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Abstract
The measure of portfolio risk is an important input of the Markowitz framework. In this study, we explored various methods 
to obtain robust covariance estimators that are less susceptible to financial data noise. We evaluated the performance of 
large-cap portfolio using various forms of Ledoit Shrinkage Covariance and Robust Gerber Covariance matrix during 
the period of 2012 to 2022. Out-of-sample performance indicates that robust covariance estimators can outperform the 
market capitalization-weighted benchmark portfolio, particularly during bull markets. The Gerber covariance with Mean-
Absolute-Deviation (MAD) emerged as the top performer. However, robust estimators do not manage tail risk well under 
extreme market conditions, for example, Covid-19 period. When we aim to control for tail risk, we should add constraint 
on Conditional Value-at-Risk (CVaR) to make more conservative decision on risk exposure. Additionally, we incorporated 
unsupervised clustering algorithm K-means to the optimization algorithm (i.e. Nested Clustering Optimization, NCO). It 
not only helps mitigate numerical instability of the optimization algorithm, but also contributes to lower drawdown as well.
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1. Introduction & Literature Review
Under the Markowitz framework, a portfolio relies heavily 
on the availability of the covariance matrix. Estimating 
covariance is considered more practical than predicting asset 
returns. Therefore, many researchers focus on constructing 
minimum-variance portfolios that rely solely on the estimation 
of the covariance matrix. However, resulting portfolios can still 
perform poorly when tested out of sample.

The traditional estimator is the sample covariance matrix but it 
is known for its non-robustness and instability [1]. When the 
sample covariance matrix is used in an optimization problem, 
the result is prone to high estimation errors due to noisy inputs 
and the signal structure. Existing literature has attempted to 
resolve this problem in three ways. The first approach is to 
introduce strong constraints on weights, such as short-sales 
constraints [3]. Secondly, suggested shrinking the covariance 
matrix towards a pre-specified, more stable structure [4]. The 
third method is to introduce more robust covariance estimate or 
sthatrely lesson product-moment. For example, the Minimum 
Covariance Determinant (MCD) estimator is a robust estimator 
that can be used to estimate the covariance matrix of highly 
contaminated datasets [6]. Additionally, Marcos Lopez de Prado 

(2019) proposed reducing´ signal instability by clustering the 
covariance matrix into subgroups using K-means or Hierarchical 
Clustering [10].

Another reason why the traditional Markowitz framework can 
fail in reality is that it pays little attention to controlling extreme 
risks. After the financial crisis, Value-at-Risk (VaR) became one 
of the most common risk measures used in finance. Rockafellar 
and Uryasev proposed a more coherent and sub-additive 
percentile risk measure: Conditional Value-at-Risk (CVaR), 
which calculates the expected loss given that the loss exceeds 
the VaR threshold [11]. Alexander and Baptista suggested that a 
CVaR constraint is more effective than a VaR constraint as a tool 
to control risk for slightly risk-averse agents [12].

The paper is organized as follows: we introduce the theoretic a 
framework of covariance estimators and optimization problem 
formulation in Sections 2 and 3, respectively. We discuss data 
preparation and the rebalancing procedure in Section 4. We 
implement different covariance estimators within the framework 
of minimum variance optimization in Section 5. In Section 
5.1, we compare the performance of sample covariance, Ledo 
it shrinkage covariance, and robust Gerber covariance on 
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minimum variance portfolios. In addition to these covariance 
estimators, we also explore whether the implementation of 
Nested Clustering Optimization can help reduce instability 
caused by signal in Section 5.2. In Section 5.3, we add CVaR 
constraints to the minimum variance optimization to control for 
extreme risk. Specifically, we test and compare portfolios with 
one CVaR constraint and two CVaR constraints.

2. Models of Estimating Covariance
In this section, we delve into the theoretical framework of 
covariance matrix estimation. We will explore four different 
covariance estimators: exponentially weighted sample 
covariance, Ledoit-Wolf shrinkage covariance, Gerber robust 
co-movement measure, and Nested Cluster Optimization. The 
first three methods aim to construct more accurate and robust 
statistics for use in optimization, while the last method focuses 
on enhancing optimization results by clustering the correlation 
matrix to mitigate the spread of signal instability.

• Motivation Suppose we want to construct a minimum variance 
portfolio using traditional Markowitz framework. We have 𝑁 
assets, whose variance is represented by a covariance matrix 
𝑉. We want to compute the optimal weight vector 𝜔∗ of the 
following minimum variance optimization problem:

Where 𝑒 is vector of ones of size N
We can derive a closed-form optimal solution:

When we use 𝑉 to estimate 𝑉, the solution can be unstable, which 
means a small change of the inputs will cause great change in 𝜔∗. 
This b is the reason why portfolios using estimated covariance 
always perform worse out-of sample. For constructing a better 
portfolio, we want to study how we can mitigate the problem of 
instability.

2.1 Exponentially Weighted Sample Covariance
The first method is exponentially weighted sample covariance. It 
is an extension on traditional sample covariance matrix. Consider 
we have 𝑁 assets and 𝑇 observations (historical samples).

• Sample Mean Return We first define the sample mean vector 
x as a column vector whose 𝑗-th element 𝑥𝑗 is the average value 
of the 𝑁 return observations of the 𝑓th variable:

Thus, the sample mean vector contains the average of the 
observations for each variable, and is written

• Sample Covariance Correspondingly, the sample covariance 
matrix is a 𝑁 × 𝑁 matrix V = [𝜎𝑗𝑘] with entries

Where 𝜎𝑗𝑘 is an estimate of the covariance between the jth variable 
and the kth variable of the population underlying the data.

In the form of matrix, the sample covariance is

• Exponential Smoothing Exponential smoothing is a technique 
for smoothing time series data using the exponential window 
function. It can assign exponentially decreasing weights over the 
time series so that the influence of early observations vanishes 
as time progresses.

The raw time series is often represented by {𝑥t} beginning at 
time 𝑡 = 0, and the output of the exponential smoothing algorithm 
denoted as {𝑦𝑡}, which may be regarded as a best estimate of what 
the next value of 𝑥 will be. When the sequence of observations 
begins at time 𝑡 = 0, the simplest form of exponential smoothing 
is given by the formulas: 1]

Where 𝛼 is the smoothing factor or called rate of decay factor, 
and
0 < 𝛼 < 1.
By direct substitution, we find that

In other words, as time passes the smoothed statistic 𝑦𝑡 becomes 
the weighted average of a greater and greater number of the past 
observations.
𝑦𝑡−1, . . . , 𝑦𝑡−, and the weights assigned to previous observations 
are proportional to the terms of the geometric progression

If 𝛼 is zero, we essentially applies equal weight to each 
observation and if 𝛼 is large, the influence of early observation 
decays quickly.

• Exponentially Weighted Sample Covariance When we apply 
the exponential smoothing weight vector to our observation, the 
covariance matrix will be transformed into:

Portfolio Optimization with
Robust Covariance and Conditional Value-at-Risk Constraints

Qiqin Zhou
qz247@cornell.edu
Cornell University

Keywords— Portfolio Optimization, Robust Covariance, Portfolio
Regularization, Mean-Variance Optimization, Convex Optimization,
semidefinite optimization, Value at Risk, Expected Shortfall, Unsu-
pervised Learning, Clustering, Machine Learning

Abstract
The measure of portfolio risk is an important input of the
Markowitz framework. In this study, we explored various
methods to obtain a robust covariance estimators that are less
susceptible to financial data noise. We evaluated the perfor-
mance of large-cap portfolio using various forms of Ledoit
Shrinkage Covariance and Robust Gerber Covariance matrix
during the period of 2012 to 2022. Out-of-sample perfor-
mance indicates that robust covariance estimators can outper-
form the market capitalization-weighted benchmark portfo-
lio, particularly during bull markets. The Gerber covariance
with Mean-Absolute-Deviation (MAD) emerged as the top
performer. However, robust estimators do not manage tail risk
well under extreme market conditions, for example, Covid-19
period. When we aim to control for tail risk, we should add
constraint on Conditional Value-at-Risk (CVaR) to make more
conservative decision on risk exposure. Additionally, we in-
corporated unsupervised clustering algorithm K-means to the
optimization algorithm (i.e. Nested Clustering Optimization,
NCO). It not only helps mitigate numerical instability of the
optimization algorithm, but also contributes to lower draw-
down as well.

1 INTRODUCTION & LITERATURE
REVIEW

Under the Markowitz framework, a portfolio relies heavily on the
availability of the covariance matrix. Estimating covariance is con-
sidered more practical than predicting asset returns. Therefore, many
researchers focus on constructing minimum-variance portfolios that rely
solely on the estimation of the covariance matrix. However, resulting
portfolios can still perform poorly when tested out of sample.

The traditional estimator is the sample covariance matrix [1] (Jobson
and Korkie, 1980), but it is known for its non-robustness and instability.
When the sample covariance matrix is used in an optimization problem,
the result is prone to high estimation errors due to noisy inputs and the
signal structure. Existing literature has attempted to resolve this problem
in three ways. The first approach is to introduce strong constraints on
weights, such as short-sales constraints [3] (Frost and Savarino, 1988).
Secondly, Ledoit and Wolf (2003) suggested shrinking the covariance
matrix towards a pre-specified, more stable structure [4]. The third
method is to introduce more robust covariance estimators that rely less on
product-moment. For example, the Minimum Covariance Determinant
(MCD) estimator is a robust estimator that can be used to estimate
the covariance matrix of highly contaminated datasets [6] (Rousseeuw,
1984). Additionally, Marcos López de Prado (2019) proposed reducing
signal instability by clustering the covariance matrix into subgroups
using K-means or Hierarchical Clustering [10].

Another reason why the traditional Markowitz framework can fail in
reality is that it pays little attention to controlling extreme risks. After the
financial crisis, Value-at-Risk (VaR) became one of the most common
risk measures used in finance. Rockafellar and Uryasev (2000) proposed

a more coherent and sub-additive percentile risk measure: Conditional
Value-at-Risk (CVaR), which calculates the expected loss given that the
loss exceeds the VaR threshold [12]. Alexander and Baptista (2004)
suggested that a CVaR constraint is more effective than a VaR constraint
as a tool to control risk for slightly risk-averse agents [13].

The paper is organized as follows: we introduce the theoretical frame-
work of covariance estimators and optimization problem formulation in
Sections 2 and 3, respectively. We discuss data preparation and the re-
balancing procedure in Section 4. We implement different covariance
estimators within the framework of minimum variance optimization in
Section 5. In Section 5.1, we compare the performance of sample co-
variance, Ledoit shrinkage covariance, and robust Gerber covariance on
minimum variance portfolios. In addition to these covariance estima-
tors, we also explore whether the implementation of Nested Clustering
Optimization can help reduce instability caused by signal in Section 5.2.
In Section 5.3, we add CVaR constraints to the minimum variance opti-
mization to control for extreme risk. Specifically, we test and compare
portfolios with one CVaR constraint and two CVaR constraints.

2 MODELS OF ESTIMATING COVARIANCE
In this section, we delve into the theoretical framework of covariance
matrix estimation. We will explore four different covariance estima-
tors: exponentially-weighted sample covariance, Ledoit-Wolf shrinkage
covariance, Gerber robust co-movement measure, and Nested Cluster
Optimization. The first three methods aim to construct more accurate
and robust statistics for use in optimization, while the last method fo-
cuses on enhancing optimization results by clustering the correlation
matrix to mitigate the spread of signal instability.

Motivation Suppose we want to construct a minimum variance
portfolio using traditional Markowitz framework. We have 𝑁𝑁 assets,
whose variance is represented by a covariance matrix 𝑉𝑉 . We want
to compute the optimal weight vector 𝜔𝜔∗ of the following minimum
variance optimization problem:

min
𝜔𝜔

1
2
𝜔𝜔′𝑉𝑉𝑉𝑉

s.t.: 𝜔𝜔′𝑒𝑒 = 1,

where 𝑒𝑒 is vector of ones of size N
We can derive a closed-form optimal solution:

𝜔𝜔∗ =
𝑉𝑉−1𝑒𝑒

𝑒𝑒′𝑉𝑉−1𝑒𝑒

When we use 𝑉̂𝑉 to estimate 𝑉𝑉 , the solution can be unstable, which
means a small change of the inputs will cause great change in 𝜔𝜔∗. This
is the reason why portfolios using estimated covariance always perform
worse out-of sample. For constructing a better portfolio, we want to
study how we can mitigate the problem of instability.

2.1 Exponentially Weighted Sample Covariance
The first method is exponentially weighted sample covariance. It is an
extension on traditional sample covariance matrix. Consider we have 𝑁𝑁

assets and 𝑇𝑇 observations (historical samples).
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The paper is organized as follows: we introduce the theoretical frame-
work of covariance estimators and optimization problem formulation in
Sections 2 and 3, respectively. We discuss data preparation and the re-
balancing procedure in Section 4. We implement different covariance
estimators within the framework of minimum variance optimization in
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2 MODELS OF ESTIMATING COVARIANCE
In this section, we delve into the theoretical framework of covariance
matrix estimation. We will explore four different covariance estima-
tors: exponentially-weighted sample covariance, Ledoit-Wolf shrinkage
covariance, Gerber robust co-movement measure, and Nested Cluster
Optimization. The first three methods aim to construct more accurate
and robust statistics for use in optimization, while the last method fo-
cuses on enhancing optimization results by clustering the correlation
matrix to mitigate the spread of signal instability.

Motivation Suppose we want to construct a minimum variance
portfolio using traditional Markowitz framework. We have 𝑁𝑁 assets,
whose variance is represented by a covariance matrix 𝑉𝑉 . We want
to compute the optimal weight vector 𝜔𝜔∗ of the following minimum
variance optimization problem:

min
𝜔𝜔

1
2
𝜔𝜔′𝑉𝑉𝑉𝑉

s.t.: 𝜔𝜔′𝑒𝑒 = 1,

where 𝑒𝑒 is vector of ones of size N
We can derive a closed-form optimal solution:

𝜔𝜔∗ =
𝑉𝑉−1𝑒𝑒

𝑒𝑒′𝑉𝑉−1𝑒𝑒

When we use 𝑉̂𝑉 to estimate 𝑉𝑉 , the solution can be unstable, which
means a small change of the inputs will cause great change in 𝜔𝜔∗. This
is the reason why portfolios using estimated covariance always perform
worse out-of sample. For constructing a better portfolio, we want to
study how we can mitigate the problem of instability.

2.1 Exponentially Weighted Sample Covariance
The first method is exponentially weighted sample covariance. It is an
extension on traditional sample covariance matrix. Consider we have 𝑁𝑁

assets and 𝑇𝑇 observations (historical samples).

− −Sample Mean Return We first define the sample mean vector x
as a column vector whose 𝑗𝑗-th element 𝑥𝑥 𝑗𝑗 is the average value of the 𝑁𝑁

return observations of the 𝑓𝑓 th variable:

𝑥𝑥 𝑗𝑗 =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑥𝑥𝑖𝑖 𝑖𝑖 , 𝑗𝑗 = 1, . . . , 𝐾𝐾𝐾

Thus, the sample mean vector contains the average of the observations
for each variable, and is written

x =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

x𝑖𝑖 =



𝑥𝑥1
.
.
.

𝑥𝑥 𝑗𝑗
.
.
.

𝑥𝑥𝐾𝐾



Sample Covariance Correspondingly, the sample covariance
matrix is a 𝑁𝑁 × 𝑁𝑁 matrix V =


𝜎𝜎𝑗𝑗𝑗𝑗


with entries

𝜎𝜎𝑗𝑗𝑗𝑗 =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

�
𝑥𝑥𝑖𝑖 𝑖𝑖 − 𝑥𝑥 𝑗𝑗


(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘)

where 𝜎𝜎𝑗𝑗𝑗𝑗 is an estimate of the covariance between the jth variable and
the kth variable of the population underlying the data.

In the form of matrix, the sample covariance is

V =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

(x𝑖𝑖 − x) (x𝑖𝑖 − x)T

Exponential Smoothing Exponential smoothing is a technique
for smoothing time series data using the exponential window function.
It can assign exponentially decreasing weights over the time series so
that the influence of early observations vanishes as time progresses.

The raw time series is often represented by {𝑥𝑥𝑡𝑡 } beginning at time
𝑡𝑡 = 0, and the output of the exponential smoothing algorithm denoted as
{𝑦𝑦𝑡𝑡 }, which may be regarded as a best estimate of what the next value
of 𝑥𝑥 will be. When the sequence of observations begins at time 𝑡𝑡 = 0,
the simplest form of exponential smoothing is given by the formulas: 1]

𝑦𝑦0 = 𝑥𝑥0
𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1, 𝑡𝑡 𝑡 0

where 𝛼𝛼 is the smoothing factor or called rate of decay factor, and
0 < 𝛼𝛼 𝛼 1.

By direct substitution, we find that

𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1

= 𝛼𝛼𝛼𝛼𝑡𝑡 + 𝛼𝛼(1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑦𝑦𝑡𝑡−2

= 𝛼𝛼


𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑥𝑥𝑡𝑡−2

+(1 − 𝛼𝛼)3𝑥𝑥𝑡𝑡−3 + · · · + (1 − 𝛼𝛼)𝑡𝑡−1𝑥𝑥1

+ (1 − 𝛼𝛼)𝑡𝑡 𝑦𝑦0

In other words, as time passes the smoothed statistic 𝑦𝑦𝑡𝑡 becomes the
weighted average of a greater and greater number of the past observations
𝑦𝑦𝑡𝑡−1, . . . , 𝑦𝑦𝑡𝑡− , and the weights assigned to previous observations are
proportional to the terms of the geometric progression

1, (1 − 𝛼𝛼), (1 − 𝛼𝛼)2, . . . , (1 − 𝛼𝛼)𝑛𝑛, . . .

If 𝛼𝛼 is zero, we essentially applies equal weight to each observation
and if 𝛼𝛼 is large, the influence of early observation decays quickly.

Exponentially Weighted Sample Covariance When we
apply the exponential smoothing weight vector to our observation, the
covariance matrix will be transformed into:

V =
𝑁𝑁∑︁
𝑖𝑖=1

𝜔𝜔𝑖𝑖

�
x𝑖𝑖 − 𝜇𝜇∗

 �
x𝑖𝑖 − 𝜇𝜇∗

T

𝜇𝜇∗ =
𝑁𝑁∑︁
𝑖𝑖=1

𝑤𝑤𝑖𝑖x𝑖𝑖

where 𝑤𝑤𝑖𝑖 is the 𝑖𝑖-th entry of weight vector that sums to 1 (i.e.
𝑁𝑁
𝑖𝑖=1 𝑤𝑤𝑖𝑖 =

1 )
The weight vector without normalization is:

𝑤𝑤′ =



(1 − 𝛼𝛼)𝑇𝑇
.
.
.

(1 − 𝛼𝛼)2
(1 − 𝛼𝛼)1

1


𝑤𝑤 is eventually achieved by scaling 𝑤𝑤′ to sum to 1.

The sample covariance estimator is often unstable for two main rea-
sons. Firstly, it is highly sensitive to outliers in the data. Outliers can
disproportionately influence the covariance estimate, leading to inaccu-
racies in the estimation of relationships between variables. Secondly,
the sample covariance estimator can become non-singular if the number
of samples 𝑇𝑇 is not sufficiently larger than the number of variables 𝑁𝑁 .
When the number of samples is insufficient, the covariance matrix may
become singular, making it impossible to compute its inverse and con-
sequently causing issues in portfolio optimization and other statistical
analyses.

2.2 Ledoit-Wolf Shrinkage Covariance
As previously mentioned, one issue with the weighted sample covariance
estimator is its non-singularity when the number of assets 𝑁𝑁 exceeds the
number 𝑇𝑇 of available observations. This poses a significant problem
in portfolio optimization. One approach to addressing this issue is by
imposing some ad hoc structure on the covariance matrix, such as a
factor model. However, factor models like the Barra model are often
criticized for their subjectivity. Without prior knowledge about the true
structure of the covariance matrix, relying on pre-specified structures can
be unreliable. This lack of reliability can undermine the effectiveness
of portfolio optimization techniques based on such models.

Ledoit and Wolf (2004) proposed the shrinkage estimator. Suppose
we have a structured covariance matrix 𝐹𝐹 and sample covariance 𝑆𝑆 [5].
The shrunken covariance matrix is Σshrink is a linear combination of
both matrix:

Σshrink = 𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆

where 𝛿𝛿 is a shrinkage constant between 0 and 1.
Ledoit and Wolf (2004) suggests a constant correlation model as the

structure matrix covariance matrix 𝐹𝐹. It has average sample correlation
of all pairs for the non-diagonal elements of the sample correlation
matrix.

Each entry 𝑓𝑓𝑖𝑖 𝑖𝑖 of 𝐹𝐹 is written as

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑓𝑓𝑖𝑖 𝑖𝑖 = 𝜌𝜌
√
𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑗𝑗 𝑗𝑗

𝜌𝜌 =
2

(𝑁𝑁 − 1)𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑁𝑁∑︁
𝑗𝑗=𝑖𝑖+1

𝜌𝜌𝑖𝑖 𝑖𝑖

where 𝜌𝜌𝑖𝑖 𝑖𝑖 is the sample correlation between asset 𝑖𝑖 and 𝑗𝑗 , and 𝑠𝑠𝑖𝑖 𝑖𝑖 is
the sample covariance between asset 𝑖𝑖 and 𝑗𝑗 .

Sample Mean Return We first define the sample mean vector x
as a column vector whose 𝑗𝑗-th element 𝑥𝑥 𝑗𝑗 is the average value of the 𝑁𝑁

return observations of the 𝑓𝑓 th variable:

𝑥𝑥 𝑗𝑗 =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑥𝑥𝑖𝑖 𝑖𝑖 , 𝑗𝑗 = 1, . . . , 𝐾𝐾𝐾

Thus, the sample mean vector contains the average of the observations
for each variable, and is written

x =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

x𝑖𝑖 =



𝑥𝑥1
.
.
.

𝑥𝑥 𝑗𝑗
.
.
.

𝑥𝑥𝐾𝐾



Sample Covariance Correspondingly, the sample covariance
matrix is a 𝑁𝑁 × 𝑁𝑁 matrix V =


𝜎𝜎𝑗𝑗𝑗𝑗


with entries

𝜎𝜎𝑗𝑗𝑗𝑗 =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

�
𝑥𝑥𝑖𝑖 𝑖𝑖 − 𝑥𝑥 𝑗𝑗


(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘)

where 𝜎𝜎𝑗𝑗𝑗𝑗 is an estimate of the covariance between the jth variable and
the kth variable of the population underlying the data.

In the form of matrix, the sample covariance is

V =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

(x𝑖𝑖 − x) (x𝑖𝑖 − x)T

Exponential Smoothing Exponential smoothing is a technique
for smoothing time series data using the exponential window function.
It can assign exponentially decreasing weights over the time series so
that the influence of early observations vanishes as time progresses.

The raw time series is often represented by {𝑥𝑥𝑡𝑡 } beginning at time
𝑡𝑡 = 0, and the output of the exponential smoothing algorithm denoted as
{𝑦𝑦𝑡𝑡 }, which may be regarded as a best estimate of what the next value
of 𝑥𝑥 will be. When the sequence of observations begins at time 𝑡𝑡 = 0,
the simplest form of exponential smoothing is given by the formulas: 1]

𝑦𝑦0 = 𝑥𝑥0
𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1, 𝑡𝑡 𝑡 0

where 𝛼𝛼 is the smoothing factor or called rate of decay factor, and
0 < 𝛼𝛼 𝛼 1.

By direct substitution, we find that

𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1

= 𝛼𝛼𝛼𝛼𝑡𝑡 + 𝛼𝛼(1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑦𝑦𝑡𝑡−2

= 𝛼𝛼


𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑥𝑥𝑡𝑡−2

+(1 − 𝛼𝛼)3𝑥𝑥𝑡𝑡−3 + · · · + (1 − 𝛼𝛼)𝑡𝑡−1𝑥𝑥1

+ (1 − 𝛼𝛼)𝑡𝑡 𝑦𝑦0

In other words, as time passes the smoothed statistic 𝑦𝑦𝑡𝑡 becomes the
weighted average of a greater and greater number of the past observations
𝑦𝑦𝑡𝑡−1, . . . , 𝑦𝑦𝑡𝑡− , and the weights assigned to previous observations are
proportional to the terms of the geometric progression

1, (1 − 𝛼𝛼), (1 − 𝛼𝛼)2, . . . , (1 − 𝛼𝛼)𝑛𝑛, . . .

If 𝛼𝛼 is zero, we essentially applies equal weight to each observation
and if 𝛼𝛼 is large, the influence of early observation decays quickly.

Exponentially Weighted Sample Covariance When we
apply the exponential smoothing weight vector to our observation, the
covariance matrix will be transformed into:

V =
𝑁𝑁∑︁
𝑖𝑖=1

𝜔𝜔𝑖𝑖

�
x𝑖𝑖 − 𝜇𝜇∗

 �
x𝑖𝑖 − 𝜇𝜇∗

T

𝜇𝜇∗ =
𝑁𝑁∑︁
𝑖𝑖=1

𝑤𝑤𝑖𝑖x𝑖𝑖

where 𝑤𝑤𝑖𝑖 is the 𝑖𝑖-th entry of weight vector that sums to 1 (i.e.
𝑁𝑁
𝑖𝑖=1 𝑤𝑤𝑖𝑖 =

1 )
The weight vector without normalization is:

𝑤𝑤′ =



(1 − 𝛼𝛼)𝑇𝑇
.
.
.

(1 − 𝛼𝛼)2
(1 − 𝛼𝛼)1

1


𝑤𝑤 is eventually achieved by scaling 𝑤𝑤′ to sum to 1.

The sample covariance estimator is often unstable for two main rea-
sons. Firstly, it is highly sensitive to outliers in the data. Outliers can
disproportionately influence the covariance estimate, leading to inaccu-
racies in the estimation of relationships between variables. Secondly,
the sample covariance estimator can become non-singular if the number
of samples 𝑇𝑇 is not sufficiently larger than the number of variables 𝑁𝑁 .
When the number of samples is insufficient, the covariance matrix may
become singular, making it impossible to compute its inverse and con-
sequently causing issues in portfolio optimization and other statistical
analyses.

2.2 Ledoit-Wolf Shrinkage Covariance
As previously mentioned, one issue with the weighted sample covariance
estimator is its non-singularity when the number of assets 𝑁𝑁 exceeds the
number 𝑇𝑇 of available observations. This poses a significant problem
in portfolio optimization. One approach to addressing this issue is by
imposing some ad hoc structure on the covariance matrix, such as a
factor model. However, factor models like the Barra model are often
criticized for their subjectivity. Without prior knowledge about the true
structure of the covariance matrix, relying on pre-specified structures can
be unreliable. This lack of reliability can undermine the effectiveness
of portfolio optimization techniques based on such models.

Ledoit and Wolf (2004) proposed the shrinkage estimator. Suppose
we have a structured covariance matrix 𝐹𝐹 and sample covariance 𝑆𝑆 [5].
The shrunken covariance matrix is Σshrink is a linear combination of
both matrix:

Σshrink = 𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆

where 𝛿𝛿 is a shrinkage constant between 0 and 1.
Ledoit and Wolf (2004) suggests a constant correlation model as the

structure matrix covariance matrix 𝐹𝐹. It has average sample correlation
of all pairs for the non-diagonal elements of the sample correlation
matrix.

