energy eigenvalues obtained by solving the Schrödinger equation for the Earth's revolution are completely 
consistent with the results obtained directly using classical mechanics. The direct significance of establishing and applying 
such equations is that they can simultaneously use classical mechanics and wave dynamics to describe all objects (no longer 
limited by the mass of the objects), simplifying the calculation process of quantum mechanics. It has been proven that classical 
mechanics and wave dynamics are compatible, and there is no insurmountable gap between them. This result has a huge 
positive impact on the theoretical updates and applications of quantum mechanics. 
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1. Introduction
Can the revolution of the earth be described by Schrödinger equation? If it can, it will have a great impact on the existing theoretical 
physics. After this method is extended to all objects, there will be the Schrödinger equation of gravitational potential energy and the 
Schrödinger equation applicable to all objects. Previously, people were bound by the uncertainty of microscopic particles and the non-
localized realism, and the Schrödinger equation of gravitational potential energy or the Schrödinger equation describing macroscopic 
objects never appeared in textbooks. Since people have never tried to establish such Schrödinger equation, it is of great significance for 
us to try it here. This article is an attempt, and it has been successful.

When people have to establish and apply wave mechanics or quantum mechanics, they all realize that the micro world is so different 
from the macro world. And recognized the notion that "the cognition, experience, rules, and theories of the macro world established by 
humans in theory and practice have largely failed in the micro world". So that people think that there is a huge gap between the micro 
world and the macro world. Specifically, the causality or determinism of Newtonian mechanics and classical electrodynamics, which 
are applicable to the macro world, are no longer applicable to the corresponding occasions in the micro world, but wave mechanics, 
natural randomness and uncertainty, which are applicable to the micro world, are not suitable for describing the movement changes of 
macro objects. Although there has been Ehrenfest Theorem and it is the mission of condensed matter physics to explain macroscopic 
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phenomena with microscopic theory [1]. But this has not fundamentally bridged the gap between the micro-world and the macro-world. 
Because, influenced by Ehrenfest theorem and condensed matter physics, the relationship between macroscopic objects and microscopic 
particles is the relationship between quantitative change and qualitative change. Only when the Schrödinger equation is applied to 
the macro world without being limited by mass can the gap between the macro world and the micro world be basically bridged (the 
difference between them is no longer dominant).

In fact, the form and application of Hamiltonian operator are not limited by the mass of the object, nor is it limited that the potential 
energy can only be electromagnetic interaction potential energy. Before this paper, people only used Schrödinger equation on microscopic 
objects (if it is a microscopic object in a bound state, the binding force is only the electromagnetic interaction force, and the potential 
energy is the potential energy of the electromagnetic interaction force). We can't find the mathematical and logical basis for doing this, 
and we have to say that this is a habit formed by the bondage of ideas. There is no theoretical obstacle or mathematical logic obstacle 
in using gravitational potential energy in Hamiltonian operator. In this way, according to Schrödinger's method, Schrödinger equation 
suitable for macro system can be established completely. The establishment of section 2 in this paper is applicable to the Schrödinger 
equation of gravitational potential energy of macro-system. In the third section of this paper, the newly established Schrödinger equation 
applicable to macroscopic objects (including gravitational potential bound state system) is verified by using the known data of the earth's 
revolution. 

Since the planetary model and Schrödinger equation can be used to describe an object at the same time, there is no obstacle to using the 
planetary model in the microscopic system to which Schrödinger equation applies. That is to say, both microscopic and macroscopic 
systems can use planetary model (or classical mechanics) and wave mechanics at the same time. This gives birth to the power that can 
make people change their existing ideas. Have readers heard of (or seen) the Schrödinger equation of the earth's revolution? If not, then 
the author's research work may lead a new trend. The successful establishment of Schrödinger equation of planetary motion shows that 
we have a theoretical basis for using wave mechanics and classical mechanics at the same time.

In reference [2-7], the author calculates atoms and molecules by using wave mechanics and planetary model at the same time, which 
shows that the viewpoint, theory and method that "wave mechanics and classical mechanics can be used to describe the motion system 
at the same time" have a wide application prospect. Wave mechanics and classical mechanics are used to describe a system at the same 
time, which is not limited by the mass of the system. The natural rules accumulated by the long experience in the past will not completely 
fail even in the micro world. This is a major conceptual revolution in the history of human development. It will also lead to a great 
revolution in the theory and method of basic physics.

