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Abstract
Decades of research in hypersonic science and engineering have shown that scramjet engines are the preferred choice for 
powering hypersonic vehicles. In these engines, oblique shock combustion and rotating detonation combustion are two common 
combustion modes. This article primarily focuses on the numerical simulation and theoretical analysis of these two combustion 
modes. The research indicates that as the combustible mixture injected into the combustion chamber increases, the combustion 
mode transitions from deflagration combustion to self-sustaining detonation combustion and then to forced detonation combustion 
to maintain stable combustion in the chamber. Under self-sustaining detonation combustion mode, as the amount of combustible 
mixture injected into the chamber increases, the number of detonation waves gradually increases from one to multiple and the 
angle between the detonation waves and the inflow changes from acute to right angles. In the forced detonation combustion mode, 
the minimum shock wave intensity required to initiate detonation combustion can be obtained by drawing a tangent from the 
Rayleigh line. The structure generating oblique shock waves in the combustion chamber needs to match the shock wave intensity. 
In the detonation combustion mode, both the exit total temperature and specific impulse of the combustion chamber increase with 
the increase in Mach number at the inlet, while the pressure ratio decreases. This article provides a reference for the design of 
the combustion chamber in supersonic combustion ramjet engines.
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1. Introduction
Although subsonic combustion ramjet engine technology has 
become mature and has been applied to some extent in military 
fields such as unmanned reconnaissance aircraft and missiles, 
as the flight speed of aircraft continues to increase, decelerating 
the hypersonic incoming flow to subsonic speeds will result in 
a significant increase in static air temperature. The high static 
temperature would cause thermal cracking of the fuel and decrease 
the heat release efficiency, limiting the continuous improvement 
of aircraft flight speeds powered by subsonic combustion ramjet 
engines. The upper limit of flight speed is around Mach 4-5 
[1]. Decades of research in the field of hypersonic science and 
engineering have shown that supersonic combustion ramjet 
engines are the preferred choice for powering hypersonic vehicles. 

The flight tests of the X-43A with hydrogen fuel and the X-51A 
with hydrocarbon fuel have proven their feasibility and potential 
[2-4].

The main components of a supersonic combustion ramjet engine 
include the inlet, isolator, combustion chamber and nozzle [5], as 
shown in Figure 1. The inlet is responsible for capturing air and 
decelerating and pressurizing it. The isolator, arranged between 
the inlet and the combustion chamber, ensures good pressure 
matching between the inlet and the combustion chamber. The 
combustion chamber is where supersonic combustion occurs. The 
high-temperature and high-pressure gas flow in the combustion 
chamber expands through the nozzle, generating reactive thrust in 
the opposite direction.
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1 Introduction 

 Although subsonic combustion ramjet engine technology has become mature and has been applied to 
some extent in military fields such as unmanned reconnaissance aircraft and missiles, as the flight speed of 
aircraft continues to increase, decelerating the hypersonic incoming flow to subsonic speeds will result in a 
significant increase in static air temperature. The high static temperature would cause thermal cracking of the 
fuel and decrease the heat release efficiency, limiting the continuous improvement of aircraft flight speeds 
powered by subsonic combustion ramjet engines. The upper limit of flight speed is around Mach 4-5 [1]. 
Decades of research in the field of hypersonic science and engineering have shown that supersonic combustion 
ramjet engines are the preferred choice for powering hypersonic vehicles. The flight tests of the X-43A with 
hydrogen fuel [2] and the X-51A with hydrocarbon fuel [3] have proven their feasibility and potential [4]. 

The main components of a supersonic combustion ramjet engine include the inlet, isolator, combustion 
chamber and nozzle [5] , as shown in Figure 1. The inlet is responsible for capturing air and decelerating and 
pressurizing it. The isolator, arranged between the inlet and the combustion chamber, ensures good pressure 
matching between the inlet and the combustion chamber. The combustion chamber is where supersonic 
combustion occurs. The high-temperature and high-pressure gas flow in the combustion chamber expands 
through the nozzle, generating reactive thrust in the opposite direction. 
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Fig. 1：Scramjet Engine Schematic Diagram 

