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Abstract
Currently, it is generally accepted that atomic nuclei consist of protons and neutrons and nuclear forces are explained 
by the action of a special strong interaction. It occurs due to the fact that nucleons exchange special particles 
- gluons. This article proves that the attraction between particles in nuclei can be explained by the well-known 
quantum mechanical effect, which was first described by W. Heitler and F. London about a hundred years ago. These 
classics of quantum mechanics proved that there is an attraction between two protons if they exchange an electron 
(in this case a relativistic electron). This makes gluons unnecessary. The proposed proton-electron model makes it 
possible to calculate the binding energy of nuclei with satisfactory accuracy.
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1. Introduction
British scientist William Gilbert formulated about 400 years 
ago a postulate that can be considered the main postulate of 
the natural sciences [1]. According to Gilbert, all theoretical 
constructions claiming to be scientific should be tested and 
confirmed experimentally. Despite the fact that nowadays it is 
apparently impossible to find a researcher who would disagree 
with this statement, a number of modern physical theories do not 
satisfy this principle [2]. In the physics of the microcosm, this 
refers to those theories from which it is impossible to calculate 
the main characteristic parameters of the objects under study. 
These include existing models of nuclear physics, which do 
not make it possible to calculate the masses of atomic nuclei. 
An alternative approach to solving this problem is discussed 
below. This new approach to the problem of the nature of strong 
interaction is based on the effect of attraction described by the 
classics of quantum mechanics almost a hundred years ago. 
This attraction occurs between protons during the exchange of 
electron [3]. To describe the attraction of nuclear objects, it is 
necessary to take into account that electrons in this case must be 
relativistic [4,5].

In this case, neutron is considered as a composite particle 
consisting of proton and relativistic electron, which makes it 
possible to fairly accurately estimate the mass of neutron, its 
magnetic moment and decay energy.

What are the features of the forces acting between nucleons 
inside nuclei?

The enormous binding energy of nucleons indicates that these 
inter-nucleon forces are created by a very intense interaction. 
This interaction has the character of attraction if the nucleons are 
at short distances from each other, despite the strong electrostatic 
repulsion between the protons. Nuclear forces are short-acting - 
at distances between nucleons exceeding about 2 • 10-13 cm, 
their action is no longer detectable. At distances less than 10-
13 cm, the attraction of nucleons is replaced by repulsion. The 
intra-nuclear interaction is not Coulomb, it does not depend on 
the charge of the nucleons. The nuclear forces depend on the 
mutual orientation of spins of interacting nucleons. For example, 
neutron and proton are held together to form deuteron only when 
their spins are parallel to each other. 

Nuclear forces have a saturation property (which means that 
each nucleon in the nucleus interacts with a limited number of 
nucleons). This property follows from the fact that the binding 
energy per nucleon is approximately the same for all nuclei, 
starting from 4He. In addition, the saturation of nuclear forces is 
also indicated by the proportionality of the volume of the nucleus 
to the number of nucleons forming it. The dependence of the 
binding energy (in MeV) per nucleon on the mass number of the 
nucleus is shown in Figure 1. From this figure, it can be seen that 
there are two different mechanisms that determine the nuclear 
forces in light and heavy nuclei differently. In solving these 
problems, the first important step is to build a neutron model 
that makes it possible to predict its main observable properties. 
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Figure 1: The binding energy per one nucleon of the nucleus.
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From this figure it can be seen that there are two different mechanisms that

determine the nuclear forces in light and heavy nuclei differently.

In solving these problems, the first important step is to build a neutron

model that makes it possible to predict its main observable properties.

2 Electromagnetic model of neutron

2.1 Neutron and the quark model

There are several theoretical constructions of the twentieth century that need to

be revised due to their incompleteness or disagreement with the measurement

data [2]. Apparently, the quark model of elementary particles can be replaced

by a description of their excited states [6].

The formation of the quark model in the chain of the science of the structure

of matter seems to be quite consistent: all substances consist of molecules and
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2. Electromagnetic Model of Neutron
2.1. Neutron and the Quark Model
There are several theoretical constructions of the twentieth 
century that need to be revised due to their incompleteness 
or disagreement with the measurement data [2]. Apparently, 
the quark model of elementary particles can be replaced by a 
description of their excited states [6]. The formation of the quark 
model in the chain of the science of the structure of matter seems 
to be quite consistent: all substances consist of molecules and 
atoms. The central elements of atoms are nuclei. Nuclei consist 
of protons and neutrons, which in turn consist of quarks. The 
quark model assumes that almost all elementary particles consist 
of quarks. The quark structure of nucleons is of particular interest 
in this case. It seems that experts in elementary particle physics 
initially proceeded from the assumption that at the creation of 
the world, suitable parameters were individually selected for 
each elementary particle: charge, spin, mass, magnetic moment, 
etc. Gell-Mann simplified this work somewhat. He developed 
a rule according to which a set of quarks determines the total 
charge and spin of the formed elementary particle but masses and 
magnetic moments of these particles do not fall under this rule. 
The Gell-Mann quark model assumes that quarks, which make 
up all elementary particles (with the exception of the lightest), 
must have a fractional (equal to 1/3 e or 2/3 e) electric charge.

In the 60s, after the formulation of this model, many 
experimenters tried to find particles with a fractional charge but 
without success. In order to explain this, it was assumed that 
quarks are characterized by a confinement, i.e. a property that 
prohibits them from somehow manifesting themselves in a free 
state. At the same time, it is clear that confinement removes 

quarks from subordination to the Gilbert principle. In this form, 
the model of quarks with fractional charges claims to be scientific 
without confirmation by measurement data. It should be noted 
that the quark model successfully describes some experiments 
on the scattering of particles at high energies, for example, the 
formation of jets or the feature of scattering of high-energy 
particles without destruction. However, this does not seem to be 
enough to recognize the real existence of quarks with a fractional 
charge. In the 30s of the last centuries, theoretical physicists, due 
to the lack of necessary experimental data, formed the opinion 
that neutrons, like protons, are elementary particles [7]. In the 
Gell-Mann quark model, the neutron is also assumed to be an 
elementary particle in the sense that it consists of a different set 
of quarks than proton.

However, the fact that neutron is an unstable particle and decays 
into proton and electron (+ antineutrino) gives reason to attribute 
it to non-elementary composite particles. The quark model does 
not aim to predict the basic properties of neutron, such as its 
mass, magnetic moment and decay energy. The electromagnetic 
model of neutron makes it possible to successfully evaluate 
these parameters [4]. Suppose that neutron, as well as a Bohr 
hydrogen atom, consists of proton around which electron rotates 
at a very small distance from it. Near proton, the electron's 
motion must be relativistic.

2.2. The Interaction of Relativistic Electron with Proton
Consider a composite particle in which an electron having a rest 
mass me and a charge ―e is moving around a proton in a circle 
of radius Re with a speed ue → c (Figure 2).

Figure 2: A system consisting of a proton and a heavy (relativistic) electron,

revolving around a common center of mass.

The relativistic factor characterizing the electron in this case is equal to

γ =
ϑ√

1− ϑ2

Mp

me
. (5)

2.2.1 Larmor’s theorem

To describe the characteristic feature of proton motion along a circle of radius

Rp, we can use Larmor’s theorem [8]. According to this theorem, in a reference

frame rotating with proton at a frequency of Ω, a magnetic field is applied to

it. This field is determined by its gyromagnetic ratio

HL =
Ω

ξ e
2Mpc

. (6)

Where ξ =2.79 is the magnetic moment of the proton in units of Bohr magne-

tons.

As a result of the action of this field, the proton magnetic moment turns

out to be oriented perpendicular to the plane of rotation. In other words, we

can say that due to the interaction with this field, the rotation of the electron

should occur in the plane of the ”equator” of proton.

2.2.2 Quantization of equilibrium orbit

It can be assumed that, as in the formation of a stable orbit in a hydrogen

atom, the orbit of a relativistic electron will be stable if an integer number of
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Figure 2: A System Consisting of a Proton and a Heavy (Relativistic) Electron, Revolving Around a Common Center of Mass

Since we initially assume that the motion of the electron is likely to be relativistic, it is necessary to take into account the relativistic 
effect of the growth of its mass:

composite particles.

