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Abstract
The main idea of this article lies in the fact that Goldbach's strong conjecture is associated with the progression of 
natural integers from 0 to infinity, which results in precise gaps between prime numbers. The gap of 6 is the most regular 
between primes 6x + 1 on the one hand and primes 6x – 1 on the other. In this article, using the equations 3x ± 5 and 
analyzing the 6-based gaps between primes while determining the initial conditions that make a prime appear after or 
before an integer, this article argues for the truth of Goldbach's strong conjecture. Two new concepts are introduced for 
the first time : Goldbach's gap and Goldbach's transposition. By analyzing its key digits (units and tens), a prime number 
itself can lead to the conversion of an even number into two primes. A new algorithm is deduced from these results, 
enabling us to locate prime numbers located at equal distance from any integer, even or odd, prime or composite. This 
constitutes a decisive proof of Goldbach's strong conjecture, since it means that any even number can be converted into 
the sum of two prime numbers.
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1. Introduction
One of the best-known unsolved problems in number theory 
is Goldbach’s conjecture, which appeared in a correspondence 
between Christian Goldbach and Leonhard Euler in 1742 [1]. 
The Goldbach’s strong conjecture states that every even number 
larger than 2 can be expressed as the sum of two primes. As the 
Goldbach's conjecture lies in the eld of number theory and its very 
core is prime numbers, the distribution of such numbers may be an 
integral part of any attempted solution to the conjecture. The prime 
number theorem gives an asymptotic form for the prime counting 
function, which counts the number of primes less than some integer 
n. The set of numbers primes < an integer n are denoted π(n) while 
the asymptotic law for the distribution of prime numbers asserts 
that π(n) = n/ln(n) [2].

As the proof of Goldbach conjecture is still out of reach, the 
conjecture has been extensively verified computationally, with 
the most recent efforts pushing the boundaries of numerical 
verification to unprecedented levels [3,4,5]. Despite this, the 
formal proof of the Goldbach Conjecture remains elusive. Apart 
from empirical verification, countless reports of research provide 

pure mathematical verification of Goldbach's strong conjecture by 
different logical propositions [6,7,8]. Websites such https://www.
dcode.fr/conjecture-goldbach allow conversion of evens in sums 
of two primes to a given limit.

This article is a continuation of efforts to understand the 
mathematical rules governing Goldbach's strong conjecture. It is 
essentially based on the analysis of the gaps between primes and 
the proposal of a new algorithm for the conversion of any even 
number > 4 into the sum of two primes.

It introduces two new concepts for the understanding of 
Goldbach's strong conjecture including the Goldbach's gap and 
Goldbach's transposition. The article also shows that the digits of 
prime numbers and the primes numbers themselves can be used 
to prove Goldbach's strong conjecture by using elementary rules 
of calculation. In addition, it provides a logical and infinitely 
reproducible line of reasoning that argues for the truth of 
Goldbach's strong conjecture.
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1.1 Logical Propositions on Goldbach Strong Conjecture and 
Gaps Between Primes
1a. Meaning of Goldbach's Transposition
Lemma a. « If we calculate the Goldbach gaps for a given integer, 
then the same gaps will give prime numbers with another integer 
of the same kind (for even or  odd multiple of 3 or not). This is what 
is called here the Goldbach transposition ».

Tables 1A+1B show examples of the Goldbach transposition (a 
concept used in this article). If E is any even > 4 and p and p' two 
equidistant primes such that p < E/2 and p' > E/2 then E/2 – p = 
p' – E/2. Note that E/2 is any integer n located between the two 
equidistant primes p and p' such that p ▬ n or n ▬ p' ↔ 2 x E/2 
= E = 2n = p + p'. The Goldbach gap is any value of t = E/2 – p 
= p' – E/2. Do not confuse the Goldbach gap with the classical 
gap between two consecutive prime numbers, it represents the 
gap between two prime numbers p and p' equidistant at E/2 whose 
sum is E. Remember that equidistant primes are located at equal 
distance from an integer before and after. They are essential for 
Goldbach's strong conjecture to be true. The question is, how far 
apart are they from an integer? Tables 1 and 2 show that their 
location depends on the number n: is it even or odd ? 3n or not ?

E/2 represents any integer > 2 and is either even or odd. To obtain 
a prime number from an even E/2, we add odd values of t, i.e. 
either values corresponding to primes in ascending order, or odd 
values of 3n (O3n). For an odd E/2, we obviously add 2n values 

in ascending order. Table 1A+1B shows the case of an even E/2 to 
which we add values t = primes or t = 3n (O3n). We can see that 
an even number 3n always gives equidistant prime numbers when 
t values of prime numbers are added to it, whereas a non-3n even 
number needs t = O3n (odd 3n) values to give prime numbers. 
This is the Goldbach transposition. Let us recall that Goldbach's 
transposition is symmetrical and that an addition is accompanied 
by a subtraction of the same quantity. For two equidistant primes 
result from the subtraction and addition of the same value to or 
from E/2.

Indeed, if the t gaps between E/2 and the equidistant primes have 
prime values in increasing order, all 3n numbers give equidistant 
primes and therefore verify the strong Goldbach conjecture (Tables 
1A+1B). On the other hand, for numbers that are not multiples 
of 3 (or non-3n), gaps t that have 3n values are needed to obtain 
equidistant primes. This fact is true for all numbers that can be 
tested, even those with up to 500 equidistant primes or more. The 
Goldbach transposition means that even numbers of the same type 
(3n or not) give equidistant primes with the same spacings t. This 
means that the strong Goldbach conjecture is a function of the 
spacings between E/2 and p or p' for every even number at infinity. 
Given that all primes numbers are 6x ± 1 and 6n is the most 
frequent gap between primes that follow each other, Goldbach's 
transposition is occurring to infinity so that the same distribution 
of primes takes place with the same kind of numbers.
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Table 1A. T-values of gaps between E/2 and equidistant primes. If E is any even > 4 and p and p' two equidistant primes such that p < E/2 and p' >

E/2 then E/2 – p = p' – E/2 with p = E/2 – t and p' = E/2 + t. We add to an even integer either t = prime (p) or t = odd3n (O3n) to get a prime number.

Equidistant primes are in bold-italic. Note that the sum of two equidistant primes = 2 x E/2 (2 x 40  ; 2 x 36 ; 2 x 50). Note E = 80 and E/2 = 40 does

not give equidistant primes with t = primes except with 3 but rather it generates them with t = 3n. if t-gaps = odd 3n values, the non-3n numbers 80

and 100 do give equidistant primes. 

80 72 80 

 

100 

t = p - ← 40 → + - ← 36 → + t = 03n - ← 40 → + - ← 50 → +

3 37

 

43 33

 

39 3 37   

 

43 47  

  

  

53

7 33 47 29 43 9 31 49 41 59

11 29 51 25 47 21 19 61 29 71

13 27 53 23 49 27 13 67 23 77

17 23 57 19 53 33 7 73 17 83

19 21 59 17 55 39 1 79 11 89

23 17 63 13 59

29 11 69 7 65

31 9 71 5 77

37 3 77

3

Table 1A: T-values of gaps between E/2 and equidistant primes. If E is any even > 4 and p and p' two equidistant primes such 
that p < E/2 and p' > E/2 then E/2 – p = p' – E/2 with p = E/2 – t and p' = E/2 + t. We add to an even integer either t = prime (p) 
or t = odd3n (O3n) to get a prime number. Equidistant primes are in bold-italic. Note that the sum of two equidistant primes = 2 
x E/2 (2 x 40 ; 2 x 36 ; 2 x 50). Note E = 80 and E/2 = 40 does not give equidistant primes with t = primes except with 3 but rather 
it generates them with t = O3n. if t-gaps = odd 3n values, the non-3n numbers 80 and 100 do give equidistant primes.
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Table 1B. Comparison between a 3n number (E = 240) and a non-3 (E = 188). We can clearly see that the 3n only give equidistant  prime numbers if

the t gaps have prime number values while the non-3n give them with t which have odd 3n values. Equidistant primes are in bold italic.

188 240 188

 

t = p - ← 94 → + - ← 120 → + t = O3N - ← 94 → +

3 91 97  117

 

123 3 91   

 

97

7 87 101 113 127 9 85 103

11 83 105 109 131 15 79 109

13 81 107 107 133 21 73 115

17 77 111 103 137 27 67 121

19 75 113 101 139 33 61 127

23 71 117 97 143 39 55 133

29 65 123 91 149 45 49 139

31 63 125 89 151 51 43 145

37 57 131 83 157 57 37  151

41 53 135 79 161 63 31  157

43 51 137 77 163 69 25 163

47 47 141 73 167 75 19 169

51 43 145 69 171 81 13 175

53 41 147 67 173 87 7 181

59 35 153 61 179 93

The Table 2 shows the different ways to obtain Goldbach gaps and equidistant primes depending on the type of the

number. Primes < E (E any even > 4) within π(E) will always give at least one couple of equidistant primes when added

to or substracted of an even E that is 3n; odd 3n numbers will give them as well with non-3n numbers; while 2n are

required to obtain them with odd primes or composite numbers. 

These  rules  apply  to  all  integers  to  infinity  and  are  therefore  responsible  for  what  is  called  here  the  Goldbach

transposition. Goldbach gaps are therefore produced in the same ways even if in an irregular and non-linear way. We

can see that  the larger the number,  the more equidistant prime numbers it  will  generate.  If  we assume an infinite

number, then there will be an infinity of possible gaps with prime numbers < E/2 and it only takes a few prime numbers

> E/2 for Goldbach gaps to appear. Table 2 shows that each integer has its own configuration of equidistant primes as a

kind of specific trace or pattern. If we move by one unit, the distribution of equidistant primes varies. For example,

35 - 6 = 29 and 35 + 6 = 41 while 36 - 5 = 31 and 36 + 5 = 41. This shows that the Goldbach's gaps vary infinitely with

each integer.
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Table 2. The transposition ways to get Goldbach's gaps and equidistant primes relatively to an integer n of different 

types. Either using p of π(n)to substract p from n or using odd 3n numbers with evens non-3n and 2n with odd numbers 

of all kinds. This shows that Goldbach's gaps are natural gaps between primes but always occur at least one for any 

integer. The data shown can be reproduced for whatever number > 4. Be E an even, and p and p' (p' > p) two equidistant

primes at E/2 then t = E/2 – p = p' – E/2, the table shows t values to get equidistant primes from diferent types of 

numbers. O3n means odds numbers 3n.  Equidistant primes are highlighted.

t Way 1 : adding or substracting p from π(E)

to or of E/2 

t Way 2 : adding or

substractig O3n to

or of E/2

t Way 3 : adding or substractig 2n to or of E/2

p 48 - p 48 + p 76 - p 76 + p O3n 76 - 3n 76 + 3n 2n 45 - 2n 45 + 2n 39 - 2n 39 + 2n

3 45 51 73 79 3 73 79 2 43 47 37 41

5 43 53 71 81 9 67 85 4 41 49 35 43

7 41 55 69 83 15 61 91 6 39 51 33 45

11 37 59 65 87 21 55 97 8 37 53 31 47

13 35 61 63 89 27 49 103 10 35 55 29 49

17 31 65 59 93 33 43 109 12 33 57 27 51

19 29 67 57 95 39 37 115 14 31 59 25 53

23 25 71 53 99 45 31 121 16 29 61 23 55

29 19 77 47 105 51 25 127 18 27 63 21 57

31 17 79 45 107 57 19 133 20 25 65 19 59

37 13 73 39 113 63 13 139 22 23 67 17 61

41 7 89 35 117 69 7 145 24 21 69 15 63

43 5 91 33 119 75 26 19 71 13 65

47 29 123 81 28 17 73 11 67

53 23 129 87 30 15 75 9 69

59 17 135 32 13 77 7 71

61 15 137 34 11 79 5 73

67 9 143 36 9 81 3 75

71 5 147 38 7 83

73 3 149 40 5 85

79 42 3 87

89 44

97 46

101 48

1b. A reasoned example of proposition b (lemma b).

 Lemma b. « E is any even > 4 et E/2 is any integer > 2. Let us consider π(E) and let us denote P1, P2,...Pn any

prime of π(E) < E/2 and Q1, Q2,...Qm any prime of π(E) > E/2. Then there is at least one value of P and one 

value of Q such that E - P = Q and E - Q = P which is a Goldbach's gap. This proposition must be verified for 

Goldbach's strong conjecture to be true.».

Here we see (Table 3) that if we subtract a prime number < E/2 from E we get a prime number > E/2 in some cases. 

This means E/2 – t and E/2 + t are primes or p + 2t = q. This means that a minus gap that generates a prime number can

generate it too if it is added. This antisymmetry is common in natural numbers. All prime numbers have an integer n = 

E/2 in the middle separated from them by the same distance. For any integer n, there exists at least one Goldbach's gap t

such that   n – t and n + t are primes. In Table 3 two numbers are shown. For example, 11 + 109 = 120 and therefore       

60 – 11 = 109 – 60. And so 11 = 60 – 49 and 109 = 60 + 49. The difference 49 allows us to obtain two prime numbers 

equidistant from 60 which are 11 and 109. Otherwise, 11 + 98 gives 109 and 98: 2 = 49 and thus 11 + 49 = 60 which is 

therefore the integer in the middle between 11 and 109. Other differences in Table 3 generate other equidistant prime 

numbers according to the same rule. All these gaps are called here Goldbac's gaps. These rules are true to infinity. 
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consider π(E) and let us denote P1, P2,...Pn any prime of π(E) 
< E/2 and Q1, Q2,...Qm any prime of π(E) > E/2. Then there 
is at least one value of P and one value of Q such that E - P = 
Q and E - Q = P which is a Goldbach's gap. This proposition 
must be verified for Goldbach's strong conjecture to be true.».

Here we see (Table 3) that if we subtract a prime number < E/2 
from E we get a prime number > E/2 in some cases. This means 
E/2 – t and E/2 + t are primes or p + 2t = q. This means that a 
minus gap that generates a prime number can generate it too if it 
is added. This antisymmetry is common in natural numbers. All 
prime numbers have an integer n = E/2 in the middle separated 
from them by the same distance. For any integer n, there exists 
at least one Goldbach's gap t such that n – t and n + t are primes. 
In Table 3 two numbers are shown. For example, 11 + 109 = 120 
and therefore 60 – 11 = 109 – 60. And so 11 = 60 – 49 and 109 = 
60 + 49. The difference 49 allows us to obtain two prime numbers 

equidistant from 60 which are 11 and 109. Otherwise, 11 + 98 
gives 109 and 98: 2 = 49 and thus 11 + 49 = 60 which is therefore 
the integer in the middle between 11 and 109. Other differences in 
Table 3 generate other equidistant prime numbers according to the 
same rule. All these gaps are called here Goldbach’s gaps. These 
rules are true to infinity.

Let us take another example such 31 + 157 = 188. The integer in 
the middle is (31 + 157)/ 2 = 94 and thus 31 + (63 x 2) = 157 and 
so 31 = 94 – 63 and 157 = 94 + 63. Again E/2 – t and E/2 + t must 
be primes for the Goldbach's conjecture to hold true and that what 
happens in the set of integers. In fact, there is always any integer n 
between any two primes p and p' such that n – t = p and n + t = p'.

To find Goldbach's gaps it is needed to determine π(E) (E any even 
> 4) containing primes p < E. Then determine the gaps t such that 
E/2 – t and E/2 + t are primes and equidistant to E/2. This also 
represents a method that can be programmed to verify the strong 
Goldbach conjecture and generate all possible sums of equidistant 
prime numbers.

Let us take another example such 31 + 157 = 188. The integer in the middle is (31 + 157)/ 2 = 94 and thus  31 + (63 x 2)

= 157 and so 31 = 94 – 63  and 157 = 94 + 63. Again E/2 – t and E/2 + t must be primes for the Goldbach's conjecture 

to hold true and that what happens in the set of integers. In fact, there is always any integer n between any two primes p 

and p' such that n – t = p and n + t = p'. 