The combustion chamber is the core component of a scramjet engine. It must address a series of issues 
such as rapid fuel mixing, reliable ignition, and stable combustion within the combustion chamber of a 
supersonic combustion ramjet engine. Depending on the different detonation combustion modes used in the 
combustion chamber, the propulsion devices as energy conversion methods are mainly divided into Pulsed 
Detonation Engine (PDE), Oblique Detonation Engine (ODE), and Rotating Detonation Engine (RDE). For 
instance, the ODE [6] does not require additional ignition. The fuel is injected into the inlet and mixed with 
supersonic airflow, utilizing the oblique shock waves formed by high-speed airflow to induce compression 
and heating, resulting in stationary detonation waves. The combustible mixture fully combusts in the 
combustion chamber in the form of stationary oblique detonations, generating thrust. The RDE is an engine 
that utilizes one or multiple detonation waves propagating continuously in a annular combustion chamber to 
generate thrust, as depicted in Figure 2 [7]. 

 
Fig. 2：One type of structure of a rotating detonation engine 

In detonation combustion mode, the propagation speed of detonation can reach the level of kilometers 
per second. The combustion wave and shock wave are closely coupled together, and the pressure and 
temperature increase sharply during the combustion process, while the volume decreases slightly. It is usually 
approximated as constant volume combustion. Detonation combustion releases heat quickly and generates 
relatively small entropy increase, resulting in high thermal efficiency. The advantage of continuous rotating 
detonation combustion lies in the sustained rotation and propagation of detonation waves. Due to the self-
sustaining and self-compressing nature of detonation waves, the combustible mixture can be pressurized to a 
certain pressure by the detonation wave, allowing for greater effective work to be produced at lower 
compression ratios. It can achieve stable operation at supersonic inlet flow velocities and the average flow rate 
of incoming fuel can be greatly adjusted [8]. 

The combustion chamber of a continuous rotating detonation engine is usually of annular cavity structure, 
where fuel and oxidizer are injected through slots or round holes on the intake wall[9-12]. One or more 
detonation waves propagate and rotate along the circumferential direction at the head of the combustion 
chamber[13]. The detonation wave completely burns the fuel and the resulting high-temperature and high-
pressure products rapidly expand predominantly in the axial direction, generating thrust. In addition, oblique 
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chamber of a supersonic combustion ramjet engine. Depending on 
the different detonation combustion modes used in the combustion 
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Detonation Engine (ODE), and Rotating Detonation Engine 
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[6]. The fuel is injected into the inlet and mixed with supersonic 
airflow, utilizing the oblique shock waves formed by high-speed 
airflow to induce compression and heating, resulting in stationary 
detonation waves. The combustible mixture fully combusts in the 
combustion chamber in the form of stationary oblique detonations, 
generating thrust. The RDE is an engine that utilizes one or 
multiple detonation waves propagating continuously in a annular 
combustion chamber to generate thrust, as depicted in Figure 2 [7].
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Figure 2: One Type of Structure of a Rotating Detonation Engine

In detonation combustion mode, the propagation speed of detonation 
can reach the level of kilometers per second. The combustion wave 
and shock wave are closely coupled together, and the pressure 
and temperature increase sharply during the combustion process, 
while the volume decreases slightly. It is usually approximated 
as constant volume combustion. Detonation combustion releases 
heat quickly and generates relatively small entropy increase, 
resulting in high thermal efficiency. The advantage of continuous 
rotating detonation combustion lies in the sustained rotation and 
propagation of detonation waves. Due to the selfsustaining and 
self-compressing nature of detonation waves, the combustible 
mixture can be pressurized to a certain pressure by the detonation 

wave, allowing for greater effective work to be produced at lower 
compression ratios. It can achieve stable operation at supersonic 
inlet flow velocities and the average flow rate of incoming fuel can 
be greatly adjusted [8].

The combustion chamber of a continuous rotating detonation 
engine is usually of annular cavity structure, where fuel and 
oxidizer are injected through slots or round holes on the intake 
wall [9-12]. One or more detonation waves propagate and rotate 
along the circumferential direction at the head of the combustion 
chamber [13]. The detonation wave completely burns the fuel 
and the resulting high-temperature and high-pressure products 
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rapidly expand predominantly in the axial direction, generating 
thrust. In addition, oblique shock waves and contact discontinuity 
occur behind the detonation wave. During the propagation of the 
detonation wave, the combustible mixture continuously enters 
the combustion chamber from the head, forming a triangle of 
unburned combustible mixture in front of the detonation wave for 
combustion [14-15].