The basic assumption in references [6-10] that "specific waves propagate along a small circle to form electrons" lays the foundation 
for the conclusion that "classical mechanics and quantum mechanics are compatible and can be used simultaneously on macroscopic 
and microscopic objects". Reference [10] derived the Schrödinger equation that can describe the Earth's orbital motion. This article 
is an expanded description of the content in section 3 of reference [10]. This article introduces the significance and application of the 
Schrödinger equation. It belongs to the category of macroscopic system Schrödinger equation and its application research progress. 

The theoretical basis of this article is based on references [10,11]. After Bohr proposed the hydrogen atom planetary structure model, 
there was a certain connection between the old quantum theory and the classical planetary structure model. Unfortunately, it is widely 
believed that quantum mechanics cannot describe macroscopic systems, while classical mechanics cannot describe microscopic systems. 
Denying the compatibility between classical mechanics and quantum mechanics. And gradually formed this stubborn ideological 
concept. This closes the door to the idea of using the Schrödinger equation to describe the classical motion of macroscopic objects. 
Lost the opportunity to use quantum mechanics methods to describe classical planetary motion. It was not until the author of this article 
published multiple academic research results demonstrating the compatibility between classical mechanics and quantum mechanics 
[4-6], and simultaneously calculated the physical and chemical parameters (such as ionization energy, dissociation energy, bond length, 
etc.) of multiple atoms (ions) and small molecules using both classical mechanics and quantum mechanics methods, that the issue of 
compatibility between classical mechanics and quantum mechanics was reconsidered. In June 2024, the author of this article finally 
derived the Schrödinger equation for planetary motion [7,8]. 

It is the wave element electronic structure model that resurrects the planetary model in the microscopic field [9-12]. The significance of 
establishing and using the Schrödinger equation to describe planetary motion is not that this method is more accurate than mechanical 
methods, but that the establishment of this method can change people's old concepts (i.e., the idea that classical mechanics and quantum 
mechanics are incompatible), leading to a revolution in the interpretation system of quantum mechanics and ultimately promoting the 
development of quantum mechanics and even the entire physics. This research achievement is comparable to de Broglie's previous 
work. At that time, no one realized that the wavelength momentum relationship in the wave law also applied to particles with non-zero 
rest mass (especially macroscopic moving objects). However, de Broglie believed that the wavelength formula also applies to particles 



Adv Theo Comp Phy, 2025 Volume 8 | Issue 1 | 3

with zero rest mass (even moving macroscopic objects). Now, people think that the Schrödinger equation cannot be used to describe 
macroscopic objects, but I think it can. Our similar research work can both change people's mindset. We can wait and see if it can trigger 
a revolution in physics.

2. Schrödinger Equation that can be Describes Earth Revolution
In mechanics, the potential energy of phase interactions takes negative values, while the kinetic energy takes positive values. Therefore, 
for the interaction potential energy, it is represented by the algebraic symbol V, without a negative sign before V. If expressed using a 
specific calculation formula, a negative sign needs to be added before the formula. The following four expressions of the Hamiltonian 
operator are correct.                                                                                                                                 It is recommended that readers 

focus on checking the absolute values of the calculation results
 
when examining the expressions and calculations in this article. This can 

save a lot of energy.

The stationary Schrödinger equation for hydrogen atoms is
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the solar system, the bound earth also has kinetic energy and potential energy, and it conforms to Virial theorem. 

Nowadays, quantum mechanics does not limit the mass of moving objects that conform to de Broglie wave formula. We 

have no reason to say that we can't use Hamiltonian operator to describe macroscopic objects. The reason why 

Schrödinger equation uses wave function is unknown, but it is very useful to use wave function in reality. Particles such 

as electrons and macroscopic objects are entities with static mass. We have no reason to say that wave functions can only 

be used to describe microscopic objects, but not to describe macroscopic objects. Because, for de Broglie wave, only its 
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The known de Broglie relationship is λ = h/(mυ) The group velocity of moving physical particles and/or macroscopic objects is also the 
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. This is the classical expression of the energy of the earth's revolution, and it is the energy 
eigenvalue solution of equation (4). Obviously, we have proved that equation (3) holds, and we can use Schrödinger equation to describe 
the revolution of the earth. 