The quark model does not aim to predict the basic properties of neutron,

such as its mass, magnetic moment and decay energy. The electromagnetic

model of neutron makes it possible to successfully evaluate these parameters

[4].

Suppose that neutron, as well as a Bohr hydrogen atom, consists of proton

around which electron rotates at a very small distance from it. Near proton,

the electron’s motion must be relativistic.

2.2 The interaction of relativistic electron with proton

Consider a composite particle in which an electron having a rest mass me and

a charge −e is moving around a proton in a circle of radius Re with a speed

ve → c (Fig.(2)).

Since we initially assume that the motion of the electron is likely to be

relativistic, it is necessary to take into account the relativistic effect of the

growth of its mass:

m∗
e = γme, (1)

where the relativistic factor

γ =
1√

1− β2
(2)

and β = v
c .

The rotation of the heavy electron m∗
e does not allow to consider the proton

as at rest. The proton will also move, revolving around the center of mass

common with the heavy electron.

Let’s introduce a parameter characterizing the ratio of the mass of a rela-

tivistic electron to the mass of proton:

ϑ =
γme

Mp/
√
1− β2

p

. (3)

It follows from the condition of equality of momenta that βp = ϑ therefore

the radii of the orbits of the electron and proton can be written as:

Re =
Rep

1 + ϑ
, Rp =

Repϑ

1 + ϑ
. (4)

Where Rep = Re +Rp.
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That is, in accordance with this assumption, the stability condition of the

electronic orbit takes the form:

rc
Re

=
ϑ

n
√
1− ϑ2

Mp

me
=

γ

n
(9)

Where rc =
�

mec
is Compton radius.

2.2.3 The kinetic energy of rotating electron

The kinetic energy of a relativistic electron is expressed by the equality:

Ee
kin = (γ − 1) ·mec

2 (10)

Due to the assumption of the electron to be ultrarelativistic

Ee
kin ≈ γ ·mec

2 (11)

In this case, the centrifugal force acts on the electron:

F1 = γme[ω[ω,Re]] =
γmec

2

Re
(12)

The kinetic energy of proton is equal to:

Ep
kin =

(
1√

1− ϑ2
− 1

)
·Mpc

2 (13)

An additional contribution to the kinetic energy of electron creates a mag-

netic field that occurs when it rotates. The energy of this field is equal to

EΦ =
ΦI

2c
, (14)

Due to the fact that the electron motion in the orbit is quantized, the magnetic

flux penetrating the ring of radius Re must be equal to the quantum of the

magnetic flux Φ0:

Φ = Φ0 =
2π�c
e

. (15)
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we have

The force arising at the same time, tending to break the current ring, turns out to be equal

The magnetic energy created by the rotation of a proton is much less:

The force corresponding to this energy is applied to proton and does not directly affect the electron equilibrium orbit.

Thus, the total kinetic energy of the electron, taking into account the energy of the magnetic field that it creates when rotating:

2.2.4. The Coulomb Interaction in the System of Relativistic Electron + Proton
The energy of Coulomb attraction between a proton and a relativistic electron is [8], §24:

Where                is the fine structure constant

Therefore, the Coulomb attraction force acting between these particles is equal to
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2.2.5. Interaction of Electron with Magnetic Field of Proton
In the present case a proton possesses two magnetic moments. This is its own internal magnetic moment:

and the orbital magnetic moment which occurs due to the fact that proton rotates in an orbit of radius Rp:
and the orbital magnetic moment which occurs due to the fact that proton

rotates in an orbit of radius Rp:

µ0p =
eϑRp

2
(24)

Therefore, the energy of interaction of rotating electron with the proton

magnetic field consists from two components:

Eµ =
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2R2
e

(
µ0p − µp

)
. (25)

In order for the system energy to be less, the magnetic moments µp and µ0p

must be oppositely directed.
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(26)

The magnetic moment of electron is not considered because, as will be shown

below, the generalized momentum (spin) of the electron orbit is equal to zero

and there is no direction for the selected orientation of the electron magnetic

moment in the system.

2.2.6 Equilibrium electron orbit

The equilibrium condition for the electron orbit is:

4∑
i=1

Fi = 0. (27)

At summing of Eq.(12), Eq.(22),Eq.(18) and Eq.(26)
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= 0. (28)

and after simplifying transformations taking into account Eq.(9) we get:
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Therefore, the energy of interaction of rotating electron with the proton magnetic field consists from two components:

In order for the system energy to be less, the magnetic moments μp and μ0p  must be oppositely directed.

The force that acts on the rotating electron can be written as:

The magnetic moment of electron is not considered because, as will be shown below, the generalized momentum (spin) of the 
electron orbit is equal to zero and there is no direction for the selected orientation of the electron magnetic moment in the system.

2.2.6. Equilibrium Electron Orbit
The equilibrium condition for the electron orbit is:

At summing of Eq.(12), Eq.(22), Eq.(18) and Eq.(26)

and after simplifying transformations taking into account Eq.(9) we get:

2.3. The Basic State of Neutron
The basic state of this system with the minimal energy is realized at n=1, that is, the length of the electron orbit is equal to the de 
Broglie wavelength.

We need to find a solution of Eq.(29) under this condition:
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is, the length of the electron orbit is equal to the de Broglie wavelength..

We need to find a solution of Eq.(29) under this condition:

3

2
− αγ

[
1

(1 + ϑ)2
+

ϑ2

2
− ξγ

2(1 + ϑ)3
me

Mp

]
= 0. (30)

As the result we have

ϑ = 0.1991 (31)

and

Re = 1.2413 · 10−13cm (32)

2.4 Equilibrium electron orbit. Approximate solution

The complex Eq.(30) defining the parameter ϑ can be simplified. Its decompo-

sition gives an approximate expression

ϑ1 ≈ 3
√
π

2

me

αMp
≈ 0.1985. (33)

We can introduce the value of the new fundamental length R∗, expressed in

terms of the Compton radius rc or the Bohr radius aB :

R∗ = αrc = α2aB =
e2

mec2
= 2.8183 · 10−13cm (34)

The radius of the electron orbit is equal in order of magnitude to the fundamental

length R∗:

Re = rC

√
1− ϑ2

ϑ

me

Mp
≈ R∗√

8
= 9.9 · 10−14cm. (35)

This value is consistent with the estimate obtained earlier [4]:

Re =
�
c

√
αξ

2meMp
= 9.1 · 10−14cm (36)

2.4.1 Spin of neutron

The total generalized electron momentum can be written as

S0e =
[
Re × γ

{
mec−

e

c
Ae

}]
(37)

10

As the result we have



Adv Theo Comp Phy, 2024       Volume 7 | Issue 4 | 6

2.3 The basic state of neutron

The basic state of this system with the minimal energy is realised at n=1, that

is, the length of the electron orbit is equal to the de Broglie wavelength..

We need to find a solution of Eq.(29) under this condition:

3

2
− αγ

[
1

(1 + ϑ)2
+

ϑ2

2
− ξγ

2(1 + ϑ)3
me

Mp

]
= 0. (30)

As the result we have

ϑ = 0.1991 (31)

and

Re = 1.2413 · 10−13cm (32)

2.4 Equilibrium electron orbit. Approximate solution

The complex Eq.(30) defining the parameter ϑ can be simplified. Its decompo-

sition gives an approximate expression

ϑ1 ≈ 3
√
π

2

me

αMp
≈ 0.1985. (33)

We can introduce the value of the new fundamental length R∗, expressed in

terms of the Compton radius rc or the Bohr radius aB :

R∗ = αrc = α2aB =
e2

mec2
= 2.8183 · 10−13cm (34)

The radius of the electron orbit is equal in order of magnitude to the fundamental

length R∗:

Re = rC

√
1− ϑ2

ϑ

me

Mp
≈ R∗√

8
= 9.9 · 10−14cm. (35)

This value is consistent with the estimate obtained earlier [4]:

Re =
�
c

√
αξ

2meMp
= 9.1 · 10−14cm (36)

2.4.1 Spin of neutron

The total generalized electron momentum can be written as

S0e =
[
Re × γ

{
mec−

e

c
Ae

}]
(37)

10

2.3 The basic state of neutron

The basic state of this system with the minimal energy is realised at n=1, that

is, the length of the electron orbit is equal to the de Broglie wavelength..