Each entry 𝑓𝑓𝑖𝑖 𝑖𝑖 of 𝐹𝐹 is written as

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑓𝑓𝑖𝑖 𝑖𝑖 = 𝜌𝜌
√
𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑗𝑗 𝑗𝑗

𝜌𝜌 =
2

(𝑁𝑁 − 1)𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑁𝑁∑︁
𝑗𝑗=𝑖𝑖+1

𝜌𝜌𝑖𝑖 𝑖𝑖

where 𝜌𝜌𝑖𝑖 𝑖𝑖 is the sample correlation between asset 𝑖𝑖 and 𝑗𝑗 , and 𝑠𝑠𝑖𝑖 𝑖𝑖 is
the sample covariance between asset 𝑖𝑖 and 𝑗𝑗 .

Sample Mean Return We first define the sample mean vector x
as a column vector whose 𝑗𝑗-th element 𝑥𝑥 𝑗𝑗 is the average value of the 𝑁𝑁

return observations of the 𝑓𝑓 th variable:

𝑥𝑥 𝑗𝑗 =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑥𝑥𝑖𝑖 𝑖𝑖 , 𝑗𝑗 = 1, . . . , 𝐾𝐾𝐾

Thus, the sample mean vector contains the average of the observations
for each variable, and is written

x =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

x𝑖𝑖 =



𝑥𝑥1
.
.
.

𝑥𝑥 𝑗𝑗
.
.
.

𝑥𝑥𝐾𝐾



Sample Covariance Correspondingly, the sample covariance
matrix is a 𝑁𝑁 × 𝑁𝑁 matrix V =


𝜎𝜎𝑗𝑗𝑗𝑗


with entries

𝜎𝜎𝑗𝑗𝑗𝑗 =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

�
𝑥𝑥𝑖𝑖 𝑖𝑖 − 𝑥𝑥 𝑗𝑗


(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘)

where 𝜎𝜎𝑗𝑗𝑗𝑗 is an estimate of the covariance between the jth variable and
the kth variable of the population underlying the data.

In the form of matrix, the sample covariance is

V =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

(x𝑖𝑖 − x) (x𝑖𝑖 − x)T

Exponential Smoothing Exponential smoothing is a technique
for smoothing time series data using the exponential window function.
It can assign exponentially decreasing weights over the time series so
that the influence of early observations vanishes as time progresses.

The raw time series is often represented by {𝑥𝑥𝑡𝑡 } beginning at time
𝑡𝑡 = 0, and the output of the exponential smoothing algorithm denoted as
{𝑦𝑦𝑡𝑡 }, which may be regarded as a best estimate of what the next value
of 𝑥𝑥 will be. When the sequence of observations begins at time 𝑡𝑡 = 0,
the simplest form of exponential smoothing is given by the formulas: 1]

𝑦𝑦0 = 𝑥𝑥0
𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1, 𝑡𝑡 𝑡 0

where 𝛼𝛼 is the smoothing factor or called rate of decay factor, and
0 < 𝛼𝛼 𝛼 1.

By direct substitution, we find that

𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1

= 𝛼𝛼𝛼𝛼𝑡𝑡 + 𝛼𝛼(1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑦𝑦𝑡𝑡−2

= 𝛼𝛼


𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑥𝑥𝑡𝑡−2

+(1 − 𝛼𝛼)3𝑥𝑥𝑡𝑡−3 + · · · + (1 − 𝛼𝛼)𝑡𝑡−1𝑥𝑥1

+ (1 − 𝛼𝛼)𝑡𝑡 𝑦𝑦0

In other words, as time passes the smoothed statistic 𝑦𝑦𝑡𝑡 becomes the
weighted average of a greater and greater number of the past observations
𝑦𝑦𝑡𝑡−1, . . . , 𝑦𝑦𝑡𝑡− , and the weights assigned to previous observations are
proportional to the terms of the geometric progression

1, (1 − 𝛼𝛼), (1 − 𝛼𝛼)2, . . . , (1 − 𝛼𝛼)𝑛𝑛, . . .

If 𝛼𝛼 is zero, we essentially applies equal weight to each observation
and if 𝛼𝛼 is large, the influence of early observation decays quickly.

Exponentially Weighted Sample Covariance When we
apply the exponential smoothing weight vector to our observation, the
covariance matrix will be transformed into:

V =
𝑁𝑁∑︁
𝑖𝑖=1

𝜔𝜔𝑖𝑖

�
x𝑖𝑖 − 𝜇𝜇∗

 �
x𝑖𝑖 − 𝜇𝜇∗

T

𝜇𝜇∗ =
𝑁𝑁∑︁
𝑖𝑖=1

𝑤𝑤𝑖𝑖x𝑖𝑖

where 𝑤𝑤𝑖𝑖 is the 𝑖𝑖-th entry of weight vector that sums to 1 (i.e.
𝑁𝑁
𝑖𝑖=1 𝑤𝑤𝑖𝑖 =

1 )
The weight vector without normalization is:

𝑤𝑤′ =



(1 − 𝛼𝛼)𝑇𝑇
.
.
.

(1 − 𝛼𝛼)2
(1 − 𝛼𝛼)1

1


𝑤𝑤 is eventually achieved by scaling 𝑤𝑤′ to sum to 1.

The sample covariance estimator is often unstable for two main rea-
sons. Firstly, it is highly sensitive to outliers in the data. Outliers can
disproportionately influence the covariance estimate, leading to inaccu-
racies in the estimation of relationships between variables. Secondly,
the sample covariance estimator can become non-singular if the number
of samples 𝑇𝑇 is not sufficiently larger than the number of variables 𝑁𝑁 .
When the number of samples is insufficient, the covariance matrix may
become singular, making it impossible to compute its inverse and con-
sequently causing issues in portfolio optimization and other statistical
analyses.

2.2 Ledoit-Wolf Shrinkage Covariance
As previously mentioned, one issue with the weighted sample covariance
estimator is its non-singularity when the number of assets 𝑁𝑁 exceeds the
number 𝑇𝑇 of available observations. This poses a significant problem
in portfolio optimization. One approach to addressing this issue is by
imposing some ad hoc structure on the covariance matrix, such as a
factor model. However, factor models like the Barra model are often
criticized for their subjectivity. Without prior knowledge about the true
structure of the covariance matrix, relying on pre-specified structures can
be unreliable. This lack of reliability can undermine the effectiveness
of portfolio optimization techniques based on such models.

Ledoit and Wolf (2004) proposed the shrinkage estimator. Suppose
we have a structured covariance matrix 𝐹𝐹 and sample covariance 𝑆𝑆 [5].
The shrunken covariance matrix is Σshrink is a linear combination of
both matrix:

Σshrink = 𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆

where 𝛿𝛿 is a shrinkage constant between 0 and 1.
Ledoit and Wolf (2004) suggests a constant correlation model as the

structure matrix covariance matrix 𝐹𝐹. It has average sample correlation
of all pairs for the non-diagonal elements of the sample correlation
matrix.

Each entry 𝑓𝑓𝑖𝑖 𝑖𝑖 of 𝐹𝐹 is written as

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑓𝑓𝑖𝑖 𝑖𝑖 = 𝜌𝜌
√
𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑗𝑗 𝑗𝑗

𝜌𝜌 =
2

(𝑁𝑁 − 1)𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑁𝑁∑︁
𝑗𝑗=𝑖𝑖+1

𝜌𝜌𝑖𝑖 𝑖𝑖

where 𝜌𝜌𝑖𝑖 𝑖𝑖 is the sample correlation between asset 𝑖𝑖 and 𝑗𝑗 , and 𝑠𝑠𝑖𝑖 𝑖𝑖 is
the sample covariance between asset 𝑖𝑖 and 𝑗𝑗 .

Sample Mean Return We first define the sample mean vector x
as a column vector whose 𝑗𝑗-th element 𝑥𝑥 𝑗𝑗 is the average value of the 𝑁𝑁

return observations of the 𝑓𝑓 th variable:

𝑥𝑥 𝑗𝑗 =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑥𝑥𝑖𝑖 𝑖𝑖 , 𝑗𝑗 = 1, . . . , 𝐾𝐾𝐾

Thus, the sample mean vector contains the average of the observations
for each variable, and is written

x =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

x𝑖𝑖 =



𝑥𝑥1
.
.
.

𝑥𝑥 𝑗𝑗
.
.
.

𝑥𝑥𝐾𝐾



Sample Covariance Correspondingly, the sample covariance
matrix is a 𝑁𝑁 × 𝑁𝑁 matrix V =


𝜎𝜎𝑗𝑗𝑗𝑗


with entries

𝜎𝜎𝑗𝑗𝑗𝑗 =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

�
𝑥𝑥𝑖𝑖 𝑖𝑖 − 𝑥𝑥 𝑗𝑗


(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘)

where 𝜎𝜎𝑗𝑗𝑗𝑗 is an estimate of the covariance between the jth variable and
the kth variable of the population underlying the data.

In the form of matrix, the sample covariance is

V =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

(x𝑖𝑖 − x) (x𝑖𝑖 − x)T

Exponential Smoothing Exponential smoothing is a technique
for smoothing time series data using the exponential window function.
It can assign exponentially decreasing weights over the time series so
that the influence of early observations vanishes as time progresses.

The raw time series is often represented by {𝑥𝑥𝑡𝑡 } beginning at time
𝑡𝑡 = 0, and the output of the exponential smoothing algorithm denoted as
{𝑦𝑦𝑡𝑡 }, which may be regarded as a best estimate of what the next value
of 𝑥𝑥 will be. When the sequence of observations begins at time 𝑡𝑡 = 0,
the simplest form of exponential smoothing is given by the formulas: 1]

𝑦𝑦0 = 𝑥𝑥0
𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1, 𝑡𝑡 𝑡 0

where 𝛼𝛼 is the smoothing factor or called rate of decay factor, and
0 < 𝛼𝛼 𝛼 1.

By direct substitution, we find that

𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1

= 𝛼𝛼𝛼𝛼𝑡𝑡 + 𝛼𝛼(1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑦𝑦𝑡𝑡−2

= 𝛼𝛼


𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑥𝑥𝑡𝑡−2

+(1 − 𝛼𝛼)3𝑥𝑥𝑡𝑡−3 + · · · + (1 − 𝛼𝛼)𝑡𝑡−1𝑥𝑥1

+ (1 − 𝛼𝛼)𝑡𝑡 𝑦𝑦0

In other words, as time passes the smoothed statistic 𝑦𝑦𝑡𝑡 becomes the
weighted average of a greater and greater number of the past observations
𝑦𝑦𝑡𝑡−1, . . . , 𝑦𝑦𝑡𝑡− , and the weights assigned to previous observations are
proportional to the terms of the geometric progression

1, (1 − 𝛼𝛼), (1 − 𝛼𝛼)2, . . . , (1 − 𝛼𝛼)𝑛𝑛, . . .

If 𝛼𝛼 is zero, we essentially applies equal weight to each observation
and if 𝛼𝛼 is large, the influence of early observation decays quickly.

Exponentially Weighted Sample Covariance When we
apply the exponential smoothing weight vector to our observation, the
covariance matrix will be transformed into:

V =
𝑁𝑁∑︁
𝑖𝑖=1

𝜔𝜔𝑖𝑖

�
x𝑖𝑖 − 𝜇𝜇∗

 �
x𝑖𝑖 − 𝜇𝜇∗

T

𝜇𝜇∗ =
𝑁𝑁∑︁
𝑖𝑖=1

𝑤𝑤𝑖𝑖x𝑖𝑖

where 𝑤𝑤𝑖𝑖 is the 𝑖𝑖-th entry of weight vector that sums to 1 (i.e.
𝑁𝑁
𝑖𝑖=1 𝑤𝑤𝑖𝑖 =

1 )
The weight vector without normalization is:

𝑤𝑤′ =



(1 − 𝛼𝛼)𝑇𝑇
.
.
.

(1 − 𝛼𝛼)2
(1 − 𝛼𝛼)1

1


𝑤𝑤 is eventually achieved by scaling 𝑤𝑤′ to sum to 1.

The sample covariance estimator is often unstable for two main rea-
sons. Firstly, it is highly sensitive to outliers in the data. Outliers can
disproportionately influence the covariance estimate, leading to inaccu-
racies in the estimation of relationships between variables. Secondly,
the sample covariance estimator can become non-singular if the number
of samples 𝑇𝑇 is not sufficiently larger than the number of variables 𝑁𝑁 .
When the number of samples is insufficient, the covariance matrix may
become singular, making it impossible to compute its inverse and con-
sequently causing issues in portfolio optimization and other statistical
analyses.

2.2 Ledoit-Wolf Shrinkage Covariance
As previously mentioned, one issue with the weighted sample covariance
estimator is its non-singularity when the number of assets 𝑁𝑁 exceeds the
number 𝑇𝑇 of available observations. This poses a significant problem
in portfolio optimization. One approach to addressing this issue is by
imposing some ad hoc structure on the covariance matrix, such as a
factor model. However, factor models like the Barra model are often
criticized for their subjectivity. Without prior knowledge about the true
structure of the covariance matrix, relying on pre-specified structures can
be unreliable. This lack of reliability can undermine the effectiveness
of portfolio optimization techniques based on such models.

Ledoit and Wolf (2004) proposed the shrinkage estimator. Suppose
we have a structured covariance matrix 𝐹𝐹 and sample covariance 𝑆𝑆 [5].
The shrunken covariance matrix is Σshrink is a linear combination of
both matrix:

Σshrink = 𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆

where 𝛿𝛿 is a shrinkage constant between 0 and 1.
Ledoit and Wolf (2004) suggests a constant correlation model as the

structure matrix covariance matrix 𝐹𝐹. It has average sample correlation
of all pairs for the non-diagonal elements of the sample correlation
matrix.

Each entry 𝑓𝑓𝑖𝑖 𝑖𝑖 of 𝐹𝐹 is written as

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑓𝑓𝑖𝑖 𝑖𝑖 = 𝜌𝜌
√
𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑗𝑗 𝑗𝑗

𝜌𝜌 =
2

(𝑁𝑁 − 1)𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑁𝑁∑︁
𝑗𝑗=𝑖𝑖+1

𝜌𝜌𝑖𝑖 𝑖𝑖

where 𝜌𝜌𝑖𝑖 𝑖𝑖 is the sample correlation between asset 𝑖𝑖 and 𝑗𝑗 , and 𝑠𝑠𝑖𝑖 𝑖𝑖 is
the sample covariance between asset 𝑖𝑖 and 𝑗𝑗 .

Sample Mean Return We first define the sample mean vector x
as a column vector whose 𝑗𝑗-th element 𝑥𝑥 𝑗𝑗 is the average value of the 𝑁𝑁

return observations of the 𝑓𝑓 th variable:

𝑥𝑥 𝑗𝑗 =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑥𝑥𝑖𝑖 𝑖𝑖 , 𝑗𝑗 = 1, . . . , 𝐾𝐾𝐾

Thus, the sample mean vector contains the average of the observations
for each variable, and is written

x =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

x𝑖𝑖 =



𝑥𝑥1
.
.
.

𝑥𝑥 𝑗𝑗
.
.
.

𝑥𝑥𝐾𝐾



Sample Covariance Correspondingly, the sample covariance
matrix is a 𝑁𝑁 × 𝑁𝑁 matrix V =


𝜎𝜎𝑗𝑗𝑗𝑗


with entries

𝜎𝜎𝑗𝑗𝑗𝑗 =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

�
𝑥𝑥𝑖𝑖 𝑖𝑖 − 𝑥𝑥 𝑗𝑗


(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘)

where 𝜎𝜎𝑗𝑗𝑗𝑗 is an estimate of the covariance between the jth variable and
the kth variable of the population underlying the data.

In the form of matrix, the sample covariance is

V =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

(x𝑖𝑖 − x) (x𝑖𝑖 − x)T

Exponential Smoothing Exponential smoothing is a technique
for smoothing time series data using the exponential window function.
It can assign exponentially decreasing weights over the time series so
that the influence of early observations vanishes as time progresses.

The raw time series is often represented by {𝑥𝑥𝑡𝑡 } beginning at time
𝑡𝑡 = 0, and the output of the exponential smoothing algorithm denoted as
{𝑦𝑦𝑡𝑡 }, which may be regarded as a best estimate of what the next value
of 𝑥𝑥 will be. When the sequence of observations begins at time 𝑡𝑡 = 0,
the simplest form of exponential smoothing is given by the formulas: 1]

𝑦𝑦0 = 𝑥𝑥0
𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1, 𝑡𝑡 𝑡 0

where 𝛼𝛼 is the smoothing factor or called rate of decay factor, and
0 < 𝛼𝛼 𝛼 1.

By direct substitution, we find that

𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1

= 𝛼𝛼𝛼𝛼𝑡𝑡 + 𝛼𝛼(1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑦𝑦𝑡𝑡−2

= 𝛼𝛼


𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑥𝑥𝑡𝑡−2

+(1 − 𝛼𝛼)3𝑥𝑥𝑡𝑡−3 + · · · + (1 − 𝛼𝛼)𝑡𝑡−1𝑥𝑥1

+ (1 − 𝛼𝛼)𝑡𝑡 𝑦𝑦0

In other words, as time passes the smoothed statistic 𝑦𝑦𝑡𝑡 becomes the
weighted average of a greater and greater number of the past observations
𝑦𝑦𝑡𝑡−1, . . . , 𝑦𝑦𝑡𝑡− , and the weights assigned to previous observations are
proportional to the terms of the geometric progression

1, (1 − 𝛼𝛼), (1 − 𝛼𝛼)2, . . . , (1 − 𝛼𝛼)𝑛𝑛, . . .

If 𝛼𝛼 is zero, we essentially applies equal weight to each observation
and if 𝛼𝛼 is large, the influence of early observation decays quickly.

Exponentially Weighted Sample Covariance When we
apply the exponential smoothing weight vector to our observation, the
covariance matrix will be transformed into:

V =
𝑁𝑁∑︁
𝑖𝑖=1

𝜔𝜔𝑖𝑖

�
x𝑖𝑖 − 𝜇𝜇∗

 �
x𝑖𝑖 − 𝜇𝜇∗

T

𝜇𝜇∗ =
𝑁𝑁∑︁
𝑖𝑖=1

𝑤𝑤𝑖𝑖x𝑖𝑖

where 𝑤𝑤𝑖𝑖 is the 𝑖𝑖-th entry of weight vector that sums to 1 (i.e.
𝑁𝑁
𝑖𝑖=1 𝑤𝑤𝑖𝑖 =

1 )
The weight vector without normalization is:

𝑤𝑤′ =



(1 − 𝛼𝛼)𝑇𝑇
.
.
.

(1 − 𝛼𝛼)2
(1 − 𝛼𝛼)1

1


𝑤𝑤 is eventually achieved by scaling 𝑤𝑤′ to sum to 1.

The sample covariance estimator is often unstable for two main rea-
sons. Firstly, it is highly sensitive to outliers in the data. Outliers can
disproportionately influence the covariance estimate, leading to inaccu-
racies in the estimation of relationships between variables. Secondly,
the sample covariance estimator can become non-singular if the number
of samples 𝑇𝑇 is not sufficiently larger than the number of variables 𝑁𝑁 .
When the number of samples is insufficient, the covariance matrix may
become singular, making it impossible to compute its inverse and con-
sequently causing issues in portfolio optimization and other statistical
analyses.

2.2 Ledoit-Wolf Shrinkage Covariance
As previously mentioned, one issue with the weighted sample covariance
estimator is its non-singularity when the number of assets 𝑁𝑁 exceeds the
number 𝑇𝑇 of available observations. This poses a significant problem
in portfolio optimization. One approach to addressing this issue is by
imposing some ad hoc structure on the covariance matrix, such as a
factor model. However, factor models like the Barra model are often
criticized for their subjectivity. Without prior knowledge about the true
structure of the covariance matrix, relying on pre-specified structures can
be unreliable. This lack of reliability can undermine the effectiveness
of portfolio optimization techniques based on such models.

Ledoit and Wolf (2004) proposed the shrinkage estimator. Suppose
we have a structured covariance matrix 𝐹𝐹 and sample covariance 𝑆𝑆 [5].
The shrunken covariance matrix is Σshrink is a linear combination of
both matrix:

Σshrink = 𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆

where 𝛿𝛿 is a shrinkage constant between 0 and 1.
Ledoit and Wolf (2004) suggests a constant correlation model as the

structure matrix covariance matrix 𝐹𝐹. It has average sample correlation
of all pairs for the non-diagonal elements of the sample correlation
matrix.

Each entry 𝑓𝑓𝑖𝑖 𝑖𝑖 of 𝐹𝐹 is written as

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑓𝑓𝑖𝑖 𝑖𝑖 = 𝜌𝜌
√
𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑗𝑗 𝑗𝑗

𝜌𝜌 =
2

(𝑁𝑁 − 1)𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑁𝑁∑︁
𝑗𝑗=𝑖𝑖+1

𝜌𝜌𝑖𝑖 𝑖𝑖

where 𝜌𝜌𝑖𝑖 𝑖𝑖 is the sample correlation between asset 𝑖𝑖 and 𝑗𝑗 , and 𝑠𝑠𝑖𝑖 𝑖𝑖 is
the sample covariance between asset 𝑖𝑖 and 𝑗𝑗 .

Sample Mean Return We first define the sample mean vector x
as a column vector whose 𝑗𝑗-th element 𝑥𝑥 𝑗𝑗 is the average value of the 𝑁𝑁

return observations of the 𝑓𝑓 th variable:

𝑥𝑥 𝑗𝑗 =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑥𝑥𝑖𝑖 𝑖𝑖 , 𝑗𝑗 = 1, . . . , 𝐾𝐾𝐾

Thus, the sample mean vector contains the average of the observations
for each variable, and is written

x =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

x𝑖𝑖 =



𝑥𝑥1
.
.
.

𝑥𝑥 𝑗𝑗
.
.
.

𝑥𝑥𝐾𝐾



Sample Covariance Correspondingly, the sample covariance
matrix is a 𝑁𝑁 × 𝑁𝑁 matrix V =


𝜎𝜎𝑗𝑗𝑗𝑗


with entries

𝜎𝜎𝑗𝑗𝑗𝑗 =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

�
𝑥𝑥𝑖𝑖 𝑖𝑖 − 𝑥𝑥 𝑗𝑗


(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘)

where 𝜎𝜎𝑗𝑗𝑗𝑗 is an estimate of the covariance between the jth variable and
the kth variable of the population underlying the data.

In the form of matrix, the sample covariance is

V =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

(x𝑖𝑖 − x) (x𝑖𝑖 − x)T

Exponential Smoothing Exponential smoothing is a technique
for smoothing time series data using the exponential window function.
It can assign exponentially decreasing weights over the time series so
that the influence of early observations vanishes as time progresses.

The raw time series is often represented by {𝑥𝑥𝑡𝑡 } beginning at time
𝑡𝑡 = 0, and the output of the exponential smoothing algorithm denoted as
{𝑦𝑦𝑡𝑡 }, which may be regarded as a best estimate of what the next value
of 𝑥𝑥 will be. When the sequence of observations begins at time 𝑡𝑡 = 0,
the simplest form of exponential smoothing is given by the formulas: 1]

𝑦𝑦0 = 𝑥𝑥0
𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1, 𝑡𝑡 𝑡 0

where 𝛼𝛼 is the smoothing factor or called rate of decay factor, and
0 < 𝛼𝛼 𝛼 1.

By direct substitution, we find that

𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1

= 𝛼𝛼𝛼𝛼𝑡𝑡 + 𝛼𝛼(1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑦𝑦𝑡𝑡−2

= 𝛼𝛼


𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑥𝑥𝑡𝑡−2

+(1 − 𝛼𝛼)3𝑥𝑥𝑡𝑡−3 + · · · + (1 − 𝛼𝛼)𝑡𝑡−1𝑥𝑥1

+ (1 − 𝛼𝛼)𝑡𝑡 𝑦𝑦0

In other words, as time passes the smoothed statistic 𝑦𝑦𝑡𝑡 becomes the
weighted average of a greater and greater number of the past observations
𝑦𝑦𝑡𝑡−1, . . . , 𝑦𝑦𝑡𝑡− , and the weights assigned to previous observations are
proportional to the terms of the geometric progression

1, (1 − 𝛼𝛼), (1 − 𝛼𝛼)2, . . . , (1 − 𝛼𝛼)𝑛𝑛, . . .

If 𝛼𝛼 is zero, we essentially applies equal weight to each observation
and if 𝛼𝛼 is large, the influence of early observation decays quickly.

Exponentially Weighted Sample Covariance When we
apply the exponential smoothing weight vector to our observation, the
covariance matrix will be transformed into:

V =
𝑁𝑁∑︁
𝑖𝑖=1

𝜔𝜔𝑖𝑖

�
x𝑖𝑖 − 𝜇𝜇∗

 �
x𝑖𝑖 − 𝜇𝜇∗

T

𝜇𝜇∗ =
𝑁𝑁∑︁
𝑖𝑖=1

𝑤𝑤𝑖𝑖x𝑖𝑖

where 𝑤𝑤𝑖𝑖 is the 𝑖𝑖-th entry of weight vector that sums to 1 (i.e.
𝑁𝑁
𝑖𝑖=1 𝑤𝑤𝑖𝑖 =

1 )
The weight vector without normalization is:

𝑤𝑤′ =



(1 − 𝛼𝛼)𝑇𝑇
.
.
.

(1 − 𝛼𝛼)2
(1 − 𝛼𝛼)1

1


𝑤𝑤 is eventually achieved by scaling 𝑤𝑤′ to sum to 1.

The sample covariance estimator is often unstable for two main rea-
sons. Firstly, it is highly sensitive to outliers in the data. Outliers can
disproportionately influence the covariance estimate, leading to inaccu-
racies in the estimation of relationships between variables. Secondly,
the sample covariance estimator can become non-singular if the number
of samples 𝑇𝑇 is not sufficiently larger than the number of variables 𝑁𝑁 .
When the number of samples is insufficient, the covariance matrix may
become singular, making it impossible to compute its inverse and con-
sequently causing issues in portfolio optimization and other statistical
analyses.

2.2 Ledoit-Wolf Shrinkage Covariance
As previously mentioned, one issue with the weighted sample covariance
estimator is its non-singularity when the number of assets 𝑁𝑁 exceeds the
number 𝑇𝑇 of available observations. This poses a significant problem
in portfolio optimization. One approach to addressing this issue is by
imposing some ad hoc structure on the covariance matrix, such as a
factor model. However, factor models like the Barra model are often
criticized for their subjectivity. Without prior knowledge about the true
structure of the covariance matrix, relying on pre-specified structures can
be unreliable. This lack of reliability can undermine the effectiveness
of portfolio optimization techniques based on such models.

Ledoit and Wolf (2004) proposed the shrinkage estimator. Suppose
we have a structured covariance matrix 𝐹𝐹 and sample covariance 𝑆𝑆 [5].
The shrunken covariance matrix is Σshrink is a linear combination of
both matrix:

Σshrink = 𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆

where 𝛿𝛿 is a shrinkage constant between 0 and 1.
Ledoit and Wolf (2004) suggests a constant correlation model as the

structure matrix covariance matrix 𝐹𝐹. It has average sample correlation
of all pairs for the non-diagonal elements of the sample correlation
matrix.

Each entry 𝑓𝑓𝑖𝑖 𝑖𝑖 of 𝐹𝐹 is written as

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑓𝑓𝑖𝑖 𝑖𝑖 = 𝜌𝜌
√
𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑗𝑗 𝑗𝑗

𝜌𝜌 =
2

(𝑁𝑁 − 1)𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑁𝑁∑︁
𝑗𝑗=𝑖𝑖+1

𝜌𝜌𝑖𝑖 𝑖𝑖

where 𝜌𝜌𝑖𝑖 𝑖𝑖 is the sample correlation between asset 𝑖𝑖 and 𝑗𝑗 , and 𝑠𝑠𝑖𝑖 𝑖𝑖 is
the sample covariance between asset 𝑖𝑖 and 𝑗𝑗 .