Assuming a uniform combustible mixture at the inlet of the 

combustion chamber, the combustion chamber exhibits different 
combustion modes under different fuel supply conditions. As the 
fuel filling rate increases from low to high, the combustion chamber 
goes through stages of deflagration combustion, detonation 
combustion and complete detonation combustion [16-19].

2. Transition of Combustion Modes 
Thrust performance indicators of the engine under different 
combustion modes [20].
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𝐼𝐼2 = ∫𝑑𝑑𝐼𝐼2 = ∫𝑀𝑀𝑀𝑀2√𝛾𝛾𝛾𝛾𝑇𝑇2𝑑𝑑𝑑𝑑2 

= ∫𝑀𝑀𝑀𝑀2√
𝛾𝛾𝛾𝛾𝑇𝑇02

1 + 0.5(𝛾𝛾 − 1)𝑀𝑀𝑀𝑀22
𝑑𝑑𝑑𝑑2 

= ∫√ 2𝛾𝛾
𝛾𝛾−1√𝑅𝑅𝑇𝑇02√1 −

1
(𝑃𝑃02 𝑃𝑃1⁄ )(𝛾𝛾−1) 𝛾𝛾⁄ 𝑑𝑑𝑑𝑑2       （1） 

Where: 𝑃𝑃1 is the ambient static pressure; 𝐴𝐴2 is the area at the exit section; 𝑃𝑃2 is the exit static pressure; 
𝑃𝑃02 is the total exit pressure; 𝑇𝑇2 is the exit static temperature; 𝑇𝑇02 is the total exit temperature; 𝑀𝑀𝑀𝑀2 is the 
Mach number of the axial exit; 𝑑𝑑𝑑𝑑2 is the exit mass flow; 𝛾𝛾 Is the specific heat ratio of gas; 𝑅𝑅 is the gas 
constant, the gas physical parameters are generally a function of temperature. 

a) The inlet velocity of the combustion chamber is the minimum flame propagation speed for deflagration 
combustion. It is the flow velocity of the combustible mixture entering the combustion chamber. If the 
combustible mixture entering the combustion chamber is insufficient, even in the deflagration combustion 
mode, it is not enough to sustain the flame. The flame moves upstream and leaves the combustion chamber, 
becoming unstable. In this situation,𝑃𝑃02 = 𝑃𝑃01. 
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𝛾𝛾−1√𝑅𝑅𝑇𝑇01√

0.5(𝛾𝛾−1)𝑀𝑀𝑀𝑀12
1+0.5(𝛾𝛾−1)𝑀𝑀𝑀𝑀12
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𝑀𝑀𝑀𝑀1 is the inlet Mach number for the combustion chamber. 
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specific impulse calculation for the engine is the same as in case a), where the inlet Mach number for the 
combustion chamber is taken as the Mach number corresponding to the speed of deflagration combustion. 
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Where 𝑊𝑊𝐷𝐷𝐷𝐷 is the average flame propagation speed of deflagration combustion. 
c) The inlet velocity of the combustion chamber. In the equation, is the minimum combustible mixture height 
required for detonation combustion, below which detonation combustion will not occur. is the perimeter of the 
combustion chamber. The combustion is in the transitional zone between deflagration combustion and 
detonation combustion, within which detonation occurs, but it is unstable. Deflagration combustion is 
dominant with a small amount of detonation combustion. The proportion of deflagration combustion is 
𝑤𝑤𝐷𝐷𝐷𝐷 𝑤𝑤𝑖𝑖𝑖𝑖⁄   and the proportion of detonation combustion is (1 − 𝑤𝑤𝐷𝐷𝐷𝐷 𝑤𝑤𝑖𝑖𝑖𝑖⁄ ). 
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shock waves and contact discontinuity occur behind the detonation wave. During the propagation of the 
detonation wave, the combustible mixture continuously enters the combustion chamber from the head, forming 
a triangle of unburned combustible mixture in front of the detonation wave for combustion[14-15]. 