We need to find a solution of Eq.(29) under this condition:

3

2
− αγ

[
1

(1 + ϑ)2
+

ϑ2

2
− ξγ

2(1 + ϑ)3
me

Mp

]
= 0. (30)

As the result we have

ϑ = 0.1991 (31)

and

Re = 1.2413 · 10−13cm (32)

2.4 Equilibrium electron orbit. Approximate solution

The complex Eq.(30) defining the parameter ϑ can be simplified. Its decompo-

sition gives an approximate expression

ϑ1 ≈ 3
√
π

2

me

αMp
≈ 0.1985. (33)

We can introduce the value of the new fundamental length R∗, expressed in

terms of the Compton radius rc or the Bohr radius aB :

R∗ = αrc = α2aB =
e2

mec2
= 2.8183 · 10−13cm (34)

The radius of the electron orbit is equal in order of magnitude to the fundamental

length R∗:

Re = rC

√
1− ϑ2

ϑ

me

Mp
≈ R∗√

8
= 9.9 · 10−14cm. (35)

This value is consistent with the estimate obtained earlier [4]:

Re =
�
c

√
αξ

2meMp
= 9.1 · 10−14cm (36)

2.4.1 Spin of neutron

The total generalized electron momentum can be written as

S0e =
[
Re × γ

{
mec−

e

c
Ae

}]
(37)

10

2.3 The basic state of neutron

The basic state of this system with the minimal energy is realised at n=1, that

is, the length of the electron orbit is equal to the de Broglie wavelength..

We need to find a solution of Eq.(29) under this condition:

3

2
− αγ

[
1

(1 + ϑ)2
+

ϑ2

2
− ξγ

2(1 + ϑ)3
me

Mp

]
= 0. (30)

As the result we have

ϑ = 0.1991 (31)

and

Re = 1.2413 · 10−13cm (32)

2.4 Equilibrium electron orbit. Approximate solution

The complex Eq.(30) defining the parameter ϑ can be simplified. Its decompo-

sition gives an approximate expression

ϑ1 ≈ 3
√
π

2

me

αMp
≈ 0.1985. (33)

We can introduce the value of the new fundamental length R∗, expressed in

terms of the Compton radius rc or the Bohr radius aB :

R∗ = αrc = α2aB =
e2

mec2
= 2.8183 · 10−13cm (34)

The radius of the electron orbit is equal in order of magnitude to the fundamental

length R∗:

Re = rC

√
1− ϑ2

ϑ

me

Mp
≈ R∗√

8
= 9.9 · 10−14cm. (35)

This value is consistent with the estimate obtained earlier [4]:

Re =
�
c

√
αξ

2meMp
= 9.1 · 10−14cm (36)

2.4.1 Spin of neutron

The total generalized electron momentum can be written as

S0e =
[
Re × γ

{
mec−

e

c
Ae

}]
(37)

10

2.3 The basic state of neutron

The basic state of this system with the minimal energy is realised at n=1, that

is, the length of the electron orbit is equal to the de Broglie wavelength..

We need to find a solution of Eq.(29) under this condition:

3

2
− αγ

[
1

(1 + ϑ)2
+

ϑ2

2
− ξγ

2(1 + ϑ)3
me

Mp

]
= 0. (30)

As the result we have

ϑ = 0.1991 (31)

and

Re = 1.2413 · 10−13cm (32)

2.4 Equilibrium electron orbit. Approximate solution

The complex Eq.(30) defining the parameter ϑ can be simplified. Its decompo-

sition gives an approximate expression

ϑ1 ≈ 3
√
π

2

me

αMp
≈ 0.1985. (33)

We can introduce the value of the new fundamental length R∗, expressed in

terms of the Compton radius rc or the Bohr radius aB :

R∗ = αrc = α2aB =
e2

mec2
= 2.8183 · 10−13cm (34)

The radius of the electron orbit is equal in order of magnitude to the fundamental

length R∗:

Re = rC

√
1− ϑ2

ϑ

me

Mp
≈ R∗√

8
= 9.9 · 10−14cm. (35)

This value is consistent with the estimate obtained earlier [4]:

Re =
�
c

√
αξ

2meMp
= 9.1 · 10−14cm (36)

2.4.1 Spin of neutron

The total generalized electron momentum can be written as

S0e =
[
Re × γ

{
mec−

e

c
Ae

}]
(37)

10

2.3 The basic state of neutron

The basic state of this system with the minimal energy is realised at n=1, that

is, the length of the electron orbit is equal to the de Broglie wavelength..

We need to find a solution of Eq.(29) under this condition:

3

2
− αγ

[
1

(1 + ϑ)2
+

ϑ2

2
− ξγ

2(1 + ϑ)3
me

Mp

]
= 0. (30)

As the result we have

ϑ = 0.1991 (31)

and

Re = 1.2413 · 10−13cm (32)

2.4 Equilibrium electron orbit. Approximate solution

The complex Eq.(30) defining the parameter ϑ can be simplified. Its decompo-

sition gives an approximate expression

ϑ1 ≈ 3
√
π

2

me

αMp
≈ 0.1985. (33)

We can introduce the value of the new fundamental length R∗, expressed in

terms of the Compton radius rc or the Bohr radius aB :

R∗ = αrc = α2aB =
e2

mec2
= 2.8183 · 10−13cm (34)

The radius of the electron orbit is equal in order of magnitude to the fundamental

length R∗:

Re = rC

√
1− ϑ2

ϑ

me

Mp
≈ R∗√

8
= 9.9 · 10−14cm. (35)

This value is consistent with the estimate obtained earlier [4]:

Re =
�
c

√
αξ

2meMp
= 9.1 · 10−14cm (36)

2.4.1 Spin of neutron

The total generalized electron momentum can be written as

S0e =
[
Re × γ

{
mec−

e

c
Ae

}]
(37)

10

2.3 The basic state of neutron

The basic state of this system with the minimal energy is realised at n=1, that

is, the length of the electron orbit is equal to the de Broglie wavelength..

We need to find a solution of Eq.(29) under this condition:

3

2
− αγ

[
1

(1 + ϑ)2
+

ϑ2

2
− ξγ

2(1 + ϑ)3
me

Mp

]
= 0. (30)

As the result we have

ϑ = 0.1991 (31)

and

Re = 1.2413 · 10−13cm (32)

2.4 Equilibrium electron orbit. Approximate solution

The complex Eq.(30) defining the parameter ϑ can be simplified. Its decompo-

sition gives an approximate expression

ϑ1 ≈ 3
√
π

2

me

αMp
≈ 0.1985. (33)

We can introduce the value of the new fundamental length R∗, expressed in

terms of the Compton radius rc or the Bohr radius aB :

R∗ = αrc = α2aB =
e2

mec2
= 2.8183 · 10−13cm (34)

The radius of the electron orbit is equal in order of magnitude to the fundamental

length R∗:

Re = rC

√
1− ϑ2

ϑ

me

Mp
≈ R∗√

8
= 9.9 · 10−14cm. (35)

This value is consistent with the estimate obtained earlier [4]:

Re =
�
c

√
αξ

2meMp
= 9.1 · 10−14cm (36)

2.4.1 Spin of neutron

The total generalized electron momentum can be written as

S0e =
[
Re × γ

{
mec−

e

c
Ae

}]
(37)

10

2.3 The basic state of neutron

The basic state of this system with the minimal energy is realised at n=1, that

is, the length of the electron orbit is equal to the de Broglie wavelength..