Sample Mean Return We first define the sample mean vector x
as a column vector whose 𝑗𝑗-th element 𝑥𝑥 𝑗𝑗 is the average value of the 𝑁𝑁

return observations of the 𝑓𝑓 th variable:

𝑥𝑥 𝑗𝑗 =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑥𝑥𝑖𝑖 𝑖𝑖 , 𝑗𝑗 = 1, . . . , 𝐾𝐾𝐾

Thus, the sample mean vector contains the average of the observations
for each variable, and is written

x =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

x𝑖𝑖 =



𝑥𝑥1
.
.
.

𝑥𝑥 𝑗𝑗
.
.
.

𝑥𝑥𝐾𝐾



Sample Covariance Correspondingly, the sample covariance
matrix is a 𝑁𝑁 × 𝑁𝑁 matrix V =


𝜎𝜎𝑗𝑗𝑗𝑗


with entries

𝜎𝜎𝑗𝑗𝑗𝑗 =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

�
𝑥𝑥𝑖𝑖 𝑖𝑖 − 𝑥𝑥 𝑗𝑗


(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘)

where 𝜎𝜎𝑗𝑗𝑗𝑗 is an estimate of the covariance between the jth variable and
the kth variable of the population underlying the data.

In the form of matrix, the sample covariance is

V =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

(x𝑖𝑖 − x) (x𝑖𝑖 − x)T

Exponential Smoothing Exponential smoothing is a technique
for smoothing time series data using the exponential window function.
It can assign exponentially decreasing weights over the time series so
that the influence of early observations vanishes as time progresses.

The raw time series is often represented by {𝑥𝑥𝑡𝑡 } beginning at time
𝑡𝑡 = 0, and the output of the exponential smoothing algorithm denoted as
{𝑦𝑦𝑡𝑡 }, which may be regarded as a best estimate of what the next value
of 𝑥𝑥 will be. When the sequence of observations begins at time 𝑡𝑡 = 0,
the simplest form of exponential smoothing is given by the formulas: 1]

𝑦𝑦0 = 𝑥𝑥0
𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1, 𝑡𝑡 𝑡 0

where 𝛼𝛼 is the smoothing factor or called rate of decay factor, and
0 < 𝛼𝛼 𝛼 1.

By direct substitution, we find that

𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1

= 𝛼𝛼𝛼𝛼𝑡𝑡 + 𝛼𝛼(1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑦𝑦𝑡𝑡−2

= 𝛼𝛼


𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑥𝑥𝑡𝑡−2

+(1 − 𝛼𝛼)3𝑥𝑥𝑡𝑡−3 + · · · + (1 − 𝛼𝛼)𝑡𝑡−1𝑥𝑥1

+ (1 − 𝛼𝛼)𝑡𝑡 𝑦𝑦0

In other words, as time passes the smoothed statistic 𝑦𝑦𝑡𝑡 becomes the
weighted average of a greater and greater number of the past observations
𝑦𝑦𝑡𝑡−1, . . . , 𝑦𝑦𝑡𝑡− , and the weights assigned to previous observations are
proportional to the terms of the geometric progression

1, (1 − 𝛼𝛼), (1 − 𝛼𝛼)2, . . . , (1 − 𝛼𝛼)𝑛𝑛, . . .

If 𝛼𝛼 is zero, we essentially applies equal weight to each observation
and if 𝛼𝛼 is large, the influence of early observation decays quickly.

Exponentially Weighted Sample Covariance When we
apply the exponential smoothing weight vector to our observation, the
covariance matrix will be transformed into:

V =
𝑁𝑁∑︁
𝑖𝑖=1

𝜔𝜔𝑖𝑖

�
x𝑖𝑖 − 𝜇𝜇∗

 �
x𝑖𝑖 − 𝜇𝜇∗

T

𝜇𝜇∗ =
𝑁𝑁∑︁
𝑖𝑖=1

𝑤𝑤𝑖𝑖x𝑖𝑖

where 𝑤𝑤𝑖𝑖 is the 𝑖𝑖-th entry of weight vector that sums to 1 (i.e.
𝑁𝑁
𝑖𝑖=1 𝑤𝑤𝑖𝑖 =

1 )
The weight vector without normalization is:

𝑤𝑤′ =



(1 − 𝛼𝛼)𝑇𝑇
.
.
.

(1 − 𝛼𝛼)2
(1 − 𝛼𝛼)1

1


𝑤𝑤 is eventually achieved by scaling 𝑤𝑤′ to sum to 1.

The sample covariance estimator is often unstable for two main rea-
sons. Firstly, it is highly sensitive to outliers in the data. Outliers can
disproportionately influence the covariance estimate, leading to inaccu-
racies in the estimation of relationships between variables. Secondly,
the sample covariance estimator can become non-singular if the number
of samples 𝑇𝑇 is not sufficiently larger than the number of variables 𝑁𝑁 .
When the number of samples is insufficient, the covariance matrix may
become singular, making it impossible to compute its inverse and con-
sequently causing issues in portfolio optimization and other statistical
analyses.

2.2 Ledoit-Wolf Shrinkage Covariance
As previously mentioned, one issue with the weighted sample covariance
estimator is its non-singularity when the number of assets 𝑁𝑁 exceeds the
number 𝑇𝑇 of available observations. This poses a significant problem
in portfolio optimization. One approach to addressing this issue is by
imposing some ad hoc structure on the covariance matrix, such as a
factor model. However, factor models like the Barra model are often
criticized for their subjectivity. Without prior knowledge about the true
structure of the covariance matrix, relying on pre-specified structures can
be unreliable. This lack of reliability can undermine the effectiveness
of portfolio optimization techniques based on such models.

Ledoit and Wolf (2004) proposed the shrinkage estimator. Suppose
we have a structured covariance matrix 𝐹𝐹 and sample covariance 𝑆𝑆 [5].
The shrunken covariance matrix is Σshrink is a linear combination of
both matrix:

Σshrink = 𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆

where 𝛿𝛿 is a shrinkage constant between 0 and 1.
Ledoit and Wolf (2004) suggests a constant correlation model as the

structure matrix covariance matrix 𝐹𝐹. It has average sample correlation
of all pairs for the non-diagonal elements of the sample correlation
matrix.

Each entry 𝑓𝑓𝑖𝑖 𝑖𝑖 of 𝐹𝐹 is written as

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑓𝑓𝑖𝑖 𝑖𝑖 = 𝜌𝜌
√
𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑗𝑗 𝑗𝑗

𝜌𝜌 =
2

(𝑁𝑁 − 1)𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑁𝑁∑︁
𝑗𝑗=𝑖𝑖+1

𝜌𝜌𝑖𝑖 𝑖𝑖

where 𝜌𝜌𝑖𝑖 𝑖𝑖 is the sample correlation between asset 𝑖𝑖 and 𝑗𝑗 , and 𝑠𝑠𝑖𝑖 𝑖𝑖 is
the sample covariance between asset 𝑖𝑖 and 𝑗𝑗 .

ˆ
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Where 𝑤𝑖 is the 𝑖-th entry of weight vector that sums to 1 (i.e.        
           𝑤𝑖 = 1)

The weight vector without normalization is:
𝑤 is eventually achieved by scaling 𝑤′ to sum to 1.
The sample covariance estimator is often unstable for two 
main reasons. Firstly, it is highly sensitive to outliers in the 
data. Outliers can disproportionately influence the covariance 
estimate, leading to inaccuracies in the estimation of relationships 
between variables. Secondly, the sample covariance estimator 
can become non-singular if the number of samples 𝑇 is not 
sufficiently larger than the number of variables 𝑁. When the 
number of samples is insufficient, the covariance matrix may 
become singular, making it impossible to compute its inverse 
and consequently causing issues in portfolio optimization and 
other statistical analyses.

2.2 Ledoit-Wolf Shrinkage Covariance
As previously mentioned, one issue with the weighted sample 
covariance estimator is its non-singularity when the number 
of assets 𝑁 exceeds the number 𝑇 of available observations. 
This poses a significant problem in portfolio optimization. 
One approach to addressing this issue is by imposing some 
ad hoc structure on the covariance matrix, such as a factor 
model. However, factor models like the Barra model are often 
criticized for their subjectivity. Without prior knowledge about 
the true structure of the covariance matrix, relying on pre-
specified structures can be unreliable. This lack of reliability can 
undermine the effectiveness of portfolio optimization techniques 
based on such models.

Ledoit and Wolf proposed the shrinkage estimator. Suppose we 
have a structured covariance matrix 𝐹 and sample covariance 
𝑆  [5]. The shrunken covariance matrix is Σshrink is a linear 
combination of both matrix:

Where 𝛿 is a shrinkage constant between 0 and 1.

Ledoit and Wolf suggests a constant correlation model as the 
structure matrix covariance matrix 𝐹. It has average sample 
correlation of all pairs for the non-diagonal elements of the 
sample correlation matrix.

Each entry 𝑓𝑖𝑗 of 𝐹 is written as

Where 𝜌𝑖𝑗 is the sample correlation between asset 𝑖 and 𝑗, and 𝑠𝑖𝑗 
is the sample covariance between asset 𝑖 and 𝑗.

• Choice of Shrinkage Constant Ledoit and Wolf (2004) 
calibrated the shrinkage parameter 𝛿 by minimizing the 
Frobenius norm between the asymptotically true covariance 
matrix and the shrinkage estimator:

Under the assumption that 𝑁 is fixed while 𝑇 tends to infinity, 
Ledoit and Wolf (2003) proved that the optimal value 𝛿∗ 
asymptotically behaves like a constant over 𝑇. This constant, 
called k, can be written as:

𝜋 denotes the sum of asymptotic variances of the entries of the 
sample covariance matrix scaled by

Similarly, 𝜌 denotes the sum of asymptotic covariance of the 
entries of the shrinkage target with the entries of the sample 
covariance matrix scaled by                                               
𝛾 measures the mis-specification of the (population) shrinkage 
target: 𝛾 =                     Finally, we computed the empirical 
estimator for 𝜅 and use it as 𝛿.

In the model implementation section, we will also incorporate 
crossvalidation to determine the empirically optimal shrinkage 
constant. This approach allows us to select the most suitable 
shrinkage parameter based on the performance of the model 
on independent data subsets. By systematically evaluating the 
performance of different shrinkage constants through cross-
validation, we can identify the one that yields the best balance 
between bias and variance, thus enhancing the robustness 
andreliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is 
their reliance on product-moment statistics, such as standard 
deviation, which are non-robust. This becomes problematic 
when financial data contains numerous outliers. The presence 
of outliers can distort the correlation between assets in 
historical data series. Additionally, noise in financial data can 
be erroneously interpreted as meaningful information during 
portfolio optimization. For example, non-zero entries may 
appear in the correlation matrix estimator even when two assets 
have no meaningful correlation.

To address these issues, Gerber proposed a robust co-movement 

Sample Mean Return We first define the sample mean vector x
as a column vector whose 𝑗𝑗-th element 𝑥𝑥 𝑗𝑗 is the average value of the 𝑁𝑁

return observations of the 𝑓𝑓 th variable:

𝑥𝑥 𝑗𝑗 =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑥𝑥𝑖𝑖 𝑖𝑖 , 𝑗𝑗 = 1, . . . , 𝐾𝐾𝐾

Thus, the sample mean vector contains the average of the observations
for each variable, and is written

x =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

x𝑖𝑖 =



𝑥𝑥1
.
.
.

𝑥𝑥 𝑗𝑗
.
.
.

𝑥𝑥𝐾𝐾



Sample Covariance Correspondingly, the sample covariance
matrix is a 𝑁𝑁 × 𝑁𝑁 matrix V =


𝜎𝜎𝑗𝑗𝑗𝑗


with entries

𝜎𝜎𝑗𝑗𝑗𝑗 =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

�
𝑥𝑥𝑖𝑖 𝑖𝑖 − 𝑥𝑥 𝑗𝑗


(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘)

where 𝜎𝜎𝑗𝑗𝑗𝑗 is an estimate of the covariance between the jth variable and
the kth variable of the population underlying the data.

In the form of matrix, the sample covariance is

V =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

(x𝑖𝑖 − x) (x𝑖𝑖 − x)T

Exponential Smoothing Exponential smoothing is a technique
for smoothing time series data using the exponential window function.
It can assign exponentially decreasing weights over the time series so
that the influence of early observations vanishes as time progresses.

The raw time series is often represented by {𝑥𝑥𝑡𝑡 } beginning at time
𝑡𝑡 = 0, and the output of the exponential smoothing algorithm denoted as
{𝑦𝑦𝑡𝑡 }, which may be regarded as a best estimate of what the next value
of 𝑥𝑥 will be. When the sequence of observations begins at time 𝑡𝑡 = 0,
the simplest form of exponential smoothing is given by the formulas: 1]

𝑦𝑦0 = 𝑥𝑥0
𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1, 𝑡𝑡 𝑡 0

where 𝛼𝛼 is the smoothing factor or called rate of decay factor, and
0 < 𝛼𝛼 𝛼 1.

By direct substitution, we find that

𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1

= 𝛼𝛼𝛼𝛼𝑡𝑡 + 𝛼𝛼(1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑦𝑦𝑡𝑡−2

= 𝛼𝛼


𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑥𝑥𝑡𝑡−2

+(1 − 𝛼𝛼)3𝑥𝑥𝑡𝑡−3 + · · · + (1 − 𝛼𝛼)𝑡𝑡−1𝑥𝑥1

+ (1 − 𝛼𝛼)𝑡𝑡 𝑦𝑦0

In other words, as time passes the smoothed statistic 𝑦𝑦𝑡𝑡 becomes the
weighted average of a greater and greater number of the past observations
𝑦𝑦𝑡𝑡−1, . . . , 𝑦𝑦𝑡𝑡− , and the weights assigned to previous observations are
proportional to the terms of the geometric progression

1, (1 − 𝛼𝛼), (1 − 𝛼𝛼)2, . . . , (1 − 𝛼𝛼)𝑛𝑛, . . .

If 𝛼𝛼 is zero, we essentially applies equal weight to each observation
and if 𝛼𝛼 is large, the influence of early observation decays quickly.

Exponentially Weighted Sample Covariance When we
apply the exponential smoothing weight vector to our observation, the
covariance matrix will be transformed into:

V =
𝑁𝑁∑︁
𝑖𝑖=1

𝜔𝜔𝑖𝑖

�
x𝑖𝑖 − 𝜇𝜇∗

 �
x𝑖𝑖 − 𝜇𝜇∗

T

𝜇𝜇∗ =
𝑁𝑁∑︁
𝑖𝑖=1

𝑤𝑤𝑖𝑖x𝑖𝑖

where 𝑤𝑤𝑖𝑖 is the 𝑖𝑖-th entry of weight vector that sums to 1 (i.e.
𝑁𝑁
𝑖𝑖=1 𝑤𝑤𝑖𝑖 =

1 )
The weight vector without normalization is:

𝑤𝑤′ =



(1 − 𝛼𝛼)𝑇𝑇
.
.
.

(1 − 𝛼𝛼)2
(1 − 𝛼𝛼)1

1


𝑤𝑤 is eventually achieved by scaling 𝑤𝑤′ to sum to 1.

The sample covariance estimator is often unstable for two main rea-
sons. Firstly, it is highly sensitive to outliers in the data. Outliers can
disproportionately influence the covariance estimate, leading to inaccu-
racies in the estimation of relationships between variables. Secondly,
the sample covariance estimator can become non-singular if the number
of samples 𝑇𝑇 is not sufficiently larger than the number of variables 𝑁𝑁 .
When the number of samples is insufficient, the covariance matrix may
become singular, making it impossible to compute its inverse and con-
sequently causing issues in portfolio optimization and other statistical
analyses.

2.2 Ledoit-Wolf Shrinkage Covariance
As previously mentioned, one issue with the weighted sample covariance
estimator is its non-singularity when the number of assets 𝑁𝑁 exceeds the
number 𝑇𝑇 of available observations. This poses a significant problem
in portfolio optimization. One approach to addressing this issue is by
imposing some ad hoc structure on the covariance matrix, such as a
factor model. However, factor models like the Barra model are often
criticized for their subjectivity. Without prior knowledge about the true
structure of the covariance matrix, relying on pre-specified structures can
be unreliable. This lack of reliability can undermine the effectiveness
of portfolio optimization techniques based on such models.

Ledoit and Wolf (2004) proposed the shrinkage estimator. Suppose
we have a structured covariance matrix 𝐹𝐹 and sample covariance 𝑆𝑆 [5].
The shrunken covariance matrix is Σshrink is a linear combination of
both matrix:

Σshrink = 𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆

where 𝛿𝛿 is a shrinkage constant between 0 and 1.
Ledoit and Wolf (2004) suggests a constant correlation model as the

structure matrix covariance matrix 𝐹𝐹. It has average sample correlation
of all pairs for the non-diagonal elements of the sample correlation
matrix.

Each entry 𝑓𝑓𝑖𝑖 𝑖𝑖 of 𝐹𝐹 is written as

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑓𝑓𝑖𝑖 𝑖𝑖 = 𝜌𝜌
√
𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑗𝑗 𝑗𝑗

𝜌𝜌 =
2

(𝑁𝑁 − 1)𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑁𝑁∑︁
𝑗𝑗=𝑖𝑖+1

𝜌𝜌𝑖𝑖 𝑖𝑖

where 𝜌𝜌𝑖𝑖 𝑖𝑖 is the sample correlation between asset 𝑖𝑖 and 𝑗𝑗 , and 𝑠𝑠𝑖𝑖 𝑖𝑖 is
the sample covariance between asset 𝑖𝑖 and 𝑗𝑗 .

Sample Mean Return We first define the sample mean vector x
as a column vector whose 𝑗𝑗-th element 𝑥𝑥 𝑗𝑗 is the average value of the 𝑁𝑁

return observations of the 𝑓𝑓 th variable:

𝑥𝑥 𝑗𝑗 =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑥𝑥𝑖𝑖 𝑖𝑖 , 𝑗𝑗 = 1, . . . , 𝐾𝐾𝐾

Thus, the sample mean vector contains the average of the observations
for each variable, and is written

x =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

x𝑖𝑖 =



𝑥𝑥1
.
.
.

𝑥𝑥 𝑗𝑗
.
.
.

𝑥𝑥𝐾𝐾



Sample Covariance Correspondingly, the sample covariance
matrix is a 𝑁𝑁 × 𝑁𝑁 matrix V =


𝜎𝜎𝑗𝑗𝑗𝑗


with entries

𝜎𝜎𝑗𝑗𝑗𝑗 =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

�
𝑥𝑥𝑖𝑖 𝑖𝑖 − 𝑥𝑥 𝑗𝑗


(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘)

where 𝜎𝜎𝑗𝑗𝑗𝑗 is an estimate of the covariance between the jth variable and
the kth variable of the population underlying the data.

In the form of matrix, the sample covariance is

V =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

(x𝑖𝑖 − x) (x𝑖𝑖 − x)T

Exponential Smoothing Exponential smoothing is a technique
for smoothing time series data using the exponential window function.
It can assign exponentially decreasing weights over the time series so
that the influence of early observations vanishes as time progresses.

The raw time series is often represented by {𝑥𝑥𝑡𝑡 } beginning at time
𝑡𝑡 = 0, and the output of the exponential smoothing algorithm denoted as
{𝑦𝑦𝑡𝑡 }, which may be regarded as a best estimate of what the next value
of 𝑥𝑥 will be. When the sequence of observations begins at time 𝑡𝑡 = 0,
the simplest form of exponential smoothing is given by the formulas: 1]

𝑦𝑦0 = 𝑥𝑥0
𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1, 𝑡𝑡 𝑡 0

where 𝛼𝛼 is the smoothing factor or called rate of decay factor, and
0 < 𝛼𝛼 𝛼 1.

By direct substitution, we find that

𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1

= 𝛼𝛼𝛼𝛼𝑡𝑡 + 𝛼𝛼(1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑦𝑦𝑡𝑡−2

= 𝛼𝛼


𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑥𝑥𝑡𝑡−2

+(1 − 𝛼𝛼)3𝑥𝑥𝑡𝑡−3 + · · · + (1 − 𝛼𝛼)𝑡𝑡−1𝑥𝑥1

+ (1 − 𝛼𝛼)𝑡𝑡 𝑦𝑦0

In other words, as time passes the smoothed statistic 𝑦𝑦𝑡𝑡 becomes the
weighted average of a greater and greater number of the past observations
𝑦𝑦𝑡𝑡−1, . . . , 𝑦𝑦𝑡𝑡− , and the weights assigned to previous observations are
proportional to the terms of the geometric progression

1, (1 − 𝛼𝛼), (1 − 𝛼𝛼)2, . . . , (1 − 𝛼𝛼)𝑛𝑛, . . .

If 𝛼𝛼 is zero, we essentially applies equal weight to each observation
and if 𝛼𝛼 is large, the influence of early observation decays quickly.

Exponentially Weighted Sample Covariance When we
apply the exponential smoothing weight vector to our observation, the
covariance matrix will be transformed into:

V =
𝑁𝑁∑︁
𝑖𝑖=1

𝜔𝜔𝑖𝑖

�
x𝑖𝑖 − 𝜇𝜇∗

 �
x𝑖𝑖 − 𝜇𝜇∗

T

𝜇𝜇∗ =
𝑁𝑁∑︁
𝑖𝑖=1

𝑤𝑤𝑖𝑖x𝑖𝑖

where 𝑤𝑤𝑖𝑖 is the 𝑖𝑖-th entry of weight vector that sums to 1 (i.e.
𝑁𝑁
𝑖𝑖=1 𝑤𝑤𝑖𝑖 =

1 )
The weight vector without normalization is:

𝑤𝑤′ =



(1 − 𝛼𝛼)𝑇𝑇
.
.
.

(1 − 𝛼𝛼)2
(1 − 𝛼𝛼)1

1


𝑤𝑤 is eventually achieved by scaling 𝑤𝑤′ to sum to 1.

The sample covariance estimator is often unstable for two main rea-
sons. Firstly, it is highly sensitive to outliers in the data. Outliers can
disproportionately influence the covariance estimate, leading to inaccu-
racies in the estimation of relationships between variables. Secondly,
the sample covariance estimator can become non-singular if the number
of samples 𝑇𝑇 is not sufficiently larger than the number of variables 𝑁𝑁 .
When the number of samples is insufficient, the covariance matrix may
become singular, making it impossible to compute its inverse and con-
sequently causing issues in portfolio optimization and other statistical
analyses.

2.2 Ledoit-Wolf Shrinkage Covariance
As previously mentioned, one issue with the weighted sample covariance
estimator is its non-singularity when the number of assets 𝑁𝑁 exceeds the
number 𝑇𝑇 of available observations. This poses a significant problem
in portfolio optimization. One approach to addressing this issue is by
imposing some ad hoc structure on the covariance matrix, such as a
factor model. However, factor models like the Barra model are often
criticized for their subjectivity. Without prior knowledge about the true
structure of the covariance matrix, relying on pre-specified structures can
be unreliable. This lack of reliability can undermine the effectiveness
of portfolio optimization techniques based on such models.

Ledoit and Wolf (2004) proposed the shrinkage estimator. Suppose
we have a structured covariance matrix 𝐹𝐹 and sample covariance 𝑆𝑆 [5].
The shrunken covariance matrix is Σshrink is a linear combination of
both matrix:

Σshrink = 𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆

where 𝛿𝛿 is a shrinkage constant between 0 and 1.
Ledoit and Wolf (2004) suggests a constant correlation model as the

structure matrix covariance matrix 𝐹𝐹. It has average sample correlation
of all pairs for the non-diagonal elements of the sample correlation
matrix.

Each entry 𝑓𝑓𝑖𝑖 𝑖𝑖 of 𝐹𝐹 is written as

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑓𝑓𝑖𝑖 𝑖𝑖 = 𝜌𝜌
√
𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑗𝑗 𝑗𝑗

𝜌𝜌 =
2

(𝑁𝑁 − 1)𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑁𝑁∑︁
𝑗𝑗=𝑖𝑖+1

𝜌𝜌𝑖𝑖 𝑖𝑖

where 𝜌𝜌𝑖𝑖 𝑖𝑖 is the sample correlation between asset 𝑖𝑖 and 𝑗𝑗 , and 𝑠𝑠𝑖𝑖 𝑖𝑖 is
the sample covariance between asset 𝑖𝑖 and 𝑗𝑗 .

Sample Mean Return We first define the sample mean vector x
as a column vector whose 𝑗𝑗-th element 𝑥𝑥 𝑗𝑗 is the average value of the 𝑁𝑁

return observations of the 𝑓𝑓 th variable:

𝑥𝑥 𝑗𝑗 =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑥𝑥𝑖𝑖 𝑖𝑖 , 𝑗𝑗 = 1, . . . , 𝐾𝐾𝐾

Thus, the sample mean vector contains the average of the observations
for each variable, and is written

x =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

x𝑖𝑖 =
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Sample Covariance Correspondingly, the sample covariance
matrix is a 𝑁𝑁 × 𝑁𝑁 matrix V =


𝜎𝜎𝑗𝑗𝑗𝑗


with entries
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𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1
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
(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘)

where 𝜎𝜎𝑗𝑗𝑗𝑗 is an estimate of the covariance between the jth variable and
the kth variable of the population underlying the data.

In the form of matrix, the sample covariance is

V =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

(x𝑖𝑖 − x) (x𝑖𝑖 − x)T

Exponential Smoothing Exponential smoothing is a technique
for smoothing time series data using the exponential window function.
It can assign exponentially decreasing weights over the time series so
that the influence of early observations vanishes as time progresses.

The raw time series is often represented by {𝑥𝑥𝑡𝑡 } beginning at time
𝑡𝑡 = 0, and the output of the exponential smoothing algorithm denoted as
{𝑦𝑦𝑡𝑡 }, which may be regarded as a best estimate of what the next value
of 𝑥𝑥 will be. When the sequence of observations begins at time 𝑡𝑡 = 0,
the simplest form of exponential smoothing is given by the formulas: 1]

𝑦𝑦0 = 𝑥𝑥0
𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1, 𝑡𝑡 𝑡 0

where 𝛼𝛼 is the smoothing factor or called rate of decay factor, and
0 < 𝛼𝛼 𝛼 1.

By direct substitution, we find that

𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1

= 𝛼𝛼𝛼𝛼𝑡𝑡 + 𝛼𝛼(1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑦𝑦𝑡𝑡−2

= 𝛼𝛼


𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑥𝑥𝑡𝑡−2

+(1 − 𝛼𝛼)3𝑥𝑥𝑡𝑡−3 + · · · + (1 − 𝛼𝛼)𝑡𝑡−1𝑥𝑥1

+ (1 − 𝛼𝛼)𝑡𝑡 𝑦𝑦0

In other words, as time passes the smoothed statistic 𝑦𝑦𝑡𝑡 becomes the
weighted average of a greater and greater number of the past observations
𝑦𝑦𝑡𝑡−1, . . . , 𝑦𝑦𝑡𝑡− , and the weights assigned to previous observations are
proportional to the terms of the geometric progression

1, (1 − 𝛼𝛼), (1 − 𝛼𝛼)2, . . . , (1 − 𝛼𝛼)𝑛𝑛, . . .

If 𝛼𝛼 is zero, we essentially applies equal weight to each observation
and if 𝛼𝛼 is large, the influence of early observation decays quickly.