To find Goldbach's gaps it is needed to determine π(E) (E any even > 4) containing primes p < E. Then determine the 

gaps t such that E/2 – t and E/2 + t are primes and equidistant to E/2. This also represents a method that can be 

programmed to verify the strong Goldbach conjecture and generate all possible sums of equidistant prime numbers.

Table 3. Goldbach's gaps. Table show π(120) (first column) and π(188) (third column). Any prime of π(120) or π(188)

is denoted p. We see that 120 – p or 188 – p give equidistant prime numbers > E/2 with Goldbach's gaps. These gaps are

the distance between p and 120/2 = 60 or 188/2 = 94. This shows that for any even E > 4 there exists a Goldbach's gap

denoted t such that E/2 – t and E/2 + t are primes. Equidistant primes are highlighted in bold.

p 120 - p p 188 - p

3 117 7 181

7 113 11 177

11 109 13 175

13 107 17 171

17 103 19 169

19 101 23 165

23 97 29 159

29 91 31 157

31 89 37 151

37 83 41 147

41 79 43 145

43 77 47 141

47 73 53 135

53 67 59 129

59 61 61 127

61 59 67 121

67 43 71 117

71 49 73 115

73 47 79 109

79 41 83 105

89 31 89 99

97 23 97 91

101 19 101 87

103 17 103 85

107 13 107 81

109 11 109 79

113 7 113 71

127 61

133 55

137 47

139 49

149 39

151 37

157 31

163 25

167 21

173 15

179 9

181 7
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to hold true and that what happens in the set of integers. In fact, there is always any integer n between any two primes p 

and p' such that n – t = p and n + t = p'. 

To find Goldbach's gaps it is needed to determine π(E) (E any even > 4) containing primes p < E. Then determine the 

gaps t such that E/2 – t and E/2 + t are primes and equidistant to E/2. This also represents a method that can be 

programmed to verify the strong Goldbach conjecture and generate all possible sums of equidistant prime numbers.

Table 3. Goldbach's gaps. Table show π(120) (first column) and π(188) (third column). Any prime of π(120) or π(188)

is denoted p. We see that 120 – p or 188 – p give equidistant prime numbers > E/2 with Goldbach's gaps. These gaps are

the distance between p and 120/2 = 60 or 188/2 = 94. This shows that for any even E > 4 there exists a Goldbach's gap

denoted t such that E/2 – t and E/2 + t are primes. Equidistant primes are highlighted in bold.

p 120 - p p 188 - p

3 117 7 181

7 113 11 177

11 109 13 175

13 107 17 171

17 103 19 169

19 101 23 165

23 97 29 159

29 91 31 157

31 89 37 151

37 83 41 147

41 79 43 145

43 77 47 141

47 73 53 135

53 67 59 129

59 61 61 127

61 59 67 121

67 43 71 117

71 49 73 115

73 47 79 109

79 41 83 105

89 31 89 99

97 23 97 91

101 19 101 87

103 17 103 85

107 13 107 81

109 11 109 79

113 7 113 71

127 61

133 55

137 47

139 49

149 39

151 37

157 31

163 25

167 21

173 15

179 9

181 7

 
6Table 3:  Goldbach's gaps. Table show π(120) (first column) and π(188) (third column). Any prime of π(120) or π(188) is denoted 

p. We see that 120 – p or 188 – p give equidistant prime numbers > E/2 with Goldbach's gaps. These gaps are the distance 
between p and 120/2 = 60 or 188/2 = 94. This shows that for any even E > 4 there exists a Goldbach's gap denoted t such that 
E/2 – t and E/2 + t are primes. Equidistant primes are highlighted in bold.

Let us suppose an even number denoted E and determine π(E). 
Then π(E) will contain the prime numbers which are all < E (prime 
number theorem). Let us take E/2 and then we will have the prime 
numbers of π(E) which are < E/2 and those greater than E/2. We 
will then subdivide π(E) into P1, P2, P3, ...PN which are < E/2 
on the one hand, and on the other hand Q1, Q2, Q3,...Qm which 
are > E/2. Then E/2 – P1 = t1; E/2 – P2 = t2; E/2 – P3 = t3;...E/2 
– Pn = tn are calculated. Then there is a least one value of t (t1 to 
tn) such that E/2 + t = Q1 or Q2...or Qm (Table 4). Since Q – P = 
2n and given Q > P then (Q + P)/2 = E/2 which means that there 
is always an integer E/2 at equal distance from P and Q. If (Q + 
P)/2 = E/2 then Q + P = E and Q and P are equidistant relative 
to E/2. This proposition postulates that Goldbach gaps before E/2 
repeat at least once after E/2 because prime numbers are formed in 

a symmetrical manner from 0 to infinity and from infinity to 0. For 
example, if n – t is prime then it is likely that n + t is also prime.

Similarly and symmetrically, the gaps Q1 – E/2 = z1; Q2 – E/2 = 
z2; Q3 – E/2 = z3;...Qm – E/2 = zm are opposite gaps. And so there 
exists at least one value of z (z1 to zm) such that E/2 – z = P1 or 
P2 or P3 or Pn (Table 4). Any even number E > 4 has both types of 
sets of Goldbach gaps on either side of E/2.

Equidistant primes are highlighted in italic and there are 10 
Goldbach's gaps. The table show that there is at least one value 
of t such that E/2 + t and E/2 – t numbers are both primes which 
represents an initial condition essential for Goldbach's strong 
conjecture to be true. The Table shows that there are 10 Goldbach’s 
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gaps and 10 couples of E/2 + t and E/2 – t prime numbers obtained 
with the number E = 120 (E/2 =60). This will happen with any 

even E > 4 of same type (3n), only the values and positions of 
primes changes between 0 and E/2 and between E/2 and E.

Let us suppose an even number denoted E and determine π(E). Then π(E) will contain the prime numbers which are all

< E (prime number theorem). Let us take E/2 and then we will have the prime numbers of π(E) which are < E/2 and

those greater than E/2. We will then subdivide π(E) into P1, P2, P3, ...PN which are < E/2 on the one hand, and on the

other hand Q1, Q2, Q3,...Qm which are > E/2. Then E/2 – P1 = t1; E/2 – P2 = t2; E/2 – P3 = t3;...E/2 – Pn = tn are

calculated. Then there is a least one value of t (t1 to tn) such that E/2 + t = Q1 or Q2...or Qm (Table 4). Since Q – P = 2n

and given Q > P then (Q + P)/2 = E/2 which means that there is always an integer E/2 at equal distance from P and Q. If

(Q + P)/2 = E/2 then Q + P = E and Q and P are equidistant relative to E/2. This proposition postulates that Goldbach

gaps before E/2 repeat at least once after E/2 because prime numbers are formed in a symmetrical manner from 0 to

infinity and from infinity to 0. For example, if n – t is prime then it is likely that n + t is also prime.

Similarly and symmetrically, the gaps Q1 – E/2 = z1; Q2 – E/2 = z2; Q3 – E/2 = z3;...Qm – E/2 = zm are opposite gaps.

And so there exists at least one value of z (z1 to zm) such that E/2 – z = P1 or P2 or P3 or Pn (Table 4). Any even

number E > 4 has both types of sets of Goldbach gaps on either side of E/2. 

 
Table 4 : Goldbach's gaps with E/2 + t and E/2 – t numbers with E = 120 (3n) and E/2 = 60 and t = prime value in an 

increasing order.  This can be reproduced for any number but it must be taken into account whether the number is even 

or odd, 3n or not (see above). If it is odd, then it is necessary to subtract and add 2n numbers in ascending order. 

Equidistant primes are highlighted in italic and there are 10 Goldbach's gaps. The table show that there is at least one 

value of t such that  E/2 + t and E/2 – t numbers are both primes which represents an initial condition essential for 

Goldbach's strong conjecture to be true. The Table shows that there are 10 goldbach's gaps and 10 couples of  E/2 + t 

and E/2 – t  prime numbers obtained with the number E = 120  (E/2 =60). This will happen with any even E > 4 of same

type (3n), only the values and positions of primes changes between 0 and E/2 and between E/2 and E.

t 60 – t 60 + t  Goldbach gap

3 57 63

5 55 65

7 53 67 1

11 49 71

13 47 73 2

17 43 77

19 41 79 3

23 37 83 4

29 31 89 5

31 29 91

37 23 97 6

41 19 101 7

43 17 103 8

47 13 107 9

53 7 113 10

59 1 119

1c. Specific case of an even number denoted E which tends to infinity

If E tends to infinity, the Goldbach'gaps tend to infinity. π(E) will contain an infinity of prime numbers P < E/2 and Q > 

E/2. And so for a prime number Q > E/2, there must exist a Goldbach gap such that Q – E/2 = E/2 – P. Even if there is a 

long empty gap of prime numbers after E/2 and the number of prime numbers Q > E/2 are rarer and more dispersed, 

there will still exist a Goldbach gap such that Q – E/2 = E/2 – P because all possible Goldbach gaps exist before E/2 for 

a number E that tends to infinity. For example, there are infinitely many gaps between 3 and all other primes (7 – 3; 11 

– 3; 17 – 3;...to infinity) and this is true for every prime number and therefore all possible Goldbach gaps exist at 

infinity to the point that any prime number Q > E/2 will find a number P < E/2 which is symmetric to it such that          

Q – E/2 = E/2 – P. Goldbach's conjecture is true because there are infinitely many possible gaps between known or 

possibly known prime numbers at infinity and any prime E/2 + t whatever its value and > E/2 would find a symmetric 

prime E/2 – t < E/2. This rule of symmetry can be more easily seen with twin prime numbers to infinity.
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Table 4: Goldbach's gaps with E/2 + t and E/2 – t numbers with E = 120 (3n) and E/2 = 60 and t = prime value in an increasing 
order. This can be reproduced for any number but it must be considered whether the number is even or odd, 3n or not (see 
above). If it is odd, then it is necessary to subtract and add 2n numbers in ascending order.

1c. Specific Case of an Even Number Denoted E Which Tends 
to Infini

If E tends to infinity, the Goldbach’ gaps tend to infinity. π(E) will 
contain an infinity of prime numbers P < E/2 and Q > E/2. And so 
for a prime number Q > E/2, there must exist a Goldbach gap such 
that Q – E/2 = E/2 – P. Even if there is a long empty gap of prime 
numbers after E/2 and the number of prime numbers Q > E/2 are 
rarer and more dispersed, there will still exist a Goldbach gap such 
that Q – E/2 = E/2 – P because all possible Goldbach gaps exist 
before E/2 for a number E that tends to infinity. For example, there 
are infinitely many gaps between 3 and all other primes (7 – 3; 11 – 
3; 17 – 3;...to infinity) and this is true for every prime number and 
therefore all possible Goldbach gaps exist at infinity to the point 
that any prime number Q > E/2 will find a number P < E/2 which is 
symmetric to it such that Q – E/2 = E/2 – P. Goldbach's conjecture 
is true because there are infinitely many possible gaps between 
known or possibly known prime numbers at infinity and any prime 
E/2 + t whatever its value and > E/2 would find a symmetric prime 
E/2 – t < E/2. This rule of symmetry can be more easily seen with 
twin prime numbers to infinity.

Let us suppose an even number E such that E/2 tends to infinity, 
so [E/2 → E] is in infinity. On the other hand, from 0 to E/2 we 
have all the prime numbers that we could discover by the means 
available to date or which are known at the maximum limit. So if 

we take any prime number p and any prime number q that we know 
such that q > p, then q – p can take any possible value 2n and all 
possible 2n gaps between any two prime numbers (not just twins 
but distant from each other by any gap) exist from 0 to E/2. We 
know well today that prime numbers are infinite and probably at 
a much higher density than we imagine. Let us then suppose that 
between E/2 and E we have two prime numbers among others s 
and t such that s – t = 2n'. Then, there must exist two other prime 
numbers u and v < E/2 such that u – v = 2n'.

Therefore s – t = u – v and s + v = t + u and therefore if u and t are 
equidistant at E/2 then s and v are also equidistant. Since s and t > 
E/2 and u and v < E/2 with u and t, and s and v, equidistant from 
E/2, then 2 x E/2 = s + v = t + u and therefore E = s + v = t + u. 
Thus Goldbach's conjecture can be verified at infinity knowing that 
any even number that we know or can imagine will be the sum of 
two prime numbers. Indeed for a number which tends to infinity, 
all possible gaps 2n between any two primes are limitless.

Let us remember that if P1 ← E/2 →P2 means P1 and P2 are 
equidistant to E/2 then E/2 – t = P1 ad E/2 + t = P2 ( t any integer 
< E/2). Therefore E = E/2 + E/2 = (E/2 – t) + (E/2 + t) = P1 + P2. 
Any time there are two equidistant primes relatively to E/2 the 
strong Goldbach conjecture is verified and holds true. The t is the 
Goldbach's gap and is also limitless as the number tends to infinity 
which means all primes at any t gap are possible. Note here that 
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two initial conditions are necessary s – t = u – v and s, v on one 
hand and t, u on the other are equidistant to E/2. This means that 
all equidistant primes to E/2 are related to each other by 2n gaps 
and related to E/2 by t Goldbach's gaps. The two gaps overlap in 
all possible ratios. If E and E/2 extend to infinity, and even if the 
density of primes > E/2 is lower or there are long sequences devoid 
of primes, the distances between primes close to E/2 and 0 would 
be as infinite as the distances between these distant primes and E/2. 
Moreover, given their higher density, more possible gaps occur 

before E/2. It is therefore quite possible that these distant primes 
are equidistant to primes < E/2.

To illustrate this with an example, we limit ourselves to a small 
number like 100 knowing that what is shown applies to infinity 
(Table 5A+B). These tables show the large number of possibilities 
for a small number and a fortiori for a number which extends to 
infinity.

Let us suppose an even number E such that E/2 tends to infinity, so [E/2 → E] is in infinity. On the other hand, from 0 

to E/2 we have all the prime numbers that we could discover by the means available to date or which are known at the 

maximum limit. So if we take any prime number p and any prime number q that we know such that q > p, then q – p 

can take any possible value 2n and all possible 2n gaps between any two prime numbers (not just twins but distant from 

each other by any gap) exist from 0 to E/2. We know well today that prime numbers are infinite and probably at a much 

higher density than we imagine. Let us then suppose that between E/2 and E we have two prime numbers among others 

s and t such that s – t = 2n'. Then, there must exist two other prime numbers u and v < E/2 such that u – v = 2n'. 

Therefore s – t = u – v and s + v = t + u and therefore if  u and t are equidistant at E/2 then s and v are also equidistant. 

Since s and t > E/2 and u and v < E/2  with u et t, and s and v, equidistant from E/2, then 2 x E/2 = s + v = t + u and 

therefore E = s + v = t + u. Thus Goldbach's conjecture can be verified at infinity knowing that any even number that we

know or can imagine will be the sum of two prime numbers. Indeed for a number which tends to infinity, all possible 

gaps 2n between any two primes are limitless.

Let us remember that if P1 ← E/2 →P2  means P1 and P2 are equidistant to E/2 then E/2 – t = P1 ad E/2 + t = P2 ( t any

integer < E/2). Therefore E = E/2 + E/2 = (E/2 – t) + (E/2 + t) = P1 + P2. Any time there are two equidistant primes 

relatively to E/2 the strong Goldbach conjetcure is verified and holds true. The t is the Goldbach's gap and is also 

limitless as the number tends to infinity which means all primes at any t gap are possible. Note here that two initial 

conditions are necessary s – t = u – v and s, v on one hand and t, u on the other are equidistant to E/2. This means that 

all equidistant primes to E/2 are related to each other by 2n gaps and related to E/2 by t Goldbach's gaps. The two gaps 

overlap in all possible ratios. If E and E/2 extend to infinity, and even if the density of  primes > E/2 is lower or there 

are long sequences devoid of primes, the distances between primes close to E/2 and 0 would be as infinite as the 

distances between these distant primes and E/2. Moreover, given their higher density, more possible gaps occur before 

E/2. It is therefore quite possible that these distant primes are equidistant to primes < E/2.