We need to find a solution of Eq.(29) under this condition:

3

2
− αγ

[
1

(1 + ϑ)2
+

ϑ2

2
− ξγ

2(1 + ϑ)3
me

Mp

]
= 0. (30)

As the result we have

ϑ = 0.1991 (31)

and

Re = 1.2413 · 10−13cm (32)

2.4 Equilibrium electron orbit. Approximate solution

The complex Eq.(30) defining the parameter ϑ can be simplified. Its decompo-

sition gives an approximate expression

ϑ1 ≈ 3
√
π

2

me

αMp
≈ 0.1985. (33)

We can introduce the value of the new fundamental length R∗, expressed in

terms of the Compton radius rc or the Bohr radius aB :

R∗ = αrc = α2aB =
e2

mec2
= 2.8183 · 10−13cm (34)

The radius of the electron orbit is equal in order of magnitude to the fundamental

length R∗:

Re = rC

√
1− ϑ2

ϑ

me

Mp
≈ R∗√

8
= 9.9 · 10−14cm. (35)

This value is consistent with the estimate obtained earlier [4]:

Re =
�
c

√
αξ

2meMp
= 9.1 · 10−14cm (36)

2.4.1 Spin of neutron

The total generalized electron momentum can be written as

S0e =
[
Re × γ

{
mec−

e

c
Ae

}]
(37)

10

and 

2.4. Equilibrium Electron Orbit Approximate Solution
The complex Eq.(30) defining the parameter ϑ can be simplified. Its decomposition gives an approximate expression

We can introduce the value of the new fundamental length R*, expressed in terms of the Compton radius rc or the Bohr radius αB:

The radius of the electron orbit is equal in order of magnitude to the fundamental length R*:

This value is consistent with the estimate obtained earlier [4]:

2.4.1. Spin of Neutron
The total generalized electron momentum can be written as

Or in the scalar form Or in the scalar form

S0e = γmecRe

{
3

2
− αγ

(
1

(1 + ϑ)
− 1− ϑ2

2
+ αγ

ξp
(1 + ϑ)2

me

αMp

)}
. (38)

Substituting the values of ϑ and Re calculated above into this equality, we

come to the conclusion that

S0e = 0. (39)

For this reason, the total spin of particles in question is 1/2 because it is

created by the spin of proton.

The equality to zero of the spin of this electron ring plays an important role in

the formation of the equilibrium state of system. Due to the fact that S0 = 0 the

electron’s own spin and its magnetic moment are devoid of orientation direction

in space and fall out of the balance equations, and therefore out of consideration

in this problem altogether.

2.4.2 Mass of neutron

The mass of a composite particle is determined by the sum of the rest masses of

the particles, their relativistic kinetic energy and the mass defect arising from

the potential energy of their internal interaction. Calculate these contributions

Kinetic energy of electron and proton Summing Eqs.(11),(13),(17) and

(19) at n=1 we obtain

E(kin) = ϑ√
1− ϑ2

[
1 +

(
1√

1− ϑ2
− 1

) √
1− ϑ2

ϑ
+

(
1

2
+
√
2ϑ

)]
·Mpc

2 (40)

Potential energy of electron and proton Summing Eqs.(21) and (25) at

n=1 we obtain

E(pot) = αMp

me

[
1

1 + ϑ
+

ϑ2

2

(
1− 1

(1 + ϑ)3
· ξp

·ϑ
√
1− ϑ2

)](
ϑ√

1− ϑ2

)2

·Mpc
2.

(41)

The neutron mass The total mass of proton and electron is equal to:

Me+p = me +Mp +
E0

c2
(42)

11

Or in the scalar form

S0e = γmecRe

{
3

2
− αγ

(
1

(1 + ϑ)
− 1− ϑ2

2
+ αγ

ξp
(1 + ϑ)2

me

αMp

)}
. (38)

Substituting the values of ϑ and Re calculated above into this equality, we

come to the conclusion that

S0e = 0. (39)

For this reason, the total spin of particles in question is 1/2 because it is

created by the spin of proton.

The equality to zero of the spin of this electron ring plays an important role in

the formation of the equilibrium state of system. Due to the fact that S0 = 0 the

electron’s own spin and its magnetic moment are devoid of orientation direction

in space and fall out of the balance equations, and therefore out of consideration

in this problem altogether.

2.4.2 Mass of neutron

The mass of a composite particle is determined by the sum of the rest masses of

the particles, their relativistic kinetic energy and the mass defect arising from

the potential energy of their internal interaction. Calculate these contributions

Kinetic energy of electron and proton Summing Eqs.(11),(13),(17) and

(19) at n=1 we obtain

E(kin) = ϑ√
1− ϑ2

[
1 +

(
1√

1− ϑ2
− 1

) √
1− ϑ2

ϑ
+

(
1

2
+
√
2ϑ

)]
·Mpc

2 (40)

Potential energy of electron and proton Summing Eqs.(21) and (25) at

n=1 we obtain

E(pot) = αMp

me

[
1

1 + ϑ
+

ϑ2

2

(
1− 1

(1 + ϑ)3
· ξp

·ϑ
√
1− ϑ2

)](
ϑ√

1− ϑ2

)2

·Mpc
2.

(41)

The neutron mass The total mass of proton and electron is equal to:

Me+p = me +Mp +
E0

c2
(42)

11

Substituting the values of ϑ and Re calculated above into this equality, we come to the conclusion that

For this reason, the total spin of particles in question is 1/2 
because it is created by the spin of proton.

The equality to zero of the spin of this electron ring plays an 
important role in the formation of the equilibrium state of 
system. Due to the fact that S0 = 0 the electron’s own spin and 
its magnetic moment are devoid of orientation direction in 
space and fall out of the balance equations, and therefore out of 
consideration in this problem altogether.

2.4.2. Mass of Neutron
The mass of a composite particle is determined by the sum of the 
rest masses of the particles, their relativistic kinetic energy and 
the mass defect arising from the potential energy of their internal 
interaction. Calculate these contributions
Kinetic energy of electron and proton Summing Eqs.(11), (13), 
(17) and (19) at n=1 we obtain



Adv Theo Comp Phy, 2024       Volume 7 | Issue 4 | 7

Or in the scalar form

S0e = γmecRe

{
3

2
− αγ

(
1

(1 + ϑ)
− 1− ϑ2

2
+ αγ

ξp
(1 + ϑ)2

me

αMp

)}
. (38)

Substituting the values of ϑ and Re calculated above into this equality, we

come to the conclusion that

S0e = 0. (39)

For this reason, the total spin of particles in question is 1/2 because it is

created by the spin of proton.

The equality to zero of the spin of this electron ring plays an important role in

the formation of the equilibrium state of system. Due to the fact that S0 = 0 the

electron’s own spin and its magnetic moment are devoid of orientation direction

in space and fall out of the balance equations, and therefore out of consideration

in this problem altogether.

2.4.2 Mass of neutron

The mass of a composite particle is determined by the sum of the rest masses of

the particles, their relativistic kinetic energy and the mass defect arising from

the potential energy of their internal interaction. Calculate these contributions

Kinetic energy of electron and proton Summing Eqs.(11),(13),(17) and

(19) at n=1 we obtain

E(kin) = ϑ√
1− ϑ2

[
1 +

(
1√

1− ϑ2
− 1

) √
1− ϑ2

ϑ
+

(
1

2
+
√
2ϑ

)]
·Mpc

2 (40)

Potential energy of electron and proton Summing Eqs.(21) and (25) at

n=1 we obtain

E(pot) = αMp

me

[
1

1 + ϑ
+

ϑ2

2

(
1− 1

(1 + ϑ)3
· ξp

·ϑ
√
1− ϑ2

)](
ϑ√

1− ϑ2

)2

·Mpc
2.

(41)

The neutron mass The total mass of proton and electron is equal to:

Me+p = me +Mp +
E0

c2
(42)

11

Or in the scalar form

S0e = γmecRe

{
3

2
− αγ

(
1

(1 + ϑ)
− 1− ϑ2

2
+ αγ

ξp
(1 + ϑ)2

me

αMp

)}
. (38)

Substituting the values of ϑ and Re calculated above into this equality, we

come to the conclusion that

S0e = 0. (39)

For this reason, the total spin of particles in question is 1/2 because it is

created by the spin of proton.

The equality to zero of the spin of this electron ring plays an important role in

the formation of the equilibrium state of system. Due to the fact that S0 = 0 the

electron’s own spin and its magnetic moment are devoid of orientation direction

in space and fall out of the balance equations, and therefore out of consideration

in this problem altogether.