Exponentially Weighted Sample Covariance When we
apply the exponential smoothing weight vector to our observation, the
covariance matrix will be transformed into:

V =
𝑁𝑁∑︁
𝑖𝑖=1

𝜔𝜔𝑖𝑖

�
x𝑖𝑖 − 𝜇𝜇∗

 �
x𝑖𝑖 − 𝜇𝜇∗

T

𝜇𝜇∗ =
𝑁𝑁∑︁
𝑖𝑖=1

𝑤𝑤𝑖𝑖x𝑖𝑖

where 𝑤𝑤𝑖𝑖 is the 𝑖𝑖-th entry of weight vector that sums to 1 (i.e.
𝑁𝑁
𝑖𝑖=1 𝑤𝑤𝑖𝑖 =

1 )
The weight vector without normalization is:

𝑤𝑤′ =
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𝑤𝑤 is eventually achieved by scaling 𝑤𝑤′ to sum to 1.

The sample covariance estimator is often unstable for two main rea-
sons. Firstly, it is highly sensitive to outliers in the data. Outliers can
disproportionately influence the covariance estimate, leading to inaccu-
racies in the estimation of relationships between variables. Secondly,
the sample covariance estimator can become non-singular if the number
of samples 𝑇𝑇 is not sufficiently larger than the number of variables 𝑁𝑁 .
When the number of samples is insufficient, the covariance matrix may
become singular, making it impossible to compute its inverse and con-
sequently causing issues in portfolio optimization and other statistical
analyses.

2.2 Ledoit-Wolf Shrinkage Covariance
As previously mentioned, one issue with the weighted sample covariance
estimator is its non-singularity when the number of assets 𝑁𝑁 exceeds the
number 𝑇𝑇 of available observations. This poses a significant problem
in portfolio optimization. One approach to addressing this issue is by
imposing some ad hoc structure on the covariance matrix, such as a
factor model. However, factor models like the Barra model are often
criticized for their subjectivity. Without prior knowledge about the true
structure of the covariance matrix, relying on pre-specified structures can
be unreliable. This lack of reliability can undermine the effectiveness
of portfolio optimization techniques based on such models.

Ledoit and Wolf (2004) proposed the shrinkage estimator. Suppose
we have a structured covariance matrix 𝐹𝐹 and sample covariance 𝑆𝑆 [5].
The shrunken covariance matrix is Σshrink is a linear combination of
both matrix:

Σshrink = 𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆

where 𝛿𝛿 is a shrinkage constant between 0 and 1.
Ledoit and Wolf (2004) suggests a constant correlation model as the

structure matrix covariance matrix 𝐹𝐹. It has average sample correlation
of all pairs for the non-diagonal elements of the sample correlation
matrix.

Each entry 𝑓𝑓𝑖𝑖 𝑖𝑖 of 𝐹𝐹 is written as

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑓𝑓𝑖𝑖 𝑖𝑖 = 𝜌𝜌
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𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑗𝑗 𝑗𝑗
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𝜌𝜌𝑖𝑖 𝑖𝑖

where 𝜌𝜌𝑖𝑖 𝑖𝑖 is the sample correlation between asset 𝑖𝑖 and 𝑗𝑗 , and 𝑠𝑠𝑖𝑖 𝑖𝑖 is
the sample covariance between asset 𝑖𝑖 and 𝑗𝑗 .

Sample Mean Return We first define the sample mean vector x
as a column vector whose 𝑗𝑗-th element 𝑥𝑥 𝑗𝑗 is the average value of the 𝑁𝑁
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Thus, the sample mean vector contains the average of the observations
for each variable, and is written

x =
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Sample Covariance Correspondingly, the sample covariance
matrix is a 𝑁𝑁 × 𝑁𝑁 matrix V =
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where 𝜎𝜎𝑗𝑗𝑗𝑗 is an estimate of the covariance between the jth variable and
the kth variable of the population underlying the data.

In the form of matrix, the sample covariance is

V =
1

𝑁𝑁 − 1
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𝑖𝑖=1
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Exponential Smoothing Exponential smoothing is a technique
for smoothing time series data using the exponential window function.
It can assign exponentially decreasing weights over the time series so
that the influence of early observations vanishes as time progresses.

The raw time series is often represented by {𝑥𝑥𝑡𝑡 } beginning at time
𝑡𝑡 = 0, and the output of the exponential smoothing algorithm denoted as
{𝑦𝑦𝑡𝑡 }, which may be regarded as a best estimate of what the next value
of 𝑥𝑥 will be. When the sequence of observations begins at time 𝑡𝑡 = 0,
the simplest form of exponential smoothing is given by the formulas: 1]
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where 𝛼𝛼 is the smoothing factor or called rate of decay factor, and
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In other words, as time passes the smoothed statistic 𝑦𝑦𝑡𝑡 becomes the
weighted average of a greater and greater number of the past observations
𝑦𝑦𝑡𝑡−1, . . . , 𝑦𝑦𝑡𝑡− , and the weights assigned to previous observations are
proportional to the terms of the geometric progression
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If 𝛼𝛼 is zero, we essentially applies equal weight to each observation
and if 𝛼𝛼 is large, the influence of early observation decays quickly.

Exponentially Weighted Sample Covariance When we
apply the exponential smoothing weight vector to our observation, the
covariance matrix will be transformed into:

V =
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where 𝑤𝑤𝑖𝑖 is the 𝑖𝑖-th entry of weight vector that sums to 1 (i.e.
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The weight vector without normalization is:

𝑤𝑤′ =



(1 − 𝛼𝛼)𝑇𝑇
.
.
.

(1 − 𝛼𝛼)2
(1 − 𝛼𝛼)1

1


𝑤𝑤 is eventually achieved by scaling 𝑤𝑤′ to sum to 1.

The sample covariance estimator is often unstable for two main rea-
sons. Firstly, it is highly sensitive to outliers in the data. Outliers can
disproportionately influence the covariance estimate, leading to inaccu-
racies in the estimation of relationships between variables. Secondly,
the sample covariance estimator can become non-singular if the number
of samples 𝑇𝑇 is not sufficiently larger than the number of variables 𝑁𝑁 .
When the number of samples is insufficient, the covariance matrix may
become singular, making it impossible to compute its inverse and con-
sequently causing issues in portfolio optimization and other statistical
analyses.

2.2 Ledoit-Wolf Shrinkage Covariance
As previously mentioned, one issue with the weighted sample covariance
estimator is its non-singularity when the number of assets 𝑁𝑁 exceeds the
number 𝑇𝑇 of available observations. This poses a significant problem
in portfolio optimization. One approach to addressing this issue is by
imposing some ad hoc structure on the covariance matrix, such as a
factor model. However, factor models like the Barra model are often
criticized for their subjectivity. Without prior knowledge about the true
structure of the covariance matrix, relying on pre-specified structures can
be unreliable. This lack of reliability can undermine the effectiveness
of portfolio optimization techniques based on such models.

Ledoit and Wolf (2004) proposed the shrinkage estimator. Suppose
we have a structured covariance matrix 𝐹𝐹 and sample covariance 𝑆𝑆 [5].
The shrunken covariance matrix is Σshrink is a linear combination of
both matrix:

Σshrink = 𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆

where 𝛿𝛿 is a shrinkage constant between 0 and 1.
Ledoit and Wolf (2004) suggests a constant correlation model as the

structure matrix covariance matrix 𝐹𝐹. It has average sample correlation
of all pairs for the non-diagonal elements of the sample correlation
matrix.

Each entry 𝑓𝑓𝑖𝑖 𝑖𝑖 of 𝐹𝐹 is written as

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑓𝑓𝑖𝑖 𝑖𝑖 = 𝜌𝜌
√
𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑗𝑗 𝑗𝑗

𝜌𝜌 =
2

(𝑁𝑁 − 1)𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑁𝑁∑︁
𝑗𝑗=𝑖𝑖+1

𝜌𝜌𝑖𝑖 𝑖𝑖

where 𝜌𝜌𝑖𝑖 𝑖𝑖 is the sample correlation between asset 𝑖𝑖 and 𝑗𝑗 , and 𝑠𝑠𝑖𝑖 𝑖𝑖 is
the sample covariance between asset 𝑖𝑖 and 𝑗𝑗 .

Sample Mean Return We first define the sample mean vector x
as a column vector whose 𝑗𝑗-th element 𝑥𝑥 𝑗𝑗 is the average value of the 𝑁𝑁

return observations of the 𝑓𝑓 th variable:

𝑥𝑥 𝑗𝑗 =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑥𝑥𝑖𝑖 𝑖𝑖 , 𝑗𝑗 = 1, . . . , 𝐾𝐾𝐾

Thus, the sample mean vector contains the average of the observations
for each variable, and is written

x =
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

x𝑖𝑖 =



𝑥𝑥1
.
.
.

𝑥𝑥 𝑗𝑗
.
.
.

𝑥𝑥𝐾𝐾



Sample Covariance Correspondingly, the sample covariance
matrix is a 𝑁𝑁 × 𝑁𝑁 matrix V =


𝜎𝜎𝑗𝑗𝑗𝑗


with entries

𝜎𝜎𝑗𝑗𝑗𝑗 =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

�
𝑥𝑥𝑖𝑖 𝑖𝑖 − 𝑥𝑥 𝑗𝑗


(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘)

where 𝜎𝜎𝑗𝑗𝑗𝑗 is an estimate of the covariance between the jth variable and
the kth variable of the population underlying the data.

In the form of matrix, the sample covariance is

V =
1

𝑁𝑁 − 1

𝑁𝑁∑︁
𝑖𝑖=1

(x𝑖𝑖 − x) (x𝑖𝑖 − x)T

Exponential Smoothing Exponential smoothing is a technique
for smoothing time series data using the exponential window function.
It can assign exponentially decreasing weights over the time series so
that the influence of early observations vanishes as time progresses.

The raw time series is often represented by {𝑥𝑥𝑡𝑡 } beginning at time
𝑡𝑡 = 0, and the output of the exponential smoothing algorithm denoted as
{𝑦𝑦𝑡𝑡 }, which may be regarded as a best estimate of what the next value
of 𝑥𝑥 will be. When the sequence of observations begins at time 𝑡𝑡 = 0,
the simplest form of exponential smoothing is given by the formulas: 1]

𝑦𝑦0 = 𝑥𝑥0
𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1, 𝑡𝑡 𝑡 0

where 𝛼𝛼 is the smoothing factor or called rate of decay factor, and
0 < 𝛼𝛼 𝛼 1.

By direct substitution, we find that

𝑦𝑦𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼)𝑦𝑦𝑡𝑡−1

= 𝛼𝛼𝛼𝛼𝑡𝑡 + 𝛼𝛼(1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑦𝑦𝑡𝑡−2

= 𝛼𝛼


𝑥𝑥𝑡𝑡 + (1 − 𝛼𝛼)𝑥𝑥𝑡𝑡−1 + (1 − 𝛼𝛼)2𝑥𝑥𝑡𝑡−2

+(1 − 𝛼𝛼)3𝑥𝑥𝑡𝑡−3 + · · · + (1 − 𝛼𝛼)𝑡𝑡−1𝑥𝑥1

+ (1 − 𝛼𝛼)𝑡𝑡 𝑦𝑦0

In other words, as time passes the smoothed statistic 𝑦𝑦𝑡𝑡 becomes the
weighted average of a greater and greater number of the past observations
𝑦𝑦𝑡𝑡−1, . . . , 𝑦𝑦𝑡𝑡− , and the weights assigned to previous observations are
proportional to the terms of the geometric progression

1, (1 − 𝛼𝛼), (1 − 𝛼𝛼)2, . . . , (1 − 𝛼𝛼)𝑛𝑛, . . .

If 𝛼𝛼 is zero, we essentially applies equal weight to each observation
and if 𝛼𝛼 is large, the influence of early observation decays quickly.

Exponentially Weighted Sample Covariance When we
apply the exponential smoothing weight vector to our observation, the
covariance matrix will be transformed into:

V =
𝑁𝑁∑︁
𝑖𝑖=1

𝜔𝜔𝑖𝑖

�
x𝑖𝑖 − 𝜇𝜇∗

 �
x𝑖𝑖 − 𝜇𝜇∗

T

𝜇𝜇∗ =
𝑁𝑁∑︁
𝑖𝑖=1

𝑤𝑤𝑖𝑖x𝑖𝑖

where 𝑤𝑤𝑖𝑖 is the 𝑖𝑖-th entry of weight vector that sums to 1 (i.e.
𝑁𝑁
𝑖𝑖=1 𝑤𝑤𝑖𝑖 =

1 )
The weight vector without normalization is:

𝑤𝑤′ =



(1 − 𝛼𝛼)𝑇𝑇
.
.
.

(1 − 𝛼𝛼)2
(1 − 𝛼𝛼)1

1


𝑤𝑤 is eventually achieved by scaling 𝑤𝑤′ to sum to 1.

The sample covariance estimator is often unstable for two main rea-
sons. Firstly, it is highly sensitive to outliers in the data. Outliers can
disproportionately influence the covariance estimate, leading to inaccu-
racies in the estimation of relationships between variables. Secondly,
the sample covariance estimator can become non-singular if the number
of samples 𝑇𝑇 is not sufficiently larger than the number of variables 𝑁𝑁 .
When the number of samples is insufficient, the covariance matrix may
become singular, making it impossible to compute its inverse and con-
sequently causing issues in portfolio optimization and other statistical
analyses.

2.2 Ledoit-Wolf Shrinkage Covariance
As previously mentioned, one issue with the weighted sample covariance
estimator is its non-singularity when the number of assets 𝑁𝑁 exceeds the
number 𝑇𝑇 of available observations. This poses a significant problem
in portfolio optimization. One approach to addressing this issue is by
imposing some ad hoc structure on the covariance matrix, such as a
factor model. However, factor models like the Barra model are often
criticized for their subjectivity. Without prior knowledge about the true
structure of the covariance matrix, relying on pre-specified structures can
be unreliable. This lack of reliability can undermine the effectiveness
of portfolio optimization techniques based on such models.

Ledoit and Wolf (2004) proposed the shrinkage estimator. Suppose
we have a structured covariance matrix 𝐹𝐹 and sample covariance 𝑆𝑆 [5].
The shrunken covariance matrix is Σshrink is a linear combination of
both matrix:

Σshrink = 𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆

where 𝛿𝛿 is a shrinkage constant between 0 and 1.
Ledoit and Wolf (2004) suggests a constant correlation model as the

structure matrix covariance matrix 𝐹𝐹. It has average sample correlation
of all pairs for the non-diagonal elements of the sample correlation
matrix.

Each entry 𝑓𝑓𝑖𝑖 𝑖𝑖 of 𝐹𝐹 is written as

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑓𝑓𝑖𝑖 𝑖𝑖 = 𝜌𝜌
√
𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑗𝑗 𝑗𝑗

𝜌𝜌 =
2

(𝑁𝑁 − 1)𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑁𝑁∑︁
𝑗𝑗=𝑖𝑖+1

𝜌𝜌𝑖𝑖 𝑖𝑖

where 𝜌𝜌𝑖𝑖 𝑖𝑖 is the sample correlation between asset 𝑖𝑖 and 𝑗𝑗 , and 𝑠𝑠𝑖𝑖 𝑖𝑖 is
the sample covariance between asset 𝑖𝑖 and 𝑗𝑗 .

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),
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measure known as the Gerber statistic. Instead of using Pearson 
Correlation, the Gerber statistic calculates the proportion of 
simultaneous co-movements in historical return samples where 
the amplitudes of such movements exceed a given threshold. 
The advantage of the Gerber statistic lies in its resilience to 
extremely large or small movements, making it more robust to 
financial time series [11].

2.3.1. Gerber Covariance Matrix
Consider 𝑘 = 1, 𝑁 assets with 𝑡 = 1, . . . , time periods historical 
sample. Let 𝑟𝑡𝑘 be the return of security 𝑘 at time 𝑡. For each 
pair of asset (𝑖, 𝑗) at each time 𝑡, we denote the pair of return 
observation at 𝑡 to be 𝑟𝑡𝑖, 𝑡 𝑗 as 𝑚𝑖𝑗 (𝑡), which has the following 
distribution:

In the above equation, 𝐻𝑘 is a threshold for security 𝑘 that is 
calculated as 𝑐 × 𝑠𝑘, where 𝑐 is a fraction such as 0.5 (we will 
find optimal parameter 𝑐 by cross validation in section 6.2). 𝑠𝑘 is 
the sample standard deviation of the return of security 𝑘 (we will 
extend it to more robust measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑖𝑗 (𝑡) is +1 if the series 𝑖 and 𝑗 simultaneously exceed the 
threshold in the same direction at 𝑡.
(2) 𝑚𝑖𝑗 (𝑡) is −1 if the series 𝑖 and 𝑗 simultaneously exceed their 
thresholds in opposite direction at 𝑡.
(3) 𝑚𝑖𝑗 (𝑡) is set to 0 if neither of two series simultaneously 
exceed the threshold at 𝑡.
The paper refers to a pair of assets that simultaneously exceed 
their thresholds in the same direction as concordant pair, and 
to one who exceed their thresholds in opposite directions as a 
discordant pair.
Given the above formulation, we define the Gerber statistic for a 
pair of assets 𝑖 and 𝑗 to be:

Let 𝑛𝑖𝑗
𝑐 be the number of concordant pairs for assets 𝑖 and 𝑗, and

Letting 𝑛𝑖𝑗
𝑑 be the number of discordant pairs, equation (3) is 

equivalent
To:

Since the Gerber statistic calculates the number of simultaneous 
exceeding their thresholds, it is insensitive to extreme 
movements. Meanwhile, the existence of threshold also excludes 
small movements resulted from noise.

The matrix formulation of the Gerber statistic 𝑮 = [𝑔𝑖𝑗] is as 
following:

Let us define 𝑹 ∈ ℝ𝑇×𝑁 to be the matrix of returns with entry 𝑟𝑡𝑘 in 
its 𝑡-th row and 𝑘-th column. Let 𝑼 be an indicator matrix with 

the same size as 𝑹 for returns exceeding the upper threshold, 
having entries 𝑢𝑡 𝑗 such that

Under above definition, the matrix of the number of samples that
exceed the upper threshold

𝑛UU
𝑖𝑗 of 𝑵UU is the number of times when asset 𝑖 and 𝑗 exceed 

their upper thresholds.
Let 𝑫 be an indicator matrix for returns falling below the lower 
threshold, having entries 𝑑𝑡 𝑗 such that

The matrix of the number of samples that go below the lower 
threshold may be written as

Let 𝑛DD
𝑖 𝑗 of 𝑁DD be the number of times asset 𝑖 and 𝑗 goes below 

the lower threshold.
The matrix containing the numbers of concordant pairs is now:

The matrix containing the numbers of discordant pairs is now:

The Gerber matrix 𝑮 is:

⊘ is element-wise division. The corresponding Gerber 
covariance matrix 𝚺𝐺𝑆 is then correspondingly defined as

where 𝝈 is a 𝑁 × 1 vector of sample standard deviation of 
historical return.

In summary, the Gerber statistic differs from other covariance 
matrix estimators, such as sample covariance and Ledoit-Wolf 
covariance, by only considering meaningful co-movements. 
Instead of relying on product-moment statistics that can be 
influenced by outliers and noise in the data, the Gerber statistic 
focuses solely on significant co-movements in historical 
return samples. This approach enhances the robustness of 
the covariance estimation process by filtering out irrelevant 
or spurious correlations, thereby providing a more accurate 
representation of the underlying relationships between assets.

2.3.2 Modification Towards Positive-Definiteness
One issue with the Gerber covariance matrix is that it is not 
guaranteed to be symmetric positive definite (s.p.d) when applied 
to real data. This poses a problem because our covariance matrix 
should always be positive definite to ensure that portfolio risk 
is greater than 0. The lack of s.p.d. property in the covariance 
matrix can lead to numerical instability and unreliable risk 
assessments in portfolio optimization. Therefore, it is crucial to 
address this issue when using the Gerber covariance matrix in 

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),

Choice of Shrinkage Constant Ledoit and Wolf (2004) cal-
ibrated the shrinkage parameter 𝛿𝛿 by minimizing the Frobenius norm
between the asymptotically true covariance matrix and the shrinkage
estimator:

R(𝛿𝛿) = E(L(𝛿𝛿)) = E

∥𝛿𝛿𝛿𝛿 + (1 − 𝛿𝛿)𝑆𝑆 − Σ∥2



Under the assumption that 𝑁𝑁 is fixed while𝑇𝑇 tends to infinity, Ledoit and
Wolf (2003) proved that the optimal value 𝛿𝛿∗ asymptotically behaves
like a constant over 𝑇𝑇 . This constant, called 𝜅𝜅, can be written as:

𝛿𝛿∗ → 𝜅𝜅 =
𝜋𝜋 − 𝜌𝜌

𝛾𝛾

𝜋𝜋 denotes the sum of asymptotic variances of the entries of the sample
covariance matrix scaled by

√
𝑇𝑇 : 𝜋𝜋 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 Asy Var

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


.

Similarly, 𝜌𝜌 denotes the sum of asymptotic covariance of the en-
tries of the shrinkage target with the entries of the sample covariance
matrix scaled by

√
𝑇𝑇 : 𝜌𝜌 =

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 AsyCov

√
𝑇𝑇 𝑇𝑇𝑖𝑖 𝑖𝑖 ,

√
𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖


. 𝛾𝛾 mea-

sures the mis-specification of the (population) shrinkage target: 𝛾𝛾 =𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1

�
𝜙𝜙𝑖𝑖 𝑖𝑖 − 𝜎𝜎𝑖𝑖 𝑖𝑖

2. Finally, we computed the empirical estimator
for 𝜅𝜅 and use it as 𝛿𝛿.

In the model implementation section, we will also incorporate cross-
validation to determine the empirically optimal shrinkage constant. This
approach allows us to select the most suitable shrinkage parameter based
on the performance of the model on independent data subsets. By sys-
tematically evaluating the performance of different shrinkage constants
through cross-validation, we can identify the one that yields the best
balance between bias and variance, thus enhancing the robustness and
reliability of our covariance estimation method.

2.3 Gerber Covariance
One common issue with many covariance matrix estimators is their
reliance on product-moment statistics, such as standard deviation, which
are non-robust. This becomes problematic when financial data contains
numerous outliers. The presence of outliers can distort the correlation
between assets in historical data series. Additionally, noise in financial
data can be erroneously interpreted as meaningful information during
portfolio optimization. For example, non-zero entries may appear in the
correlation matrix estimator even when two assets have no meaningful
correlation.

To address these issues, Gerber et al. (2021) proposed a robust
co-movement measure known as the Gerber statistic. Instead of using
Pearson Correlation, the Gerber statistic calculates the proportion of
simultaneous co-movements in historical return samples where the am-
plitudes of such movements exceed a given threshold. The advantage
of the Gerber statistic lies in its resilience to extremely large or small
movements, making it more robust to financial time series [11].

2.3.1 Gerber Covariance Matrix
Consider 𝑘𝑘 = 1, . . . , 𝑁𝑁 assets with 𝑡𝑡 = 1, . . . , 𝑇𝑇 time periods historical
sample. Let 𝑟𝑟𝑡𝑡 𝑡𝑡 be the return of security 𝑘𝑘 at time 𝑡𝑡. For each pair of
asset (𝑖𝑖𝑖 𝑖𝑖) at each time 𝑡𝑡, we denote the pair of return observation at 𝑡𝑡
to be

�
𝑟𝑟𝑡𝑡𝑡𝑡 , 𝑟𝑟𝑡𝑡 𝑡𝑡


as 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡), which has the following distribution:

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) =




+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

+1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≥ +𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗 ,

−1 if 𝑟𝑟𝑡𝑡𝑡𝑡 ≤ −𝐻𝐻𝑖𝑖 and 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗 ,

0 otherwise.

(1)

In the above equation, 𝐻𝐻𝑘𝑘 is a threshold for security 𝑘𝑘 that is calcu-
lated as 𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction such as 0.5 (we will find optimal
parameter 𝑐𝑐 by cross validation in section 6.2). 𝑠𝑠𝑘𝑘 is the sample standard
deviation of the return of security 𝑘𝑘 (we will extend it to more robust
measure in section 3.3.3).

The interpretation of above formulation is straightforward:
(1) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is +1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed the

threshold in the same direction at 𝑡𝑡.

(2) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is −1 if the series 𝑖𝑖 and 𝑗𝑗 simultaneously exceed their
thresholds in opposite direction at 𝑡𝑡.

(3) 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡) is set to 0 if neither of two series simultaneously exceed
the threshold at 𝑡𝑡.

The paper refers to a pair of assets that simultaneously exceed their
thresholds in the same direction as concordant pair, and to one who
exceed their thresholds in opposite directions as a discordant pair.

Given the above formulation, we define the Gerber statistic for a pair
of assets 𝑖𝑖 and 𝑗𝑗 to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =

𝑇𝑇
𝑡𝑡=1 𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑚𝑚𝑖𝑖 𝑖𝑖 (𝑡𝑡)
 (2)

Let 𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖

be the number of concordant pairs for assets 𝑖𝑖 and 𝑗𝑗 , and
letting 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖
be the number of discordant pairs, equation (3) is equivalent

to:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
− 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖 𝑖𝑖
+ 𝑛𝑛𝑑𝑑

𝑖𝑖 𝑖𝑖

(3)

Since the Gerber statistic calculates the number of simultaneous ex-
ceeding their thresholds, it is insensitive to extreme movements. Mean-
while, the existence of threshold also excludes small movements resulted
from noise.

The matrix formulation of the Gerber statistic 𝑮𝑮 = [𝑔𝑔𝑖𝑖 𝑖𝑖 ] is as fol-
lowing:

Let us define 𝑹𝑹 ∈ R𝑇𝑇×𝑁𝑁 to be the matrix of returns with entry 𝑟𝑟𝑡𝑡 𝑡𝑡
in its 𝑡𝑡-th row and 𝑘𝑘-th column. Let 𝑼𝑼 be an indicator matrix with the
same size as 𝑹𝑹 for returns exceeding the upper threshold, having entries
𝑢𝑢𝑡𝑡 𝑡𝑡 such that

𝑢𝑢𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≥ +𝐻𝐻 𝑗𝑗

0 otherwise.

Under above definition, the matrix of the number of samples that
exceed the upper threshold is

𝑵𝑵UU = 𝑼𝑼⊤𝑼𝑼

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

of 𝑵𝑵UU is the number of times when asset 𝑖𝑖 and 𝑗𝑗 exceed their
upper thresholds.

Let 𝑫𝑫 be an indicator matrix for returns falling below the lower
threshold, having entries 𝑑𝑑𝑡𝑡 𝑡𝑡 such that

𝑑𝑑𝑡𝑡 𝑡𝑡 =


1 if 𝑟𝑟𝑡𝑡 𝑡𝑡 ≤ −𝐻𝐻 𝑗𝑗

0 otherwise

The matrix of the number of samples that go below the lower thresh-
old may be written as

𝑵𝑵DD = 𝑫𝑫⊤𝑫𝑫 .

Let 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

of 𝑁𝑁DD be the number of times asset 𝑖𝑖 and 𝑗𝑗 goes below the
lower threshold.

The matrix containing the numbers of concordant pairs is now:

𝑵𝑵CONC = 𝑵𝑵UU + 𝑵𝑵DD = 𝑼𝑼⊤𝑼𝑼 + 𝑫𝑫⊤𝑫𝑫 .

The matrix containing the numbers of discordant pairs is now:

𝑵𝑵DISC = 𝑼𝑼⊤𝑫𝑫 + 𝑫𝑫⊤𝑼𝑼.

The Gerber matrix 𝑮𝑮 is:

𝑮𝑮 = (𝑵𝑵CONC − 𝑵𝑵DISC) ⊘ (𝑵𝑵CONC + 𝑵𝑵DISC) ,

⊘ is element-wise division. The corresponding Gerber covariance ma-
trix 𝚺𝚺𝐺𝐺𝐺𝐺 is then correspondingly defined as

𝚺𝚺𝑮𝑮𝑮𝑮 = diag(𝝈𝝈)𝑮𝑮 diag(𝝈𝝈),
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practical applications.