To illustrate this with an example, we limit ourselves to a small number like 100 knowing that what is shown applies to 

infinity (Table 5A+B). These tables show the large number of possibilities for a small number and a fortiori for a 

number which extends to infinity.

Table 5A. E is any even and be E = 100. Let us calculate π(100) and calculate u – v such that u is any prime > v  in 

primes π(100) < E/2 = 50.

v →
3 5 7 11 13 17 19 23 29 31 37 41 43 47

u↓

47 44 42 40 36 34 30 28 24 18 16 10 6 4

43 40 38 36 32 30 26 24 20 14 12 6 2

41 38 36 34 30 28 24 22 18 12 10 4

37 34 32 30 26 24 20 18 14 8 6

31 28 26 24 20 18 14 12 8 2

29 26 24 22 18 16 12 10 6

23 20 18 16 12 10 6 4

19 16 14 12 8 6 2

17 14 12 10 6 4

13 10 8 6 2

11 8 6 4

7 4 2

Table 5B. Let us calculate π(100) and calculate s – t such that s is any prime > t  in primes > E/2 = 50.

      t→
53 59 61 67 71 73 79 83 89 97

s↓

97 44 38 36 30 26 24 18 14 8

89 36 30 28 22 18 16 10 6

83 30 24 22 16 12 10 4

79 26 20 18 12 8 6

73 20 14 12 6 2

71 18 12 10 4

67 14 8 6

61 8 2

59 6
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Table 5A : E is any even and be E = 100. Let us calculate π(100) and calculate u – v such that u is any prime > v in primes π(100) 
< E/2 = 50.

Let us suppose an even number E such that E/2 tends to infinity, so [E/2 → E] is in infinity. On the other hand, from 0 

to E/2 we have all the prime numbers that we could discover by the means available to date or which are known at the 

maximum limit. So if we take any prime number p and any prime number q that we know such that q > p, then q – p 

can take any possible value 2n and all possible 2n gaps between any two prime numbers (not just twins but distant from 

each other by any gap) exist from 0 to E/2. We know well today that prime numbers are infinite and probably at a much 

higher density than we imagine. Let us then suppose that between E/2 and E we have two prime numbers among others 

s and t such that s – t = 2n'. Then, there must exist two other prime numbers u and v < E/2 such that u – v = 2n'. 

Therefore s – t = u – v and s + v = t + u and therefore if  u and t are equidistant at E/2 then s and v are also equidistant. 

Since s and t > E/2 and u and v < E/2  with u et t, and s and v, equidistant from E/2, then 2 x E/2 = s + v = t + u and 

therefore E = s + v = t + u. Thus Goldbach's conjecture can be verified at infinity knowing that any even number that we

know or can imagine will be the sum of two prime numbers. Indeed for a number which tends to infinity, all possible 

gaps 2n between any two primes are limitless.

Let us remember that if P1 ← E/2 →P2  means P1 and P2 are equidistant to E/2 then E/2 – t = P1 ad E/2 + t = P2 ( t any

integer < E/2). Therefore E = E/2 + E/2 = (E/2 – t) + (E/2 + t) = P1 + P2. Any time there are two equidistant primes 

relatively to E/2 the strong Goldbach conjetcure is verified and holds true. The t is the Goldbach's gap and is also 

limitless as the number tends to infinity which means all primes at any t gap are possible. Note here that two initial 

conditions are necessary s – t = u – v and s, v on one hand and t, u on the other are equidistant to E/2. This means that 

all equidistant primes to E/2 are related to each other by 2n gaps and related to E/2 by t Goldbach's gaps. The two gaps 

overlap in all possible ratios. If E and E/2 extend to infinity, and even if the density of  primes > E/2 is lower or there 

are long sequences devoid of primes, the distances between primes close to E/2 and 0 would be as infinite as the 

distances between these distant primes and E/2. Moreover, given their higher density, more possible gaps occur before 

E/2. It is therefore quite possible that these distant primes are equidistant to primes < E/2.

To illustrate this with an example, we limit ourselves to a small number like 100 knowing that what is shown applies to 

infinity (Table 5A+B). These tables show the large number of possibilities for a small number and a fortiori for a 

number which extends to infinity.

Table 5A. E is any even and be E = 100. Let us calculate π(100) and calculate u – v such that u is any prime > v  in 

primes π(100) < E/2 = 50.

v →
3 5 7 11 13 17 19 23 29 31 37 41 43 47

u↓

47 44 42 40 36 34 30 28 24 18 16 10 6 4

43 40 38 36 32 30 26 24 20 14 12 6 2

41 38 36 34 30 28 24 22 18 12 10 4

37 34 32 30 26 24 20 18 14 8 6

31 28 26 24 20 18 14 12 8 2

29 26 24 22 18 16 12 10 6

23 20 18 16 12 10 6 4

19 16 14 12 8 6 2

17 14 12 10 6 4

13 10 8 6 2

11 8 6 4

7 4 2

Table 5B. Let us calculate π(100) and calculate s – t such that s is any prime > t  in primes > E/2 = 50.

      t→
53 59 61 67 71 73 79 83 89 97

s↓

97 44 38 36 30 26 24 18 14 8

89 36 30 28 22 18 16 10 6

83 30 24 22 16 12 10 4

79 26 20 18 12 8 6

73 20 14 12 6 2

71 18 12 10 4

67 14 8 6

61 8 2

59 6

8
Table 5B : Let us calculate π(100) and calculate s – t such that s is any prime > t in primes > E/2 = 50.

Let determine any u – v = s – t such that u + t or s + v = 100. Examples :Let determine any u – v = s – t such that u + t or s + v = 100.

Examples :

47 – 41 = 59 – 53 → 47 + 53 = 59 + 41 =  100 

47 – 31 = 69 – 53 → 47 + 53 = 69 + 31 =  100

47 – 3 =  97 – 53 → 47 + 53 = 97 + 3  =   100

47 – 17 = 83 – 53 → 47 + 53 = 17 + 83 =  100 

41 – 17 = 83 – 59 →  41 + 59 = 17 + 83 = 100  

 41 – 11 = 89 – 59 →  41 + 59 = 89 + 11 = 100

17 – 3 =  97 – 83 → 17 + 83  =  97 + 3  = 100

2. Demonstrate and prove the correctness of the Goldbach's strong conjecture by a table using 3x + 5 and 3x – 5

equations while following the remainders of Euclidean divisions

2a. Goldbach's strong conjecture and the gaps that separate prime numbers using 3x ± 5 equations

Prime numbers and their multiples except multiples of 2 and 3 are all 6x  ±  1 (Bahbouhi1, 2024). Here the equations

3x ± 5 reconstruct all prime numbers and their multiples in their natural order (Table 6A+B). However, using Euclidean

division, one can know why a number is prime or not by examining the remainders of the Euclidean division of 3x by

the prime numbers below it.  This is possible with the equations 3x ± 5. Let's take an example, the number 35 has 5 as a

factor and therefore cannot be prime because 35 = 3 x 10 + 5. But if we take 77, we have 77 = 3 x 24 + 5 and in fact 77

– 5 = 72 and 72 : 11 = 6 and the remainder (denoted r in the table) = 6 and therefore if we add 5, we will have a new

factor  11  =  5  +  6  or  5  =  11  –  6  and  therefore  77  is  not  prime.  In  general  for  the  equation  3x  +  5  if

5 = prime factor –  remainder (the factor is denoted q in the table) then the number obtained is not prime. This could

be used as a factorization method by examining each time the remainder of the division of the number 3x by the prime

factors q which are less than its square root, if 5 = q – r then the number obtained with the equation 3x + 5 is composite.

Here are the steps, take the number 3x + 5 and substract 5, you get 3x, then divide it by primes q < its square root. See

the remainders and determine if 5 = q – r. If it is the case, then the number is composite. You get the prime factor by

adding 5 to the remainder. This method can work well to decompose a number in product of prime factors . If 5 ≠ q – r,

then the number is prime. Factoring an integer into a product of prime factors is still a topic of primary importance in

mathematics (Bahbouhi2, 2024).

Let us take another example, 119 = 3 x 38 + 5. We have 3 x 38 = 114 and 114 : 17 = 6 and r = 12. Therefore 5 = 17 – 12

and thus 119 is composite. By contrast, if the number is prime,  5 ≠ q – r in all euclidean divisions.

On the other hand, for 3x – 5 equation, if 5 = r of the euclidean divisions then the number is composite.

For the rest, let us denote any prime number P and any composite number C. The prime numbers obtained by 3x + 5 are

the P+ and those of the equation 3x – 5 are P-. Similarly, we have the C+ and C-. Note that multiples of 3 are excluded

from the tables. We see that there are gaps of 6n between the P+ primes on the one hand and between the P- on the other

hand. Each line break = gap of 6 by going down or up. If we go up, we have gaps of -6n and if we go down we have

+6n. On the other hand, we have variable gaps of 2n between the P+ and the P- primes. We have the same pattern of

gaps between the C+ and the C-. Let us note that 3 x + 5 corresponds to 6x – 1 primes and 3x – 5 to the 6x + 1 equation.

In fact, there are two types of primes of which the former are 6x – 1 and the latter 6x + 1. Not only primes, but all their

multiples except those of 2 and 3 can be written as 6x + 1 or 6x – 1.

Since all composite or prime numbers can be written as the equation 3x ± 5, we can then develop a method for their

factorization by applying the rules 5 = q – r or 5 = r for the equations 3x + 5 and 3x – 5, respectively. We can clearly see

that the integers, during their progression to infinity, give prime or composite numbers, depending on the remainders of

their  Euclidean divisions by the prime numbers that  are less than their square roots.  Conversely and by the same

process, a number P or C comes from a natural integer P or C which precedes it. 

This progression of integers in tables-6 by 3x  ±  5 equations can be used to demonstrate and prove the Goldbach's

strong conjecture. In fact, it appears clear that this conjecture is a result of the progression of natural numbers into

primes or composite numbers. The proof of this conjecture lies in this progression itself.

Here are the key arguments to prove Goldbach's strong conjecture:

 Any odd number P or C is preceded and followed by prime numbers at regular intervals of 6n. Therefore        

P' (+6n) ▬ P ▬ P'' (-6n) ↔ 2 x P = 2n = P' + P''.  

P''' (+6n) ▬ C ▬ P'''' (-6n) ↔ 2 x C = 2n = P''' + P''''. Take any umber P or C in the tables-6 using the equation 

3x + 5 or 3x – 5, go up and down till you get the two equidistant primes then Goldbach's strong conjecture is 

demonstrated this way. 

For example 7(+6 x 5) ▬ 37 ▬  67 (-6 x 5) ↔ 2 x 37 = 7 + 67 = 74.

 71 (+6 x 1) ▬ 77 ▬  83 (-6 x 1) ↔ 2 x 77 = 71 + 83 = 154.

This table shows that since all numbers P and C are equidistant from prime numbers preceding and 

following them, even numbers are sums of two prime numbers because if a number n is equidistant from two 

prime numbers P1 and P2 then 2n = P1 + P2. Goldbach's strong conjecture can thus be demostrated by 6n gaps.
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Let determine any u – v = s – t such that u + t or s + v = 100.

Examples :

47 – 41 = 59 – 53 → 47 + 53 = 59 + 41 =  100 

47 – 31 = 69 – 53 → 47 + 53 = 69 + 31 =  100

47 – 3 =  97 – 53 → 47 + 53 = 97 + 3  =   100

47 – 17 = 83 – 53 → 47 + 53 = 17 + 83 =  100 

41 – 17 = 83 – 59 →  41 + 59 = 17 + 83 = 100  

 41 – 11 = 89 – 59 →  41 + 59 = 89 + 11 = 100

17 – 3 =  97 – 83 → 17 + 83  =  97 + 3  = 100

2. Demonstrate and prove the correctness of the Goldbach's strong conjecture by a table using 3x + 5 and 3x – 5

equations while following the remainders of Euclidean divisions

2a. Goldbach's strong conjecture and the gaps that separate prime numbers using 3x ± 5 equations

Prime numbers and their multiples except multiples of 2 and 3 are all 6x  ±  1 (Bahbouhi1, 2024). Here the equations

3x ± 5 reconstruct all prime numbers and their multiples in their natural order (Table 6A+B). However, using Euclidean

division, one can know why a number is prime or not by examining the remainders of the Euclidean division of 3x by

the prime numbers below it.  This is possible with the equations 3x ± 5. Let's take an example, the number 35 has 5 as a

factor and therefore cannot be prime because 35 = 3 x 10 + 5. But if we take 77, we have 77 = 3 x 24 + 5 and in fact 77

– 5 = 72 and 72 : 11 = 6 and the remainder (denoted r in the table) = 6 and therefore if we add 5, we will have a new

factor  11  =  5  +  6  or  5  =  11  –  6  and  therefore  77  is  not  prime.  In  general  for  the  equation  3x  +  5  if

5 = prime factor –  remainder (the factor is denoted q in the table) then the number obtained is not prime. This could

be used as a factorization method by examining each time the remainder of the division of the number 3x by the prime

factors q which are less than its square root, if 5 = q – r then the number obtained with the equation 3x + 5 is composite.

Here are the steps, take the number 3x + 5 and substract 5, you get 3x, then divide it by primes q < its square root. See

the remainders and determine if 5 = q – r. If it is the case, then the number is composite. You get the prime factor by

adding 5 to the remainder. This method can work well to decompose a number in product of prime factors . If 5 ≠ q – r,

then the number is prime. Factoring an integer into a product of prime factors is still a topic of primary importance in

mathematics (Bahbouhi2, 2024).

Let us take another example, 119 = 3 x 38 + 5. We have 3 x 38 = 114 and 114 : 17 = 6 and r = 12. Therefore 5 = 17 – 12

and thus 119 is composite. By contrast, if the number is prime,  5 ≠ q – r in all euclidean divisions.

On the other hand, for 3x – 5 equation, if 5 = r of the euclidean divisions then the number is composite.

For the rest, let us denote any prime number P and any composite number C. The prime numbers obtained by 3x + 5 are

the P+ and those of the equation 3x – 5 are P-. Similarly, we have the C+ and C-. Note that multiples of 3 are excluded

from the tables. We see that there are gaps of 6n between the P+ primes on the one hand and between the P- on the other

hand. Each line break = gap of 6 by going down or up. If we go up, we have gaps of -6n and if we go down we have

+6n. On the other hand, we have variable gaps of 2n between the P+ and the P- primes. We have the same pattern of

gaps between the C+ and the C-. Let us note that 3 x + 5 corresponds to 6x – 1 primes and 3x – 5 to the 6x + 1 equation.

In fact, there are two types of primes of which the former are 6x – 1 and the latter 6x + 1. Not only primes, but all their

multiples except those of 2 and 3 can be written as 6x + 1 or 6x – 1.

Since all composite or prime numbers can be written as the equation 3x ± 5, we can then develop a method for their

factorization by applying the rules 5 = q – r or 5 = r for the equations 3x + 5 and 3x – 5, respectively. We can clearly see

that the integers, during their progression to infinity, give prime or composite numbers, depending on the remainders of

their  Euclidean divisions by the prime numbers that  are less than their square roots.  Conversely and by the same

process, a number P or C comes from a natural integer P or C which precedes it. 

This progression of integers in tables-6 by 3x  ±  5 equations can be used to demonstrate and prove the Goldbach's

strong conjecture. In fact, it appears clear that this conjecture is a result of the progression of natural numbers into

primes or composite numbers. The proof of this conjecture lies in this progression itself.