2.4.2 Mass of neutron

The mass of a composite particle is determined by the sum of the rest masses of

the particles, their relativistic kinetic energy and the mass defect arising from

the potential energy of their internal interaction. Calculate these contributions

Kinetic energy of electron and proton Summing Eqs.(11),(13),(17) and

(19) at n=1 we obtain

E(kin) = ϑ√
1− ϑ2

[
1 +

(
1√

1− ϑ2
− 1

) √
1− ϑ2

ϑ
+

(
1

2
+
√
2ϑ

)]
·Mpc

2 (40)

Potential energy of electron and proton Summing Eqs.(21) and (25) at

n=1 we obtain

E(pot) = αMp

me

[
1

1 + ϑ
+

ϑ2

2

(
1− 1

(1 + ϑ)3
· ξp

·ϑ
√
1− ϑ2

)](
ϑ√

1− ϑ2

)2

·Mpc
2.

(41)

The neutron mass The total mass of proton and electron is equal to:

Me+p = me +Mp +
E0

c2
(42)

11

Or in the scalar form

S0e = γmecRe

{
3

2
− αγ

(
1

(1 + ϑ)
− 1− ϑ2

2
+ αγ

ξp
(1 + ϑ)2

me

αMp

)}
. (38)

Substituting the values of ϑ and Re calculated above into this equality, we

come to the conclusion that

S0e = 0. (39)

For this reason, the total spin of particles in question is 1/2 because it is

created by the spin of proton.

The equality to zero of the spin of this electron ring plays an important role in

the formation of the equilibrium state of system. Due to the fact that S0 = 0 the

electron’s own spin and its magnetic moment are devoid of orientation direction

in space and fall out of the balance equations, and therefore out of consideration

in this problem altogether.

2.4.2 Mass of neutron

The mass of a composite particle is determined by the sum of the rest masses of

the particles, their relativistic kinetic energy and the mass defect arising from

the potential energy of their internal interaction. Calculate these contributions

Kinetic energy of electron and proton Summing Eqs.(11),(13),(17) and

(19) at n=1 we obtain

E(kin) = ϑ√
1− ϑ2

[
1 +

(
1√

1− ϑ2
− 1

) √
1− ϑ2

ϑ
+

(
1

2
+
√
2ϑ

)]
·Mpc

2 (40)

Potential energy of electron and proton Summing Eqs.(21) and (25) at

n=1 we obtain

E(pot) = αMp

me

[
1

1 + ϑ
+

ϑ2

2

(
1− 1

(1 + ϑ)3
· ξp

·ϑ
√
1− ϑ2

)](
ϑ√

1− ϑ2

)2

·Mpc
2.

(41)

The neutron mass The total mass of proton and electron is equal to:

Me+p = me +Mp +
E0

c2
(42)

11
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Here E0 is the total energy possessed by a relativistic electron+proton
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Hence it turns out

E0 = 2.04 ·mec
2 (44)

The sum of kinetic and potential energy thus obtained must correspond

to the energy released during the decay of the particle. This estimate is in

qualitative agreement with the measured data (Tab.1).

2.4.3 The neutron magnetic moment

The particle magnetic moment is the sum of the proton magnetic moment and

magnetic moments of orbital currents of electron and proton.

The total magnetic moment generated by of both circular currents

µ0 = −eβeRe
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2
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2
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If to express this moment in the magnetons of Bohr µB , we get
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√
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ϑ
. (46)

At ϑ = 0.1991 we have

ξ0 ≈ −4.7269 (47)

Summing it with the proton magnetic moment, we get

ξtotal =

[
− (1− ϑ2)

√
1− ϑ2

ϑ
+ 2.79

]
≈ −1.9341. (48)

It agrees well with the tabular value

ξneutron = −1.91304273. (49)

2.5 The excited states of neutron

Just like the Bohr atom, a neutron, in addition to the ground state, can have

excited states with n > 1.
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Hence it turns out

The sum of kinetic and potential energy thus obtained must 
correspond to the energy released during the decay of the particle. 
This estimate is in qualitative agreement with the measured data 
(Table 1).

2.4.3. The Neutron Magnetic Moment
The particle magnetic moment is the sum of the proton magnetic 
moment and magnetic moments of orbital currents of electron 
and proton.

The total magnetic moment generated by of both circular currents

If to express this moment in the magnetons of Bohr µB, we get

At ϑ = 0.1991 we have

Summing it with the proton magnetic moment, we get

It agrees well with the tabular value

2.5. The Excited States of Neutron
Just like the Bohr atom, a neutron, in addition to the ground state, can have excited states with n > 1.
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n Ekin

c2
Epot

c2 Mtotal experimental ∆ =
Mexp−Mcalc

Mexp

Eq.(43) data

n=1 702me 700me 1839me Mn0 = 1837me 0.001

n=2 879me 778me 1938me MΛ0 = 2183me 0.11

n=3 2103me 1740me 2200me MΣ0 = 2335me 0.06

Table 1: The comparison of calculated particle mass values with measurement

data

2.5.1 The excited state with n=2

Under this condition Eq(29) transforms to:

1 +
1

2 · 2
−
(

ϑ

2
√
1− ϑ2

αMp

me

)[
1

(1 + ϑ)2

]
+

+

(
ϑ

2
√
1− ϑ2

αMp

me

)[
ϑ2

2
− ξ

2 · 2(1 + ϑ)3
ϑ√

1− ϑ2

]
= 0.

(50)

The solution to this equation is

ϑ = 0.263. (51)

2.5.2 The excited state with n=3

At that the equation is

1 +
1

2 · 3
−
(

ϑ

3
√
1− ϑ2

αMp

me

)[
1

(1 + ϑ)2

]
−

−
(

ϑ

3
√
1− ϑ2

αMp

me

)[
ϑ2

2
− ξ

2 · 3(1 + ϑ)3
ϑ√

1− ϑ2

]
= 0

(52)

and its solution is

ϑ = 0.479. (53)
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2.5.1. The Excited State with n = 2
Under this condition Eq(29) transforms to:

The solution to this equation is

2.5.2. The Excited State with n = 3
At that the equation is

and its solution is

For comparison, the calculated and measured values of masses and magnetic moments of neutron and its excited states are given in 
Table (1) and Table (2).

Based on this comparison, we conclude that neutral Λ- and Σ-hyperons are excited states of neutron [6].

n ϑ µ0 µtotal experimental.

Eq.(46) Eq.(48) data

n=1 0.1991 -4.727 -1. 9367 µn0
= −1.9130427± 0.0000005

n=2 0.263 -3.4147 -0.6247 µΛ0 = −0.613± 0.004

n=3 0.479 -1.4121 1.3779 µΣ0
ΣΛ

= 1.61± 0.08

Table 2: Comparison of calculated values of magnetic moments with measure-

ment data

2.6 Discussion

The consent of estimates and measured data indicates that the neutron is not

an elementary particle [5]. At that neutron is unique object of microcosm. Its

main peculiarity lies in the fact that the proton and electron that compose it

are related to each other by a (negative) binding energy. The neutron mass is

greater than the sum of the rest masses of proton and electron despite the pres-

ence of a mass defect. This is because proton and electron, forming neutron, are

relativistic and their masses are much higher than their rest masses. In result

the bound state of neutron disintegrates with the energy releasing.

This structure of neutron must change our approach to the problem of

nucleon-nucleon scattering. The nuclear part of an amplitude of the nucleon-

nucleon scattering should be the same at all cases, because in fact it is always

proton-proton scattering (the only difference is the presence or absence of the

Coulomb scattering). It creates the justification for hypothesis of charge inde-

pendence of the nucleon-nucleon interaction.

The above considered electromagnetic model of neuron is the only theory

that predicts the basic properties of the neutron. According to Gilbert’s postu-

late, all other models (and in particular the quark model of neutron) that can

not describe properties of neutron can be regarded as speculative and erroneous.

The measurement confirmation for the discussed above electromagnetic model

of neutron is the most important, required and completely sufficient argument

of its credibility.

Nevertheless, it is important for the understanding of the model to use the stan-

dard theoretical apparatus at its construction. It should be noted that for the
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scattering). It creates the justification for hypothesis of charge 
independence of the nucleon-nucleon interaction.