The paper proposed a method of modification according to the 
empirical behaviour of two securities. Let 𝑛𝑝𝑞

𝑖 𝑗 be the number of 
observations for which the returns of assets 𝑖 and 𝑗 lie in regions 
𝑝 and 𝑞, where region 𝑝, 𝑞 ∈  {𝑈, 𝑁, 𝐷}. 𝑈 represents upward 
(asset return exceed upper threshold), 𝐷 represents downward 
(asset return exceed lower threshold) and 𝑁 represents neutral 
(asset return exceed neither threshold). Two assets’ co-movement 
therefore fall in nine regions{𝑈𝐷,𝑈𝑁,𝑈𝑈, 𝑁𝐷, 𝑁𝑁, 𝑁𝑈, 𝐷𝐷, 𝐷𝑁, 
𝐷𝑈} and we can now write 𝑔𝑖 𝑗 in equation (3) as:

In order to have a positive semi-definite matrix, we now adjust 
the denominator in equation (4) to be:

This modification essentially ignores the number of observations
falling inside region 𝑈𝑁, 𝐷𝑁, 𝑁𝑈, 𝑁𝐷. Using the most recent 
200 sample of S&P500weekly return, we find that as the 
threshold parameter 𝑐 becomes larger, the pair of asset returns 
that do not simultaneously exceed the threshold observations are 
more concentrated only in the region 𝑁𝑁, consistent with what 
the paper suggested.

In addition, we found it helpful to implement positive definite 
optimization to obtain an adjusted Gerber covariance matrix Σ:

The first constraint ensures that we have a symmetric positive 
definite matrix, while the second constraint aims to control the 
condition number to achieve a more stable result.

We compared the Frobenius norm between the original Gerber 
covariance matrix and our adjusted Gerber statistics using 
two methods: Non-Opt, using the method suggested by the 
paper, and Opt, using positive definite programming. Both 
matrices were calculated in a rolling window manner on test 
data (as mentioned in Section 5). As indicated by Figure 2.1, 
positive definite programming (Opt) can produce a much closer 
approximation to our original Gerber covariance matrix. The 
t-value in Table ?? under the null hypothesis (𝐻0: distance=0) is 
larger when we use positive definite programming. Therefore, 
we decide to use positive definite programming to obtain a more 
accurate and stable Gerber covariance matrix.

Table 2.1: Statistics of Two Adjustment Methods

Figure 2.1: Distance

2.3.3. More Robust Measures for Threshold
In equation (1), 𝐻𝑘 is the threshold for security 𝑘 that is calculated 
as 𝑐 × 𝑠𝑘, where 𝑐 is a fraction and 𝑠𝑘 is the sample standard 
deviation of the return of security 𝑘. In this section, we want to 
substitute it with more robust scale estimators: median absolute 
deviation (MAD).

Median absolute deviation (Hampel 1974) is defined as:

where the inner median, med 𝑗 (𝑦 𝑗), is the median of the 𝑇 
observations and the outer median 𝑚𝑒𝑑𝑖 , is the median of the 𝑇 
absolute values of the deviations about the median. For a normal 
distribution, 1.4826𝑀𝐴𝐷 can be used to estimate the standard 
deviation 𝜎. Gerber estimators with both standard deviation 
and MAD as thresholds will be used in portfolio for empirical 
analysis.

3. Portfolio Optimization
3.1 Minimum Variance Portfolio Optimization
We employed minimum variance optimization that solely 
relies on the estimation of covariance matrix. Kritzman, Page 
and Turkington (2010) points out that using historical sample 
to estimate asset return can be inefficient and on contrarily, we 
can extract more information about covariance matrix. Much 
literature proves that minimum variance portfolios can usually 
beat 1/N diversification and other weighting schemes involving 
estimated asset return [9].

We further augmented the minimum variance optimization with 
a penalty term proportional to the sum of the absolute values of 
the portfolio weights, which is also called ℓ1 norm on portfolio 
weights [7]. We set the parameter of ℓ1 regularization to be 
50 basis points, which is also used as the transaction cost in 
consistent with Balduzzi and Lynch (1999)’s assumption [8].

We consider the following mean-variance problem with 𝑙1-norm 
transaction costs:

where 𝝈𝝈 is a 𝑁𝑁 × 1 vector of sample standard deviation of historical
return.

In summary, the Gerber statistic differs from other covariance ma-
trix estimators, such as sample covariance and Ledoit-Wolf covariance,
by only considering meaningful co-movements. Instead of relying on
product-moment statistics that can be influenced by outliers and noise in
the data, the Gerber statistic focuses solely on significant co-movements
in historical return samples. This approach enhances the robustness of
the covariance estimation process by filtering out irrelevant or spurious
correlations, thereby providing a more accurate representation of the
underlying relationships between assets.

2.3.2 Modification Towards Positive-Definiteness
One issue with the Gerber covariance matrix is that it is not guaranteed
to be symmetric positive definite (s.p.d) when applied to real data. This
poses a problem because our covariance matrix should always be positive
definite to ensure that portfolio risk is greater than 0. The lack of s.p.d.
property in the covariance matrix can lead to numerical instability and
unreliable risk assessments in portfolio optimization. Therefore, it is
crucial to address this issue when using the Gerber covariance matrix in
practical applications.

The paper proposed a method of modification according to the em-
pirical behaviour of two securities. Let 𝑛𝑛𝑝𝑝𝑝𝑝

𝑖𝑖 𝑖𝑖
be the number of obser-

vations for which the returns of assets 𝑖𝑖 and 𝑗𝑗 lie in regions 𝑝𝑝 and
𝑞𝑞, where region 𝑝𝑝𝑝 𝑝𝑝 ∈ {𝑈𝑈𝑈𝑈𝑈𝑈  𝑈𝑈}. 𝑈𝑈 represents upward (asset return
exceed upper threshold), 𝐷𝐷 represents downward (asset return exceed
lower threshold) and 𝑁𝑁 represents neutral (asset return exceed neither
threshold). Two assets’ co-movement therefore fall in nine regions
{𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈  𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈} and we can now write
𝑔𝑔𝑖𝑖 𝑖𝑖 in equation (3) as:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛UU
𝑖𝑖 𝑖𝑖

+ 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

− 𝑛𝑛UD
𝑖𝑖 𝑖𝑖

− 𝑛𝑛DU
𝑖𝑖 𝑖𝑖

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

+ 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

+ 𝑛𝑛UD
𝑖𝑖 𝑖𝑖

+ 𝑛𝑛DU
𝑖𝑖 𝑖𝑖

(4)

In order to have a positive semi-definite matrix, we now adjust the
denominator in equation (4) to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛UU
𝑖𝑖 𝑖𝑖

+ 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

− 𝑛𝑛UD
𝑖𝑖 𝑖𝑖

− 𝑛𝑛DU
𝑖𝑖 𝑖𝑖

𝑇𝑇 − 𝑛𝑛NN
𝑖𝑖 𝑖𝑖

(5)

This modification essentially ignores the number of observations
falling inside region 𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈 𝑈𝑈. Using the most recent 200
sample of S&P500 weekly return, we find that as the threshold parameter
𝑐𝑐 becomes larger, the pair of asset returns that do not simultaneously
exceed the threshold observations are more concentrated only in the
region 𝑁𝑁𝑁𝑁 , consistent with what the paper suggested.

In addition, we found it helpful to implement positive definite opti-
mization to obtain an adjusted Gerber covariance matrix Σ̂:

minΣ
1
2
��Σ̂ − ΣGerber

��2
𝐹𝐹

s.t. Λmin (Σ̂) > 0
0.25 Λmax (Σ̂) ≤ Λmin (Σ̂)

(6)

The first constraint ensures that we have a symmetric positive definite
matrix, while the second constraint aims to control the condition number
to achieve a more stable result.

We compared the Frobenius norm between the original Gerber co-
variance matrix and our adjusted Gerber statistics using two methods:
Non-Opt, using the method suggested by the paper, and Opt, using pos-
itive definite programming. Both matrices were calculated in a rolling
window manner on test data (as mentioned in Section 5). As indicated
by Figure 2.1, positive definite programming (Opt) can produce a much
closer approximation to our original Gerber covariance matrix. The
t-value in Table ?? under the null hypothesis (𝐻𝐻0: distance=0) is larger
when we use positive definite programming. Therefore, we decide to
use positive definite programming to obtain a more accurate and stable
Gerber covariance matrix.

Table 2.1: Statistics of Two Adjustment Methods
Statistics Non-Opt Opt
Mean 0.029765 0.017154
Std 0.012429 0.007107
t-value 2.394857 2.413559

Figure 2.1: Distance

2.3.3 More Robust Measures for Threshold
In equation (1), 𝐻𝐻𝑘𝑘 is the threshold for security 𝑘𝑘 that is calculated as
𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction and 𝑠𝑠𝑘𝑘 is the sample standard deviation of
the return of security 𝑘𝑘 . In this section, we want to substitute it with
more robust scale estimators: median absolute deviation (MAD).

Median absolute deviation (Hampel 1974) is defined as:

𝑀𝑀𝑀𝑀𝑀𝑀 = med𝑖𝑖
(��𝑦𝑦𝑖𝑖 − med 𝑗𝑗

(
𝑦𝑦 𝑗𝑗
) ��)

where the inner median, med 𝑗𝑗

(
𝑦𝑦 𝑗𝑗
)
, is the median of the 𝑇𝑇 obser-

vations and the outer median 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 , is the median of the 𝑇𝑇 absolute
values of the deviations about the median. For a normal distribution,
1.4826𝑀𝑀𝑀𝑀𝑀𝑀 can be used to estimate the standard deviation 𝜎𝜎.

Gerber estimators with both standard deviation and MAD as thresh-
olds will be used in portfolio for empirical analysis.

3 Portfolio Optimization

3.1 Minimum Variance Portfolio Optimization
We employed minimum variance optimization that solely relies on the
estimation of covariance matrix. Kritzman, Page and Turkington (2010)
points out that using historical sample to estimate asset return can be
inefficient and on contrarily, we can extract more information about
covariance matrix. Much literature proves that minimum variance port-
folios can usually beat 1/N diversification and other weighting schemes
involving estimated asset return [9].

We further augmented the minimum variance optimization with a
penalty term proportional to the sum of the absolute values of the port-
folio weights, which is also called ℓ1 norm on portfolio weights [7]. We
set the parameter of ℓ1 regularization to be 50 basis points, which is
also used as the transaction cost in consistent with Balduzzi and Lynch
(1999)’s assumption [8].

We consider the following mean-variance problem with 𝑙𝑙1-norm
transaction costs:

minw w𝑇𝑇Vw + 𝜆𝜆 ∥(w − w0)∥1
s.t. w𝑇𝑇1𝑁𝑁 = 1

where w is the portfolio weight vector. 𝑉𝑉 ∈ R𝑁𝑁×𝑁𝑁 is the estimated co-
variance matrix of asset returns, 𝜆𝜆 ∈ R is the transaction cost parameter
(50 basis point), w0 ∈ R𝑁𝑁 is the weight in the beginning of the portfolio
re-balance date. 1𝑁𝑁 ∈ R𝑁𝑁 is the vector of ones.

where 𝝈𝝈 is a 𝑁𝑁 × 1 vector of sample standard deviation of historical
return.

In summary, the Gerber statistic differs from other covariance ma-
trix estimators, such as sample covariance and Ledoit-Wolf covariance,
by only considering meaningful co-movements. Instead of relying on
product-moment statistics that can be influenced by outliers and noise in
the data, the Gerber statistic focuses solely on significant co-movements
in historical return samples. This approach enhances the robustness of
the covariance estimation process by filtering out irrelevant or spurious
correlations, thereby providing a more accurate representation of the
underlying relationships between assets.

2.3.2 Modification Towards Positive-Definiteness
One issue with the Gerber covariance matrix is that it is not guaranteed
to be symmetric positive definite (s.p.d) when applied to real data. This
poses a problem because our covariance matrix should always be positive
definite to ensure that portfolio risk is greater than 0. The lack of s.p.d.
property in the covariance matrix can lead to numerical instability and
unreliable risk assessments in portfolio optimization. Therefore, it is
crucial to address this issue when using the Gerber covariance matrix in
practical applications.

The paper proposed a method of modification according to the em-
pirical behaviour of two securities. Let 𝑛𝑛𝑝𝑝𝑝𝑝

𝑖𝑖 𝑖𝑖
be the number of obser-

vations for which the returns of assets 𝑖𝑖 and 𝑗𝑗 lie in regions 𝑝𝑝 and
𝑞𝑞, where region 𝑝𝑝𝑝 𝑝𝑝 ∈ {𝑈𝑈𝑈𝑈𝑈𝑈  𝑈𝑈}. 𝑈𝑈 represents upward (asset return
exceed upper threshold), 𝐷𝐷 represents downward (asset return exceed
lower threshold) and 𝑁𝑁 represents neutral (asset return exceed neither
threshold). Two assets’ co-movement therefore fall in nine regions
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𝑔𝑔𝑖𝑖 𝑖𝑖 in equation (3) as:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛UU
𝑖𝑖 𝑖𝑖
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𝑖𝑖 𝑖𝑖
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𝑖𝑖 𝑖𝑖
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(4)

In order to have a positive semi-definite matrix, we now adjust the
denominator in equation (4) to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛UU
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𝑖𝑖 𝑖𝑖
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𝑖𝑖 𝑖𝑖
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𝑖𝑖 𝑖𝑖

(5)

This modification essentially ignores the number of observations
falling inside region 𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈 𝑈𝑈. Using the most recent 200
sample of S&P500 weekly return, we find that as the threshold parameter
𝑐𝑐 becomes larger, the pair of asset returns that do not simultaneously
exceed the threshold observations are more concentrated only in the
region 𝑁𝑁𝑁𝑁 , consistent with what the paper suggested.

In addition, we found it helpful to implement positive definite opti-
mization to obtain an adjusted Gerber covariance matrix Σ̂:

minΣ
1
2
��Σ̂ − ΣGerber

��2
𝐹𝐹

s.t. Λmin (Σ̂) > 0
0.25 Λmax (Σ̂) ≤ Λmin (Σ̂)

(6)

The first constraint ensures that we have a symmetric positive definite
matrix, while the second constraint aims to control the condition number
to achieve a more stable result.

We compared the Frobenius norm between the original Gerber co-
variance matrix and our adjusted Gerber statistics using two methods:
Non-Opt, using the method suggested by the paper, and Opt, using pos-
itive definite programming. Both matrices were calculated in a rolling
window manner on test data (as mentioned in Section 5). As indicated
by Figure 2.1, positive definite programming (Opt) can produce a much
closer approximation to our original Gerber covariance matrix. The
t-value in Table ?? under the null hypothesis (𝐻𝐻0: distance=0) is larger
when we use positive definite programming. Therefore, we decide to
use positive definite programming to obtain a more accurate and stable
Gerber covariance matrix.

Table 2.1: Statistics of Two Adjustment Methods
Statistics Non-Opt Opt
Mean 0.029765 0.017154
Std 0.012429 0.007107
t-value 2.394857 2.413559

Figure 2.1: Distance

2.3.3 More Robust Measures for Threshold
In equation (1), 𝐻𝐻𝑘𝑘 is the threshold for security 𝑘𝑘 that is calculated as
𝑐𝑐 × 𝑠𝑠𝑘𝑘 , where 𝑐𝑐 is a fraction and 𝑠𝑠𝑘𝑘 is the sample standard deviation of
the return of security 𝑘𝑘 . In this section, we want to substitute it with
more robust scale estimators: median absolute deviation (MAD).

Median absolute deviation (Hampel 1974) is defined as:

𝑀𝑀𝑀𝑀𝑀𝑀 = med𝑖𝑖
(��𝑦𝑦𝑖𝑖 − med 𝑗𝑗

(
𝑦𝑦 𝑗𝑗
) ��)
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, is the median of the 𝑇𝑇 obser-

vations and the outer median 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 , is the median of the 𝑇𝑇 absolute
values of the deviations about the median. For a normal distribution,
1.4826𝑀𝑀𝑀𝑀𝑀𝑀 can be used to estimate the standard deviation 𝜎𝜎.

Gerber estimators with both standard deviation and MAD as thresh-
olds will be used in portfolio for empirical analysis.

3 Portfolio Optimization

3.1 Minimum Variance Portfolio Optimization
We employed minimum variance optimization that solely relies on the
estimation of covariance matrix. Kritzman, Page and Turkington (2010)
points out that using historical sample to estimate asset return can be
inefficient and on contrarily, we can extract more information about
covariance matrix. Much literature proves that minimum variance port-
folios can usually beat 1/N diversification and other weighting schemes
involving estimated asset return [9].

We further augmented the minimum variance optimization with a
penalty term proportional to the sum of the absolute values of the port-
folio weights, which is also called ℓ1 norm on portfolio weights [7]. We
set the parameter of ℓ1 regularization to be 50 basis points, which is
also used as the transaction cost in consistent with Balduzzi and Lynch
(1999)’s assumption [8].

We consider the following mean-variance problem with 𝑙𝑙1-norm
transaction costs:

minw w𝑇𝑇Vw + 𝜆𝜆 ∥(w − w0)∥1
s.t. w𝑇𝑇1𝑁𝑁 = 1

where w is the portfolio weight vector. 𝑉𝑉 ∈ R𝑁𝑁×𝑁𝑁 is the estimated co-
variance matrix of asset returns, 𝜆𝜆 ∈ R is the transaction cost parameter
(50 basis point), w0 ∈ R𝑁𝑁 is the weight in the beginning of the portfolio
re-balance date. 1𝑁𝑁 ∈ R𝑁𝑁 is the vector of ones.

where 𝝈𝝈 is a 𝑁𝑁 × 1 vector of sample standard deviation of historical
return.

In summary, the Gerber statistic differs from other covariance ma-
trix estimators, such as sample covariance and Ledoit-Wolf covariance,
by only considering meaningful co-movements. Instead of relying on
product-moment statistics that can be influenced by outliers and noise in
the data, the Gerber statistic focuses solely on significant co-movements
in historical return samples. This approach enhances the robustness of
the covariance estimation process by filtering out irrelevant or spurious
correlations, thereby providing a more accurate representation of the
underlying relationships between assets.

2.3.2 Modification Towards Positive-Definiteness
One issue with the Gerber covariance matrix is that it is not guaranteed
to be symmetric positive definite (s.p.d) when applied to real data. This
poses a problem because our covariance matrix should always be positive
definite to ensure that portfolio risk is greater than 0. The lack of s.p.d.
property in the covariance matrix can lead to numerical instability and
unreliable risk assessments in portfolio optimization. Therefore, it is
crucial to address this issue when using the Gerber covariance matrix in
practical applications.

The paper proposed a method of modification according to the em-
pirical behaviour of two securities. Let 𝑛𝑛𝑝𝑝𝑝𝑝

𝑖𝑖 𝑖𝑖
be the number of obser-

vations for which the returns of assets 𝑖𝑖 and 𝑗𝑗 lie in regions 𝑝𝑝 and
𝑞𝑞, where region 𝑝𝑝𝑝 𝑝𝑝 ∈ {𝑈𝑈𝑈𝑈𝑈𝑈  𝑈𝑈}. 𝑈𝑈 represents upward (asset return
exceed upper threshold), 𝐷𝐷 represents downward (asset return exceed
lower threshold) and 𝑁𝑁 represents neutral (asset return exceed neither
threshold). Two assets’ co-movement therefore fall in nine regions
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𝑔𝑔𝑖𝑖 𝑖𝑖 in equation (3) as:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛UU
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(4)

In order to have a positive semi-definite matrix, we now adjust the
denominator in equation (4) to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛UU
𝑖𝑖 𝑖𝑖
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(5)

This modification essentially ignores the number of observations
falling inside region 𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈 𝑈𝑈. Using the most recent 200
sample of S&P500 weekly return, we find that as the threshold parameter
𝑐𝑐 becomes larger, the pair of asset returns that do not simultaneously
exceed the threshold observations are more concentrated only in the
region 𝑁𝑁𝑁𝑁 , consistent with what the paper suggested.

In addition, we found it helpful to implement positive definite opti-
mization to obtain an adjusted Gerber covariance matrix Σ̂:

minΣ
1
2
��Σ̂ − ΣGerber

��2
𝐹𝐹

s.t. Λmin (Σ̂) > 0
0.25 Λmax (Σ̂) ≤ Λmin (Σ̂)

(6)

The first constraint ensures that we have a symmetric positive definite
matrix, while the second constraint aims to control the condition number
to achieve a more stable result.

We compared the Frobenius norm between the original Gerber co-
variance matrix and our adjusted Gerber statistics using two methods:
Non-Opt, using the method suggested by the paper, and Opt, using pos-
itive definite programming. Both matrices were calculated in a rolling
window manner on test data (as mentioned in Section 5). As indicated
by Figure 2.1, positive definite programming (Opt) can produce a much
closer approximation to our original Gerber covariance matrix. The
t-value in Table ?? under the null hypothesis (𝐻𝐻0: distance=0) is larger
when we use positive definite programming. Therefore, we decide to
use positive definite programming to obtain a more accurate and stable
Gerber covariance matrix.

Table 2.1: Statistics of Two Adjustment Methods
Statistics Non-Opt Opt
Mean 0.029765 0.017154
Std 0.012429 0.007107
t-value 2.394857 2.413559

Figure 2.1: Distance
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values of the deviations about the median. For a normal distribution,
1.4826𝑀𝑀𝑀𝑀𝑀𝑀 can be used to estimate the standard deviation 𝜎𝜎.

Gerber estimators with both standard deviation and MAD as thresh-
olds will be used in portfolio for empirical analysis.

3 Portfolio Optimization

3.1 Minimum Variance Portfolio Optimization
We employed minimum variance optimization that solely relies on the
estimation of covariance matrix. Kritzman, Page and Turkington (2010)
points out that using historical sample to estimate asset return can be
inefficient and on contrarily, we can extract more information about
covariance matrix. Much literature proves that minimum variance port-
folios can usually beat 1/N diversification and other weighting schemes
involving estimated asset return [9].

We further augmented the minimum variance optimization with a
penalty term proportional to the sum of the absolute values of the port-
folio weights, which is also called ℓ1 norm on portfolio weights [7]. We
set the parameter of ℓ1 regularization to be 50 basis points, which is
also used as the transaction cost in consistent with Balduzzi and Lynch
(1999)’s assumption [8].

We consider the following mean-variance problem with 𝑙𝑙1-norm
transaction costs:

minw w𝑇𝑇Vw + 𝜆𝜆 ∥(w − w0)∥1
s.t. w𝑇𝑇1𝑁𝑁 = 1

where w is the portfolio weight vector. 𝑉𝑉 ∈ R𝑁𝑁×𝑁𝑁 is the estimated co-
variance matrix of asset returns, 𝜆𝜆 ∈ R is the transaction cost parameter
(50 basis point), w0 ∈ R𝑁𝑁 is the weight in the beginning of the portfolio
re-balance date. 1𝑁𝑁 ∈ R𝑁𝑁 is the vector of ones.

ˆ

where 𝝈𝝈 is a 𝑁𝑁 × 1 vector of sample standard deviation of historical
return.

In summary, the Gerber statistic differs from other covariance ma-
trix estimators, such as sample covariance and Ledoit-Wolf covariance,
by only considering meaningful co-movements. Instead of relying on
product-moment statistics that can be influenced by outliers and noise in
the data, the Gerber statistic focuses solely on significant co-movements
in historical return samples. This approach enhances the robustness of
the covariance estimation process by filtering out irrelevant or spurious
correlations, thereby providing a more accurate representation of the
underlying relationships between assets.

2.3.2 Modification Towards Positive-Definiteness
One issue with the Gerber covariance matrix is that it is not guaranteed
to be symmetric positive definite (s.p.d) when applied to real data. This
poses a problem because our covariance matrix should always be positive
definite to ensure that portfolio risk is greater than 0. The lack of s.p.d.
property in the covariance matrix can lead to numerical instability and
unreliable risk assessments in portfolio optimization. Therefore, it is
crucial to address this issue when using the Gerber covariance matrix in
practical applications.

The paper proposed a method of modification according to the em-
pirical behaviour of two securities. Let 𝑛𝑛𝑝𝑝𝑝𝑝

𝑖𝑖 𝑖𝑖
be the number of obser-

vations for which the returns of assets 𝑖𝑖 and 𝑗𝑗 lie in regions 𝑝𝑝 and
𝑞𝑞, where region 𝑝𝑝𝑝 𝑝𝑝 ∈ {𝑈𝑈𝑈𝑈𝑈𝑈  𝑈𝑈}. 𝑈𝑈 represents upward (asset return
exceed upper threshold), 𝐷𝐷 represents downward (asset return exceed
lower threshold) and 𝑁𝑁 represents neutral (asset return exceed neither
threshold). Two assets’ co-movement therefore fall in nine regions
{𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈  𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈} and we can now write
𝑔𝑔𝑖𝑖 𝑖𝑖 in equation (3) as:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛UU
𝑖𝑖 𝑖𝑖

+ 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

− 𝑛𝑛UD
𝑖𝑖 𝑖𝑖

− 𝑛𝑛DU
𝑖𝑖 𝑖𝑖

𝑛𝑛UU
𝑖𝑖 𝑖𝑖

+ 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

+ 𝑛𝑛UD
𝑖𝑖 𝑖𝑖

+ 𝑛𝑛DU
𝑖𝑖 𝑖𝑖

(4)

In order to have a positive semi-definite matrix, we now adjust the
denominator in equation (4) to be:

𝑔𝑔𝑖𝑖 𝑖𝑖 =
𝑛𝑛UU
𝑖𝑖 𝑖𝑖

+ 𝑛𝑛DD
𝑖𝑖 𝑖𝑖

− 𝑛𝑛UD
𝑖𝑖 𝑖𝑖

− 𝑛𝑛DU
𝑖𝑖 𝑖𝑖

𝑇𝑇 − 𝑛𝑛NN
𝑖𝑖 𝑖𝑖

(5)

This modification essentially ignores the number of observations
falling inside region 𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈𝑈𝑈 𝑈𝑈. Using the most recent 200
sample of S&P500 weekly return, we find that as the threshold parameter
𝑐𝑐 becomes larger, the pair of asset returns that do not simultaneously
exceed the threshold observations are more concentrated only in the
region 𝑁𝑁𝑁𝑁 , consistent with what the paper suggested.

In addition, we found it helpful to implement positive definite opti-
mization to obtain an adjusted Gerber covariance matrix Σ̂:

minΣ
1
2
��Σ̂ − ΣGerber

��2
𝐹𝐹

s.t. Λmin (Σ̂) > 0
0.25 Λmax (Σ̂) ≤ Λmin (Σ̂)

(6)

The first constraint ensures that we have a symmetric positive definite
matrix, while the second constraint aims to control the condition number
to achieve a more stable result.

We compared the Frobenius norm between the original Gerber co-
variance matrix and our adjusted Gerber statistics using two methods:
Non-Opt, using the method suggested by the paper, and Opt, using pos-
itive definite programming. Both matrices were calculated in a rolling
window manner on test data (as mentioned in Section 5). As indicated
by Figure 2.1, positive definite programming (Opt) can produce a much
closer approximation to our original Gerber covariance matrix. The
t-value in Table ?? under the null hypothesis (𝐻𝐻0: distance=0) is larger
when we use positive definite programming. Therefore, we decide to
use positive definite programming to obtain a more accurate and stable
Gerber covariance matrix.