4. Schrödinger Equation of Planetary Model of Hydrogen Atom and its Verification
Since the physics of macroscopic objects such as Earth can be described using both the Schrödinger equation and the planetary model, 
there is no reason to restrict the simultaneous use of the Schrödinger equation and classical mechanical models (of which the planetary 
model is one) to describe microscopic systems such as hydrogen atoms. We can use both the planetary model and the Schrödinger 
equation to describe the hydrogen atom. We still choose to observe hydrogen atoms on a curved surface (using a planetary model, the 
orbital motion of electrons is similar to the orbital motion of planets. We can observe hydrogen atoms in Riemannian space). Use equation 



Adv Theo Comp Phy, 2025 Volume 8 | Issue 1 | 5

(2) to describe the orbital motion of electrons in hydrogen atoms, where the first term on the left side of the equation corresponds to the 
kinetic energy Ek of the electron orbital motion. The Schrödinger equation in atoms also conforms to equation (5). No way, me is the 
mass of the electron, and mυ2/2 is the kinetic energy of the electron in the hydrogen atom (where υ is the group velocity of the electron, 
i.e. the group velocity of the electron's de Broglie wave). When V = 0, equation (4) becomes

shown in the second equation of equation (7), the earth energy e in equation (3) is equal to − 𝑚𝑚𝑚𝑚2

2 . This is the classical 
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we get the operator of the orbital angular momentum of the electrons in the hydrogen atom. 

𝐿̂𝐿𝑁𝑁 = −𝑖𝑖𝑖𝑖ħ𝑅𝑅 𝜕𝜕
𝜕𝜕𝜕𝜕.                          (12) 

Adding footnote N only emphasizes the description of N unit objects. By applying it to Apollo function ψ [see formula 3], 

we can get 

−𝑖𝑖ħ𝑁𝑁𝑁𝑁 𝜕𝜕
𝜕𝜕𝜕𝜕 𝜓𝜓 = ħ𝑁𝑁 𝑅𝑅

𝑟𝑟 𝜓𝜓.                        (13) 

Eliminate ψ in the above formula, and the angular momentum formula of the macroscopic object or the simulated 

composite particle with hydrogen atom as the unit to do the circular motion of the bound state. 

LN= 𝑁𝑁ħ 𝑅𝑅
𝑟𝑟.                                (14) 

LN=Rmυ=2.658×1037 (m·kg·s). The mass m of the earth is 5.965×10²⁴kg. The distance r between the sun and the earth is 

149597870 kilometers (1.496 million kilometers). The average revolution linear velocity of the earth υ is: 29.783 km/s 

(107,220 km/h). For describing the earth's revolution with wave function, r in wave function ψ and (14) is equivalent to 

the radius a0 of hydrogen atom (a0 = 5.2918× 10-11 meters). ħ=1.054571726×10-34 J·s. We substitute these numbers into 

equation (14) and we can get 

N= 𝐿𝐿𝑎𝑎0
ħ𝑅𝑅  = 8.734×1050.                        (15) 

It is not difficult to see that the product of the mass of N and the deuterium atom as the mass cell of macroscopic 

substances (including simulated composite particles with deuterium atom as the smallest unit and other compounds) is 

the mass of the earth. The mass of deuterium atom is 3.3688×10-27kg. In this way, the mass of the earth calculated by 

wave mechanics method is 

mearth=N×3.3688×10-27kg=2.942×1024 kg.                  (16) 

 

This calculated value is of the same order of magnitude as the known Earth mass value of 5.965×10²⁴kg . There are two 

main sources of error: first, the molecular structure of the earth is complex, and deuterium atoms cannot be accurately 

used as simulated mass cells of the earth; Second, other energies contained in the earth and the sum of binding energies in 

molecules are not considered. 