Assuming a uniform combustible mixture at the inlet of the combustion chamber, the combustion 
chamber exhibits different combustion modes under different fuel supply conditions. As the fuel filling rate 
increases from low to high, the combustion chamber goes through stages of deflagration combustion, 
detonation combustion and complete detonation combustion[16-19]. 
2 Transition of combustion modes  

Thrust performance indicators of the engine under different combustion modes [20]. 
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Where: 𝑃𝑃1 is the ambient static pressure; 𝐴𝐴2 is the area at the exit section; 𝑃𝑃2 is the exit static pressure; 
𝑃𝑃02 is the total exit pressure; 𝑇𝑇2 is the exit static temperature; 𝑇𝑇02 is the total exit temperature; 𝑀𝑀𝑀𝑀2 is the 
Mach number of the axial exit; 𝑑𝑑𝑑𝑑2 is the exit mass flow; 𝛾𝛾 Is the specific heat ratio of gas; 𝑅𝑅 is the gas 
constant, the gas physical parameters are generally a function of temperature. 

a) The inlet velocity of the combustion chamber is the minimum flame propagation speed for deflagration 
combustion. It is the flow velocity of the combustible mixture entering the combustion chamber. If the 
combustible mixture entering the combustion chamber is insufficient, even in the deflagration combustion 
mode, it is not enough to sustain the flame. The flame moves upstream and leaves the combustion chamber, 
becoming unstable. In this situation,𝑃𝑃02 = 𝑃𝑃01. 
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dominant with a small amount of detonation combustion. The proportion of deflagration combustion is 
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Where: 𝑃1 is the ambient static pressure; 𝐴2 is the area at the exit 
section; 𝑃2 is the exit static pressure; 𝑃02 is the total exit pressure; 
𝑇2 is the exit static temperature; 𝑇02 is the total exit temperature; 
𝑀𝑎2 is the Mach number of the axial exit; 𝑑𝑚2 is the exit mass 
flow; 𝛾 Is the specific heat ratio of gas; 𝑅 is the gas constant, the 
gas physical parameters are generally a function of temperature.
a) The inlet velocity of the combustion chamber is the minimum 

flame propagation speed for deflagration combustion. It is the 
flow velocity of the combustible mixture entering the combustion 
chamber. If the combustible mixture entering the combustion 
chamber is insufficient, even in the deflagration combustion mode, 
it is not enough to sustain the flame. The flame moves upstream 
and leaves the combustion chamber, becoming unstable. In this 
situation,𝑃02=𝑃01.

𝑀𝑎1 is the inlet Mach number for the combustion chamber.
b)When the inlet velocity of the combustion chamber is the 
maximum flame propagation speed for deflagration combustion. 
The combustible mixture entering the combustion chamber can 
maintain stable deflagration combustion, producing a stable 

deflagration flame that remains in the combustion chamber. The 
specific impulse calculation for the engine is the same as in case a), 
where the inlet Mach number for the combustion chamber is taken 
as the Mach number corresponding to the speed of deflagration 
combustion.

Where 𝑊𝐷𝑓 is the average flame propagation speed of deflagration 
combustion.
c)The inlet velocity of the combustion chamber. In the equation, is 
the minimum combustible mixture height required for detonation 
combustion, below which detonation combustion will not occur. is 
the perimeter of the combustion chamber. The combustion is in the 

transitional zone between deflagration combustion and detonation 
combustion, within which detonation occurs, but it is unstable. 
Deflagration combustion is dominant with a small amount of 
detonation combustion. The proportion of deflagration combustion 
is 𝑤𝐷𝑓/𝑤𝑖𝑛 and the proportion of detonation combustion is (1−𝑤𝐷𝑓/
𝑤𝑖𝑛).
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Where 𝐼𝐼2𝐷𝐷𝐷𝐷 , 𝐼𝐼2𝐷𝐷𝐷𝐷 represent the impulse contribution corresponding to deflagration combustion and 
detonation combustion respectively. 