Table 2.1: Statistics of Two Adjustment Methods
Statistics Non-Opt Opt
Mean 0.029765 0.017154
Std 0.012429 0.007107
t-value 2.394857 2.413559

Figure 2.1: Distance
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values of the deviations about the median. For a normal distribution,
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3 Portfolio Optimization

3.1 Minimum Variance Portfolio Optimization
We employed minimum variance optimization that solely relies on the
estimation of covariance matrix. Kritzman, Page and Turkington (2010)
points out that using historical sample to estimate asset return can be
inefficient and on contrarily, we can extract more information about
covariance matrix. Much literature proves that minimum variance port-
folios can usually beat 1/N diversification and other weighting schemes
involving estimated asset return [9].

We further augmented the minimum variance optimization with a
penalty term proportional to the sum of the absolute values of the port-
folio weights, which is also called ℓ1 norm on portfolio weights [7]. We
set the parameter of ℓ1 regularization to be 50 basis points, which is
also used as the transaction cost in consistent with Balduzzi and Lynch
(1999)’s assumption [8].

We consider the following mean-variance problem with 𝑙𝑙1-norm
transaction costs:

minw w𝑇𝑇Vw + 𝜆𝜆 ∥(w − w0)∥1
s.t. w𝑇𝑇1𝑁𝑁 = 1

where w is the portfolio weight vector. 𝑉𝑉 ∈ R𝑁𝑁×𝑁𝑁 is the estimated co-
variance matrix of asset returns, 𝜆𝜆 ∈ R is the transaction cost parameter
(50 basis point), w0 ∈ R𝑁𝑁 is the weight in the beginning of the portfolio
re-balance date. 1𝑁𝑁 ∈ R𝑁𝑁 is the vector of ones.
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definite to ensure that portfolio risk is greater than 0. The lack of s.p.d.
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region 𝑁𝑁𝑁𝑁 , consistent with what the paper suggested.
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The first constraint ensures that we have a symmetric positive definite
matrix, while the second constraint aims to control the condition number
to achieve a more stable result.

We compared the Frobenius norm between the original Gerber co-
variance matrix and our adjusted Gerber statistics using two methods:
Non-Opt, using the method suggested by the paper, and Opt, using pos-
itive definite programming. Both matrices were calculated in a rolling
window manner on test data (as mentioned in Section 5). As indicated
by Figure 2.1, positive definite programming (Opt) can produce a much
closer approximation to our original Gerber covariance matrix. The
t-value in Table ?? under the null hypothesis (𝐻𝐻0: distance=0) is larger
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Gerber covariance matrix.
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values of the deviations about the median. For a normal distribution,
1.4826𝑀𝑀𝑀𝑀𝑀𝑀 can be used to estimate the standard deviation 𝜎𝜎.

Gerber estimators with both standard deviation and MAD as thresh-
olds will be used in portfolio for empirical analysis.

3 Portfolio Optimization

3.1 Minimum Variance Portfolio Optimization
We employed minimum variance optimization that solely relies on the
estimation of covariance matrix. Kritzman, Page and Turkington (2010)
points out that using historical sample to estimate asset return can be
inefficient and on contrarily, we can extract more information about
covariance matrix. Much literature proves that minimum variance port-
folios can usually beat 1/N diversification and other weighting schemes
involving estimated asset return [9].

We further augmented the minimum variance optimization with a
penalty term proportional to the sum of the absolute values of the port-
folio weights, which is also called ℓ1 norm on portfolio weights [7]. We
set the parameter of ℓ1 regularization to be 50 basis points, which is
also used as the transaction cost in consistent with Balduzzi and Lynch
(1999)’s assumption [8].

We consider the following mean-variance problem with 𝑙𝑙1-norm
transaction costs:

minw w𝑇𝑇Vw + 𝜆𝜆 ∥(w − w0)∥1
s.t. w𝑇𝑇1𝑁𝑁 = 1

where w is the portfolio weight vector. 𝑉𝑉 ∈ R𝑁𝑁×𝑁𝑁 is the estimated co-
variance matrix of asset returns, 𝜆𝜆 ∈ R is the transaction cost parameter
(50 basis point), w0 ∈ R𝑁𝑁 is the weight in the beginning of the portfolio
re-balance date. 1𝑁𝑁 ∈ R𝑁𝑁 is the vector of ones.



 Volume 6 | Issue 2 | 6J Gene Engg Bio Res, 2024

Where w is the portfolio weight vector. 𝑉 ∈ ℝ𝑁×𝑁 is the estimated 
covariance matrix of asset returns, 𝜆 ∈ ℝ is the transaction cost 
parameter (50 basis point), w0 ∈ ℝ𝑁 is the weight in the beginning 
of the portfolio re-balance date. 1𝑁 ∈ ℝ𝑁 is the vector of ones.

3.2 Nested Clustering Algorithm
Marcos Lopez´ de Prado (2019) that aims to resolve signal 
instability proposes nested Clustering Optimization (NCO). 
Prado (2019) firstly identifies two kinds of instability in 
covariance estimator: that induced by noise and that induced 
by market signal itself. He argues that Ledoit Shrinkage or 
robust estimation method do not differentiate these two causes 
of instability. Instead, he suggests to only shrinking the random 
components in the sample covariance matrix to mitigate noise 
instability (i.e. de-noising). Then he proposes clustering on de-
noised correlation matrix to prevent signal instability [10].

3.2.1 Instability Caused by Noise
We first identify the instability caused by noise. Consider a matrix 
of independent and identically distributed random observations 
𝑋 with 𝑇 observations and 𝑁 features (i.e. number of assets). The 
underlying distribution of these observations has zero mean and 
some variance 𝜎2. Then, the sample covariance matrix 𝑉 = 1/n 
𝑋′𝑋 has eigenvalues that asymptotically converge as 𝑇 goes to 
∞ and 𝑁 goes to ∞ with 1 < 𝑁/𝑇 < ∞ to the Marcenko-Pastur 
probability density function (Marcenko and Pastur, 1967):

The maximum expected eigenvalue                        and the 

minimum expected eigenvalue is

It is often assumed that eigenvalues of correlation matrix lower 
than 𝜆+ are by a chance, which we refer to ’noise’ in finance, and 
the values higher than 𝜆+ are the significant common factors. 
We can see that covariance matrix can often contain substantial 
amounts of noise.

3.2.2 Instability Caused by Signal
Marcos L´opez de Prado(2019) suggests that other than noise, 
certain covariance structures can also make the optimization 
problem produce unstable solutions. The easiest case is a 2 × 2 
correlation matrix 𝐶:

where 𝜌 is the correlation between two variables.
|𝐶| is the determinant of 𝐶, |𝐶| = 1 − 𝜌2.
By spectral decomposition on 𝐶, we have 𝐶𝑄 = 𝑄Λ as follows,
where

We can see that 𝜌 approaching 1 can cause |𝐶| to approach zero
and the top eigenvalue to become very far away from other 
eigenvalues. Therefore 𝐶−1 used in the optimal solution can 
be problematic. Since correlation matrix 𝐶 directly relates to 

covariance matrix 𝑉, we can conclude that when assets within 
a portfolio are highly correlated (0 ≪ |𝜌| < 1), the value of 
𝑉−1 estimator may explode and makes the optimal solution 𝜔∗ 
unstable. Generally speaking, one eigenvalue can only increase 
at the expense of the other eigenvalues given the trace of the 
correlation matrix 𝑁 (number of assets). As a result, condition 
number 𝜅(𝐴) =             will be greater (𝜎max(𝐴) and 𝜎min (𝐴) 
are maximal and minimal singular values of 𝐴 respectively) 
and yield less stable covariance estimator. Such instability is 
inevitable when we have a portfolio in which assets are highly 
correlated.

To resolve this issue, Prado (2019) proposed a method called 
Nested Cluster Optimization. It clusters highly-correlated assets 
into subsets and tries to restrict this instability into each cluster 
and prevent it from spreading over all assets.

3.2.3 De-Noising
We firstly tackle the instability induced by noise. We implement 
Kernel Density algorithm to fit the empirical distribution of 
eigenvalues of our sample covariance matrix. Then we compare 
the theoretical distribution of Marcenko-Pastur distribution 
(section 3.2.1) to the empirical one so that we can determine the 
cut-off level 𝜆+ for non-random eigenvectors (separating noise-
related eigenvalues from signal-related eigenvalues). Let {𝜆𝑛}
𝑛=1,...,𝑁 be the set of all eigenvalues, ordered descending, and 𝑖 
be the position of the eigenvalue such that 𝜆𝑖 > 𝜆+ and 𝜆𝑖+1 ≤ 𝜆+. 
Then we set:

Given the eigenvector decomposition of covariance matrix𝑉 
is𝑉𝑄 = 𝑄Λ, we can derive the de-noised correlation matrix 𝐶 as:

where Λ is the diagonal matrix with adjusted eigenvalues and we 
re-scale  𝐶 to make diagonal entries to be 1.

3.2.4 Clustering
Then, we tackle instability induced by signal. The Nested 
Clustered Optimization (NCO) employs K-means algorithm to 
divide the covariance matrix into 𝐾 groups of highly-correlated 
variables. The choice of optimal number of groups 𝐾 is based 
on the Z-score of sample Silhouette Coefficient (Rousseeuw, 
1987). It represents the separation distance between the resulting 
clusters. Higher Silhouette Coefficient indicates better clustering 
result. The resulting clusters are 𝐾 subsets of our assets.

Secondly, we perform minimum variance optimization to each 
cluster. This can be interpreted as creating ‘funds’ out of our 
original as sets and allows us to reduce the covariance matrix 
𝑉 ∈ 𝑅𝑁×𝑁 into lower dimension (number of clusters 𝐾). The 
reduced correlation matrix is closer to an identity matrix than 
the original correlation matrix and therefore more amenable to 
instability caused by signals. Finally, we performed optimization 
on ’funds’ using the reduced covariance matrix 𝑉reduced ∈ 𝑅𝐾×𝐾. 
Final weights on each original asset are dot-product of the intra-

3.2 Nested Clustering Algorithm
Nested Clustering Optimization (NCO) is proposed by Marcos López
de Prado (2019) that aims to resolve signal instability. Prado (2019)
firstly identifies two kinds of instability in covariance estimator: that
induced by noise and that induced by market signal itself. He argues
that Ledoit Shrinkage or robust estimation method do not differentiate
these two causes of instability. Instead, he suggests to only shrink the
random components in the sample covariance matrix to mitigate noise
instability (i.e. de-noising). Then he proposes clustering on de-noised
correlation matrix to prevent signal instability [10].

3.2.1 Instability Caused by Noise
We first identify the instability caused by noise. Consider a matrix of
independent and identically distributed random observations 𝑋𝑋 with 𝑇𝑇

observations and 𝑁𝑁 features (i.e. number of assets). The underlying
distribution of these observations has zero mean and some variance 𝜎𝜎2.
Then, the sample covariance matrix 𝑉𝑉 = 1
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It is often assumed that eigenvalues of correlation matrix lower than
𝜆𝜆+ are by a chance, which we refer to ’noise’ in finance, and the values
higher than 𝜆𝜆+ are the significant common factors. We can see that
covariance matrix can often contain substantial amounts of noise.

3.2.2 Instability Caused by Signal
Marcos López de Prado(2019) suggests that other than noise, certain
covariance structures can also make the optimization problem produce
unstable solutions. The easiest case is a 2 × 2 correlation matrix 𝐶𝐶:

𝐶𝐶 =


1 𝜌𝜌

𝜌𝜌 1



where 𝜌𝜌 is the correlation between two variables.
|𝐶𝐶 | is the determinant of 𝐶𝐶, |𝐶𝐶 | = 1 − 𝜌𝜌2.
By spectral decomposition on 𝐶𝐶, we have 𝐶𝐶𝐶𝐶 = 𝑄𝑄Λ as follows,

where

𝑄𝑄 =
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We can see that 𝜌𝜌 approaching 1 can cause |𝐶𝐶 | to approach zero
and the top eigenvalue to become very far away from other eigenvalues.
Therefore 𝐶𝐶−1 used in the optimal solution can be problematic. Since
correlation matrix 𝐶𝐶 directly relates to covariance matrix 𝑉𝑉 , we can
conclude that when assets within a portfolio are highly correlated (0 ≪
|𝜌𝜌 | < 1), the value of𝑉𝑉−1 estimator may explode and makes the optimal
solution 𝜔𝜔∗ unstable. Generally speaking, one eigenvalue can only
increase at the expense of the other eigenvalues given the trace of the
correlation matrix 𝑁𝑁 (number of assets). As a result, condition number
𝜅𝜅(𝐴𝐴) = 𝜎𝜎max (𝐴𝐴)

𝜎𝜎min (𝐴𝐴) will be greater (𝜎𝜎max (𝐴𝐴) and 𝜎𝜎min (𝐴𝐴) are maximal
and minimal singular values of 𝐴𝐴 respectively) and yield less stable
covariance estimator. Such instability is inevitable when we have a
portfolio in which assets are highly correlated.

To resolve this issue, Prado (2019) proposed a method called Nested
Cluster Optimization. It clusters highly-correlated assets into subsets
and tries to restrict this instability into each cluster and prevent it from
spreading over all assets.

3.2.3 De-noising
We firstly tackle the instability induced by noise. We implement Kernel
Density algorithm to fit the empirical distribution of eigenvalues of our
sample covariance matrix. Then we compare the theoretical distribution
of Marcenko-Pastur distribution (section 3.2.1) to the empirical one so
that we can determine the cut-off level 𝜆𝜆+ for non-random eigenvectors
(separating noise-related eigenvalues from signal-related eigenvalues).

Let {𝜆𝜆𝑛𝑛}𝑛𝑛=1,...,𝑁𝑁 be the set of all eigenvalues, ordered descending,
and 𝑖𝑖 be the position of the eigenvalue such that 𝜆𝜆𝑖𝑖 > 𝜆𝜆+and 𝜆𝜆𝑖𝑖+1 ≤ 𝜆𝜆+.
Then we set:

𝜆𝜆 𝑗𝑗 =
1

𝑁𝑁 − 𝑖𝑖

𝑁𝑁∑︁
𝑘𝑘=𝑖𝑖+1

𝜆𝜆𝑘𝑘 , 𝑗𝑗 = 𝑖𝑖 + 1, . . . , 𝑁𝑁

Given the eigenvector decomposition of covariance matrix𝑉𝑉 is𝑉𝑉𝑉𝑉 =
𝑄𝑄Λ, we can derive the de-noised correlation matrix 𝐶𝐶 as:

𝐶̃𝐶 = 𝑄𝑄Λ̃𝑄𝑄′

𝐶𝐶 =
�
diag


𝐶̃𝐶
 −1/2

𝐶̃𝐶
�
diag


𝐶̃𝐶
 −1/2

where Λ̃ is the diagonal matrix with adjusted eigenvalues and we
re-scale 𝐶̃𝐶 to make diagonal entries to be 1.

3.2.4 Clustering
Then, we tackle instability induced by signal. The Nested Clustered
Optimization (NCO) employs K-means algorithm to divide the covari-
ance matrix into 𝐾𝐾 groups of highly-correlated variables. The choice of
optimal number of groups 𝐾𝐾 is based on the Z-score of sample Silhou-
ette Coefficient (Rousseeuw, 1987). It represents the separation distance
between the resulting clusters. Higher Silhouette Coefficient indicates
better clustering result. The resulting clusters are 𝐾𝐾 subsets of our
assets.

Secondly, we perform minimum variance optimization to each clus-
ter. This can be interpreted as creating ‘funds’ out of our original assets
and allows us to reduce the covariance matrix 𝑉𝑉 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 into lower
dimension (number of clusters 𝐾𝐾). The reduced correlation matrix is
closer to an identity matrix than the original correlation matrix and
therefore more amenable to instability caused by signals. Finally, we
performed optimization on ’funds’ using the reduced covariance matrix
𝑉𝑉reduced ∈ 𝑅𝑅𝐾𝐾×𝐾𝐾 . Final weights on each original asset are dot-product
of the intra-cluster weights and inter-cluster weights.

Combining de-noising in section 3.2.3 and clustering in section 3.2.4,
we reach the Nested Clustering Algorithm. The advantage of NCO is
that the instability only occurs within each cluster and does not propagate
across clusters. Moreover, it is agnostic to what optimization method
we use both intra-cluster and inter-cluster. In this paper, we implement
NCO on minimum variance portfolio.

Algorithm 1 Nested Clustered Optimization
Input: Sample covariance matrix 𝑉𝑉

(1) Obtain de-noised covariance matrix 𝑉̂𝑉 and correlation matrix 𝐶̂𝐶

(2) Cluster correlation matrix 𝐶̂𝐶 into 𝐾𝐾 groups
(3) Intra-cluster opitmization within each of 𝐾𝐾 groups, concatenate 𝐾𝐾

vectors of weight into 𝑅𝑅𝐾𝐾×𝑁𝑁 weight matrix, denoted as Ωintra
(4) Use the intra-cluster weights to get reduced sample covariance ma-
trix: 𝑉𝑉reduced = Ω′

intra𝑉̂𝑉Ωintra
(5) Inter-cluster optimization using 𝑉𝑉reduced and solve for Ωinter ∈ 𝑅𝑅𝐾𝐾

(6) Final weight allocation: Ω′
intraΩinter

return: final optimal weights allocated on each asset

3.3 CVaR Portfolio
Conditional Value at Risk (CVaR), introduced by Rockafellar and Urya-
sev (2000), is a risk measure that quantifies the amount of tail risk an
asset or portfolio has [12]. To control for extreme risk of the portfolio,
we apply CVaR constraints to original minimum variance optimization.

3.2 Nested Clustering Algorithm
Nested Clustering Optimization (NCO) is proposed by Marcos López
de Prado (2019) that aims to resolve signal instability. Prado (2019)
firstly identifies two kinds of instability in covariance estimator: that
induced by noise and that induced by market signal itself. He argues
that Ledoit Shrinkage or robust estimation method do not differentiate
these two causes of instability. Instead, he suggests to only shrink the
random components in the sample covariance matrix to mitigate noise
instability (i.e. de-noising). Then he proposes clustering on de-noised
correlation matrix to prevent signal instability [10].

3.2.1 Instability Caused by Noise
We first identify the instability caused by noise. Consider a matrix of
independent and identically distributed random observations 𝑋𝑋 with 𝑇𝑇

observations and 𝑁𝑁 features (i.e. number of assets). The underlying
distribution of these observations has zero mean and some variance 𝜎𝜎2.
Then, the sample covariance matrix 𝑉𝑉 = 1
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It is often assumed that eigenvalues of correlation matrix lower than
𝜆𝜆+ are by a chance, which we refer to ’noise’ in finance, and the values
higher than 𝜆𝜆+ are the significant common factors. We can see that
covariance matrix can often contain substantial amounts of noise.

3.2.2 Instability Caused by Signal
Marcos López de Prado(2019) suggests that other than noise, certain
covariance structures can also make the optimization problem produce
unstable solutions. The easiest case is a 2 × 2 correlation matrix 𝐶𝐶:
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where 𝜌𝜌 is the correlation between two variables.
|𝐶𝐶 | is the determinant of 𝐶𝐶, |𝐶𝐶 | = 1 − 𝜌𝜌2.
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We can see that 𝜌𝜌 approaching 1 can cause |𝐶𝐶 | to approach zero
and the top eigenvalue to become very far away from other eigenvalues.
Therefore 𝐶𝐶−1 used in the optimal solution can be problematic. Since
correlation matrix 𝐶𝐶 directly relates to covariance matrix 𝑉𝑉 , we can
conclude that when assets within a portfolio are highly correlated (0 ≪
|𝜌𝜌 | < 1), the value of𝑉𝑉−1 estimator may explode and makes the optimal
solution 𝜔𝜔∗ unstable. Generally speaking, one eigenvalue can only
increase at the expense of the other eigenvalues given the trace of the
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𝜎𝜎min (𝐴𝐴) will be greater (𝜎𝜎max (𝐴𝐴) and 𝜎𝜎min (𝐴𝐴) are maximal
and minimal singular values of 𝐴𝐴 respectively) and yield less stable
covariance estimator. Such instability is inevitable when we have a
portfolio in which assets are highly correlated.

To resolve this issue, Prado (2019) proposed a method called Nested
Cluster Optimization. It clusters highly-correlated assets into subsets
and tries to restrict this instability into each cluster and prevent it from
spreading over all assets.

3.2.3 De-noising
We firstly tackle the instability induced by noise. We implement Kernel
Density algorithm to fit the empirical distribution of eigenvalues of our
sample covariance matrix. Then we compare the theoretical distribution
of Marcenko-Pastur distribution (section 3.2.1) to the empirical one so
that we can determine the cut-off level 𝜆𝜆+ for non-random eigenvectors
(separating noise-related eigenvalues from signal-related eigenvalues).
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where Λ̃ is the diagonal matrix with adjusted eigenvalues and we
re-scale 𝐶̃𝐶 to make diagonal entries to be 1.

3.2.4 Clustering
Then, we tackle instability induced by signal. The Nested Clustered
Optimization (NCO) employs K-means algorithm to divide the covari-
ance matrix into 𝐾𝐾 groups of highly-correlated variables. The choice of
optimal number of groups 𝐾𝐾 is based on the Z-score of sample Silhou-
ette Coefficient (Rousseeuw, 1987). It represents the separation distance
between the resulting clusters. Higher Silhouette Coefficient indicates
better clustering result. The resulting clusters are 𝐾𝐾 subsets of our
assets.

Secondly, we perform minimum variance optimization to each clus-
ter. This can be interpreted as creating ‘funds’ out of our original assets
and allows us to reduce the covariance matrix 𝑉𝑉 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 into lower
dimension (number of clusters 𝐾𝐾). The reduced correlation matrix is
closer to an identity matrix than the original correlation matrix and
therefore more amenable to instability caused by signals. Finally, we
performed optimization on ’funds’ using the reduced covariance matrix
𝑉𝑉reduced ∈ 𝑅𝑅𝐾𝐾×𝐾𝐾 . Final weights on each original asset are dot-product
of the intra-cluster weights and inter-cluster weights.

Combining de-noising in section 3.2.3 and clustering in section 3.2.4,
we reach the Nested Clustering Algorithm. The advantage of NCO is
that the instability only occurs within each cluster and does not propagate
across clusters. Moreover, it is agnostic to what optimization method
we use both intra-cluster and inter-cluster. In this paper, we implement
NCO on minimum variance portfolio.

Algorithm 1 Nested Clustered Optimization
Input: Sample covariance matrix 𝑉𝑉

(1) Obtain de-noised covariance matrix 𝑉̂𝑉 and correlation matrix 𝐶̂𝐶
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(6) Final weight allocation: Ω′
intraΩinter
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3.3 CVaR Portfolio
Conditional Value at Risk (CVaR), introduced by Rockafellar and Urya-
sev (2000), is a risk measure that quantifies the amount of tail risk an
asset or portfolio has [12]. To control for extreme risk of the portfolio,
we apply CVaR constraints to original minimum variance optimization.
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de Prado (2019) that aims to resolve signal instability. Prado (2019)
firstly identifies two kinds of instability in covariance estimator: that
induced by noise and that induced by market signal itself. He argues
that Ledoit Shrinkage or robust estimation method do not differentiate
these two causes of instability. Instead, he suggests to only shrink the
random components in the sample covariance matrix to mitigate noise
instability (i.e. de-noising). Then he proposes clustering on de-noised
correlation matrix to prevent signal instability [10].
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independent and identically distributed random observations 𝑋𝑋 with 𝑇𝑇
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𝜆𝜆+ are by a chance, which we refer to ’noise’ in finance, and the values
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covariance matrix can often contain substantial amounts of noise.
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We can see that 𝜌𝜌 approaching 1 can cause |𝐶𝐶 | to approach zero
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therefore more amenable to instability caused by signals. Finally, we
performed optimization on ’funds’ using the reduced covariance matrix
𝑉𝑉reduced ∈ 𝑅𝑅𝐾𝐾×𝐾𝐾 . Final weights on each original asset are dot-product
of the intra-cluster weights and inter-cluster weights.

Combining de-noising in section 3.2.3 and clustering in section 3.2.4,
we reach the Nested Clustering Algorithm. The advantage of NCO is
that the instability only occurs within each cluster and does not propagate
across clusters. Moreover, it is agnostic to what optimization method
we use both intra-cluster and inter-cluster. In this paper, we implement
NCO on minimum variance portfolio.

Algorithm 1 Nested Clustered Optimization
Input: Sample covariance matrix 𝑉𝑉

(1) Obtain de-noised covariance matrix 𝑉̂𝑉 and correlation matrix 𝐶̂𝐶

(2) Cluster correlation matrix 𝐶̂𝐶 into 𝐾𝐾 groups
(3) Intra-cluster opitmization within each of 𝐾𝐾 groups, concatenate 𝐾𝐾

vectors of weight into 𝑅𝑅𝐾𝐾×𝑁𝑁 weight matrix, denoted as Ωintra
(4) Use the intra-cluster weights to get reduced sample covariance ma-
trix: 𝑉𝑉reduced = Ω′

intra𝑉̂𝑉Ωintra
(5) Inter-cluster optimization using 𝑉𝑉reduced and solve for Ωinter ∈ 𝑅𝑅𝐾𝐾

(6) Final weight allocation: Ω′
intraΩinter

return: final optimal weights allocated on each asset

3.3 CVaR Portfolio
Conditional Value at Risk (CVaR), introduced by Rockafellar and Urya-
sev (2000), is a risk measure that quantifies the amount of tail risk an
asset or portfolio has [12]. To control for extreme risk of the portfolio,
we apply CVaR constraints to original minimum variance optimization.

3.2 Nested Clustering Algorithm
Nested Clustering Optimization (NCO) is proposed by Marcos López
de Prado (2019) that aims to resolve signal instability. Prado (2019)
firstly identifies two kinds of instability in covariance estimator: that
induced by noise and that induced by market signal itself. He argues
that Ledoit Shrinkage or robust estimation method do not differentiate
these two causes of instability. Instead, he suggests to only shrink the
random components in the sample covariance matrix to mitigate noise
instability (i.e. de-noising). Then he proposes clustering on de-noised
correlation matrix to prevent signal instability [10].

3.2.1 Instability Caused by Noise
We first identify the instability caused by noise. Consider a matrix of
independent and identically distributed random observations 𝑋𝑋 with 𝑇𝑇

observations and 𝑁𝑁 features (i.e. number of assets). The underlying
distribution of these observations has zero mean and some variance 𝜎𝜎2.
Then, the sample covariance matrix 𝑉𝑉 = 1

𝑛𝑛 𝑋𝑋
′𝑋𝑋 has eigenvalues that

asymptotically converge as 𝑇𝑇 goes to ∞ and 𝑁𝑁 goes to ∞ with 1 < 𝑇𝑇
𝑁𝑁

<

∞ to the Marcenko-Pastur probability density function (Marcenko and
Pastur, 1967):
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It is often assumed that eigenvalues of correlation matrix lower than
𝜆𝜆+ are by a chance, which we refer to ’noise’ in finance, and the values
higher than 𝜆𝜆+ are the significant common factors. We can see that
covariance matrix can often contain substantial amounts of noise.