Here are the key arguments to prove Goldbach's strong conjecture:

 Any odd number P or C is preceded and followed by prime numbers at regular intervals of 6n. Therefore        

P' (+6n) ▬ P ▬ P'' (-6n) ↔ 2 x P = 2n = P' + P''.  

P''' (+6n) ▬ C ▬ P'''' (-6n) ↔ 2 x C = 2n = P''' + P''''. Take any umber P or C in the tables-6 using the equation 

3x + 5 or 3x – 5, go up and down till you get the two equidistant primes then Goldbach's strong conjecture is 

demonstrated this way. 

For example 7(+6 x 5) ▬ 37 ▬  67 (-6 x 5) ↔ 2 x 37 = 7 + 67 = 74.

 71 (+6 x 1) ▬ 77 ▬  83 (-6 x 1) ↔ 2 x 77 = 71 + 83 = 154.

This table shows that since all numbers P and C are equidistant from prime numbers preceding and 

following them, even numbers are sums of two prime numbers because if a number n is equidistant from two 

prime numbers P1 and P2 then 2n = P1 + P2. Goldbach's strong conjecture can thus be demostrated by 6n gaps.

9
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2. Demonstrate and Prove the Correctness of the Goldbach's 
Strong Conjecture by a Table Using 3x + 5 and 3x – 5 Equations 
While Following the Remainders of Euclidean Divisions
2a. Goldbach's Strong Conjecture and the Gaps that Separate 
Prime Numbers Using 3x ± 5 Equations
Prime numbers and their multiples except multiples of 2 and 3 
are all 6x ± 1 [9]. Here the equations 3x ± 5 reconstruct all prime 
numbers and their multiples in their natural order (Table 6A+B). 
However, using Euclidean division, one can know why a number 
is prime or not by examining the remainders of the Euclidean 
division of 3x by the prime numbers below it. This is possible with 
the equations 3x ± 5. Let's take an example, the number 35 has 5 
as a factor and therefore cannot be prime because 35 = 3 x 10 + 5. 
But if we take 77, we have 77 = 3 x 24 + 5 and in fact 77 – 5 = 72 
and 72 : 11 = 6 and the remainder (denoted r in the table) = 6 and 
therefore if we add 5, we will have a new factor 11 = 5 + 6 or 5 = 
11 – 6 and therefore 77 is not prime. In general for the equation 3x 
+ 5 if 5 = prime factor – remainder (the factor is denoted q in the 
table) then the number obtained is not prime. This could be used 
as a factorization method by examining each time the remainder 
of the division of the number 3x by the prime factors q which are 
less than its square root, if 5 = q – r then the number obtained 
with the equation 3x + 5 is composite. Here are the steps, take the 
number 3x + 5 and subtract 5, you get 3x, then divide it by primes 
q < its square root. See the remainders and determine if 5 = q – r. 
If it is the case, then the number is composite. You get the prime 
factor by adding 5 to the remainder. This method can work well to 
decompose a number in product of prime factors . If 5 ≠ q – r, then 
the number is prime. Factoring an integer into a product of prime 
factors is still a topic of primary importance in mathematics [10].

Let us take another example, 119 = 3 x 38 + 5. We have 3 x 38 = 
114 and 114 : 17 = 6 and r = 12. Therefore 5 = 17 – 12 and thus 
119 is composite. By contrast, if the number is prime, 5 ≠ q – r in 
all Euclidean divisions.

On the other hand, for 3x – 5 equation, if 5 = r of the Euclidean 
divisions then the number is composite.

For the rest, let us denote any prime number P and any composite 
number C. The prime numbers obtained by 3x + 5 are the P+ and 
those of the equation 3x – 5 are P-. Similarly, we have the C+ and 
C-. Note that multiples of 3 are excluded from the tables. We see 
that there are gaps of 6n between the P+ primes on the one hand 
and between the P- on the other hand. Each line break = gap of 
6 by going down or up. If we go up, we have gaps of -6n and if 
we go down we have +6n. On the other hand, we have variable 
gaps of 2n between the P+ and the P- primes. We have the same 
pattern of gaps between the C+ and the C-. Let us note that 3 x + 5 
corresponds to 6x – 1 primes and 3x – 5 to the 6x + 1 equation. In 
fact, there are two types of primes of which the former are 6x – 1 
and the latter 6x + 1. Not only primes, but all their multiples except 
those of 2 and 3 can be written as 6x + 1 or 6x – 1.

Since all composite or prime numbers can be written as the equation 
3x ± 5, we can then develop a method for their factorization by 

applying the rules 5 = q – r or 5 = r for the equations 3x + 5 and 
3x – 5, respectively. We can clearly see that the integers, during 
their progression to infinity, give prime or composite numbers, 
depending on the remainders of their Euclidean divisions by the 
prime numbers that are less than their square roots. Conversely 
and by the same process, a number P or C comes from a natural 
integer P or C which precedes it.

This progression of integers in tables-6 by 3x ± 5 equations can be 
used to demonstrate and prove the Goldbach's strong conjecture. 
In fact, it appears clear that this conjecture is a result of the 
progression of natural numbers into primes or composite numbers. 
The proof of this conjecture lies in this progression itself.

Here are the key arguments to prove Goldbach's strong conjecture:
• Any odd number P or C is preceded and followed by prime 
numbers at regular intervals of 6n. Therefore P' (+6n) ▬ P ▬ P'' 
(-6n) ↔ 2 x P = 2n = P' + P''. P''' (+6n) ▬ C ▬ P'''' (-6n) ↔ 2 
x C = 2n = P''' + P''''. Take any number P or C in the tables-6 
using the equation 3x + 5 or 3x – 5, go up and down till you get 
the two equidistant primes then Goldbach's strong conjecture is 
demonstrated this way.

For example 7(+6 x 5) ▬ 37 ▬ 67 (-6 x 5) ↔ 2 x 37 = 7 + 67 = 74.
71 (+6 x 1) ▬ 77 ▬ 83 (-6 x 1) ↔ 2 x 77 = 71 + 83 = 154.

This table shows that since all numbers P and C are equidistant 
from prime numbers preceding and following them, even numbers 
are sums of two prime numbers because if a number n is equidistant 
from two prime numbers P1 and P2 then 2n = P1 + P2. Goldbach's 
strong conjecture can thus be demonstrated by 6n gaps.

• However, we are missing the even numbers in the tables-6 
(multiples of 3 or not) and the odd multiples of 3. We just need to 
convert them first to P or C of the table and then move in gaps of 6. 
The numbers P and C in tables-6 are converters because they are 
used to transform any even > 4 into the sum of two prime numbers.
• Note that we can also use the gaps between the prime numbers 
3x + 5 and 3x – 5 but they are = 2n and are variable and just 
require more attention and calculation but the table demonstrates 
Goldbach's strong conjecture in all directions and cases.
• For example :
23(+6)▬ 29 (+1)▬ 30 ▬ 31(-1) ▬37(-6) ↔ 2 x 30 = 60 = 31 + 
29 = 23 + 37
37 (+6 x 5)▬ 67 (+2)▬ 69 ▬ 71(-2) ▬101(-6x 5)↔ 2 x 69 = 138 
= 67 + 71 = 37 + 101.
37 (+6 x 5)▬ 67 (+3)▬ 70 ▬ 73(-3) ▬103(-6x 5)↔ 2 x 70 = 140 
= 67 + 73 = 37 + 103.

• It is important to note that if we start with a non-3n even number 
like 56 or 88, we should not convert it to a 3n number because we 
will no longer be able to find prime numbers with steps of 6.

Example if we do 56 – 2 = 54, we cannot have prime numbers 
below or above 54. Rather 56 – 3 = 53 or even 56 – 1 = 55 because 
55 – 6 = 49 – 6 = 43 or 55 + 6 = 61 + 6 = 67 and so on.
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• According to this table here is the demonstration of Goldbach's 
strong conjecture: Be E any even >4, C is composite and P is prime.

E = C 1 + C2 = (C1 + 6n) + (C2 – 6n) = P1 + P2. E = C1 + P = (C1 
+ 6n) + (P – 6n) = P3 + P4.
E = P' + P'' = (P'+ 6n) + (P'' – 6n) = P5 + P6

• Because there is always a 2n gap between any two prime p and q 
such that q > p, then there is always an integer in the middle. Be q 
> p and q = p + 2t ↔ ∃n such that p + t = n and q – t = n ↔ 2n = p 
+ q. All prime numbers taken to infinity will generate all possible 
evens 2n and therefore 2n would always be the sum of two primes.
• Conversely, be 2n ↔ n is in the middle of two primes p and q ↔ 
2n = p + q.
• 2n ↔ 2n/2 = n ↔ n= 3x + 5 or n = 3x – 5 ↔ n is P or C ↔ n – 6n 
and n + 6n ↔ p + q.
• There are four possible equalities or Goldbach equations to 

complete to convert any even number into the sum of two prime 
numbers P and P' using tables-6 and 3x ± 5 to infinity :

P' (+6n) ▬ P ▬ P'' (-6n) (Even = 2n = 2 x P = P + P').
P' (+6n) ▬ C ▬ P'' (-6n) (Even = 2n = 2 x C = P + P').
P' (+6n) ▬C or P▬ 2n + x ▬ 2n ▬ 2n – x ▬ C or P▬ P'' (-6n) 
(Even = 2n = 2 x 2n = P + P').
P' (+6n)▬ C or P ▬ 3n + x ▬ O3n ▬ 3n – x ▬ C or P▬ P'' (-6n) 
(Even = 2n = 2 x O3n = P + P').

Note 2n might be 3n or not while O3n is odd 3n in the last equation.
Note that x is used to preconvert the even or O3n into the converters 
P or C before searching for the P by the jumps of 6n (see examples 
above). Or we can use any gap between primes to complete these 
equations but 6n is the most regular.

Table 6A+B : The equations 3x ± 5 reconstruct all the prime numbers and odd multiples of prime numbers except those

of 2 and 3. Depending on the remainders (r) of the Euclidean division of a number 3x by the primes < its square root

denoted q, the number is prime (P) or composite (C). The table shows that all natural numbers (primes, odd multiples of

primes, evens and multiples of 3) can be in the middle of two primes by making 6n jumps in two opposite directions (up

down ↓N↑) or left-right by 2n gaps. In the table P is prime and C is composite while r is the remainder of euclidean

division of  numbers 3x in 3x + 5 or 3x – 5 by q which is any prime less than their square roots. If 5 = q – r in the case

of 3x + 5 or 5 = r in the case of 3x – 5, the number is not prime (C).

6A

x = 2n 3x + 5  P or 

C (5 = q – r)

x = 2n 3x – 5  P or 

C (r = 5)

2 11 P 4 7 P

4 17 P 6 13 P

6 23 P 8 19 P

8 29 P 10 ↓25↑ q = 5

10 ↓35↑ q = 5 12 31 P

12 41 P 14 37 P

14 47 P 16 43 P

16 53 P 18 ↓49↑ r = 5  

18 59 P 20 ↓55↑ q = 5

20 ↓65↑ q = 5 22 61 P

22 71 P 24 67 P

24 ↓77↑ 5 = 11 – 6 

5 = 11 –  6

26 73 P

26 83 P 28 79 P

28 89 P 30 ↓85↑ q = 5 

30 ↓95↑ q = 5 32 ↓91↑ r = 5  

32 101 P 34 97 P

34 107 P 36 103 P

36 113 P 38 109 P

38 ↓119↑ 5 = 17 – 2

5 = 7 – 2 

40 ↓115↑ q = 5 

40 ↓125↑ q = 5 42 ↓121↑ r = 5

42 131 P 44 127 P

44 137 P 46 133 r = 5

46 ↓143↑ 5 = 11 – 6

5 = 13 – 8

48 139 P

48 149 P 50 ↓145↑ q = 5 

50 ↓155↑ q = 5 52 151 P

52 ↓161↑ 5 = 7 – 2  

5 = 23 – 18 

54 157 P

54 167 P 56 163 P

56 173 P 58 ↓169↑ r = 5

58 179 P 60 ↓175↑ q = 5 

60 ↓185↑ q = 5 62 181 P

62 191 P 64 ↓187↑ r = 5

64 197 P 66 193 P

66 ↓203↑ 5 = 29 – 24

5 = 11 –  6

68 199 P

68 ↓209↑ 5 = 19 – 14

5 = 11 –  6

70 ↑205↑ q = 5 

70  ↓215↑ P 72 211 P

11
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Table 6A+B : The equations 3x ± 5 reconstruct all the prime numbers and odd multiples of prime numbers except those

of 2 and 3. Depending on the remainders (r) of the Euclidean division of a number 3x by the primes < its square root

denoted q, the number is prime (P) or composite (C). The table shows that all natural numbers (primes, odd multiples of

primes, evens and multiples of 3) can be in the middle of two primes by making 6n jumps in two opposite directions (up

down ↓N↑) or left-right by 2n gaps. In the table P is prime and C is composite while r is the remainder of euclidean

division of  numbers 3x in 3x + 5 or 3x – 5 by q which is any prime less than their square roots. If 5 = q – r in the case

of 3x + 5 or 5 = r in the case of 3x – 5, the number is not prime (C).

6A

x = 2n 3x + 5  P or 

C (5 = q – r)

x = 2n 3x – 5  P or 

C (r = 5)

2 11 P 4 7 P

4 17 P 6 13 P

6 23 P 8 19 P

8 29 P 10 ↓25↑ q = 5

10 ↓35↑ q = 5 12 31 P

12 41 P 14 37 P

14 47 P 16 43 P

16 53 P 18 ↓49↑ r = 5  

18 59 P 20 ↓55↑ q = 5

20 ↓65↑ q = 5 22 61 P

22 71 P 24 67 P

24 ↓77↑ 5 = 11 – 6 

5 = 11 –  6

26 73 P

26 83 P 28 79 P

28 89 P 30 ↓85↑ q = 5 

30 ↓95↑ q = 5 32 ↓91↑ r = 5  

32 101 P 34 97 P

34 107 P 36 103 P

36 113 P 38 109 P

38 ↓119↑ 5 = 17 – 2

5 = 7 – 2 

40 ↓115↑ q = 5 

40 ↓125↑ q = 5 42 ↓121↑ r = 5

42 131 P 44 127 P

44 137 P 46 133 r = 5

46 ↓143↑ 5 = 11 – 6

5 = 13 – 8

48 139 P

48 149 P 50 ↓145↑ q = 5 

50 ↓155↑ q = 5 52 151 P

52 ↓161↑ 5 = 7 – 2  

5 = 23 – 18 

54 157 P

54 167 P 56 163 P

56 173 P 58 ↓169↑ r = 5

58 179 P 60 ↓175↑ q = 5 

60 ↓185↑ q = 5 62 181 P

62 191 P 64 ↓187↑ r = 5

64 197 P 66 193 P

66 ↓203↑ 5 = 29 – 24

5 = 11 –  6

68 199 P

68 ↓209↑ 5 = 19 – 14

5 = 11 –  6

70 ↑205↑ q = 5 

70  ↓215↑ P 72 211 P

116B

x = 2n 3x + 5  P or 

C (5 = q – r)

x = 2n 3x - 5  P or 

C (r = 5)