After the detonation wave, the static temperature and static pressure are higher than the total temperature 
and total pressure at the exit of the combustion chamber. This is because the working process of the detonation 
wave first pre-compresses the combustible mixture through a shock wave, and then releases heat in the 
compressed combustible mixture. This causes the energy contained in the airflow after the detonation wave to 
include not only the energy carried by the incoming flow and the energy released by combustion, but also the 
work done by the pre-compression. This pre-compression work, which exists to maintain the operation of the 
detonation wave, is not used to propel the engine, but is reflected in the static temperature and static pressure 
after the detonation wave. 
d) When the combustion enters the detonation phase at the inlet of the combustion chamber, also known as 
continuous rotating detonation, the part of the combustible mixture in contact with the high-temperature 
combustion products will continue to burn in a deflagration combustion mode. As more combustible mixture 
is injected into the combustion chamber, the number of detonation waves around a circumference of the 
combustion chamber will increase. Initially, with a small amount of combustible mixture inject into the 
combustion chamber, there is only one detonation wave in a full circumference, as shown in Figure3 a), which 
is sufficient to completely burn the combustible mixture. As the amount of combustible mixture increases, one 
detonation wave is not enough to completely burn all the combustible mixture, so an additional detonation 
wave is added. Here, only the scenario of detonation waves propagating in the same phase is considered, and 
the scenario of detonation waves colliding in reverse directions is not taken into account. In this way, two 
stable detonation waves are formed in one circumference, as shown in Figure3 b), and as more combustible 
mixture is added, the number of detonation waves increases, as shown in Figure3 c), and eventually increases 
to eight detonation waves in one circumference. Finally, with the increasing amount of combustible mixture 
inject into the combustion chamber, multiple detonation waves occur, and at this point, the detonation waves 
become completely perpendicular to the inflow velocity (as shown in Figure3 d), instead of forming a certain 
angle. 
The proportion of deflagration combustion is 𝑤𝑤𝐷𝐷𝐷𝐷 𝑤𝑤𝑖𝑖𝑖𝑖⁄ , and the proportion of detonation combustion is(1 −
𝑤𝑤𝐷𝐷𝐷𝐷 𝑤𝑤𝑖𝑖𝑖𝑖⁄ ). The calculation of engine specific impulse is the same as c). 
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Where 𝐼2𝐷𝑓, 𝐼2𝐷𝑤 represent the impulse contribution corresponding to 
deflagration combustion and detonation combustion respectively.

After the detonation wave, the static temperature and static pressure 
are higher than the total temperature and total pressure at the exit 
of the combustion chamber. This is because the working process of 
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the detonation wave first pre-compresses the combustible mixture 
through a shock wave, and then releases heat in the compressed 
combustible mixture. This causes the energy contained in the airflow 
after the detonation wave to include not only the energy carried 
by the incoming flow and the energy released by combustion, but 
also the work done by the pre-compression. This pre-compression 
work, which exists to maintain the operation of the detonation 
wave, is not used to propel the engine, but is reflected in the static 
temperature and static pressure after the detonation wave.

d) When the combustion enters the detonation phase at the inlet 
of the combustion chamber, also known as continuous rotating 
detonation, the part of the combustible mixture in contact with the 
high-temperature combustion products will continue to burn in a 
deflagration combustion mode. As more combustible mixture is 
injected into the combustion chamber, the number of detonation 
waves around a circumference of the combustion chamber will 
increase. Initially, with a small amount of combustible mixture 
inject into the combustion chamber, there is only one detonation 
wave in a full circumference, as shown in Figure3 a), which is 

sufficient to completely burn the combustible mixture. As the 
amount of combustible mixture increases, one detonation wave is 
not enough to completely burn all the combustible mixture, so an 
additional detonation wave is added. Here, only the scenario of 
detonation waves propagating in the same phase is considered, and 
the scenario of detonation waves colliding in reverse directions is 
not taken into account. In this way, two stable detonation waves 
are formed in one circumference, as shown in Figure3 b), and as 
more combustible mixture is added, the number of detonation 
waves increases, as shown in Figure3 c), and eventually increases 
to eight detonation waves in one circumference. Finally, with 
the increasing amount of combustible mixture inject into the 
combustion chamber, multiple detonation waves occur, and at this 
point, the detonation waves become completely erpendicular to 
the inflow velocity (as shown in Figure3 d), instead of forming a 
certain angle.

The proportion of deflagration combustion is 𝑤𝐷𝑓⁄𝑤𝑖𝑛, and 
the proportion of detonation combustion is(1 −𝑤𝐷𝑓⁄𝑤𝑖𝑛). The 
calculation of engine specific impulse is the same as c).
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Where 𝐼𝐼2𝐷𝐷𝐷𝐷 , 𝐼𝐼2𝐷𝐷𝐷𝐷 represent the impulse contribution corresponding to deflagration combustion and 
detonation combustion respectively. 