The above considered electromagnetic model of neuron is the 
only theory that predicts the basic properties of the neutron. 
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particular the quark model of neutron) that cannot describe 
properties of neutron can be regarded as speculative and 
erroneous. The measurement confirmation for the discussed 
above electromagnetic model of neutron is the most important, 
required and completely sufficient argument of its credibility.

Nevertheless, it is important for the understanding of the model 
to use the standard theoretical apparatus at its construction. It 
should be noted that for the scientists who are accustomed to the 
language of relativistic quantum physics, the methodology used 
for the above estimates does not contribute to the perception of 
the results at a superficial glance. It is commonly thought that 
for the reliability, a consideration of an affection of relativism 
on the electron behavior in the Coulomb field should be carried 
out within the Dirac theory. However, that is not necessary in the 
case of calculating of the magnetic moment of the neutron and 
its decay energy. In this case, all relativistic effects described by 
the terms with coefficients                        compensate each other 
and completely fall out. The neutron considered in our model is 

the quantum object. Its radius R0 is proportional to the Planck 
constant k. But it cannot be considered as relativistic particle, 
because coefficient                  is not included in the definition 
of R0. In the particular case of the calculation of the magnetic 
moment of the neutron and the energy of its decay, it allows to 
find an equilibrium of the system from the balance of forces, as 
it can be made in the case of non- relativistic objects. Another 
situation arises on the way of an evaluation of the neutron 
lifetime. A correct estimation of this time even in order of its 
value do not obtained at that.

3.1. The One-Electron Bond of Two Protons
3.1.1. The Heitler-London Effect
Let us consider a quantum system consisting of two protons 
and one electron. If protons are separated by a large distance, 
this system consists of a hydrogen atom and the proton. If the 
hydrogen atom is at the origin, then the operator of energy and 
wave function of the ground state have the form:
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If hydrogen is at point R, then respectively

In the assumption of fixed protons, the Hamiltonian of the total system has the form:

At that if one proton removed on infinity, then the energy of the system is equal to the energy of the ground state E0, and the wave 
function satisfies the stationary Schrodinger equation:

At that if one proton removed on infinity, then the energy of the system is

equal to the energy of the ground state E0, and the wave function satisfies the

stationary Schrodinger equation:

H
(1,2)
0 ϕ1,2 = E0ϕ1,2 (57)

We seek a zero-approximation solution in the form of a linear combination of

basis functions:

ψ = a1(t)ϕ1 + a2(t)ϕ2 (58)

where coefficients a1(t) and a2(t) are functions of time, and the desired function

satisfies to the energy-dependent Schrodinger equation:

i�
dψ

dt
= (H

(1,2)
0 + V1,2)ψ, (59)

where V1,2 is the Coulomb energy of the system in one of two cases.

Hence, using the standard procedure of transformation, we obtain the system

of equations

i�ȧ1 + i�Sȧ2 = E0

{
(1 + Y11)a1 + (S + Y12)a2

}

i�Sȧ1 + i�ȧ2 = E0

{
(S + Y21)a1 + (1 + Y22)a2

}
,

(60)

where we have introduced the notation of the overlap integral of the wave

functions

S =

∫
φ∗
1φ2dv =

∫
φ∗
2φ1dv (61)

and notations of matrix elements

Y11 =
1

E0

∫
φ∗
1V1φ1dv

Y12 =
1

E0

∫
φ∗
1V2φ2dv

Y21 =
1

E0

∫
φ∗
2V1φ1dv

Y22 =
1

E0

∫
φ∗
2V2φ2dv

(62)

Given the symmetry

Y11 = Y22 Y12 = Y21, (63)

after the adding and the subtracting of equations of the system (60), we obtain

the system of equations

i�(1 + S)(ȧ1 + ȧ2) = α(a1 + a2)

i�(1− S)(ȧ1 − ȧ2) = β(a1 − a2)
(64)
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i�ȧ1 + i�Sȧ2 = E0

{
(1 + Y11)a1 + (S + Y12)a2

}
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i�ȧ1 + i�Sȧ2 = E0
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and

C1 = C2 = 1 (72)

or

C1 = −C2 = 1 (73)

17

and

Or

we obtain the oscillating probability of placing of electron near one or other proton:

we obtain the oscillating probability of placing of electron near one or other

proton:
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2
(1 + cosωt)

|a2|2 =
1

2
(1− cosωt)

(74)

Thus, electron jumps into degenerate system (hydrogen + proton) with fre-

quency ω from one proton to another.

In terms of energy, the frequency ω corresponds to the energy of the tunnel

splitting arising due to electron jumping (Fig.3).

As a result, due to the electron exchange, the mutual attraction arises be-

tween protons. It decreases their energy on

∆ =
�ω
2

(75)

The arising attraction between protons is a purely quantum effect, it does not

exist in classical physics.

The tunnel splitting (and the energy of mutual attraction between protons)

depends on two parameters:

∆ = |E0| · Λ, (76)

where E0 is energy of the unperturbed state of the system (ie, the electron

energy at its association with one of proton, when the second proton removed

on infinity),

and function of the mutual distance between the protons Λ.

This function according to Eq.(70) has the form:

Λ =
Y12 − SY11

(1− S2)
. (77)

It expresses the dependence of the exchange energy on the distance between

particles.

The graphic estimation of the exchange splitting ∆E indicates that this effect

decreases exponentially with increasing a distance between the protons in full

compliance with the laws of the particles passing through the tunnel barrier.
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Figure 3: The schematic representation of the potential well with two symmetric

states. In the ground state, electron can be either in the right or in the left hole.

In the unperturbed state, its wave functions are either ϕ1 or ϕ2 with the energy

E0. The quantum tunneling transition from one state to another leads to the

splitting of energy level and to the lowering of the sublevel on ∆.

3.2 The molecular hydrogen ion

The quantum-mechanical model of simplest molecule - the molecular hydrogen

ion - was first formulated and solved by Walter Heitler and Fritz London in 1927

[3].

At that, they calculate the Coulomb integral:

Y11 =
[
1− (1 + x)e−2x

]
, (78)

the integral of exchange

Y12 =
[
x(1 + x)e−x

]
(79)

and the overlap integral

S =

(
1 + x+

x2

3

)
e−x. (80)

Where x = R
aB

is the dimensionless distance between the protons.

The potential energy of hydrogen atom

E0 = − e2

aB
(81)

and with taking into account Eq.(78)-Eq.(80)

Λ(x) =
x(1 + x)e−x −

(
1 + x+ x2
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)2
e−2x

(82)

At varying the function Λ(x) we find that at

x � 1.3 (83)
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Figure 3: The schematic representation of the potential well with two symmetric states. In the ground state, electron can be either in 
the right or in the left hole. In the unperturbed state, its wave functions are either φ1 or φ2 with the energy E0. The quantum tunneling 
transition from one state to another leads to the splitting of energy level and to the lowering of the sublevel on ∆.

3.2. The Molecular Hydrogen Ion
The quantum-mechanical model of simplest molecule - the molecular hydrogen ion - was first formulated and solved by Walter 
Heitler and Fritz London in 1927 [3].

At that, they calculate the Coulomb integral:
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the integral of exchange

and the overlap integral

Where              is the dimensionless distance between the protons.
 
The potential energy of hydrogen atom

and with taking into account Eq. (78) - Eq. (80)

At varying the function Λ(x) we find that at

the energy of the system has a minimumthe energy of the system has a minimum

Λx=1.3 � 0.43. (84)

As a result of permutations of these values we find that in this minimum

energy the mutual attraction of protons reaches a maximum value

∆max � 9.3 · 10−12erg. (85)

This result agrees with measurements of only the order of magnitude. The

measurements indicate that the equilibrium distance between the protons in the

molecular hydrogen ion x � 2 and its breaking energy on proton and hydrogen

atom is close to 4.3 · 10−12erg.

The remarkable manifestation of an attraction arising between the nuclei

at electron exchange is showing himself in the molecular ion of helium. The

molecule He2 does not exist. But a neutral helium atom together with a singly

ionized atom can form a stable structure - the molecular ion. The above ob-

tained computational evaluation is in accordance with measurement as for both

- hydrogen atom and helium atom - the radius of s-shells is equal to aB , the

distance between the nuclei in the molecular ion of helium, as in case of the

hydrogen molecular ion, must be near x � 2 and its breaking energy near

4.1 · 10−12erg.