72 ↓221↑ 5 = 13 – 8

5 = 17 – 12

74 ↓217↑ r = 5

74 227 P 76 223 P

76  233 P 78 229 P

78 239 P 80 ↓235↑ q = 5

80 ↓245↑ q = 5 82 241 P

82  251 P 84 ↓247↑ r = 5

84  257 P 86 ↓253↑ r = 5

86  263  P 88 ↓259↑ r = 5

88 269 P 90 ↓265↑ q = 5

90 275 q = 5 92 271 P

92 281 P 94 277 P

94 ↓287↑ 5 = 41 – 36

5 = 7 –  2

96 283 P

96  293 98 ↓289↑ r = 5

98 ↓299↑ 5 = 23 –  18

5 = 13 – 8 

100 ↓295↑  q = 5

100 ↓305↑ q = 5 102 ↓301↑ r = 5

102 311 P 104 307 P

104 317 P 106 313 P

106 ↓323↑ 5 = 17 –  12

5 = 19 – 14

108 ↓319↑ r = 5

108 ↓329↑ 5 = 7 –  2

5 = 47 – 42

110 ↓325↑  q = 5

110 ↓335↑ q = 5 112 331 P

112 ↓341↑ 5 = 31 –  26

5 = 11 – 6

114 337 P

114 347 P 116 ↓343↑ r = 5

116 353 P 118 349 P

118 359 P 120 ↓355↑  q = 5

120 ↓365↑ q = 5 122 ↓361↑ r = 5

122 ↓371↑ 5 = 7 –  2

5 = 53 – 48

124 367 P

124 ↓377↑ 5 = 13 – 8

5 = 29 – 24

126 373 P

126 383 P 138 379 P

138 389 P 140 ↓385↑  q = 5

140 ↓395↑ q = 5 142 ↓391↑ r = 5

142 401 P 144 397 P

144 ↓407↑ 5 = 11 – 3

5 = 37 – 32

146 ↓403↑ r = 5

146 ↓413↑ 5 = 7 – 2

5 = 59 – 54

148 409 P

148 419 P 150 ↓415↑ r = 5

150 ↓425↑ q = 5 152 421 P

12
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6B

x = 2n 3x + 5  P or 

C (5 = q – r)

x = 2n 3x - 5  P or 

C (r = 5)

72 ↓221↑ 5 = 13 – 8

5 = 17 – 12

74 ↓217↑ r = 5

74 227 P 76 223 P

76  233 P 78 229 P

78 239 P 80 ↓235↑ q = 5

80 ↓245↑ q = 5 82 241 P

82  251 P 84 ↓247↑ r = 5

84  257 P 86 ↓253↑ r = 5

86  263  P 88 ↓259↑ r = 5

88 269 P 90 ↓265↑ q = 5

90 275 q = 5 92 271 P

92 281 P 94 277 P

94 ↓287↑ 5 = 41 – 36

5 = 7 –  2

96 283 P

96  293 98 ↓289↑ r = 5

98 ↓299↑ 5 = 23 –  18

5 = 13 – 8 

100 ↓295↑  q = 5

100 ↓305↑ q = 5 102 ↓301↑ r = 5

102 311 P 104 307 P

104 317 P 106 313 P

106 ↓323↑ 5 = 17 –  12

5 = 19 – 14

108 ↓319↑ r = 5

108 ↓329↑ 5 = 7 –  2

5 = 47 – 42

110 ↓325↑  q = 5

110 ↓335↑ q = 5 112 331 P

112 ↓341↑ 5 = 31 –  26

5 = 11 – 6

114 337 P

114 347 P 116 ↓343↑ r = 5

116 353 P 118 349 P

118 359 P 120 ↓355↑  q = 5

120 ↓365↑ q = 5 122 ↓361↑ r = 5

122 ↓371↑ 5 = 7 –  2

5 = 53 – 48

124 367 P

124 ↓377↑ 5 = 13 – 8

5 = 29 – 24

126 373 P

126 383 P 138 379 P

138 389 P 140 ↓385↑  q = 5

140 ↓395↑ q = 5 142 ↓391↑ r = 5

142 401 P 144 397 P

144 ↓407↑ 5 = 11 – 3

5 = 37 – 32

146 ↓403↑ r = 5

146 ↓413↑ 5 = 7 – 2

5 = 59 – 54

148 409 P

148 419 P 150 ↓415↑ r = 5

150 ↓425↑ q = 5 152 421 P

12

Table 6A+B : The equations 3x ± 5 reconstruct all the prime numbers and odd multiples of prime numbers except those of 2 
and 3. Depending on the remainders (r) of the Euclidean division of a number 3x by the primes < its square root denoted q, the 
number is prime (P) or composite (C). The table shows that all-natural numbers (primes, odd multiples of primes, evens and 
multiples of 3) can be in the middle of two primes by making 6n jumps in two opposite directions (up down ↓N↑) or left-right 
by 2n gaps. In the table P is prime and C is composite while r is the remainder of Euclidean division of numbers 3x in 3x + 5 
or 3x – 5 by q which is any prime less than their square roots. If 5 = q – r in the case of 3x + 5 or 5 = r in the case of 3x – 5, the 
number is not prime (C).

2b. A new algorithm-I to Convert an Even In Sum of two 
Primes

Be E an even. Calculate E/2.
If E/2 is P or C
Follow table-6 lines (to infinity). Perform conversion
P'(+6n) ▬P or C ▬P''(-6n)
if P or C = P' + 6n and P'' = P or C + 6n; E = 2x P or 2 x 2C = P' 
+ P''.
If E/2 is even (2n) non-3n
Covert it to P or C. Calculate E/2 – 1 and E/2 + 1 E/2 – 1 and E/2 
+ 1 should be ≠ odd 3n (O3n)
If O3n calculate O3n – 2 and O3n + 2 If the result is C or P proceed 
as above
P'(+6n)▬P or C ▬2n ▬P or C ▬P''(-6n) if 2n = P' + 6n and P'' 
= 2n + 6n
E = 2 x 2n = P' + P''.
If E/2 is even 3n Covert it to P or C E/2 – 1 and E/2 + 1
If the result is C or P proceed as above P'(+6n) ▬P or C▬2n ▬P 
or C ▬P''(-6n) if 2n = P' + 6n and P'' = 2n + 6n
E = 2 x 2n = P' + P''.

If E/2 is odd 3n
calculate E/2 – 2 and E/2 + 2
If the result is C or P proceed as above P'(+6n) ▬P or C▬O3n ▬P 
or C ▬P''(-6n) if O3n = P' + 6n ad P'' = O3n + 6n
E = 2 x O3n = P' + P''.

Note the method works with other gaps = 2n or any gap N (N any 
integer >0) From 3x + 5 to 3x – 5 primes or vice versa
P'(+N) ▬P or C ▬P''(-N) E = 2 x P or C = P' + P''.

2c. Corresponding Examples of the Algorithm-I 
E = 170 E/2 = 85
E/2 is C
67(+18) ▬ 85 ▬103(-18)

170 = 2 x 85 = 67 + 103.

E = 194 and E/2 = 97
E/2 is P
67(+30) ▬ 97 ▬127(-30)
194 = 2 x 97 = 67 + 127.

E = 320 E/2 = 160
E/2 is even non-3n
160 – 1= 159 and 160 + 1 = 161
159 is odd 3n to discard
160– 3 = 157 and 160 + 3 = 163
157 ▬160 ▬163 or
139 (+6x3)▬157 ▬160 ▬163▬181(-6x3) or
139 (+21) ▬160 ▬181(-21)
320 = 2 x 160 = 157 + 163
320 = 2 x 160 = 139 + 181
E = 660 and E/2 = 330
E/2 is even 3n
330 – 1 = 329 and 330 + 1 = 331
329 ▬330 ▬331
311(+18) ▬329▬330 ▬331▬349(-18) or 313(+17) ▬330 
▬347(-17)
660 = 2 x 330 = 311 + 349 or 660 = 2 x 330 = 313 + 347

E = 3006 and E/2 = 1503
E/2 is O3n
1503 – 2 = 1501 and 1503 + 2 = 1505
1501 ▬1503 ▬1505
1483(+18)▬1501▬1503 ▬1505▬1523(-18)
3006 = 2 x 1503 = 1483 + 1523

3. Key Digits of primes numbers and equidistance to verify 
Goldbach's Strong Conjecture
3a. The Goal Behind the Use of Prime Digits
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E = 660 and E/2 = 330

E/2 is even 3n

330 – 1 = 329 and 330 + 1 = 331

329 ▬330 ▬331

311(+18) ▬329▬330 ▬331▬349(-18)

or 313(+17) ▬330 ▬347(-17)

660 = 2 x 330 = 311 + 349 or 660 = 2 x 330 = 313 + 347

E = 3006 and E/2 = 1503

E/2 is O3n

1503 – 2 = 1501 and 1503 + 2 = 1505

1501 ▬1503 ▬1505

1483(+18)▬1501▬1503 ▬1505▬1523(-18)

 3006 = 2 x 1503 = 1483 + 1523

3. Key Digits of primes numbers and equidistance to verify Goldbach's Strong Conjecture

3a. The goal behind the use of prime digits 

Between two primes there is an integer in the middle the double of which is the even equal to the sum of the two

primes.

q > p → q – p = 2n → p ← E/2 → q → 2 x E/2 = 2n = p + q. 

p = E/2 – t and q = E/2 + t and p + 2t = q.

The integer in the middle is the mean = (p +q)/2. The unit digit of this average value always depends on the units or

other key digits of the prime numbers p and q. Here we demonstrate that starting from these digits, we can convert an

even into the sum of two prime numbers.

First, formulas are given following this article that are based on the location of the digits of prime numbers. Secondly,

how to apply them to convert an even number into a sum of two prime numbers. Note that these formulas do not cover

all the rules that we could know but only a part and the purpose of this paper is mainly to show that they exist. Here

examples of calculation are given for illustration purposes.

3b. Unit Digits in case q – p = 6 or q – p = 10 or q – p = 42 and therefore t = 3 or t = 5 or t = 21.   

There are very common gaps between prime numbers that can be deduced from their unit  digits in case of all primes 

(see below). There is always a 2n gap betwee two primes and a integer in the middle between them. Hence 

Omnipresence of the equidistance between primes in all natural numbers.

Here gaps of 3, 10 and 21 are used. The gap used is indicated in parentheses (see below). In case of gap = 6 and t = 3, 

the difference between the unit digits is 6 example 11 and 17 (7 – 1). However if the unit of the larger prime is < that of 

the smaller prime we have to add 10 to see the gap. For example 17 and 23, we do not do 3 – 7 but 13 – 7 = 6. See in 

those having three digits we can see the difference of 6 between the last two digits example 103 and 109 (9 – 3 = 6) or 

131 and 137 ( 37 – 31 = 6). Here are other examples not shown. The primes numbers 1187 and 1193 such that 193 – 

187 = 6 or 1117 and 1123 such that 123 – 117 = 6. In case of gap = 10 the larger and smaller primes have the same unit 

digit. In case of gap = 42 = 2x 21, the unit digit of the larger is = that of the smaller + 2. For example 11 and 53 (3 = 1 +

2). Again we add 10 if the unit digit of the larger prime < that of the smaller example 19 and 61 such that 1 of 61 + 10 – 

9 = 2. All this show that digits of primes are the result of the gaps that are in betwee them. In addition, the digits of the 

evens that are sum of two primes are also the result of those gaps. In case of gap = 6, t= 3, we see that the difference 

between the unit digit of the average value (the integer in the middle) and that of the smaller prime = 3. Again we add 

10 in case it is smaller example in case 5-8-11 we have 8 – 5 = 3 or 11-14-17 we have 4 – 1 = 3 but in case of 37-40-43 

we do 10 (0 of 40) – 7 (of 37) = 3. We see that the same difference can be deduced from the unit digit of the larger 

prime and that of the integer in between example 11-14-17 (7 – 4 = 3) ; 47-50-53 (3 – 0 = 3).

14

First, formulas are given following this article that are based on the 
location of the digits of prime numbers. Secondly, how to apply 
them to convert an even number into a sum of two prime numbers. 
Note that these formulas do not cover all the rules that we could 
know but only a part and the purpose of this paper is mainly to 
show that they exist. Here examples of calculation are given for 
illustration purposes.

3b. Unit Digits in Case q – p = 6 or q – p = 10 or q – p = 42 and 
therefore t = 3 or t = 5 or t = 21.
There are very common gaps between prime numbers that can be 
deduced from their unit digits in case of all primes (see below). 
There is always a 2n gap between two primes and an integer in the 
middle between them. Hence Omnipresence of the equidistance 
between primes in all-natural numbers.

Here gaps of 3, 10 and 21 are used. The gap used is indicated in 
parentheses (see below). In case of gap = 6 and t = 3, the difference 
between the unit digits is 6 example 11 and 17 (7 – 1). However if 
the unit of the larger prime is < that of the smaller prime we have 
to add 10 to see the gap. For example 17 and 23, we do not do 3 

– 7 but 13 – 7 = 6. See in those having three digits we can see the 
difference of 6 between the last two digits example 103 and 109 (9 
– 3 = 6) or 131 and 137 ( 37 – 31 = 6). Here are other examples not 
shown. The primes numbers 1187 and 1193 such that 193 – 187 = 
6 or 1117 and 1123 such that 123 – 117 = 6. In case of gap = 10 the 
larger and smaller primes have the same unit digit. In case of gap = 
42 = 2x 21, the unit digit of the larger is = that of the smaller + 2. 
For example 11 and 53 (3 = 1 + 2). Again we add 10 if the unit digit 
of the larger prime < that of the smaller example 19 and 61 such 
that 1 of 61 + 10 – 9 = 2. All this show that digits of primes are the 
result of the gaps that are in between them. In addition, the digits 
of the even that are sum of two primes are also the result of those 
gaps. In case of gap = 6, t= 3, we see that the difference between 
the unit digit of the average value (the integer in the middle) and 
that of the smaller prime = 3. Again we add 10 in case it is smaller 
example in case 5-8-11 we have 8 – 5 = 3 or 11-14-17 we have 4 
– 1 = 3 but in case of 37-40-43 we do 10 (0 of 40) – 7 (of 37) = 3. 
We see that the same difference can be deduced from the unit digit 
of the larger prime and that of the integer in between example 11-
14-17 (7 – 4 = 3) ; 47-50-53 (3 – 0 = 3).

5 → 8 → 11 (+ 6) 

7 → 10 → 13

11 → 14 → 17

13 → 16 → 19

17 → 20 → 23 

23 → 26 → 29

31 → 34 → 37

37 → 40 → 43  

41 → 44 → 47 

47 → 50 → 53 

53 → 56 → 59

61 → 64 → 67

3 → 8   → 13 (+10) 

7 → 12   → 17              

13 → 18   → 23

19 → 24   → 29

31 → 36   → 41  

37 → 42   → 47  

43 → 48   → 53  

61 → 66   → 71

73 → 78   → 83

79 → 84   → 89

97 → 102                →107

127 → 132                →137

139 → 144               →149

67 → 70               → 73               11            → 32                             → 53 (+ 42) 

73 → 76               → 79                   17            → 38                             → 59

97               → 100               → 103               19            → 40                             → 61

103               → 106                             → 109               29            → 50                             → 71

107              → 110                                → 113               31            → 52                             → 73

131              → 134                                → 137               37            → 58                             → 79

3c. Algorithm-II for the conversion of an even number into the sum of two prime numbers by their units digits.

Even numbers have 0, 2, 4, 6, and 8 as unit digits and so if an even number is the sum of two prime numbers, the unit

digits of the latter count to deduce that of the even number of which they are the sum. The partitions of 0, 2, 4, 6, and 8

are therefore determinant in Goldbach's conjecture excluding the number 5 because we know that there is no prime

number ending with this digit. For example evens ending with 8 are sums of two primes having units digits such 1 and 7

or 9 twice and those with 4 are sums of primes with 1 and 3 or 7 twice while 6 is either sum of two primes having both

3 as units digits or 7 and 9.