3.2.2 Instability Caused by Signal
Marcos López de Prado(2019) suggests that other than noise, certain
covariance structures can also make the optimization problem produce
unstable solutions. The easiest case is a 2 × 2 correlation matrix 𝐶𝐶:

𝐶𝐶 =


1 𝜌𝜌

𝜌𝜌 1



where 𝜌𝜌 is the correlation between two variables.
|𝐶𝐶 | is the determinant of 𝐶𝐶, |𝐶𝐶 | = 1 − 𝜌𝜌2.
By spectral decomposition on 𝐶𝐶, we have 𝐶𝐶𝐶𝐶 = 𝑄𝑄Λ as follows,

where
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We can see that 𝜌𝜌 approaching 1 can cause |𝐶𝐶 | to approach zero
and the top eigenvalue to become very far away from other eigenvalues.
Therefore 𝐶𝐶−1 used in the optimal solution can be problematic. Since
correlation matrix 𝐶𝐶 directly relates to covariance matrix 𝑉𝑉 , we can
conclude that when assets within a portfolio are highly correlated (0 ≪
|𝜌𝜌 | < 1), the value of𝑉𝑉−1 estimator may explode and makes the optimal
solution 𝜔𝜔∗ unstable. Generally speaking, one eigenvalue can only
increase at the expense of the other eigenvalues given the trace of the
correlation matrix 𝑁𝑁 (number of assets). As a result, condition number
𝜅𝜅(𝐴𝐴) = 𝜎𝜎max (𝐴𝐴)

𝜎𝜎min (𝐴𝐴) will be greater (𝜎𝜎max (𝐴𝐴) and 𝜎𝜎min (𝐴𝐴) are maximal
and minimal singular values of 𝐴𝐴 respectively) and yield less stable
covariance estimator. Such instability is inevitable when we have a
portfolio in which assets are highly correlated.

To resolve this issue, Prado (2019) proposed a method called Nested
Cluster Optimization. It clusters highly-correlated assets into subsets
and tries to restrict this instability into each cluster and prevent it from
spreading over all assets.

3.2.3 De-noising
We firstly tackle the instability induced by noise. We implement Kernel
Density algorithm to fit the empirical distribution of eigenvalues of our
sample covariance matrix. Then we compare the theoretical distribution
of Marcenko-Pastur distribution (section 3.2.1) to the empirical one so
that we can determine the cut-off level 𝜆𝜆+ for non-random eigenvectors
(separating noise-related eigenvalues from signal-related eigenvalues).

Let {𝜆𝜆𝑛𝑛}𝑛𝑛=1,...,𝑁𝑁 be the set of all eigenvalues, ordered descending,
and 𝑖𝑖 be the position of the eigenvalue such that 𝜆𝜆𝑖𝑖 > 𝜆𝜆+and 𝜆𝜆𝑖𝑖+1 ≤ 𝜆𝜆+.
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𝜆𝜆𝑘𝑘 , 𝑗𝑗 = 𝑖𝑖 + 1, . . . , 𝑁𝑁

Given the eigenvector decomposition of covariance matrix𝑉𝑉 is𝑉𝑉𝑉𝑉 =
𝑄𝑄Λ, we can derive the de-noised correlation matrix 𝐶𝐶 as:
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where Λ̃ is the diagonal matrix with adjusted eigenvalues and we
re-scale 𝐶̃𝐶 to make diagonal entries to be 1.

3.2.4 Clustering
Then, we tackle instability induced by signal. The Nested Clustered
Optimization (NCO) employs K-means algorithm to divide the covari-
ance matrix into 𝐾𝐾 groups of highly-correlated variables. The choice of
optimal number of groups 𝐾𝐾 is based on the Z-score of sample Silhou-
ette Coefficient (Rousseeuw, 1987). It represents the separation distance
between the resulting clusters. Higher Silhouette Coefficient indicates
better clustering result. The resulting clusters are 𝐾𝐾 subsets of our
assets.

Secondly, we perform minimum variance optimization to each clus-
ter. This can be interpreted as creating ‘funds’ out of our original assets
and allows us to reduce the covariance matrix 𝑉𝑉 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 into lower
dimension (number of clusters 𝐾𝐾). The reduced correlation matrix is
closer to an identity matrix than the original correlation matrix and
therefore more amenable to instability caused by signals. Finally, we
performed optimization on ’funds’ using the reduced covariance matrix
𝑉𝑉reduced ∈ 𝑅𝑅𝐾𝐾×𝐾𝐾 . Final weights on each original asset are dot-product
of the intra-cluster weights and inter-cluster weights.

Combining de-noising in section 3.2.3 and clustering in section 3.2.4,
we reach the Nested Clustering Algorithm. The advantage of NCO is
that the instability only occurs within each cluster and does not propagate
across clusters. Moreover, it is agnostic to what optimization method
we use both intra-cluster and inter-cluster. In this paper, we implement
NCO on minimum variance portfolio.

Algorithm 1 Nested Clustered Optimization
Input: Sample covariance matrix 𝑉𝑉

(1) Obtain de-noised covariance matrix 𝑉̂𝑉 and correlation matrix 𝐶̂𝐶

(2) Cluster correlation matrix 𝐶̂𝐶 into 𝐾𝐾 groups
(3) Intra-cluster opitmization within each of 𝐾𝐾 groups, concatenate 𝐾𝐾

vectors of weight into 𝑅𝑅𝐾𝐾×𝑁𝑁 weight matrix, denoted as Ωintra
(4) Use the intra-cluster weights to get reduced sample covariance ma-
trix: 𝑉𝑉reduced = Ω′

intra𝑉̂𝑉Ωintra
(5) Inter-cluster optimization using 𝑉𝑉reduced and solve for Ωinter ∈ 𝑅𝑅𝐾𝐾

(6) Final weight allocation: Ω′
intraΩinter

return: final optimal weights allocated on each asset

3.3 CVaR Portfolio
Conditional Value at Risk (CVaR), introduced by Rockafellar and Urya-
sev (2000), is a risk measure that quantifies the amount of tail risk an
asset or portfolio has [12]. To control for extreme risk of the portfolio,
we apply CVaR constraints to original minimum variance optimization.

3.2 Nested Clustering Algorithm
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that Ledoit Shrinkage or robust estimation method do not differentiate
these two causes of instability. Instead, he suggests to only shrink the
random components in the sample covariance matrix to mitigate noise
instability (i.e. de-noising). Then he proposes clustering on de-noised
correlation matrix to prevent signal instability [10].

3.2.1 Instability Caused by Noise
We first identify the instability caused by noise. Consider a matrix of
independent and identically distributed random observations 𝑋𝑋 with 𝑇𝑇

observations and 𝑁𝑁 features (i.e. number of assets). The underlying
distribution of these observations has zero mean and some variance 𝜎𝜎2.
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It is often assumed that eigenvalues of correlation matrix lower than
𝜆𝜆+ are by a chance, which we refer to ’noise’ in finance, and the values
higher than 𝜆𝜆+ are the significant common factors. We can see that
covariance matrix can often contain substantial amounts of noise.

3.2.2 Instability Caused by Signal
Marcos López de Prado(2019) suggests that other than noise, certain
covariance structures can also make the optimization problem produce
unstable solutions. The easiest case is a 2 × 2 correlation matrix 𝐶𝐶:
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where 𝜌𝜌 is the correlation between two variables.
|𝐶𝐶 | is the determinant of 𝐶𝐶, |𝐶𝐶 | = 1 − 𝜌𝜌2.
By spectral decomposition on 𝐶𝐶, we have 𝐶𝐶𝐶𝐶 = 𝑄𝑄Λ as follows,

where

𝑄𝑄 =

 1√
2

1√
2

1√
2

− 1√
2


,Λ =


1 + 𝜌𝜌 0

0 1 − 𝜌𝜌



We can see that 𝜌𝜌 approaching 1 can cause |𝐶𝐶 | to approach zero
and the top eigenvalue to become very far away from other eigenvalues.
Therefore 𝐶𝐶−1 used in the optimal solution can be problematic. Since
correlation matrix 𝐶𝐶 directly relates to covariance matrix 𝑉𝑉 , we can
conclude that when assets within a portfolio are highly correlated (0 ≪
|𝜌𝜌 | < 1), the value of𝑉𝑉−1 estimator may explode and makes the optimal
solution 𝜔𝜔∗ unstable. Generally speaking, one eigenvalue can only
increase at the expense of the other eigenvalues given the trace of the
correlation matrix 𝑁𝑁 (number of assets). As a result, condition number
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𝜎𝜎min (𝐴𝐴) will be greater (𝜎𝜎max (𝐴𝐴) and 𝜎𝜎min (𝐴𝐴) are maximal
and minimal singular values of 𝐴𝐴 respectively) and yield less stable
covariance estimator. Such instability is inevitable when we have a
portfolio in which assets are highly correlated.

To resolve this issue, Prado (2019) proposed a method called Nested
Cluster Optimization. It clusters highly-correlated assets into subsets
and tries to restrict this instability into each cluster and prevent it from
spreading over all assets.

3.2.3 De-noising
We firstly tackle the instability induced by noise. We implement Kernel
Density algorithm to fit the empirical distribution of eigenvalues of our
sample covariance matrix. Then we compare the theoretical distribution
of Marcenko-Pastur distribution (section 3.2.1) to the empirical one so
that we can determine the cut-off level 𝜆𝜆+ for non-random eigenvectors
(separating noise-related eigenvalues from signal-related eigenvalues).

Let {𝜆𝜆𝑛𝑛}𝑛𝑛=1,...,𝑁𝑁 be the set of all eigenvalues, ordered descending,
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Given the eigenvector decomposition of covariance matrix𝑉𝑉 is𝑉𝑉𝑉𝑉 =
𝑄𝑄Λ, we can derive the de-noised correlation matrix 𝐶𝐶 as:
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where Λ̃ is the diagonal matrix with adjusted eigenvalues and we
re-scale 𝐶̃𝐶 to make diagonal entries to be 1.

3.2.4 Clustering
Then, we tackle instability induced by signal. The Nested Clustered
Optimization (NCO) employs K-means algorithm to divide the covari-
ance matrix into 𝐾𝐾 groups of highly-correlated variables. The choice of
optimal number of groups 𝐾𝐾 is based on the Z-score of sample Silhou-
ette Coefficient (Rousseeuw, 1987). It represents the separation distance
between the resulting clusters. Higher Silhouette Coefficient indicates
better clustering result. The resulting clusters are 𝐾𝐾 subsets of our
assets.

Secondly, we perform minimum variance optimization to each clus-
ter. This can be interpreted as creating ‘funds’ out of our original assets
and allows us to reduce the covariance matrix 𝑉𝑉 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 into lower
dimension (number of clusters 𝐾𝐾). The reduced correlation matrix is
closer to an identity matrix than the original correlation matrix and
therefore more amenable to instability caused by signals. Finally, we
performed optimization on ’funds’ using the reduced covariance matrix
𝑉𝑉reduced ∈ 𝑅𝑅𝐾𝐾×𝐾𝐾 . Final weights on each original asset are dot-product
of the intra-cluster weights and inter-cluster weights.

Combining de-noising in section 3.2.3 and clustering in section 3.2.4,
we reach the Nested Clustering Algorithm. The advantage of NCO is
that the instability only occurs within each cluster and does not propagate
across clusters. Moreover, it is agnostic to what optimization method
we use both intra-cluster and inter-cluster. In this paper, we implement
NCO on minimum variance portfolio.

Algorithm 1 Nested Clustered Optimization
Input: Sample covariance matrix 𝑉𝑉

(1) Obtain de-noised covariance matrix 𝑉̂𝑉 and correlation matrix 𝐶̂𝐶

(2) Cluster correlation matrix 𝐶̂𝐶 into 𝐾𝐾 groups
(3) Intra-cluster opitmization within each of 𝐾𝐾 groups, concatenate 𝐾𝐾

vectors of weight into 𝑅𝑅𝐾𝐾×𝑁𝑁 weight matrix, denoted as Ωintra
(4) Use the intra-cluster weights to get reduced sample covariance ma-
trix: 𝑉𝑉reduced = Ω′

intra𝑉̂𝑉Ωintra
(5) Inter-cluster optimization using 𝑉𝑉reduced and solve for Ωinter ∈ 𝑅𝑅𝐾𝐾

(6) Final weight allocation: Ω′
intraΩinter

return: final optimal weights allocated on each asset

3.3 CVaR Portfolio
Conditional Value at Risk (CVaR), introduced by Rockafellar and Urya-
sev (2000), is a risk measure that quantifies the amount of tail risk an
asset or portfolio has [12]. To control for extreme risk of the portfolio,
we apply CVaR constraints to original minimum variance optimization.

3.2 Nested Clustering Algorithm
Nested Clustering Optimization (NCO) is proposed by Marcos López
de Prado (2019) that aims to resolve signal instability. Prado (2019)
firstly identifies two kinds of instability in covariance estimator: that
induced by noise and that induced by market signal itself. He argues
that Ledoit Shrinkage or robust estimation method do not differentiate
these two causes of instability. Instead, he suggests to only shrink the
random components in the sample covariance matrix to mitigate noise
instability (i.e. de-noising). Then he proposes clustering on de-noised
correlation matrix to prevent signal instability [10].

3.2.1 Instability Caused by Noise
We first identify the instability caused by noise. Consider a matrix of
independent and identically distributed random observations 𝑋𝑋 with 𝑇𝑇
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higher than 𝜆𝜆+ are the significant common factors. We can see that
covariance matrix can often contain substantial amounts of noise.
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covariance structures can also make the optimization problem produce
unstable solutions. The easiest case is a 2 × 2 correlation matrix 𝐶𝐶:

𝐶𝐶 =


1 𝜌𝜌

𝜌𝜌 1



where 𝜌𝜌 is the correlation between two variables.
|𝐶𝐶 | is the determinant of 𝐶𝐶, |𝐶𝐶 | = 1 − 𝜌𝜌2.
By spectral decomposition on 𝐶𝐶, we have 𝐶𝐶𝐶𝐶 = 𝑄𝑄Λ as follows,

where

𝑄𝑄 =

 1√
2

1√
2

1√
2

− 1√
2


,Λ =


1 + 𝜌𝜌 0

0 1 − 𝜌𝜌



We can see that 𝜌𝜌 approaching 1 can cause |𝐶𝐶 | to approach zero
and the top eigenvalue to become very far away from other eigenvalues.
Therefore 𝐶𝐶−1 used in the optimal solution can be problematic. Since
correlation matrix 𝐶𝐶 directly relates to covariance matrix 𝑉𝑉 , we can
conclude that when assets within a portfolio are highly correlated (0 ≪
|𝜌𝜌 | < 1), the value of𝑉𝑉−1 estimator may explode and makes the optimal
solution 𝜔𝜔∗ unstable. Generally speaking, one eigenvalue can only
increase at the expense of the other eigenvalues given the trace of the
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and tries to restrict this instability into each cluster and prevent it from
spreading over all assets.

3.2.3 De-noising
We firstly tackle the instability induced by noise. We implement Kernel
Density algorithm to fit the empirical distribution of eigenvalues of our
sample covariance matrix. Then we compare the theoretical distribution
of Marcenko-Pastur distribution (section 3.2.1) to the empirical one so
that we can determine the cut-off level 𝜆𝜆+ for non-random eigenvectors
(separating noise-related eigenvalues from signal-related eigenvalues).

Let {𝜆𝜆𝑛𝑛}𝑛𝑛=1,...,𝑁𝑁 be the set of all eigenvalues, ordered descending,
and 𝑖𝑖 be the position of the eigenvalue such that 𝜆𝜆𝑖𝑖 > 𝜆𝜆+and 𝜆𝜆𝑖𝑖+1 ≤ 𝜆𝜆+.
Then we set:

𝜆𝜆 𝑗𝑗 =
1

𝑁𝑁 − 𝑖𝑖

𝑁𝑁∑︁
𝑘𝑘=𝑖𝑖+1

𝜆𝜆𝑘𝑘 , 𝑗𝑗 = 𝑖𝑖 + 1, . . . , 𝑁𝑁

Given the eigenvector decomposition of covariance matrix𝑉𝑉 is𝑉𝑉𝑉𝑉 =
𝑄𝑄Λ, we can derive the de-noised correlation matrix 𝐶𝐶 as:

𝐶̃𝐶 = 𝑄𝑄Λ̃𝑄𝑄′

𝐶𝐶 =
�
diag


𝐶̃𝐶
 −1/2

𝐶̃𝐶
�
diag


𝐶̃𝐶
 −1/2

where Λ̃ is the diagonal matrix with adjusted eigenvalues and we
re-scale 𝐶̃𝐶 to make diagonal entries to be 1.

3.2.4 Clustering
Then, we tackle instability induced by signal. The Nested Clustered
Optimization (NCO) employs K-means algorithm to divide the covari-
ance matrix into 𝐾𝐾 groups of highly-correlated variables. The choice of
optimal number of groups 𝐾𝐾 is based on the Z-score of sample Silhou-
ette Coefficient (Rousseeuw, 1987). It represents the separation distance
between the resulting clusters. Higher Silhouette Coefficient indicates
better clustering result. The resulting clusters are 𝐾𝐾 subsets of our
assets.

Secondly, we perform minimum variance optimization to each clus-
ter. This can be interpreted as creating ‘funds’ out of our original assets
and allows us to reduce the covariance matrix 𝑉𝑉 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 into lower
dimension (number of clusters 𝐾𝐾). The reduced correlation matrix is
closer to an identity matrix than the original correlation matrix and
therefore more amenable to instability caused by signals. Finally, we
performed optimization on ’funds’ using the reduced covariance matrix
𝑉𝑉reduced ∈ 𝑅𝑅𝐾𝐾×𝐾𝐾 . Final weights on each original asset are dot-product
of the intra-cluster weights and inter-cluster weights.

Combining de-noising in section 3.2.3 and clustering in section 3.2.4,
we reach the Nested Clustering Algorithm. The advantage of NCO is
that the instability only occurs within each cluster and does not propagate
across clusters. Moreover, it is agnostic to what optimization method
we use both intra-cluster and inter-cluster. In this paper, we implement
NCO on minimum variance portfolio.

Algorithm 1 Nested Clustered Optimization
Input: Sample covariance matrix 𝑉𝑉

(1) Obtain de-noised covariance matrix 𝑉̂𝑉 and correlation matrix 𝐶̂𝐶

(2) Cluster correlation matrix 𝐶̂𝐶 into 𝐾𝐾 groups
(3) Intra-cluster opitmization within each of 𝐾𝐾 groups, concatenate 𝐾𝐾

vectors of weight into 𝑅𝑅𝐾𝐾×𝑁𝑁 weight matrix, denoted as Ωintra
(4) Use the intra-cluster weights to get reduced sample covariance ma-
trix: 𝑉𝑉reduced = Ω′

intra𝑉̂𝑉Ωintra
(5) Inter-cluster optimization using 𝑉𝑉reduced and solve for Ωinter ∈ 𝑅𝑅𝐾𝐾

(6) Final weight allocation: Ω′
intraΩinter

return: final optimal weights allocated on each asset

3.3 CVaR Portfolio
Conditional Value at Risk (CVaR), introduced by Rockafellar and Urya-
sev (2000), is a risk measure that quantifies the amount of tail risk an
asset or portfolio has [12]. To control for extreme risk of the portfolio,
we apply CVaR constraints to original minimum variance optimization.

3.2 Nested Clustering Algorithm
Nested Clustering Optimization (NCO) is proposed by Marcos López
de Prado (2019) that aims to resolve signal instability. Prado (2019)
firstly identifies two kinds of instability in covariance estimator: that
induced by noise and that induced by market signal itself. He argues
that Ledoit Shrinkage or robust estimation method do not differentiate
these two causes of instability. Instead, he suggests to only shrink the
random components in the sample covariance matrix to mitigate noise
instability (i.e. de-noising). Then he proposes clustering on de-noised
correlation matrix to prevent signal instability [10].

3.2.1 Instability Caused by Noise
We first identify the instability caused by noise. Consider a matrix of
independent and identically distributed random observations 𝑋𝑋 with 𝑇𝑇

observations and 𝑁𝑁 features (i.e. number of assets). The underlying
distribution of these observations has zero mean and some variance 𝜎𝜎2.
Then, the sample covariance matrix 𝑉𝑉 = 1

𝑛𝑛 𝑋𝑋
′𝑋𝑋 has eigenvalues that

asymptotically converge as 𝑇𝑇 goes to ∞ and 𝑁𝑁 goes to ∞ with 1 < 𝑇𝑇
𝑁𝑁

<

∞ to the Marcenko-Pastur probability density function (Marcenko and
Pastur, 1967):

𝑓𝑓𝜆𝜆 (𝜆𝜆) =

𝑇𝑇
𝑁𝑁

√
(𝜆𝜆+−𝜆𝜆) (𝜆𝜆−𝜆𝜆− )

2𝜋𝜋𝜋𝜋𝜋𝜋2 if 𝜆𝜆 ∈ [𝜆𝜆− , 𝜆𝜆+]
0 if 𝜆𝜆 ∉ [𝜆𝜆− , 𝜆𝜆+]

The maximum expected eigenvalue is 𝜆𝜆+ = 𝜎𝜎2

1 +

√︃
𝑁𝑁
𝑇𝑇

2
, and the

minimum expected eigenvalue is 𝜆𝜆− = 𝜎𝜎2

1 −

√︃
𝑁𝑁
𝑇𝑇

2
.

It is often assumed that eigenvalues of correlation matrix lower than
𝜆𝜆+ are by a chance, which we refer to ’noise’ in finance, and the values
higher than 𝜆𝜆+ are the significant common factors. We can see that
covariance matrix can often contain substantial amounts of noise.

3.2.2 Instability Caused by Signal
Marcos López de Prado(2019) suggests that other than noise, certain
covariance structures can also make the optimization problem produce
unstable solutions. The easiest case is a 2 × 2 correlation matrix 𝐶𝐶:

𝐶𝐶 =


1 𝜌𝜌

𝜌𝜌 1



where 𝜌𝜌 is the correlation between two variables.
|𝐶𝐶 | is the determinant of 𝐶𝐶, |𝐶𝐶 | = 1 − 𝜌𝜌2.
By spectral decomposition on 𝐶𝐶, we have 𝐶𝐶𝐶𝐶 = 𝑄𝑄Λ as follows,

where

𝑄𝑄 =

 1√
2

1√
2

1√
2

− 1√
2


,Λ =


1 + 𝜌𝜌 0

0 1 − 𝜌𝜌



We can see that 𝜌𝜌 approaching 1 can cause |𝐶𝐶 | to approach zero
and the top eigenvalue to become very far away from other eigenvalues.
Therefore 𝐶𝐶−1 used in the optimal solution can be problematic. Since
correlation matrix 𝐶𝐶 directly relates to covariance matrix 𝑉𝑉 , we can
conclude that when assets within a portfolio are highly correlated (0 ≪
|𝜌𝜌 | < 1), the value of𝑉𝑉−1 estimator may explode and makes the optimal
solution 𝜔𝜔∗ unstable. Generally speaking, one eigenvalue can only
increase at the expense of the other eigenvalues given the trace of the
correlation matrix 𝑁𝑁 (number of assets). As a result, condition number
𝜅𝜅(𝐴𝐴) = 𝜎𝜎max (𝐴𝐴)

𝜎𝜎min (𝐴𝐴) will be greater (𝜎𝜎max (𝐴𝐴) and 𝜎𝜎min (𝐴𝐴) are maximal
and minimal singular values of 𝐴𝐴 respectively) and yield less stable
covariance estimator. Such instability is inevitable when we have a
portfolio in which assets are highly correlated.

To resolve this issue, Prado (2019) proposed a method called Nested
Cluster Optimization. It clusters highly-correlated assets into subsets
and tries to restrict this instability into each cluster and prevent it from
spreading over all assets.

3.2.3 De-noising
We firstly tackle the instability induced by noise. We implement Kernel
Density algorithm to fit the empirical distribution of eigenvalues of our
sample covariance matrix. Then we compare the theoretical distribution
of Marcenko-Pastur distribution (section 3.2.1) to the empirical one so
that we can determine the cut-off level 𝜆𝜆+ for non-random eigenvectors
(separating noise-related eigenvalues from signal-related eigenvalues).

Let {𝜆𝜆𝑛𝑛}𝑛𝑛=1,...,𝑁𝑁 be the set of all eigenvalues, ordered descending,
and 𝑖𝑖 be the position of the eigenvalue such that 𝜆𝜆𝑖𝑖 > 𝜆𝜆+and 𝜆𝜆𝑖𝑖+1 ≤ 𝜆𝜆+.
Then we set:
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Given the eigenvector decomposition of covariance matrix𝑉𝑉 is𝑉𝑉𝑉𝑉 =
𝑄𝑄Λ, we can derive the de-noised correlation matrix 𝐶𝐶 as:
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where Λ̃ is the diagonal matrix with adjusted eigenvalues and we
re-scale 𝐶̃𝐶 to make diagonal entries to be 1.

3.2.4 Clustering
Then, we tackle instability induced by signal. The Nested Clustered
Optimization (NCO) employs K-means algorithm to divide the covari-
ance matrix into 𝐾𝐾 groups of highly-correlated variables. The choice of
optimal number of groups 𝐾𝐾 is based on the Z-score of sample Silhou-
ette Coefficient (Rousseeuw, 1987). It represents the separation distance
between the resulting clusters. Higher Silhouette Coefficient indicates
better clustering result. The resulting clusters are 𝐾𝐾 subsets of our
assets.

Secondly, we perform minimum variance optimization to each clus-
ter. This can be interpreted as creating ‘funds’ out of our original assets
and allows us to reduce the covariance matrix 𝑉𝑉 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 into lower
dimension (number of clusters 𝐾𝐾). The reduced correlation matrix is
closer to an identity matrix than the original correlation matrix and
therefore more amenable to instability caused by signals. Finally, we
performed optimization on ’funds’ using the reduced covariance matrix
𝑉𝑉reduced ∈ 𝑅𝑅𝐾𝐾×𝐾𝐾 . Final weights on each original asset are dot-product
of the intra-cluster weights and inter-cluster weights.

Combining de-noising in section 3.2.3 and clustering in section 3.2.4,
we reach the Nested Clustering Algorithm. The advantage of NCO is
that the instability only occurs within each cluster and does not propagate
across clusters. Moreover, it is agnostic to what optimization method
we use both intra-cluster and inter-cluster. In this paper, we implement
NCO on minimum variance portfolio.

Algorithm 1 Nested Clustered Optimization
Input: Sample covariance matrix 𝑉𝑉

(1) Obtain de-noised covariance matrix 𝑉̂𝑉 and correlation matrix 𝐶̂𝐶

(2) Cluster correlation matrix 𝐶̂𝐶 into 𝐾𝐾 groups
(3) Intra-cluster opitmization within each of 𝐾𝐾 groups, concatenate 𝐾𝐾

vectors of weight into 𝑅𝑅𝐾𝐾×𝑁𝑁 weight matrix, denoted as Ωintra
(4) Use the intra-cluster weights to get reduced sample covariance ma-
trix: 𝑉𝑉reduced = Ω′

intra𝑉̂𝑉Ωintra
(5) Inter-cluster optimization using 𝑉𝑉reduced and solve for Ωinter ∈ 𝑅𝑅𝐾𝐾

(6) Final weight allocation: Ω′
intraΩinter

return: final optimal weights allocated on each asset

3.3 CVaR Portfolio
Conditional Value at Risk (CVaR), introduced by Rockafellar and Urya-
sev (2000), is a risk measure that quantifies the amount of tail risk an
asset or portfolio has [12]. To control for extreme risk of the portfolio,
we apply CVaR constraints to original minimum variance optimization.

3.2 Nested Clustering Algorithm
Nested Clustering Optimization (NCO) is proposed by Marcos López
de Prado (2019) that aims to resolve signal instability. Prado (2019)
firstly identifies two kinds of instability in covariance estimator: that
induced by noise and that induced by market signal itself. He argues
that Ledoit Shrinkage or robust estimation method do not differentiate
these two causes of instability. Instead, he suggests to only shrink the
random components in the sample covariance matrix to mitigate noise
instability (i.e. de-noising). Then he proposes clustering on de-noised
correlation matrix to prevent signal instability [10].