 

The mass of the earth is calculated by wave mechanics, which proves that wave mechanics is effective in dealing with 

planetary motion. The results of this analysis can at least remind us why we can use the wave function ψ when describing 

macroscopic and microscopic objects. It also supports the theory of wave element material structure proposed in 
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LN = Rmυ = 2.658×1037 (m•kg•s). The mass m of the earth is 5.965×10²⁴kg. The distance r between the sun and the earth is 149597870 
kilometers (1.496 million kilometers). The average revolution linear velocity of the earth υ is: 29.783 km/s (107,220 km/h). For describing 
the earth's revolution with wave function, r in wave function ψ and (14) is equivalent to the radius a0 of hydrogen atom (a0 = 5.2918× 
10-11 meters). ħ=1.054571726×10-34 J•s. We substitute these numbers into equation (14) and we can get

It is not difficult to see that the product of the mass of N and the deuterium atom as the mass cell of macroscopic substances (including 
simulated composite particles with deuterium atom as the smallest unit and other compounds) is the mass of the earth. The mass of 
deuterium atom is 3.3688×10-27kg. In this way, the mass of the earth calculated by wave mechanics method is

This calculated value is of the same order of magnitude as the known Earth mass value of 5.965×10²⁴kg . There are two main sources of 
error: first, the molecular structure of the earth is complex, and deuterium atoms cannot be accurately used as simulated mass cells of the 
earth; Second, other energies contained in the earth and the sum of binding energies in molecules are not considered.

The mass of the earth is calculated by wave mechanics, which proves that wave mechanics is effective in dealing with planetary motion. 
The results of this analysis can at least remind us why we can use the wave function ψ when describing macroscopic and microscopic 
objects. It also supports the theory of wave element material structure proposed in references [3-6].

6. Summary
The revolution of the earth is absolutely in a plane, and in a certain period of time, R is a certain value. If we assume that the ball moves 
randomly in three-dimensional space (it is an uncertain motion without orbit), and solve the equation similar to Eq. (1), there will 
definitely be extraneous root. If the state of the electrons in the hydrogen atom is certain, the calculation by using the three-dimensional 
Schrödinger equation will also lead to unrealistic root growth. The research results of this paper increase this possibility.

A conclusion of Section 4 is that the classical mechanical method and the quantum mechanical method are compatible and can be used 
at the same time, whether describing macroscopic objects or microscopic objects. For convenience, we call this conclusion conclusion 
1. The use of classical mechanical methods means that the described object is deterministic, realistic and localized, and conforms to 
determinism. It can be seen that conclusion 1 cannot absolutely deny that micro-objects are also deterministic, localized and causal 
(only in a narrow range or under certain conditions can people show uncertainty, non-localization, unreality and indecision). This is an 
important inference according to conclusion 1.

Conclusion 1 and its inference show that the gap between macro-system and micro-system can be eliminated or reduced. Wave mechanics 
and classical mechanics can be used to describe objects from micro to macro at the same time, which can simplify the calculation 
process. Determinism, localization, realism and determinism cannot be completely denied in the microscopic system. This obviously 
has great influence on the interpretation system of quantum mechanics. The obstacles to establishing localized real quantum mechanics 
are also much smaller.

At that time, Schrödinger did not explain the reason why he used the wave function of formula (4) in the Schrödinger equation of 



Adv Theo Comp Phy, 2025 Volume 8 | Issue 1 | 7

hydrogen atom [that is, he did not specify the meaning of formula (4), but only used it as a tool]. We can be sure that the revolution 
of the earth is definitely not a wave like Eq. (4). This paper proves that "the correct result can be obtained by using equation (4) when 
describing the revolution of the earth". This result further strengthens the concept that "wave function ψ is a tool in wave mechanics". 
Unless both microscopic and macroscopic objects are made of waves. If there are no particles but waves in the constituent elements of 
matter, we can start to establish the theory of wave element material structure.

It is recognized that "human beings have not yet loved the combination of relativity (or gravity theory) and quantum mechanics." This 
paper proves that we can use Newton's mechanics and quantum mechanics at the same time (that is, Schrödinger equation, the basic 
equation of Newton's gravitational interaction potential energy and wave mechanics) to describe the motion and microscopic system 
of celestial bodies. This is the compatibility and combination of Newton's gravity theory and quantum mechanics to a certain extent 
(although gravity is not quantized, it is combined in another way).
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