This counts for converting an even number into the sum of two primes. Let E be an even number and calculate π(E). We

separate the primes < E/2 and those > E/2. Knowing that the even number is the sum of a prime < E/2 and another >

E/2, we will then sort the prime numbers of π(E) < E/2 and > E/2 according to their unit digits. Note that this process is

symmetrical for example if we take prime numbers < E/2 ending with a digit like 1 and those >E/2 ending with a digit

like 7, we must also do the inverse or the reciprocal i.e. those < E/2 having 7 as the unit digit and those >E/2 having 1 as

the unit digit. In all cases and each time we convert an even > 4 into a sum of two prime numbers, we apply these rules

whether we realize it or not. This article seeks, however, to state them.  

This selection of primes by their unit digits therefore results in a method or a new algorithm-II that is simple to execute

in computer science and which eliminates all other useless prime numbers. For example, an even number ending in 4

will not be affected by all the prime numbers ending in 9 since there are no prime numbers ending in 5. This is also the

case for evens with unit digit = 8 with primes ending in 3. This exclusion accelerates the process of converting an even

number into the sum of two prime numbers. There is also the total number of digits. For example, an even number of 4

digits will be the sum of a prime number of 2 digits and another of not less than 3 digits. A three-digit prime number

depending on its value relative to the even number of 4 digits to be converted will add either another three-digit prime

or a 2-digit prime or even primes of one digit. The two selections can be superimposed, those based on the unit digit and

those based on the total number of digits, which will further speed up the process of converting an even number into the

sum of two prime numbers. In this article, we restrict ourselves to safer and simpler rules that go in one direction only.

For example, eliminate prime numbers with 9 as the unit digit as soon as we convert an even number ending in 4 or

those with 3 with even numbers ending in 8. The algorithm-II is more robust with only one paramater which is the unit

digits.

Here we give a single example of E = 580 and E/2 = 290 by using unit digit only and the rule applies in the same way in

the case of other unit digits and for any even number. Indeed, a prime number has 1, 3, 7 and 9 as unit digits. Therefore,

an even number that ends in 0 is either the sum of two prime numbers having 3 and 7 as unit digits or 9 and 1. We will

then look for them before E/2 and after E/2 and identify those that are equidistant. We can do it in a reciprocal manner,

that is to say, look for those having 1 before E/2 and 9 after E/2 and vice versa (same for 3 and 7).  Only those prime

numbers that satisfy the partition rule of the unit digit of the even number count to convert it into a sum of two

prime numbers (Tables 7A+7B). 

15

3c. Algorithm-II for the Conversion of an even Number into 
the sum of two Prime Numbers by their units’ digits.

Even numbers have 0, 2, 4, 6, and 8 as unit digits and so if an even 
number is the sum of two prime numbers, the unit digits of the 
latter count to deduce that of the even number of which they are the 

sum. The partitions of 0, 2, 4, 6, and 8 are therefore determinant in 
Goldbach's conjecture excluding the number 5 because we know 
that there is no prime number ending with this digit. For example 
evens ending with 8 are sums of two primes having units digits 
such 1 and 7 or 9 twice and those with 4 are sums of primes with 1 
and 3 or 7 twice while 6 is either sum of two primes having both 3 
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as units’ digits or 7 and 9.

This counts for converting an even number into the sum of two 
primes. Let E be an even number and calculate π(E). We separate 
the primes < E/2 and those > E/2. Knowing that the even number 
is the sum of a prime < E/2 and another > E/2, we will then sort 
the prime numbers of π(E) < E/2 and > E/2 according to their unit 
digits. Note that this process is symmetrical for example if we 
take prime numbers < E/2 ending with a digit like 1 and those 
>E/2 ending with a digit like 7, we must also do the inverse or the 
reciprocal i.e. those < E/2 having 7 as the unit digit and those >E/2 
having 1 as the unit digit. In all cases and each time we convert an 
even > 4 into a sum of two prime numbers, we apply these rules 
whether we realize it or not. This article seeks, however, to state 
them.

This selection of primes by their unit digits therefore results in 
a method or a new algorithm-II that is simple to execute in 
computer science and which eliminates all other useless prime 
numbers. For example, an even number ending in 4 will not be 
affected by all the prime numbers ending in 9 since there are no 
prime numbers ending in 5. This is also the case for evens with unit 
digit = 8 with primes ending in 3. This exclusion accelerates the 
process of converting an even number into the sum of two prime 
numbers. There is also the total number of digits. For example, 
an even number of 4 digits will be the sum of a prime number of 

2 digits and another of not less than 3 digits. A three-digit prime 
number depending on its value relative to the even number of 4 
digits to be converted will add either another three-digit prime or 
a 2-digit prime or even primes of one digit. The two selections can 
be superimposed, those based on the unit digit and those based on 
the total number of digits, which will further speed up the process 
of converting an even number into the sum of two prime numbers. 
In this article, we restrict ourselves to safer and simpler rules that 
go in one direction only. For example, eliminate prime numbers 
with 9 as the unit digit as soon as we convert an even number 
ending in 4 or those with 3 with even numbers ending in 8. The 
algorithm-II is more robust with only one parameter which is the 
unit digits.

Here we give a single example of E = 580 and E/2 = 290 by using 
unit digit only and the rule applies in the same way in the case of 
other unit digits and for any even number. Indeed, a prime number 
has 1, 3, 7 and 9 as unit digits. Therefore, an even number that 
ends in 0 is either the sum of two prime numbers having 3 and 7 
as unit digits or 9 and 1. We will then look for them before E/2 and 
after E/2 and identify those that are equidistant. We can do it in a 
reciprocal manner, that is to say, look for those having 1 before E/2 
and 9 after E/2 and vice versa (same for 3 and 7).  

 
 

(Tables 7A+7B).

Table 7. Algorithm-II application. Conversion of an even (E = 580 and E/2 = 290) following the partition in sum of 0, 

let there be prime numbers with digits 1 and 9 (table 7A) or 3 and 7 (Table 7B). The equidistant prime numbers P and P'

make a sum = 2 x E/2 = 2 x 290 = 580. Note that this method based on digits operates in the two directions (1,9) and 

(9,1) (table 7A) or (3,7) and (7,3) in table 7B.

Table 7A

Table 7B

3d.  Digits in case XX and X0X or XX and X00X.

The remainder of this article focuses on  the relationship that exists between numbers which have in common digits 

placed in key positions. When applied to prime numbers, we find the average or integer that is equally distant from two 

prime numbers, therefore confirming again that prime equidistance is omnipresent among integers. Finally, these rules 

will be used to convert any even into prime numbers with some examples.

• Let note digits by X except the key digit. Example XX and X0X. Here 0 is a key digit and so X0X – XX = 90.

11 and 101 → 101 – 11 = 90 → 11 + 45 = 56 and 101 + 45 = 146 → 56 + 146 = 202 = 101 x 2.

Hence 11 ← 56 → 101 so that 56 – 11 = 101 – 56 = 45.

17 ad 107 → 107 – 17 = 90 → 17 + 45 = 62 and 107 + 45 = 152 → 62 + 152 = 214 = 107 x 2. 

Hence 17 ← 62 → 107 so that 62 – 17 = 107 – 62 = 45.

16

< E/2 = 290 > E/2 = 290 P P' < E/2 = 290 > E/2 = 290 P P'

7 293 17 563 3 307 3 577

17 313 137 443 13 317 23 557

37 353 197 383 23 337 113 467

47 373 227 353 43 347 233 347

67 383 53 367 263 317

97 433 73 397

107 443 83 457

127 463 103 467

137 503 113 487

157 523 163 557

167 563 173 577

197 193

227 223

257 233

277 263

283

< E/2 = 290 > E/2 = 290 P P' < E/2 = 290 > E/2 = 290 P P'

11 269 11 569 19 311 59 521

31 349 71 509 29 331 89 491

41 359 101 479 59 401 149 431

61 379 131 449 79 421 179 401

71 389 191 389 89 431 269 311

101 409  109 461

131 419 139 491

151 439 149 521

181 449 179 541

191 479 199 571

211 499 229

241 509 239

251 569 269

271

281

Table 7. Algorithm-II application. Conversion of an even (E = 580 and E/2 = 290) following the partition in sum of 0, 

let there be prime numbers with digits 1 and 9 (table 7A) or 3 and 7 (Table 7B). The equidistant prime numbers P and P'

make a sum = 2 x E/2 = 2 x 290 = 580. Note that this method based on digits operates in the two directions (1,9) and 

(9,1) (table 7A) or (3,7) and (7,3) in table 7B.

Table 7A

Table 7B

3d.  Digits in case XX and X0X or XX and X00X.

The remainder of this article focuses on  the relationship that exists between numbers which have in common digits 

placed in key positions. When applied to prime numbers, we find the average or integer that is equally distant from two 

prime numbers, therefore confirming again that prime equidistance is omnipresent among integers. Finally, these rules 

will be used to convert any even into prime numbers with some examples.

• Let note digits by X except the key digit. Example XX and X0X. Here 0 is a key digit and so X0X – XX = 90.

11 and 101 → 101 – 11 = 90 → 11 + 45 = 56 and 101 + 45 = 146 → 56 + 146 = 202 = 101 x 2.

Hence 11 ← 56 → 101 so that 56 – 11 = 101 – 56 = 45.

17 ad 107 → 107 – 17 = 90 → 17 + 45 = 62 and 107 + 45 = 152 → 62 + 152 = 214 = 107 x 2. 

Hence 17 ← 62 → 107 so that 62 – 17 = 107 – 62 = 45.

16

< E/2 = 290 > E/2 = 290 P P' < E/2 = 290 > E/2 = 290 P P'

7 293 17 563 3 307 3 577

17 313 137 443 13 317 23 557

37 353 197 383 23 337 113 467

47 373 227 353 43 347 233 347

67 383 53 367 263 317

97 433 73 397

107 443 83 457

127 463 103 467

137 503 113 487

157 523 163 557

167 563 173 577

197 193

227 223

257 233

277 263

283

< E/2 = 290 > E/2 = 290 P P' < E/2 = 290 > E/2 = 290 P P'

11 269 11 569 19 311 59 521

31 349 71 509 29 331 89 491

41 359 101 479 59 401 149 431

61 379 131 449 79 421 179 401

71 389 191 389 89 431 269 311

101 409  109 461

131 419 139 491

151 439 149 521

181 449 179 541

191 479 199 571

211 499 229

241 509 239

251 569 269

271

281
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Table 7. Algorithm-II application. Conversion of an even (E = 580 and E/2 = 290) following the partition in sum of 0, 

let there be prime numbers with digits 1 and 9 (table 7A) or 3 and 7 (Table 7B). The equidistant prime numbers P and P'

make a sum = 2 x E/2 = 2 x 290 = 580. Note that this method based on digits operates in the two directions (1,9) and 

(9,1) (table 7A) or (3,7) and (7,3) in table 7B.

Table 7A

Table 7B

3d.  Digits in case XX and X0X or XX and X00X.

The remainder of this article focuses on  the relationship that exists between numbers which have in common digits 

placed in key positions. When applied to prime numbers, we find the average or integer that is equally distant from two 

prime numbers, therefore confirming again that prime equidistance is omnipresent among integers. Finally, these rules 

will be used to convert any even into prime numbers with some examples.

• Let note digits by X except the key digit. Example XX and X0X. Here 0 is a key digit and so X0X – XX = 90.

11 and 101 → 101 – 11 = 90 → 11 + 45 = 56 and 101 + 45 = 146 → 56 + 146 = 202 = 101 x 2.

Hence 11 ← 56 → 101 so that 56 – 11 = 101 – 56 = 45.

17 ad 107 → 107 – 17 = 90 → 17 + 45 = 62 and 107 + 45 = 152 → 62 + 152 = 214 = 107 x 2. 

Hence 17 ← 62 → 107 so that 62 – 17 = 107 – 62 = 45.

16

< E/2 = 290 > E/2 = 290 P P' < E/2 = 290 > E/2 = 290 P P'

7 293 17 563 3 307 3 577

17 313 137 443 13 317 23 557

37 353 197 383 23 337 113 467

47 373 227 353 43 347 233 347

67 383 53 367 263 317

97 433 73 397

107 443 83 457

127 463 103 467

137 503 113 487

157 523 163 557

167 563 173 577

197 193

227 223

257 233

277 263

283

< E/2 = 290 > E/2 = 290 P P' < E/2 = 290 > E/2 = 290 P P'

11 269 11 569 19 311 59 521

31 349 71 509 29 331 89 491

41 359 101 479 59 401 149 431

61 379 131 449 79 421 179 401

71 389 191 389 89 431 269 311

101 409  109 461

131 419 139 491

151 439 149 521

181 449 179 541

191 479 199 571

211 499 229

241 509 239

251 569 269

271

281

Table 7 : Algorithm-II application. Conversion of an even (E = 580 and E/2 = 290) following the partition in sum of 0, let there 
be prime numbers with digits 1 and 9 (table 7A) or 3 and 7 (Table 7B). The equidistant prime numbers P and P' make a sum = 2 
x E/2 = 2 x 290 = 580. Note that this method based on digits operates in the two directions (1,9) and (9,1) (table 7A) or (3,7) and 
(7,3) in table 7B.

3d. Digits in case XX and X0X or XX and X00X.
The remainder of this article focuses on the relationship that exists 
between numbers which have in common digits placed in key 
positions. When applied to prime numbers, we find the average or 
integer that is equally distant from two prime numbers, therefore 
confirming again that prime equidistance is omnipresent among 
integers. Finally, these rules will be used to convert any even into 
prime numbers with some examples.
•	 Let note digits by X except the key digit. Example XX and 

X0X. Here 0 is a key digit and so X0X – XX = 90. 11 and 101 
→ 101 – 11 = 90 → 11 + 45 = 56 and 101 + 45 = 146 → 56 + 
146 = 202 = 101 x 2.

Hence 11 ← 56 → 101 so that 56 – 11 = 101 – 56 = 45.
17 ad 107 → 107 – 17 = 90 → 17 + 45 = 62 and 107 + 45 = 152 → 
62 + 152 = 214 = 107 x 2.

Hence 17 ← 62 → 107 so that 62 – 17 = 107 – 62 = 45.
•	 X00X – XX = 990.
13 and 1003 → 1003 – 13 and → 1000 – 10 = 990. Then, 990 : 2 = 
495 → 13 + 495 = 508 and 1003 + 495 = 1498 →
508 + 1498 = 2006 = 2 x 1003. Hence 13 ← 508 → 1003.

X000n...X – XX = 9999n	 0. Example 1000003 – 13 = 999990.

3e. Digits in case XXY and XX.
XXY – XX = XX ( 10 – 1) + Y.

139 – 13. Given that (139) – 13 = (13 x 10 + 9) – 13 = 13 x (10 – 1) 
+ 9 = 13 x 9 + 9 = 126.
126 : 2 = 63 → 13 + 63 = 76 and 139 + 63 = 202 → 76 + 202 = 
278 : 2 = 139. Therefore
13 ← 76 →139.
173 – 17 = 17 x 9 + 3 = 156 → 156 : 2 = 78. Therefore 17 + 78 = 
95. And 95 + 78 = 173.
17 ← 95 →173.

3f. Digits in case YXX and XX → YXX – XX = Y00 or Yn...
XX – XX = Yn...00.

661 – 61 = 600. Given 600 : 2 = 300 we have 61 + 300 = 361 and 
361 + 300 = 661.
61 ← 361 → 661 → 361 x 2 = 61 + 661 → 722 = 61 + 661.

673 – 73 = 600. Given 600 : 2 = 300 we have 73 + 300 = 373 and 
373 + 300 = 673.
73 ← 373 → 673 → 373 x 2 = 73 + 673 → 746 = 73 + 673.

3g. Common digits in primes XX...ZZ (ZZ are digits of primes 
p such that 3 ≤ p ≤ 97)

The digits of primes ≤ 97 are often at the end of prime numbers of 
three digits and more to infinity.

 X00X – XX = 990.

13 and 1003 →  1003 – 13 and → 1000 – 10 = 990. Then, 990 : 2 = 495 → 13 + 495 = 508 and  1003 + 495 = 1498 → 

508 + 1498 = 2006 = 2 x 1003. Hence  13 ← 508 → 1003.