After the detonation wave, the static temperature and static pressure are higher than the total temperature 
and total pressure at the exit of the combustion chamber. This is because the working process of the detonation 
wave first pre-compresses the combustible mixture through a shock wave, and then releases heat in the 
compressed combustible mixture. This causes the energy contained in the airflow after the detonation wave to 
include not only the energy carried by the incoming flow and the energy released by combustion, but also the 
work done by the pre-compression. This pre-compression work, which exists to maintain the operation of the 
detonation wave, is not used to propel the engine, but is reflected in the static temperature and static pressure 
after the detonation wave. 
d) When the combustion enters the detonation phase at the inlet of the combustion chamber, also known as 
continuous rotating detonation, the part of the combustible mixture in contact with the high-temperature 
combustion products will continue to burn in a deflagration combustion mode. As more combustible mixture 
is injected into the combustion chamber, the number of detonation waves around a circumference of the 
combustion chamber will increase. Initially, with a small amount of combustible mixture inject into the 
combustion chamber, there is only one detonation wave in a full circumference, as shown in Figure3 a), which 
is sufficient to completely burn the combustible mixture. As the amount of combustible mixture increases, one 
detonation wave is not enough to completely burn all the combustible mixture, so an additional detonation 
wave is added. Here, only the scenario of detonation waves propagating in the same phase is considered, and 
the scenario of detonation waves colliding in reverse directions is not taken into account. In this way, two 
stable detonation waves are formed in one circumference, as shown in Figure3 b), and as more combustible 
mixture is added, the number of detonation waves increases, as shown in Figure3 c), and eventually increases 
to eight detonation waves in one circumference. Finally, with the increasing amount of combustible mixture 
inject into the combustion chamber, multiple detonation waves occur, and at this point, the detonation waves 
become completely perpendicular to the inflow velocity (as shown in Figure3 d), instead of forming a certain 
angle. 
The proportion of deflagration combustion is 𝑤𝑤𝐷𝐷𝐷𝐷 𝑤𝑤𝑖𝑖𝑖𝑖⁄ , and the proportion of detonation combustion is(1 −
𝑤𝑤𝐷𝐷𝐷𝐷 𝑤𝑤𝑖𝑖𝑖𝑖⁄ ). The calculation of engine specific impulse is the same as c). 
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c)                                               d) 

I Premixed gas    II Combusted gas    A Detonation wave 
Fig. 3：As the combustible mixture increases, the number of detonation waves increases. 
e) When the inlet velocity of the combustion chamber 𝑊𝑊𝑖𝑖𝑖𝑖 > 𝐷𝐷𝑤𝑤 ,Combustion can no longer be sustained 
in the combustion chamber solely by the self-sustaining detonation waves; external energy must be utilized to 
maintain combustion in the combustion chamber. Typically, shock wave compression is employed to compress 
the inflow of combustible mixture. During this stage, the entire combustible mixture relies on shock wave 
ignition, leading to combustion in the form of detonation waves. 
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Raising the temperature of the incoming combustible mixture helps to increase the propagation speed of 
the detonation wave, which is beneficial for keeping the detonation wave from being blown out of the 
combustion chamber. 
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Fig. 4: Rayleigh line that generates detonation waves. 

During this stage, it is necessary to use shock waves to boost and heat the incoming combustible mixture 
in order to maintain high combustion efficiency. Generally, a lower temperature increase through shock waves 
is used to prevent high-pressure waves from ignition. Instead, the temperature is increased to achieve a 
detonation wave velocity (𝐷𝐷𝑤𝑤) that matches the flow velocity of the combustible mixture, ensuring that the 
detonation wave remains within the combustion chamber and not blown out by incoming mixture flow, 
remaining confined within the chamber. As shown in Figure 4, the thermodynamic parameters of the 
combustible mixture transition from m0 to m1 through shock wave pressurization. The region between m0 

e) When the inlet velocity of the combustion chamber 𝑊𝑖𝑛 > 𝐷𝑤,Combustion can no longer be sustained in the combustion chamber solely 
by the self-sustaining detonation waves; external energy must be utilized to maintain combustion in the combustion chamber. Typically, 
shock wave compression is employed to compress the inflow of combustible mixture. During this stage, the entire combustible mixture 
relies on shock wave ignition, leading to combustion in the form of detonation waves.