In order to achieve a better agreement between calculated results with mea-

sured data, researchers usually produce variation of the Schrodinger equation

in the additional parameter- the charge of the electron cloud. At that, one can

obtain the quite well consent of the calculations with experiment. But that is

beyond the scope of our interest as we was needing the simple consideration of

the effect.

3.3 Deuteron

The electromagnetic model of neutron, discussed above, allows us to take a fresh

look at the mechanism of the neutron-proton interaction. Neutron as proton

surrounded by a electron cloud and a free proton make up together an object

similar to a molecular hydrogen ion.

The difference is that in this case the electron is relativistic, and the radius

of its orbit is R ≈ 10−13 cm (Eq.(34)).
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As a result of permutations of these values we find that in this minimum energy the mutual attraction of protons reaches a maximum 
value

This result agrees with measurements of only the order of 
magnitude. The measurements indicate that the equilibrium 
distance between the protons in the molecular hydrogen ion  x  ~ 
2  and its breaking energy on proton and hydrogen atom is close 
to 4.3 • 10−12erg.

The remarkable manifestation of an attraction arising between 
the nuclei at electron exchange is showing himself in the 
molecular ion of helium. The molecule He2 does not exist. But 
a neutral helium atom together with a singly ionized atom can 
form a stable structure - the molecular ion. The above obtained 
computational evaluation is in accordance with measurement as 
for both hydrogen atom and helium atom - the radius of s-shells 
is equal to αB, the distance between the nuclei in the molecular 
ion of helium, as in case of the hydrogen molecular ion, must be 
near x  ~ 2 and its breaking energy near 4.1 • 10−12erg.

In order to achieve a better agreement between calculated results 

with measured data, researchers usually produce variation of the 
Schrodinger equation in the additional parameter- the charge of 
the electron cloud. At that, one can obtain the quite well consent 
of the calculations with experiment. But that is beyond the scope 
of our interest as we were needing the simple consideration of 
the effect.

3.3. Deuteron
The electromagnetic model of neutron, discussed above, allows 
us to take a fresh look at the mechanism of the neutron-proton 
interaction. Neutron as proton surrounded by a electron cloud 
and a free proton make up together an object similar to a 
molecular hydrogen ion.

The difference is that in this case the electron is relativistic, and 
the radius of its orbit is R ≈ 10-13 cm (Eq. (34)). The electron 
energy in the composition of neutron in the undisturbed state 
was calculated earlier (Eq.(44)):

_

_
The electron energy in the composition of neutron in the undisturbed state

was calculated earlier (Eq.(44)):

E0 = 2.04 ·mec
2 (86)

This function expresses the dependence of the exchange energy on the dis-

tance between nucleon. According to Eq.(84), it has maximum

Λmax = 0.43, (87)

at the dimensionless distance between protons x = R
Re

= 1.3 (Eq.(83)).

The values of the binding energy between nucleons are usually expressed in

terms of the magnitude of the mass defect in atomic units of mass, having the

international designation u. With what

1u = 1.6605402 · 10−24g. (88)

In these units, the magnitude of the decrease in the energy of two protons

exchanging a relativistic electron has the value:

∆0 = ΛmaxE0 � 10−3u. (89)

To compare this energy with the measurement data, it is necessary to cal-

culate the mass defect of particles forming the deuteron

∆MD = Mp +Mn −Md ≈ 2.3414 · 10−3u (90)

Where

Mp = 1.007276466621 u, Mn = 1.00866491560u and Md = 2.0136u are masses

of proton, neutron and deuteron, respectively.

Thus, we can assume that for the deuteron quantum-mechanical rating

(Eq.(89)), as in the case of molecular hydrogen ion, in order of magnitude is con-

sistent with the experimentally measured the magnitude of the binding energy

(Eq.(90)), although in both cases their a coincidence, without further amend-

ment is not very accurate.

4 Binding energy of light nuclei

4.1 Helium isotopes

Fig.(5) shows schematically the energy bonds in the nucleus of 3
2He. From it

we can seen that there are three paired interactions of protons. Therefore, it
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This function expresses the dependence of the exchange energy on the distance between nucleon. According to Eq.(84), it has 
maximum
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2 (86)

This function expresses the dependence of the exchange energy on the dis-

tance between nucleon. According to Eq.(84), it has maximum

Λmax = 0.43, (87)

at the dimensionless distance between protons x = R
Re

= 1.3 (Eq.(83)).

The values of the binding energy between nucleons are usually expressed in

terms of the magnitude of the mass defect in atomic units of mass, having the

international designation u. With what

1u = 1.6605402 · 10−24g. (88)

In these units, the magnitude of the decrease in the energy of two protons

exchanging a relativistic electron has the value:

∆0 = ΛmaxE0 � 10−3u. (89)
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Figure 6: Schematic representation of the core 4
2He. Dotted lines schematically

represent the possibility of a relativistic electron jumping from one proton to

another.

should be assumed that the binding energy of this nucleus should be equal to

the triple binding energy of the deuteron (Eq.(90)):

δMHe3 = 3 ·∆MD ≈ 7.02 · 10−3u. (91)

The experimentally measured mass defect of this nucleus is equal to

∆M(He3) = 2Mp +Mn −MHe3 = 8.29 · 10−3u. (92)

Thus, the calculated mass defect of this nucleus can be considered quite consis-

tent with its measured value.

As it can be seen from Fig.(9), there are bonds are formed by six paired

interactions of protons ∆Md, realized by two electrons. For this reason, it can

be assumed that the binding energy of the nucleus 4
2He should be equal to:

δMα = 2 · 6 ·∆MD ≈ 28.1 · 10−3u. (93)

The measured mass defect of this nucleus is equal to

∆Mα = 2Mp + 2Mn −Mα = 30.4 · 10−3u. (94)

Such agreement of these values can be considered quite satisfactory.
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Thus, the calculated mass defect of this nucleus can be considered quite consistent with its measured value.

As it can be seen from Figure (9), there are bonds are formed by six paired interactions of protons ∆Md, realized by two electrons. 
For this reason, it can be assumed that the binding energy of the nucleus 4He should be equal to:2

The measured mass defect of this nucleus is equal to

Such agreement of these values can be considered quite satisfactory.

4.2. Beryllium Isotopes

4.2 Beryllium isotopes

Figure 7: The schematic rep-

resentation of energy bonds in

the Be-8 core. Dotted lines rep-
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ativistic electron jumping be-

tween protons.

Figure 8: Schematic representa-

tion of energy bonds in the Be-9

core. Dotted lines represent the

possibility of a relativistic elec-

tron jumping between protons.

A comparison of the binding energies of beryllium isotopes points the way

to calculating mass defects of heavy nuclei.

If we compare the binding energy of nucleus 8
4Be with the doubled binding

energy of the alpha-particle, we can conclude that this nucleus must be unstable.

When it decays into alpha particles, the energy corresponding to the mass defect,

which turns out to be negative in this case, should be released:

∆M(Be8) = 2Mα −MBe8 = −2.29 · 10−3u (95)

Indeed, measurements show that the 8
4Be nucleous is very short-lived. It

decays into two alpha-particles, having a lifetime of approximately 10−17 sec.

However, if neutron is attached to the 8
4Be nucleus to construct the 9

4Be

nucleus (Fig.8), the result is a stable nucleus with a mass defect:

∆M(Be9) = 4 ·Mp + 5 ·Mn −MBe9 = 60.25 · 10−3u. (96)

This can be explained by the fact that the total mass defect in the structure

shown in Fig.(8), will increase.
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Indeed, measurements show that the 8Be nucleous is very short-lived. It decays into two alpha-particles, having a lifetime of 
approximately 10−17 sec.
However, if neutron is attached to the 8Be nucleus to construct the 9Be nucleus (Figure 8), the result is a stable nucleus with a mass 
defect:

4

4 4

This can be explained by the fact that the total mass defect in the structure shown in Figure (8), will increase.
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Figure 9: Comparison of calculated values of the mass defect of light nuclei with

the measurement data.

isotope M ∆M Nd δM = Nd ·∆MD
∆M−δM

∆M

u 10−3u 10−3u %
2
1D 2.01355 2.3414 1 -
3
2He 3.01493 8.2878 3 7.0242 15
4
2He 4.001506179 30.377 12 28.097 7.5
8
4Be 8.00530510 58.46 24 56.194 3.9
9
4Be 9.0121822 60.248 26 60.876 1

Table 3: Comparison of the calculated values of the defect of the mass of light

nuclei with the measurement data.
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Table 3: Comparison of the calculated values of the defect of the mass of light nuclei with the measurement data.