X000n...X – XX  = 9999n...0. Example 1000003 – 13 = 999990. 

 3d.  Digits in case XXY and XX. 

XXY – XX = XX ( 10 – 1) + Y. 

139 – 13. Given that (139) – 13 = (13 x 10 + 9) – 13 = 13 x (10 – 1) + 9 = 13 x 9 + 9 =  126.

126 : 2 = 63 → 13 + 63 = 76 and 139 + 63 = 202 → 76 + 202 = 278 : 2 = 139. Therefore

13 ← 76 →139.

173 – 17 = 17 x 9 + 3 = 156 → 156 : 2 = 78. Therefore 17 + 78 = 95. And 95 + 78 = 173.

17 ← 95 →173.

3e.  Digits in case YXX and XX → YXX – XX = Y00 or Yn...XX – XX = Yn...00.

661 – 61 = 600. Given 600 : 2 = 300 we have 61 + 300 = 361 and 361 + 300 = 661.

61 ← 361 → 661 → 361 x 2 = 61 + 661 → 722 = 61 + 661.  

 

673 – 73 = 600. Given 600 : 2 = 300 we have 73 + 300 = 373 and 373 + 300 = 673.

73 ← 373 → 673 → 373 x 2 = 73 + 673 → 746 = 73 + 673. 

3f. Common digits in primes XX...ZZ (ZZ are digits of primes p such that 3 ≤  p ≤  97)

The digits of primes ≤ 97 are often at the end of prime numbers of three digits and more to infinity.

Examples : 

101 103 107 109 113 127 131 137 139 149

151 157 163 167 173 179 181 191 193 197

199 211 223 227 229 233 239 241 251 257

263 269 271 277 281 283 293 307 311 313

317 331 337 347 349 353 359 367 373 379

383 389 397

Note this is not limited to numbers with three digits but to infinity as show below with numbers of 9 digits.

85412401 785412409 785412449 785412469 785412479 785412491 785412503 785412517

785412553 785412569 785412571 785412581 785412583 785412601 785412613 785412619

785412697 785412701 785412731 785412737 785412751 785412781 785412791 785412811

785412853 785412877 785412893 785412919 785413021 785413037 785413049 785413081

785413151 785413207 785413217 785413229 785413249 785413273 785413297 785413309

785413423 785413459 785413477 785413483 785413493 785413543 785413553 785413609

785413679 785413691 785413703 785413721 785413751 785413771 785413781 785413793

785413829 785413883 785413901 785413907 785413921 785413927 785413949 785413961

785414083 785414107 785414111 785414159 785414177 785414209 785414213 785414237

In all cases XXXn...YY – YY = XXXn... x 102 (n is the total number of the digits of the number reduced by 1).

Example 107 has three digits and so n = 2 and therefore 107 – 07 = 01 x 102 = 100. Given that 100 : 2 = 50 we have      

7 + 50 = 57 and 57 + 50 = 107. Therefore 7 ← 57 → 107 and so 57 x 2 = 114 = 7 + 107. Note here that we use this rule 

of digits to find the even which makes the sum of the two primes XnYY and YY.

785412613 – 13 = 785412600 : 2 = 392706300. And we have 13 +  392706300 = 392706313 and  392706313 +  

392706300 = 785412613. Therefore, 13 ← 392706313 →  785412613.

If we do not have a prime at YY such the case of the prime number 785412791, we can still perform the calculation.

  785412791 + 6 →  785412797 – 97 =  785412700 and 785412700 : 2 = 392706350 then  392706350 + 97 = 

392706447 and 392706447 + 392706350 = 785412797. We have  97 ←   392706447 →  785412797 and therefore         

(97 + 6) ←   392706447 →  (785412797  –  6). Then (103) ←   392706447 → (785412791).

17

Note this is not limited to numbers with three digits but to infinity as show below with numbers of 9 digits.
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 X00X – XX = 990.

13 and 1003 →  1003 – 13 and → 1000 – 10 = 990. Then, 990 : 2 = 495 → 13 + 495 = 508 and  1003 + 495 = 1498 → 

508 + 1498 = 2006 = 2 x 1003. Hence  13 ← 508 → 1003.

X000n...X – XX  = 9999n...0. Example 1000003 – 13 = 999990. 

 3d.  Digits in case XXY and XX. 

XXY – XX = XX ( 10 – 1) + Y. 

139 – 13. Given that (139) – 13 = (13 x 10 + 9) – 13 = 13 x (10 – 1) + 9 = 13 x 9 + 9 =  126.

126 : 2 = 63 → 13 + 63 = 76 and 139 + 63 = 202 → 76 + 202 = 278 : 2 = 139. Therefore

13 ← 76 →139.

173 – 17 = 17 x 9 + 3 = 156 → 156 : 2 = 78. Therefore 17 + 78 = 95. And 95 + 78 = 173.

17 ← 95 →173.

3e.  Digits in case YXX and XX → YXX – XX = Y00 or Yn...XX – XX = Yn...00.

661 – 61 = 600. Given 600 : 2 = 300 we have 61 + 300 = 361 and 361 + 300 = 661.

61 ← 361 → 661 → 361 x 2 = 61 + 661 → 722 = 61 + 661.  

 

673 – 73 = 600. Given 600 : 2 = 300 we have 73 + 300 = 373 and 373 + 300 = 673.

73 ← 373 → 673 → 373 x 2 = 73 + 673 → 746 = 73 + 673. 

3f. Common digits in primes XX...ZZ (ZZ are digits of primes p such that 3 ≤  p ≤  97)

The digits of primes ≤ 97 are often at the end of prime numbers of three digits and more to infinity.

Examples : 

101 103 107 109 113 127 131 137 139 149

151 157 163 167 173 179 181 191 193 197

199 211 223 227 229 233 239 241 251 257

263 269 271 277 281 283 293 307 311 313

317 331 337 347 349 353 359 367 373 379

383 389 397

Note this is not limited to numbers with three digits but to infinity as show below with numbers of 9 digits.

85412401 785412409 785412449 785412469 785412479 785412491 785412503 785412517

785412553 785412569 785412571 785412581 785412583 785412601 785412613 785412619

785412697 785412701 785412731 785412737 785412751 785412781 785412791 785412811

785412853 785412877 785412893 785412919 785413021 785413037 785413049 785413081

785413151 785413207 785413217 785413229 785413249 785413273 785413297 785413309

785413423 785413459 785413477 785413483 785413493 785413543 785413553 785413609

785413679 785413691 785413703 785413721 785413751 785413771 785413781 785413793

785413829 785413883 785413901 785413907 785413921 785413927 785413949 785413961

785414083 785414107 785414111 785414159 785414177 785414209 785414213 785414237

In all cases XXXn...YY – YY = XXXn... x 102 (n is the total number of the digits of the number reduced by 1).

Example 107 has three digits and so n = 2 and therefore 107 – 07 = 01 x 102 = 100. Given that 100 : 2 = 50 we have      

7 + 50 = 57 and 57 + 50 = 107. Therefore 7 ← 57 → 107 and so 57 x 2 = 114 = 7 + 107. Note here that we use this rule 

of digits to find the even which makes the sum of the two primes XnYY and YY.

785412613 – 13 = 785412600 : 2 = 392706300. And we have 13 +  392706300 = 392706313 and  392706313 +  

392706300 = 785412613. Therefore, 13 ← 392706313 →  785412613.

If we do not have a prime at YY such the case of the prime number 785412791, we can still perform the calculation.

  785412791 + 6 →  785412797 – 97 =  785412700 and 785412700 : 2 = 392706350 then  392706350 + 97 = 

392706447 and 392706447 + 392706350 = 785412797. We have  97 ←   392706447 →  785412797 and therefore         

(97 + 6) ←   392706447 →  (785412797  –  6). Then (103) ←   392706447 → (785412791).

17

In all cases XXXn...YY – YY = XXXn... x 102 (n is the total 
number of the digits of the number reduced by 1). Example 107 
has three digits and so n = 2 and therefore 107 – 07 = 01 x 102 = 
100. Given that 100 : 2 = 50 

we have
7 + 50 = 57 and 57 + 50 = 107. Therefore 7 ← 57 → 107 and so 57 
x 2 = 114 = 7 + 107. Note here that we use this rule of digits to find 
the even which makes the sum of the two primes XnYY and YY.
785412613 – 13 = 785412600 : 2 = 392706300. And we have 
13 + 392706300 = 392706313 and 392706313 + 392706300 = 
785412613. Therefore, 13 ← 392706313 → 785412613.

If we do not have a prime at YY such the case of the prime number 
785412791, we can still perform the calculation. 785412791 + 6 
→ 785412797 – 97 = 785412700 and 785412700 : 2 = 392706350 
then 392706350 + 97 = 392706447 and 392706447 + 392706350 
= 785412797. We have 97 ← 392706447 → 785412797 and 
therefore (97 + 6) ← 392706447 → (785412797 – 6). Then (103) 
← 392706447 → (785412791).

3h. Convert an even in sum of two primes by starting with 
close or neighboring prime numbers :

These rules will now be used to put Goldbach's strong conjecture 
into practice and thus convert an even number into the sum of two 
prime numbers. Although some specific numbers are used here, 
the method applies to any even > 4 as described.

The method is to look for two prime numbers around the even to 
convert into the sum of two prime numbers and put them in the 
form Xn...YY – YY and from there convert it. Here is a detailed 
example, but we will limit ourselves to a single conversion 
afterwards.

E = 84 as an example.
83 – 3 = 80 : 2 = 40, then 3 + 40 = 43, and 43 + 40 = 83.
3 ← 43 → 83 ↔ 3(+2) ← 43 (-1) → 83(- 4) ↔ (- 5) + (- 2) = -3. 
If subtracting x from the terms of the equation on the right or left 
is the same as subtracting x/2 of the center. However, the center 
remains unchanged if subtracting and adding a same quantity from 
the two terms. In this example, we added 2 to 3 and subtracted 4 
from 83 which means subtraction of 2 then we subtract 1 from the 

center such that 3(+2) ← 43(-1) → 83(- 4) ↔ 5 ← 42 → 79. We 
continue by the addition and subtraction of equal 6n gaps on terms 
on the left and right.

3(+2) ← 43(-1) → 83(- 4) ↔ 5 ← 42 → 79 ↔ 11 ← 42 → 73 ↔ 
17 ← 42 → 67 ↔
23(+24) ← 42 → 61(-24) ↔ 47 ← 42 → 37 ↔ 53(+8) ← 42 → 
31(-8) ↔ 61 ← 42 → 23
42 x 2 = 84 = 5 + 79 = 11 + 73 = 17 + 67 = 23 + 61 = 47 + 37 = 53 
+ 31 = 61 + 23.

Let us convert 240 in sum of two primes following the same 
method. First we put 240 in the form of YXX and XX so we can 
apply one of the rules shown above such like 240 = 70 + 170. The 
sum chosen must give numbers close to primes such that 67 and 
73 for 70 or 173 for 170. The numbers 173 and 73 are in the form 
YXX and XX and can be used in a subtraction like seen above.

173 – 73 = 100 : 2 = 50 and so we have 73 + 50 = 123 and 123 + 
50 = 173. Therefore 73 ← 123 → 173 but 123 x 2 = 246 = 73 + 
173. We therefore make (73 – 6) ← 123(-3) → 173(-0) → (67) ← 
120 → 173 → 240 = 67 + 173. Or 73 ← 123(-0) → (173 – 6) → 
240 = 73 + 167.

In both (73 – 6) ← 123 → 173 and 73 ← 123 → (173 – 6) it is 
needed to equilibrate this way :
(73 – 6) ← 123 - 3 → 173 and 73 ← 123 - 3 → (173 – 6).
Let us convert a number like 1268. Then using the same calculation 
as above let us pose 1268 = 38 + 1230. We take 1268 + 6 = 1274 
= 37 + 1237.
Then let take a close prime 1237. Then 1237 – 37 = 1200 : 2 = 600.
We have 37 + 600 = 637 and 637 + 600 = 1237. We then have 37 
← 637 → 1237. But 637 x 2 = 1274 = 37 + 1237 = 1274 and 1274 
– 1268 = 6. Therefore (37 – 6) ← 637(-3) → 1237 ↔ 31 ← 634 → 
1237 and then 31 + 1237 = 1268. Otherwise 37 ← 637 → (1237 – 
6) → 37 + 1231 = 1268. Or 37 (– 18) ← 637 → (1237 + 12) → 19 
+ 1249 = 1268. In all these cases we have to substract 3 from the 
middle namely 637 – 3 = 634.

1)Note that in both two examples cited above the conversion of 
240 and 1268 we have a difference = 6n (n = 1) which is the best 
way to find out new primes and increase the combinations of 
primes in sums. In the case of 340 we start with 346 = 73 + 173 
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and in the latter we start with 1274 = 37 + 1237.
2)N1 ← M → N2 is an equation or a balance that we can modify 
by adding and subtracting the same quantity from both sides (N1 
and N2). If we add and subtract a quantity x for from N1 and N2, 
we must add or subtract x/2 to or of M.

Let convert 18985474. We add 6n to it like 18985474 + 6 = 
18985480. Then examine the list of prime numbers so that we 
have 18985480 = 29 + 18985451. We then have 18985451 – 51 
= 18985400 : 2 = 9492700 + 51 = 9492751 and then 9492751 + 
9492700 = 18985451. Therefore 51 ← 9492751 → 18985451.

But 9492751 x 2 = 18985502 – 18985474 = 28. We then have 
to search in primes list to find out how to add them by standing 
close to 18985451. Then we have 51 (- 28) ← 9492751 (– 14) 
→ 18985451 and finally 23 ← 9492737 → 18985451. Therefore, 
9492737 x 2 = 18985474 = 23 + 18985451.

We will do the same method again but this time by drawing up 
a table and thus writing the step-by-step instructions to follow 
to apply this method. Let us see this with a number like 489776. 
First 489776 + 6 = 489782 which is converted into the sum of two 
terms, the larger of which is prime such that for example 489782 = 
15 + 489761. We then establish the balance equation between the 
two terms of the addition and the average at the center as shown 
above.

489761 – 61 = 489760 : 2 = 244880 + 61 = 244941, and then 
244941 + 244880 = 489821. Then 61 ← 244941 → 489821 (not 
prime). However, 244941 x 2 = 489882 as expected. We have 
489882 – 489776 = 106. We will have to remove 106 units from 
this number to find our initial number 489776 while converting it 
into sums of two prime numbers.

 - n 489821↓ Prime or not + n 61↑ Prime or not

106 489715 not 0 61  prime

6 489709 not 6 67  prime

6 489703 not 6 73 prime

6 489697 not 6 79 prime

6 489691 prime 6 85 not

12 489679 prime 12 97 prime

6 489673 prime 6 103 prime

60 489613 prime 60 163 prime

60 489553 prime 60 223 prime

Therefore we get 4 conversion of the number  489776 = 489679 + 97 ;  489776 = 489673 + 103 ; 

489776 = 489613 + 163 ; and 489776 = 489553 + 223. This can be continued further.

Let take a number like 890 and then convert it in sum of two primes by manipulation of digits. We have 890 = 880 + 10 

→ 10 is either 7 + 3 or 9 + 1 to get a prime. We then pose the possible combinations either 883 + 7 or 881 + 9. 

Therefore 880 = 883 + 7 but in the second case 9 is not prime, but we can transfer units from 881 to 9 and so :

881 – 4 = 877 and 9 + 4 = 13 → 890 = 13 + 877

881 – 22 = 859 and 9 + 22 = 31 → 890 = 31 + 859

Note we can not use a number with unit digit = 6 to add to 9 because we will get 5 ad thus not prime.