Figure 3: As the Combustible Mixture Increases, the Number of Detonation Waves Increases
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is used to prevent high-pressure waves from ignition. Instead, the temperature is increased to achieve a 
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detonation wave remains within the combustion chamber and not blown out by incoming mixture flow, 
remaining confined within the chamber. As shown in Figure 4, the thermodynamic parameters of the 
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During this stage, it is necessary to use shock waves to boost and heat the incoming combustible mixture 
in order to maintain high combustion efficiency. Generally, a lower temperature increase through shock waves 
is used to prevent high-pressure waves from ignition. Instead, the temperature is increased to achieve a 
detonation wave velocity (𝐷𝐷𝑤𝑤) that matches the flow velocity of the combustible mixture, ensuring that the 
detonation wave remains within the combustion chamber and not blown out by incoming mixture flow, 
remaining confined within the chamber. As shown in Figure 4, the thermodynamic parameters of the 
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Raising the temperature of the incoming combustible mixture helps to increase the propagation speed of the detonation wave, which is 
beneficial for keeping the detonation wave from being blown out of the combustion chamber.

Figure 4: Rayleigh Line that Generates Detonation Waves

During this stage, it is necessary to use shock waves to boost and 
heat the incoming combustible mixture in order to maintain high 
combustion efficiency. Generally, a lower temperature increase 
through shock waves is used to prevent high-pressure waves 
from ignition. Instead, the temperature is increased to achieve 
a detonation wave velocity (𝐷𝑤) that matches the flow velocity 
of the combustible mixture, ensuring that the detonation wave 
remains within the combustion chamber and not blown out by 
incoming mixture flow, remaining confined within the chamber. 
As shown in Figure 4, the thermodynamic parameters of the 
combustible mixture transition from m0 to m1 through shock 
wave pressurization. The region between m0 and m1 experiences 
weaker shock wave effects, and the shock wave intensity in this 
range is insufficient to sustain detonation within the chamber. The 
curve on the left side of m1 represents the range of shock wave 

intensity where shock wave-induced detonation can be sustained 
in the combustion chamber.

It is not advisable to use higher shock wave temperature increase, 
as the post-detonation wave temperature is much higher than the 
maximum temperature achievable during deflagration combustion. 
Elevated static temperature implies that the detonation wave is 
more prone to dissociation, chemical reactions, and other real gas 
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Figure 5: Variation of the Total Temperature at the Exit of the Combustion Chamber with the Mach Number at the Inlet 

It can be observed that the total temperature (𝑇02) at the exit of the 
combustion chamber increases as the Mach number at the inlet of 
the combustion chamber increases.
Assuming a constant gas specific heat ratio, and considering that 
the pre-combustion flow static temperature is set to, as the aircraft 
is located in the atmosphere isothermal layer. Due to the nature of 
detonation combustion, a Mach number greater than 2 is chosen, 

ranging from 2 to 5 here.

The temperature rise produced by the heat release during 
combustion is set to 2000K. The analysis assumes the same fuel 
proportion for the same combustible mixture, with the same heat 
release during combustion. Through a derived formula, the ratio 
between the total pressure at the exit of the combustion chamber 
and the total pressure at the inlet can be obtained [20].
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combustion mode on engine performance, in order to simplify the analysis, it is assumed that there 
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performance of the engine, it is sufficient to obtain the total temperature and total pressure of the 
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Without considering the total temperature losses caused by real gas effects, the total 
temperature of the exhaust flow is equal to the sum of the total temperature of the incoming flow 
and the temperature rise (∆𝑇𝑇) caused by the heat release during combustion. By controlling the fuel 
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Figure 6 shows the variation of the pressure ratio of the detonation 
engine with the Mach number at the inlet of the combustion 
chamber. From the Figure6, it can be observed that at low Mach 
numbers, specifically below 2.3, the detonation engine exhibits 
a self-pressurizing characteristic, where the total pressure at the 
exit of the combustion chamber exceeds the total pressure of the 
incoming flow.

The design objective of an engine is to produce the highest possible 
thrust with limited fuel. Therefore, the total temperature and total 
pressure of the exhaust flow can be considered as performance 
indicators for thrust performance. Since this study focuses on 
the influence of the combustion mode on engine performance, 
in order to simplify the analysis, it is assumed that there are no 
total temperature and total pressure losses in the exhaust nozzle. 
To analyze the thrust performance of the engine, it is sufficient to 
obtain the total temperature and total pressure of the flow at the 
exit of the combustion chamber.