The mass defect of alpha-particle according to Eq.(93) is equal to 12 • ∆Md. Two alpha particles respectively create a mass defect 
24 • ∆Md. To this value, we need to add a doubled deuteron defect of mass 2 • ∆Md, since the electron of an additional neutron 
connecting alpha-particles (Figure 8) has the ability to transfer to free protons of neighboring alpha-particles. As a result, we get the 
total mass defect of 9Be4

The mass defect of alpha-particle according to Eq.(93) is equal to 12 ·∆Md.

Two alpha particles respectively create a mass defect 24 ·∆Md. To this value,

we need to add a doubled deuteron defect of mass 2 ·∆Md, since the electron

of an additional neutron connecting alpha-particles (Fig.8) has the ability to

transfer to free protons of neighboring alpha-particles. As a result, we get the

total mass defect of 9
4Be

δM(Be9) = 26 ·∆MD = 60.88 · 10−3u. (97)

Good agreement of this estimate with the experimental value (Eq.(96)) suggests

that neutron can bind alpha-particles together, playing the role of a kind of glue.
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5. Mass Defects of Heavy Nuclei
5.1.Crystal Model of Heavy Nuclei
Taking into account the scheme of the structure of the nucleus 9Be (Figure 8), we can by analogy assume that, other stable heavy nuclei 
can be represented in the form "crystals" , consisting of alpha-particles "glued" each other neutrons (Figure 10). The elementary cell 
of such a "crystal" can be represented as an alpha
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Figure 10: Schematic representation of the ”crystal” models of a heavy nucleus

in which alpha-particles are ”glued” together by neutrons

particle associated with six neutrons that ”glue” it with other alpha particles

along the three axes of the ”crystal” (Fig.11).

To obtain a numerical estimate of the binding energy of heavy nuclei (with

an even number of protons), we introduce the following notation:

A is the total number of nucleons in the nucleus,

Z is an even number of protons,

Nn = A− Z is the number of neutrons,

Nα = Z/2 is the number of alpha-particles,
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Figure 10: Schematic representation of the “crystal” models of a heavy nucleus in which alpha-particles are “glued” together by 
neutrons
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Particle associated with six neutrons that “glue” it with other alpha particles along the three axes of the “crystal” (Figure 11).

To obtain a numerical estimate of the binding energy of heavy nuclei (with an even number of protons), we introduce the following 
notation:
A is the total number of nucleons in the nucleus,
Z is an even number of protons,
Nn = A − Z is the number of neutrons,
Nα = Z/2 is the number of alpha-particles,

Figure 11: ”Elementary cell” three-dimensional ”crystal” models of a heavy

nucleus in which alpha particles are ”glued” together by neutrons.

Nglue = Nn − Z - excess number of neutrons ”gluing” alpha-particles.

The value of the experimentally measured mass defect for an isotope with a

large number of nucleons is calculated by the formula:

∆Misotop = Mp · Z +Mn ·Nn −Misotop. (98)

Where Misotop is measured mass of a isotope.

As before (Eq.90), we will assume the deuteron mass defect

∆MD = 2.3414 · 10−3u. (99)

We introduce the parameter q, which shows the difference between the num-

ber of alpha-particles in the nucleus and the number of neutrons ”gluing” alpha-

particles:

q = Nα −Nglue. (100)

For a number of heavy isotopes, these numbers coincide and this parameter

q = 0. (101)

In this case, the mass defect of one alpha-particle together with six neutrons

bound to it along the three axes of the ”crystal”

δM(alpha) = ∆Mα + 6 ·∆MD = 18 ·∆MD (102)

and the total defect of the mass of such a nucleus

δM(nucl) = 18 ·∆MD ·Nα. (103)
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particles lose ”gluing” neutrons along one of axes of the ”crystal” and for such

nuclei there is a mass defect

δM(nucl) = ∆MD [18(Nalpha − q) + 16q] . (104)

From here we get the binding energy that occurs in the nucleus between

protons during the exchange of relativistic electron:

δM(nucl) = 9.3644 · 10−3 · (Z +A/2) u. (105)

5.2 Correction for Coulomb interaction

For a more accurate description of the total binding energy in nuclei, it is

necessary to introduce a correction for the Coulomb interaction of nucleons.

It is generally assumed that the nuclei consist of a substance with the same

density

γn ≈ 1014 g/cm3 (106)

The mass of a spherical body with radius R of such substance
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Here MN and A are the mass of nucleon and their number in nucleus.

From here we can determine the radius of the core with constant density γn

Rn = 1.59 · 10−13 3
√
A (108)

The Coulomb energy of such spherical nucleus, taking into account the field

created by it in outer space
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Thus, the total mass defect of nuclei is equal to
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which is in good agreement with the measurement data (Fig.12).
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6. Conclusion
Thus, the proton-electron model of nuclei discussed above 
makes it possible to calculate the binding energy for both light 
and heavy nuclei. At the same time, the obtained values of the 
binding energy are in good agreement with the measurement 
data. This model provides a physical explanation for Hideki 
Yukawa's hypothesis that nuclear forces should be described by 
a shielded potential that cuts off their action at short distances, 
and also allows us to calculate its magnitude.

It seems that the proton-electron model can be considered a kind 
of development of the idea of Sir Joseph John Thomson, who 
suggested a similar structure of the atom at the very beginning 
of the last century. However, after the discovery of neutrons, the 
Thomson model was forgotten.

Later, in the 30s of the last centuries, the possibility of explaining 
nuclear forces on the basis of the electron exchange effect was 
noticed by I E Tamm [10]. However, models in which protons 
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and neutrons exchanged mesons soon became dominant in 
nuclear physics, and then models with gluon exchange. However, 
models of meson or gluon exchange in proton-neutron nuclei 
turned out to be unproductive. These models failed to provide 
a quantitative explanation of the binding energy of even light 
nuclei. The theory of the binding energy of nuclei discussed 
above, which is simple and consistent with measurements, is 
an unambiguous proof that the so-called strong interaction is 
another name for the quantum mechanical Heitler-London effect.
This means that conclusions and consequences of earlier 
theories that considered nuclear forces as an attraction between 
protons and neutrons may be erroneous. This is of great practical 
importance.

Based on the shell model of nuclei created by M Goeppert-Meyer 
and X. Jensen back in the 50s of the last centuries, academicians 
of the Russian Academy of Sciences G Flerov and Ju Oganesyan 
from Dubna suggested that among distant transuranic elements, 
a certain “island of stability” may exist.

And transuranic isotopes from this “island” may have long decay 
periods or may even be stable.
The idea of opening this “island of stability” seemed so clear 
and promising that under the guidance of these academicians, 
the project was launched. These works began in the 50s of the 
last centuries and lasted for many decades. To carry out these 
searches, two powerful ion accelerators were built, which 
for many decades were used to conduct research by almost a 
thousand scientific employees.

At the same time, the direct material costs of these studies were 
so high that they were noticeable for the country, especially in 
the hungry post-war period. As a result of these studies, new 
chemical elements were discovered, but all of them turned out 
to be short-lived.

”Island of stability” turned out to be a bluff. Two of new elements 

were named after G. Flerov and Yu. Oganesyan, and probably 
will forever remain a reminder of scientific incompetence. It is 
important that the proton-electron model of nuclei discussed 
above, which is based on the Heitler-London effect, suggests 
that it is impossible to form any ”stability islands” and that it 
is pointless to search for them among transuranic elements. The 
author is grateful to Professor A Lipovka for an interesting and 
useful discussion.
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