881 –  853 = 28 and 9 + 28 = 37  → 890 = 37 + 853

881 – 52 = 829 and 9 + 52 = 61  → 890 = 61 + 829

and so on.
Let us take another example. An even number has a unit digit = 0, 2, 4, 6, 8. The number 78956. Here we start with

78956 = 78950 + 6 with 6 = 1 + 5 or 6 = 3 + 3. Then we make 78956 = 7895 3 + 3 or  78956 = 78951 + 5. However

neither 78953 nor 78951 is prime. We can this time pose  78956 = 78940 + 16 with 16 = 15 + 1 ; 13 + 3 ; 11 + 5 ; and 9

+ 7. Then  78956 = 78941 +  15 (not primes) ;  78956 = 78943 +  13 ;   78956 = 78949 + 7 but none are primes.

However, all those sums give us chances to find out two primes that sum up. For instance, 78956 = 78953 + 3 =

(78919 + 34) + 3 = 78919 + 37 (both primes).

78956 = 78953 + 3 = ( 78889 + 64) + 3 = 78889 + 67 (both primes).

78956 = 78953 + 3 = ( 78877 + 76) + 3 = 78877 + 79 (both primes) and so on.

Let E be an even number such that E = (A↓) + (1↑) or E = (A↓) + (7↑). A is an odd number that can be prime or 

composite but not 3n. So E = (A↓ – 6n) + (1↑ + 6n) or E = (A↓ – 6n) + (7↑ + 6n) such that A - 6n and 1 + 6n or 7 + 6n  

( 1 ≤ n ≤ +∞) will produce other odd numbers that are either composite or prime. Let us assume this time that A is in 

infinity and therefore (A - 6n↓) will tend to 0. Conversely, (1 + 6n↑) or (7 + 6n↑) will tend to infinity. We will therefore 

admit that A - 6n↓ or 1 + 6n↑ or 7 + 6n↑ will produce all the prime numbers that we know or that exist. Whether we 

start from infinity to 0 or from 0 to infinity, we will see the same prime numbers with the same gaps in opposite 

directions. Since every prime number occupies a position, we can predict with certainty that at times both A - 6n↓ and   

1 + 6n↑ or 7 + 6n↑ are primes.

During this process, the equidistant prime numbers continue to add up, however large they may be. The gaps devoid of 

primes are compensated by the infinite inter-prime gaps that exist between the prime numbers taken two by two to 

infinity (Figure 1).

Figure 1 : It shows that while P4 – P3 might be relatively large because of the empty sequence of primes, the difference

between P3 and P2 or P1 (which are close to 0) would be as large or even larger. Let us call P0 all primes close to 0.

The very higher density of primes P0 increases the chances that a difference P3  – P0 = P4  – P3 which is a correct

verification of the strong Goldbach conjecture.
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Therefore we get 4 conversion of the number 489776 = 489679 
+ 97 ; 489776 = 489673 + 103 ; 489776 = 489613 + 163 ; and 
489776 = 489553 + 223. This can be continued further.

Let take a number like 890 and then convert it in sum of two 
primes by manipulation of digits. We have 890 = 880 + 10 → 10 
is either 7 + 3 or 9 + 1 to get a prime. We then pose the possible 
combinations either 883 + 7 or 881 + 9. Therefore 880 = 883 + 7 
but in the second case 9 is not prime, but we can transfer units from 
881 to 9 and so : 881 – 4 = 877 and 9 + 4 = 13   → 890 = 13 + 877
881 – 22 = 859 and 9 + 22 = 31  → 890 = 31 + 859 

Note we cannot use a number with unit digit = 6 to add to 9 because 
we will get 5 ad thus not prime. 881 – 853 = 28 and 9 + 28 = 37 → 
890 = 37 + 853 881 – 52 = 829 and 9 + 52 = 61	 → 890 = 61 
+ 829 and so on.

Let us take another example. An even number has a unit digit = 0, 
2, 4, 6, 8. The number 78956. Here we start with 78956 = 78950 + 
6 with 6 = 1 + 5 or 6 = 3 + 3. Then we make 78956 = 7895 3 + 3 
or 78956 = 78951 + 5. However neither 78953 nor 78951 is prime. 
We can this time pose 78956 = 78940 + 16 with 16 = 15 + 1 ; 13 
+ 3 ; 11 + 5 ; and 9 + 7. Then 78956 = 78941 + 15 (not primes) 
; 78956 = 78943 + 13 ; 78956 = 78949 + 7 but none are primes. 

However, all those sums give us chances to find out two primes 
that sum up. For instance, 78956 = 78953 + 3 = (78919 + 34) + 3 
= 78919 + 37 (both primes). 78956 = 78953 + 3 = ( 78889 + 64) + 
3 = 78889 + 67 (both primes). 78956 = 78953 + 3 = ( 78877 + 76) 
+ 3 = 78877 + 79 (both primes) and so on.

Let E be an even number such that E = (A↓) + (1↑) or E = (A↓) + 
(7↑). A is an odd number that can be prime or composite but not 
3n. So E = (A↓ – 6n) + (1↑ + 6n) or E = (A↓ – 6n) + (7↑ + 6n) such 
that A - 6n and 1 + 6n or 7 + 6n ( 1 ≤ n ≤ +∞) will produce other 
odd numbers that are either composite or prime. Let us assume 
this time that A is in infinity and therefore (A - 6n↓) will tend to 
0. Conversely, (1 + 6n↑) or (7 + 6n↑) will tend to infinity. We will 
therefore admit that A - 6n↓ or 1 + 6n↑ or 7 + 6n↑ will produce all 
the prime numbers that we know or that exist. Whether we start 
from infinity to 0 or from 0 to infinity, we will see the same prime 
numbers with the same gaps in opposite directions. Since every 
prime number occupies a position, we can predict with certainty 
that at times both A - 6n↓ and 1 + 6n↑ or 7 + 6n↑ are primes.

During this process, the equidistant prime numbers continue to add 
up, however large they may be. The gaps devoid of primes are 
compensated by the infinite inter-prime gaps that exist between the 
prime numbers taken two by two to infinity (Figure 1).
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 - n 489821↓ Prime or not + n 61↑ Prime or not

106 489715 not 0 61  prime

6 489709 not 6 67  prime

6 489703 not 6 73 prime

6 489697 not 6 79 prime

6 489691 prime 6 85 not

12 489679 prime 12 97 prime

6 489673 prime 6 103 prime

60 489613 prime 60 163 prime

60 489553 prime 60 223 prime

Therefore we get 4 conversion of the number  489776 = 489679 + 97 ;  489776 = 489673 + 103 ; 

489776 = 489613 + 163 ; and 489776 = 489553 + 223. This can be continued further.

Let take a number like 890 and then convert it in sum of two primes by manipulation of digits. We have 890 = 880 + 10 

→ 10 is either 7 + 3 or 9 + 1 to get a prime. We then pose the possible combinations either 883 + 7 or 881 + 9. 

Therefore 880 = 883 + 7 but in the second case 9 is not prime, but we can transfer units from 881 to 9 and so :

881 – 4 = 877 and 9 + 4 = 13 → 890 = 13 + 877

881 – 22 = 859 and 9 + 22 = 31 → 890 = 31 + 859

Note we can not use a number with unit digit = 6 to add to 9 because we will get 5 ad thus not prime.

881 –  853 = 28 and 9 + 28 = 37  → 890 = 37 + 853

881 – 52 = 829 and 9 + 52 = 61  → 890 = 61 + 829

and so on.
Let us take another example. An even number has a unit digit = 0, 2, 4, 6, 8. The number 78956. Here we start with

78956 = 78950 + 6 with 6 = 1 + 5 or 6 = 3 + 3. Then we make 78956 = 7895 3 + 3 or  78956 = 78951 + 5. However

neither 78953 nor 78951 is prime. We can this time pose  78956 = 78940 + 16 with 16 = 15 + 1 ; 13 + 3 ; 11 + 5 ; and 9

+ 7. Then  78956 = 78941 +  15 (not primes) ;  78956 = 78943 +  13 ;   78956 = 78949 + 7 but none are primes.

However, all those sums give us chances to find out two primes that sum up. For instance, 78956 = 78953 + 3 =

(78919 + 34) + 3 = 78919 + 37 (both primes).

78956 = 78953 + 3 = ( 78889 + 64) + 3 = 78889 + 67 (both primes).

78956 = 78953 + 3 = ( 78877 + 76) + 3 = 78877 + 79 (both primes) and so on.

Let E be an even number such that E = (A↓) + (1↑) or E = (A↓) + (7↑). A is an odd number that can be prime or 

composite but not 3n. So E = (A↓ – 6n) + (1↑ + 6n) or E = (A↓ – 6n) + (7↑ + 6n) such that A - 6n and 1 + 6n or 7 + 6n  

( 1 ≤ n ≤ +∞) will produce other odd numbers that are either composite or prime. Let us assume this time that A is in 

infinity and therefore (A - 6n↓) will tend to 0. Conversely, (1 + 6n↑) or (7 + 6n↑) will tend to infinity. We will therefore 

admit that A - 6n↓ or 1 + 6n↑ or 7 + 6n↑ will produce all the prime numbers that we know or that exist. Whether we 

start from infinity to 0 or from 0 to infinity, we will see the same prime numbers with the same gaps in opposite 

directions. Since every prime number occupies a position, we can predict with certainty that at times both A - 6n↓ and   

1 + 6n↑ or 7 + 6n↑ are primes.

During this process, the equidistant prime numbers continue to add up, however large they may be. The gaps devoid of 

primes are compensated by the infinite inter-prime gaps that exist between the prime numbers taken two by two to 

infinity (Figure 1).

Figure 1 : It shows that while P4 – P3 might be relatively large because of the empty sequence of primes, the difference

between P3 and P2 or P1 (which are close to 0) would be as large or even larger. Let us call P0 all primes close to 0.

The very higher density of primes P0 increases the chances that a difference P3  – P0 = P4  – P3 which is a correct

verification of the strong Goldbach conjecture.
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Figure 1 : It shows that while P4 – P3 might be relatively large because of the empty sequence of primes, the difference between P3 and 
P2 or P1 (which are close to 0) would be as large or even larger. Let us call P0 all primes close to 0. The very higher density of primes 
P0 increases the chances that a difference P3 – P0 = P4 – P3 which is a correct verification of the strong Goldbach conjecture. Because 
this implies that E/2 - P0 = P4 - E/2 knowing that E/2 is very close to P3. Hence P0 and P4 are equidistant at E/2.

4. Discussion
The main idea of this article lies in the fact that Goldbach's strong 
conjecture is associated with the progression of natural integers 
from 0 to infinity, which results in precise gaps between prime 
numbers. The gap of 6 is the most regular between primes 6x + 1 
on the one hand and primes 6x – 1 on the other. This progression 
means that any integer is preceded and followed by a prime 
number. Since all 2n distances are possible between the primes 6x 
+ 1 and 6x – 1, it follows that a natural number is always located 
at an equal distance from two primes of which one precedes it and 
the other follows it. This paper shows that prime equidistance is 
omnipresent among integers.

Two new concepts are introduced in this article for the first time. 
The first is the Goldbach gap, noted here as t, which for any even 
number noted E > 4 means the gap separating its half E/2 from 
two symmetrically equidistant primes p and p' such that p' > p and 
such that E/2 - t = p and E/2 + t = p'. E/2 represents any natural 
number > 2 and since p ─E/2─p' then 2 x E/2 = E = p + p'. Without 
Goldbach's gaps, an even number would not be the sum of two 
primes. The second concept is the Goldbach transposition, which 
means that adding a given quantity to a number will result in a 
prime number, not necessarily in the same position, but somewhere 
between 0 and E, or in π(E). If an integer is an even 3n, we should 
add to it values of prime numbers in an increasing order like for 
example (E = 120, E/2 = 60, to get primes we do 60 + 7 ; 60 + 11 ; 
60 + 13 ; 60 + 17 ; 60 + 19 ; 60 + 23 ;...). If it is non-3n, then odd 3 
n values should be added to it (like for example 80 + 3 ; 80 + 9 ; 80 
+ 15 ; 80 + 21 ; 80 + 27,...). Even numbers obviously differ in their 
values, but Goldbach's transposition means that there are common 
rules governing the appearance of equidistant primes.

Using 3x + 5 and 3x– 5 equations ad by examining the remainders 
(r) of Euclidean divisions of 3x by prime factors q < its square 
root, if 5 = q – r, we can understand why a number 3x + 5 is prime 
or composite and in a similar way if 5 = r the 3x – 5 number is 
composite. Both equations show that any integer > 4 is bounded 
by two equidistant primes. This led to the development of a 
new algorithm for converting even numbers into the sum of two 
primes, whatever the even number in question. Given the equality 
or balance X─E/2─Y, we do (X +6n)-E/2─(Y -6n) until we obtain 
p'─E/2─p, which means 2 x E/2 = E = p' + p. This article is the first 

to offer this conversion algorithm. Others have used the equation 
6x ± 1 to prove Goldbach's strong or to locate the equidistant 
primes around composite numbers [11,12]. However, the present 
article is original in that it uses a different equation 3x ± 5 by 
examining the remainders of Euclidean divisions, and furthermore 
shows that any integer > 4 is surrounded by equidistant primes and 
not just composites. In addition, this article is of practical interest, 
as it proposes two algorithms that could be easily programmed and 
links the key digits of the prime numbers to the gaps that separate 
them and thus to Goldbach's strong conjecture. Prime numbers 
digits can also be used to predict gaps between primes, and even 
to use a near or neighboring prime to convert an even into the sum 
of two primes. This approach is also original in this article. Using 
unit digits of primes, the proposed algorithm of even conversion 
in sum of two primes can be greatly improved by only focusing on 
primes whose unit digits are suitable to form the even.

All the data in this article argue strongly in favor of the truth of 
Goldbach's strong conjecture at infinity.

The other idea that prevails in mathematics is the following 
question: if we start from evens (and not with prime numbers as 
usually done), how many prime numbers will they be the sum of? 
However let's be precise, Goldbach did not rule that every even is 
only the sum of two prime numbers, but he just said that every even 
is the sum of two prime numbers. In mathematics, we sometimes 
emphasize propositions or conjectures with words like only or if 
only if to set the context, but Goldbach used no such emphasis. 
An even number can therefore be the sum of more than two prime 
numbers; the larger it is, the more it is the sum of several prime 
numbers, or even an infinity. An infinite even number is the sum of 
an infinity of even numbers, each of which is the sum of two prime 
numbers or even much more. But what Goldbach's conjecture 
means is that the sum of two prime numbers is the most common 
and invariable form of all evens. While two evens of different 
values can be sums of variable numbers of primes, Goldbach's 
conjecture tries to find a common and invariant and minimalist 
property, i.e. every even is the sum of TWO prime numbers.

Goldbach wanted an invariable law for all evens which unites them 
all and any law is defined in minimal conditions otherwise it would 
be subject to exceptions. Therefore the sum of two prime numbers 

E/2

↓
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would be this law common and true to all the even numbers (which 
nevertheless continue to vary by the possible number of prime 
numbers of which they can be the sum). This is undoubtedly the 
most decisive point and the deepest meaning of this conjecture. 
It would rather be wise to know if all the even numbers are the 
sum of two prime numbers at the same time as they are the sum of 
several prime numbers. However, this article shows that an integer 
can only be surrounded by two equidistant prime numbers at a 
time and therefore Goldbach's conjecture is correct. This article 
sets up an algorithm that starts with an even to convert in sums of 
two primes.

What this article shows is that any integer (E/2 or n) > 2 is in 
the middle of two or more equidistant prime numbers whose sum 
always gives the same even number (E or 2n) > 4. This configuration 
of numbers is natural, it is in this way that the natural numbers 
progress unit by unit to infinity. The natural numbers form a single 
set and therefore equidistant prime numbers will go to infinity.
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