Without considering the total temperature losses caused by real gas 
effects, the total temperature of the exhaust flow is equal to the sum of 
the total temperature of the incoming flow and the temperature rise 
(Δ𝑇) caused by the heat release during combustion. By controlling 
the fuel flow rate, different levels of heat release temperature rise 
can be achieved. The total temperature of the incoming flow is 
related to the compression effect of detonation combustion, Mach 
number at the inlet of the combustion chamber (𝑀𝑎1), and the 
ratio of heat release temperature rise to the total temperature at the 
inlet. The exit flow total temperature can be calculated accordingly. 
Once the total temperature and total pressure of the engine exhaust 
flow are obtained, the thrust performance of the engine can be 
calculated using formula (1).

For detonation engines, it can be considered that the gas flow is 
uniform at the exit. The impulse at the exit can be set as constant 
along the circumference, and the total impulse(on a unit area basis) 
can be written as:
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of the engine can be calculated using formula (1). 
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Figure 7 shows variation of the detonation engine pressure ratio with the Mach number at the inlet of 
the combustion chamber. It can be observed that as the inlet Mach number increases, the engine's thrust 
increases. This increase is due to two factors: an increase in specific impulse and an increase in inlet mass. 
4Conclusion 

 As the combustible mixture in the combustion chamber increases, the combustion mode changes from 
deflagration combustion to self-sustaining detonation combustion, and then to forced detonation combustion 
in order to maintain stable combustion in the combustion chamber. When there is only a small amount of 
combustible mixture entering the combustion chamber, the combustion mode is deflagration. As the amount 
of combustible mixture entering the chamber increases to a certain extent, a transition from deflagration 
combustion to detonation combustion occurs. At this point, due to the inability to form a stable detonation 
wave, unstable detonation waves occur intermittently. When the amount of combustible mixture entering the 
chamber reaches a certain level to sustain a stable detonation wave, a stable detonation wave is formed. During 
the self-sustaining detonation combustion mode, as the amount of combustible mixture in the combustion 
chamber increases, the number of detonation waves gradually increases from one to multiple, and the angle 
between the detonation wave and the inflow changes from acute to right. The forced detonation combustion 
mode is necessary when further increasing the amount of combustible mixture entering the chamber, so that 
the detonation wave is not blown out of the combustion chamber by the inflow. External energy, such as shock 
waves, can be introduced for forced detonation. The minimum intensity of the shock wave can be obtained 
from the tangent on the Rayleigh line. Under the detonation combustion mode, the total temperature at the exit 
of the combustion chamber increases with the increase in the Mach number at the inlet of the combustion 
chamber, the pressure ratio decreases with the increase in the Mach number at the inlet of the combustion 
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Figure 7: Variation of Specific Impulse with The Mach Number at The Inlet of The Combustion Chamber

Figure 7 shows variation of the detonation engine pressure ratio 
with the Mach number at the inlet of the combustion chamber. 
It can be observed that as the inlet Mach number increases, the 
engine's thrust increases. This increase is due to two factors: an 
increase in specific impulse and an increase in inlet mass.

4. Conclusion
As the combustible mixture in the combustion chamber increases, 
the combustion mode changes from deflagration combustion 
to self-sustaining detonation combustion, and then to forced 
detonation combustion in order to maintain stable combustion 
in the combustion chamber. When there is only a small amount 
of combustible mixture entering the combustion chamber, the 
combustion mode is deflagration. As the amount of combustible 
mixture entering the chamber increases to a certain extent, a 
transition from deflagration combustion to detonation combustion 
occurs. At this point, due to the inability to form a stable 
detonation wave, unstable detonation waves occur intermittently. 
When the amount of combustible mixture entering the chamber 
reaches a certain level to sustain a stable detonation wave, a stable 
detonation wave is formed. During the self-sustaining detonation 
combustion mode, as the amount of combustible mixture in the 
combustion chamber increases, the number of detonation waves 
gradually increases from one to multiple, and the angle between 
the detonation wave and the inflow changes from acute to right. 
The forced detonation combustion mode is necessary when further 
increasing the amount of combustible mixture entering the chamber, 
so that the detonation wave is not blown out of the combustion 
chamber by the inflow. External energy, such as shock waves, can 
be introduced for forced detonation. The minimum intensity of the 
shock wave can be obtained from the tangent on the Rayleigh line. 
Under the detonation combustion mode, the total temperature at 
the exit of the combustion chamber increases with the increase 
in the Mach number at the inlet of the combustion chamber, the 
pressure ratio decreases with the increase in the Mach number 

at the inlet of the combustion chamber, and the specific impulse 
increases with the increase in the Mach number at the inlet of the 
combustion chamber.
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