3.2.1 Instability Caused by Noise
We first identify the instability caused by noise. Consider a matrix of
independent and identically distributed random observations 𝑋𝑋 with 𝑇𝑇

observations and 𝑁𝑁 features (i.e. number of assets). The underlying
distribution of these observations has zero mean and some variance 𝜎𝜎2.
Then, the sample covariance matrix 𝑉𝑉 = 1

𝑛𝑛 𝑋𝑋
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asymptotically converge as 𝑇𝑇 goes to ∞ and 𝑁𝑁 goes to ∞ with 1 < 𝑇𝑇
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It is often assumed that eigenvalues of correlation matrix lower than
𝜆𝜆+ are by a chance, which we refer to ’noise’ in finance, and the values
higher than 𝜆𝜆+ are the significant common factors. We can see that
covariance matrix can often contain substantial amounts of noise.

3.2.2 Instability Caused by Signal
Marcos López de Prado(2019) suggests that other than noise, certain
covariance structures can also make the optimization problem produce
unstable solutions. The easiest case is a 2 × 2 correlation matrix 𝐶𝐶:

𝐶𝐶 =


1 𝜌𝜌

𝜌𝜌 1
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where 𝜌𝜌 is the correlation between two variables.
|𝐶𝐶 | is the determinant of 𝐶𝐶, |𝐶𝐶 | = 1 − 𝜌𝜌2.
By spectral decomposition on 𝐶𝐶, we have 𝐶𝐶𝐶𝐶 = 𝑄𝑄Λ as follows,
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We can see that 𝜌𝜌 approaching 1 can cause |𝐶𝐶 | to approach zero
and the top eigenvalue to become very far away from other eigenvalues.
Therefore 𝐶𝐶−1 used in the optimal solution can be problematic. Since
correlation matrix 𝐶𝐶 directly relates to covariance matrix 𝑉𝑉 , we can
conclude that when assets within a portfolio are highly correlated (0 ≪
|𝜌𝜌 | < 1), the value of𝑉𝑉−1 estimator may explode and makes the optimal
solution 𝜔𝜔∗ unstable. Generally speaking, one eigenvalue can only
increase at the expense of the other eigenvalues given the trace of the
correlation matrix 𝑁𝑁 (number of assets). As a result, condition number
𝜅𝜅(𝐴𝐴) = 𝜎𝜎max (𝐴𝐴)

𝜎𝜎min (𝐴𝐴) will be greater (𝜎𝜎max (𝐴𝐴) and 𝜎𝜎min (𝐴𝐴) are maximal
and minimal singular values of 𝐴𝐴 respectively) and yield less stable
covariance estimator. Such instability is inevitable when we have a
portfolio in which assets are highly correlated.

To resolve this issue, Prado (2019) proposed a method called Nested
Cluster Optimization. It clusters highly-correlated assets into subsets
and tries to restrict this instability into each cluster and prevent it from
spreading over all assets.

3.2.3 De-noising
We firstly tackle the instability induced by noise. We implement Kernel
Density algorithm to fit the empirical distribution of eigenvalues of our
sample covariance matrix. Then we compare the theoretical distribution
of Marcenko-Pastur distribution (section 3.2.1) to the empirical one so
that we can determine the cut-off level 𝜆𝜆+ for non-random eigenvectors
(separating noise-related eigenvalues from signal-related eigenvalues).

Let {𝜆𝜆𝑛𝑛}𝑛𝑛=1,...,𝑁𝑁 be the set of all eigenvalues, ordered descending,
and 𝑖𝑖 be the position of the eigenvalue such that 𝜆𝜆𝑖𝑖 > 𝜆𝜆+and 𝜆𝜆𝑖𝑖+1 ≤ 𝜆𝜆+.
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Given the eigenvector decomposition of covariance matrix𝑉𝑉 is𝑉𝑉𝑉𝑉 =
𝑄𝑄Λ, we can derive the de-noised correlation matrix 𝐶𝐶 as:
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where Λ̃ is the diagonal matrix with adjusted eigenvalues and we
re-scale 𝐶̃𝐶 to make diagonal entries to be 1.

3.2.4 Clustering
Then, we tackle instability induced by signal. The Nested Clustered
Optimization (NCO) employs K-means algorithm to divide the covari-
ance matrix into 𝐾𝐾 groups of highly-correlated variables. The choice of
optimal number of groups 𝐾𝐾 is based on the Z-score of sample Silhou-
ette Coefficient (Rousseeuw, 1987). It represents the separation distance
between the resulting clusters. Higher Silhouette Coefficient indicates
better clustering result. The resulting clusters are 𝐾𝐾 subsets of our
assets.

Secondly, we perform minimum variance optimization to each clus-
ter. This can be interpreted as creating ‘funds’ out of our original assets
and allows us to reduce the covariance matrix 𝑉𝑉 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 into lower
dimension (number of clusters 𝐾𝐾). The reduced correlation matrix is
closer to an identity matrix than the original correlation matrix and
therefore more amenable to instability caused by signals. Finally, we
performed optimization on ’funds’ using the reduced covariance matrix
𝑉𝑉reduced ∈ 𝑅𝑅𝐾𝐾×𝐾𝐾 . Final weights on each original asset are dot-product
of the intra-cluster weights and inter-cluster weights.

Combining de-noising in section 3.2.3 and clustering in section 3.2.4,
we reach the Nested Clustering Algorithm. The advantage of NCO is
that the instability only occurs within each cluster and does not propagate
across clusters. Moreover, it is agnostic to what optimization method
we use both intra-cluster and inter-cluster. In this paper, we implement
NCO on minimum variance portfolio.

Algorithm 1 Nested Clustered Optimization
Input: Sample covariance matrix 𝑉𝑉

(1) Obtain de-noised covariance matrix 𝑉̂𝑉 and correlation matrix 𝐶̂𝐶

(2) Cluster correlation matrix 𝐶̂𝐶 into 𝐾𝐾 groups
(3) Intra-cluster opitmization within each of 𝐾𝐾 groups, concatenate 𝐾𝐾

vectors of weight into 𝑅𝑅𝐾𝐾×𝑁𝑁 weight matrix, denoted as Ωintra
(4) Use the intra-cluster weights to get reduced sample covariance ma-
trix: 𝑉𝑉reduced = Ω′

intra𝑉̂𝑉Ωintra
(5) Inter-cluster optimization using 𝑉𝑉reduced and solve for Ωinter ∈ 𝑅𝑅𝐾𝐾

(6) Final weight allocation: Ω′
intraΩinter

return: final optimal weights allocated on each asset

3.3 CVaR Portfolio
Conditional Value at Risk (CVaR), introduced by Rockafellar and Urya-
sev (2000), is a risk measure that quantifies the amount of tail risk an
asset or portfolio has [12]. To control for extreme risk of the portfolio,
we apply CVaR constraints to original minimum variance optimization.
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cluster weights and inter-cluster weights.

Combining de-noising in section 3.2.3 and clustering in section 
3.2.4, we reach the Nested Clustering Algorithm. The advantage 
of NCO is that the instability only occurs within each cluster and 
does not propagate across clusters. Moreover, it is agnostic to 
what optimization method we use both intra-cluster and inter-
cluster. In this paper, we implement NCO on minimum variance 
portfolio.

3.3 CVaR Portfolio
Conditional Value at Risk (CVaR), introduced by Rockafellar 
and Uryasev (2000), is a risk measure that quantifies the amount 
of tail risk an asset or portfolio has [12]. To control for extreme 
risk of the portfolio, we apply CVaR constraints to original 
minimum variance optimization.

VaR estimates how much at least a portfolio might lose with a 
given probability or quantile. Based on this, CVaR is defined as 
the expectation of portfolio loss given that loss is occurring at or 
below the q-quantile. More specifically, CVaR is calculated by 
taking the weighted average of the losses above some threshold 
in the tail of the return distribution. Thus, CVaR works better 
than traditional VaR because it could deal with distribution of 
tails.

We tried to add to our original minimum variance portfolios one
CVaR constraint (𝛼 = 0.95, 𝛽 = 0.05) and two CVaR constraints 
(𝛼1 = 0.95, 𝛽1 = 0.05; 𝛼2 = 0.99, 𝛽2 = 0.08) respectively. The 
optimization is written as follow:

As mentioned, w is the portfolio weight vector. 𝑉 ∈ ℝ𝑁×𝑁 is 
the estimated covariance matrix of asset returns, 𝜆 ∈ ℝ is the 
transaction cost parameter, w0 ∈ ℝ𝑁 is the weight in the beginning 
of the portfolio re-balance date. 1𝑁 ∈ ℝ𝑁 is the vector of ones.

In the CVaR constraint, 𝜔 is an event in the sample space Ω with
probability P(𝑤). We use historical return sample as the sample 
space and define P to be 1/𝑇. Thus, 𝑙𝑜𝑠𝑠(w, 𝑤) is sampled from 
historical return and defined as 𝑅′w (𝑅 ∈  R𝑇×𝑁)

4. Data and Portfolio Re-Balancing
We collected data of S&P500 equities over the time period 
January 2012 to January 2022 as well as sector information from 

yahoo finance. We choose S&P500 universe equities because 
they have high liquidity, relatively high quality and long trading 
period.

Our portfolios are re-balanced weekly and all data are sampled 
weekly so that we do not need to adjust our estimation of asset 
return and covariance. We employed the following procedure to 
benchmark performance among different covariance estimators 
under the context of portfolio optimization:

At the beginning of each week, the 200 weekly returns of our 
selected list of equities from a window are utilized to estimate 
our covariance matrix in the minimum variance matrix. For 
CVaR constraints, we will use 400 weekly samples. Then we 
re-balance our previous portfolios according to the optimal 
weight vector and hold the new portfolio for one week. At the 
end of the week, the realized portfolio value is computed with 
deducted transaction cost. If some equities are removed from 
the list, we will liquidate them and account for liquidation fee. 
Were peat this process by moving the period one week forward? 
This rolling-window method allows us to be more adaptive to 
the market.

In terms of the size of portfolio, We will use a total size of 55 
individual stocks. We adopted the market capitalization regime 
for equity selection: choose the top 5 equities in each of 11 sector 
(in total 55 equities) with largest market capitalization.

We split the data into two subsets: 50% for training set and 
50% for testing set for minimum variance portfolios, minimum 
variance portfolios using Nested Clustering Optimization, and 
minimum variance portfolios with CVaR constraint. Our split of 
data can ensure that test set includes both bull and bear market 
trend such as the bear market from Feb 2020 Covid-19 outburst 
and the subsequent bull market.

5. Portfolio Construction
Our test set portfolio construction began at the end of December 
2018 and will continue to be re-balanced weekly until the end of 
2020. We constructed a market capitalization weighted portfolio 
of large-cap equities as our benchmark (refer to Figure 5.1).

To tune the parameters for the Ledoit and Gerber covariance 
measures, we performed 5-fold cross-validation on the training 
dataset. All five validation sets are disjoint from each other, and 
we use the Sharpe Ratio averaged over 5 folds as the evaluation 
criterion. The parameter corresponding to the highest Sharpe 
Ratio on the validation set will be used to construct portfolios on 
the test set. Each validation set includes 25 weekly rebalancing, 
holding the portfolio for approximately half a year. The 
transaction cost is set to be 50 basis points for both purchasing 
and selling.

There are three covariance matrices for which we need to tune 
parameters:
1. Two Gerber covariance measures (using median absolute 
deviation and standard deviation as the threshold, respectively) 
contain a parameter on the threshold (𝑐 in 𝑐 × 𝐻𝑘). We tested 
possible values ranging from 0.3 to 1. The optimal parameter 
for the one using median absolute deviation is 0.4. The optimal 

3.2 Nested Clustering Algorithm
Nested Clustering Optimization (NCO) is proposed by Marcos López
de Prado (2019) that aims to resolve signal instability. Prado (2019)
firstly identifies two kinds of instability in covariance estimator: that
induced by noise and that induced by market signal itself. He argues
that Ledoit Shrinkage or robust estimation method do not differentiate
these two causes of instability. Instead, he suggests to only shrink the
random components in the sample covariance matrix to mitigate noise
instability (i.e. de-noising). Then he proposes clustering on de-noised
correlation matrix to prevent signal instability [10].

3.2.1 Instability Caused by Noise
We first identify the instability caused by noise. Consider a matrix of
independent and identically distributed random observations 𝑋𝑋 with 𝑇𝑇

observations and 𝑁𝑁 features (i.e. number of assets). The underlying
distribution of these observations has zero mean and some variance 𝜎𝜎2.
Then, the sample covariance matrix 𝑉𝑉 = 1

𝑛𝑛 𝑋𝑋
′𝑋𝑋 has eigenvalues that

asymptotically converge as 𝑇𝑇 goes to ∞ and 𝑁𝑁 goes to ∞ with 1 < 𝑇𝑇
𝑁𝑁

<

∞ to the Marcenko-Pastur probability density function (Marcenko and
Pastur, 1967):

𝑓𝑓𝜆𝜆 (𝜆𝜆) =

𝑇𝑇
𝑁𝑁

√
(𝜆𝜆+−𝜆𝜆) (𝜆𝜆−𝜆𝜆− )

2𝜋𝜋𝜋𝜋𝜋𝜋2 if 𝜆𝜆 ∈ [𝜆𝜆− , 𝜆𝜆+]
0 if 𝜆𝜆 ∉ [𝜆𝜆− , 𝜆𝜆+]

The maximum expected eigenvalue is 𝜆𝜆+ = 𝜎𝜎2

1 +

√︃
𝑁𝑁
𝑇𝑇

2
, and the

minimum expected eigenvalue is 𝜆𝜆− = 𝜎𝜎2

1 −

√︃
𝑁𝑁
𝑇𝑇

2
.

It is often assumed that eigenvalues of correlation matrix lower than
𝜆𝜆+ are by a chance, which we refer to ’noise’ in finance, and the values
higher than 𝜆𝜆+ are the significant common factors. We can see that
covariance matrix can often contain substantial amounts of noise.

3.2.2 Instability Caused by Signal
Marcos López de Prado(2019) suggests that other than noise, certain
covariance structures can also make the optimization problem produce
unstable solutions. The easiest case is a 2 × 2 correlation matrix 𝐶𝐶:

𝐶𝐶 =


1 𝜌𝜌

𝜌𝜌 1



where 𝜌𝜌 is the correlation between two variables.
|𝐶𝐶 | is the determinant of 𝐶𝐶, |𝐶𝐶 | = 1 − 𝜌𝜌2.
By spectral decomposition on 𝐶𝐶, we have 𝐶𝐶𝐶𝐶 = 𝑄𝑄Λ as follows,

where

𝑄𝑄 =

 1√
2

1√
2

1√
2

− 1√
2


,Λ =


1 + 𝜌𝜌 0

0 1 − 𝜌𝜌



We can see that 𝜌𝜌 approaching 1 can cause |𝐶𝐶 | to approach zero
and the top eigenvalue to become very far away from other eigenvalues.
Therefore 𝐶𝐶−1 used in the optimal solution can be problematic. Since
correlation matrix 𝐶𝐶 directly relates to covariance matrix 𝑉𝑉 , we can
conclude that when assets within a portfolio are highly correlated (0 ≪
|𝜌𝜌 | < 1), the value of𝑉𝑉−1 estimator may explode and makes the optimal
solution 𝜔𝜔∗ unstable. Generally speaking, one eigenvalue can only
increase at the expense of the other eigenvalues given the trace of the
correlation matrix 𝑁𝑁 (number of assets). As a result, condition number
𝜅𝜅(𝐴𝐴) = 𝜎𝜎max (𝐴𝐴)

𝜎𝜎min (𝐴𝐴) will be greater (𝜎𝜎max (𝐴𝐴) and 𝜎𝜎min (𝐴𝐴) are maximal
and minimal singular values of 𝐴𝐴 respectively) and yield less stable
covariance estimator. Such instability is inevitable when we have a
portfolio in which assets are highly correlated.

To resolve this issue, Prado (2019) proposed a method called Nested
Cluster Optimization. It clusters highly-correlated assets into subsets
and tries to restrict this instability into each cluster and prevent it from
spreading over all assets.

3.2.3 De-noising
We firstly tackle the instability induced by noise. We implement Kernel
Density algorithm to fit the empirical distribution of eigenvalues of our
sample covariance matrix. Then we compare the theoretical distribution
of Marcenko-Pastur distribution (section 3.2.1) to the empirical one so
that we can determine the cut-off level 𝜆𝜆+ for non-random eigenvectors
(separating noise-related eigenvalues from signal-related eigenvalues).

Let {𝜆𝜆𝑛𝑛}𝑛𝑛=1,...,𝑁𝑁 be the set of all eigenvalues, ordered descending,
and 𝑖𝑖 be the position of the eigenvalue such that 𝜆𝜆𝑖𝑖 > 𝜆𝜆+and 𝜆𝜆𝑖𝑖+1 ≤ 𝜆𝜆+.
Then we set:

𝜆𝜆 𝑗𝑗 =
1

𝑁𝑁 − 𝑖𝑖

𝑁𝑁∑︁
𝑘𝑘=𝑖𝑖+1

𝜆𝜆𝑘𝑘 , 𝑗𝑗 = 𝑖𝑖 + 1, . . . , 𝑁𝑁

Given the eigenvector decomposition of covariance matrix𝑉𝑉 is𝑉𝑉𝑉𝑉 =
𝑄𝑄Λ, we can derive the de-noised correlation matrix 𝐶𝐶 as:

𝐶̃𝐶 = 𝑄𝑄Λ̃𝑄𝑄′

𝐶𝐶 =
�
diag


𝐶̃𝐶
 −1/2

𝐶̃𝐶
�
diag


𝐶̃𝐶
 −1/2

where Λ̃ is the diagonal matrix with adjusted eigenvalues and we
re-scale 𝐶̃𝐶 to make diagonal entries to be 1.

3.2.4 Clustering
Then, we tackle instability induced by signal. The Nested Clustered
Optimization (NCO) employs K-means algorithm to divide the covari-
ance matrix into 𝐾𝐾 groups of highly-correlated variables. The choice of
optimal number of groups 𝐾𝐾 is based on the Z-score of sample Silhou-
ette Coefficient (Rousseeuw, 1987). It represents the separation distance
between the resulting clusters. Higher Silhouette Coefficient indicates
better clustering result. The resulting clusters are 𝐾𝐾 subsets of our
assets.

Secondly, we perform minimum variance optimization to each clus-
ter. This can be interpreted as creating ‘funds’ out of our original assets
and allows us to reduce the covariance matrix 𝑉𝑉 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 into lower
dimension (number of clusters 𝐾𝐾). The reduced correlation matrix is
closer to an identity matrix than the original correlation matrix and
therefore more amenable to instability caused by signals. Finally, we
performed optimization on ’funds’ using the reduced covariance matrix
𝑉𝑉reduced ∈ 𝑅𝑅𝐾𝐾×𝐾𝐾 . Final weights on each original asset are dot-product
of the intra-cluster weights and inter-cluster weights.

Combining de-noising in section 3.2.3 and clustering in section 3.2.4,
we reach the Nested Clustering Algorithm. The advantage of NCO is
that the instability only occurs within each cluster and does not propagate
across clusters. Moreover, it is agnostic to what optimization method
we use both intra-cluster and inter-cluster. In this paper, we implement
NCO on minimum variance portfolio.

Algorithm 1 Nested Clustered Optimization
Input: Sample covariance matrix 𝑉𝑉

(1) Obtain de-noised covariance matrix 𝑉̂𝑉 and correlation matrix 𝐶̂𝐶

(2) Cluster correlation matrix 𝐶̂𝐶 into 𝐾𝐾 groups
(3) Intra-cluster opitmization within each of 𝐾𝐾 groups, concatenate 𝐾𝐾

vectors of weight into 𝑅𝑅𝐾𝐾×𝑁𝑁 weight matrix, denoted as Ωintra
(4) Use the intra-cluster weights to get reduced sample covariance ma-
trix: 𝑉𝑉reduced = Ω′

intra𝑉̂𝑉Ωintra
(5) Inter-cluster optimization using 𝑉𝑉reduced and solve for Ωinter ∈ 𝑅𝑅𝐾𝐾

(6) Final weight allocation: Ω′
intraΩinter

return: final optimal weights allocated on each asset

3.3 CVaR Portfolio
Conditional Value at Risk (CVaR), introduced by Rockafellar and Urya-
sev (2000), is a risk measure that quantifies the amount of tail risk an
asset or portfolio has [12]. To control for extreme risk of the portfolio,
we apply CVaR constraints to original minimum variance optimization.

VaR estimates how much at least a portfolio might lose with a given
probability or quantile. Based on this, CVaR is defined as the expectation
of portfolio loss given that loss is occurring at or below the q-quantile.
More specifically, CVaR is calculated by taking the weighted average
of the losses above some threshold in the tail of the return distribution.
Thus, CVaR works better than traditional VaR because it could deal with
distribution of tails.

We tried to add to our original minimum variance portfolios one
CVaR constraint (𝛼𝛼 = 0.95, 𝛽𝛽 = 0.05) and two CVaR constraints (𝛼𝛼1 =
0.95, 𝛽𝛽1 = 0.05; 𝛼𝛼2 = 0.99, 𝛽𝛽2 = 0.08) respectively. The optimization
is written as follow:

minw,𝑙𝑙 w𝑇𝑇Vw + 𝜆𝜆 ∥w − w0∥1
s.t. w𝑇𝑇1𝑁𝑁 = 1

𝑙𝑙 + 1
1−𝛼𝛼

∑
𝜔𝜔∈Ω P(𝜔𝜔) max (loss(w, 𝜔𝜔) − 𝑙𝑙𝑙 0) ≤ 𝛽𝛽

As mentioned, w is the portfolio weight vector. 𝑉𝑉 ∈ R𝑁𝑁×𝑁𝑁 is the
estimated covariance matrix of asset returns, 𝜆𝜆 ∈ R is the transaction
cost parameter, w0 ∈ R𝑁𝑁 is the weight in the beginning of the portfolio
re-balance date. 1𝑁𝑁 ∈ R𝑁𝑁 is the vector of ones.

In the CVaR constraint, 𝜔𝜔 is an event in the sample space Ω with
probability P(𝑤𝑤). We use historical return sample as the sample space
and define P to be 1

𝑇𝑇
. Thus, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(w, 𝑤𝑤) is sampled from historical

return and defined as 𝑅𝑅′w (𝑅𝑅 ∈ R𝑇𝑇×𝑁𝑁 )

4 DATA and PORTFOLIO RE-BALANCING
We collected data of S&P500 equities over the time period January
2012 to January 2022 as well as sector information from yahoo finance.
We choose S&P500 universe equities because they have high liquidity,
relatively high quality and long trading period.

Our portfolios are re-balanced weekly and all data are sampled weekly
so that we do not need to adjust our estimation of asset return and covari-
ance. We employed the following procedure to benchmark performance
among different covariance estimators under the context of portfolio
optimization:

At the beginning of each week, the 200 weekly returns of our selected
list of equities from a window are utilized to estimate our covariance
matrix in the minimum variance matrix. For CVaR constraints, we will
use 400 weekly samples. Then we re-balance our previous portfolios
according to the optimal weight vector and hold the new portfolio for one
week. At the end of the week, the realized portfolio value is computed
with deducted transaction cost. If some equities are removed from the
list, we will liquidate them and account for liquidation fee. We repeat this
process by moving the period one week forward. This rolling-window
method allows us to be more adaptive to the market.

In terms of the size of portfolio, We will use a total size of 55
individual stocks. We adopted the market capitalization regime for
equity selection: choose the top 5 equities in each of 11 sector (in total
55 equities) with largest market capitalization.

We split the data into two subsets: 50% for training set and 50% for
testing set for minimum variance portfolios, minimum variance port-
folios using Nested Clustering Optimization, and minimum variance
portfolios with CVaR constraint. Our split of data can ensure that test
set includes both bull and bear market trend such as the bear market
from Feb 2020 Covid-19 outburst and the subsequent bull market.

5 PORTFOLIO CONSTRUCTION
Our test set portfolio construction began at the end of December 2018
and will continue to be re-balanced weekly until the end of 2020. We
constructed a market capitalization weighted portfolio of large-cap eq-
uities as our benchmark (refer to Figure 5.1).

To tune the parameters for the Ledoit and Gerber covariance mea-
sures, we performed 5-fold cross-validation on the training dataset. All
five validation sets are disjoint from each other, and we use the Sharpe
Ratio averaged over 5 folds as the evaluation criterion. The parameter
corresponding to the highest Sharpe Ratio on the validation set will be
used to construct portfolios on the test set. Each validation set includes

25 weekly rebalancing, holding the portfolio for approximately half a
year. The transaction cost is set to be 50 basis points for both purchasing
and selling.

There are three covariance matrices for which we need to tune pa-
rameters:

1.Two Gerber covariance measures (using median absolute deviation
and standard deviation as the threshold, respectively) contain a param-
eter on the threshold (𝑐𝑐 in 𝑐𝑐 × 𝐻𝐻𝑘𝑘). We tested possible values ranging
from 0.3 to 1. The optimal parameter for the one using median absolute
deviation is 0.4. The optimal parameter for the one using standard de-
viation is 0.6. 2. Ledoit covariance measure also contains a shrinkage
parameter (𝛿𝛿). We tuned from 0.1 to 1 and the optimal result is 0.4.

Figure 5.1: Market Cap Weighted Benchmark:2019:01-
2021:12

5.1 Minimum Variance Performance Analysis
In this section, we first analyze performance metrics including annual-
ized return, annualized volatility, Sharpe Ratio (with the risk-free rate
set to 0), and maximum drawdown on the test data from December 2018
to December 2021. Then, we compare the differences between covari-
ance estimators in terms of the value of correlation and their eigenvalue
distribution.

The results are presented in Table 5.1. ”Market” represents the
capitalization-weighted portfolio. ”Exp” is the minimum variance port-
folio with exponentially-weighted sample covariance matrix. ”Ger-
ber Mad” is the minimum variance portfolio with Gerber covariance
matrix using median absolute deviation (MAD) as the threshold. ”Ger-
ber Std” is the minimum variance portfolio with Gerber covariance
matrix using standard deviation as the threshold. ”Ledoit Optimal” is
the minimum variance portfolio using the optimal shrinkage parame-
ter, while ”Ledoit” is the one for which we tuned the best shrinkage
parameter using cross-validation.

Among all portfolios, ”Gerber Mad” has the largest annual Sharpe
ratio with the highest annual return and the smallest annual volatility.
The excess return of the ”Gerber Mad” portfolio compared to other port-
folios keeps widening starting from June 2020 (refer to Figure 5.2). Both
Gerber portfolios, ”Gerber Mad” and ”Gerber Std,” are in the leading
position during the bull market, but ”Gerber Std” slightly underper-
forms ”Gerber Mad.” While ”Ledoit Optimal” and ”Ledoit” portfolios
have smaller annual returns than the two Gerber portfolios, they can still
outperform the market.

In general, each minimum variance portfolio can beat the market
benchmark in terms of cumulative return if the market is in an upward
trend, for example, from June 2019 to December 2019 and from April
2021 to December 2021 (refer to Figure 5.2). However, they all suffer
larger losses when the market declines. The cumulative return of each
portfolio does not differ much during bear markets. Due to Covid-19,
the maximum drawdown all takes place during March 2020, and we
can see that all portfolios suffer from an average 30% loss, which is 5%
larger than the maximum drawdown of the market portfolio in this bear
market (refer to Table 5.1)).
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parameter for the one using standard deviation is 0.6. 2. Ledoit 
covariance measure also contains a shrinkage parameter (𝛿). We 
tuned from 0.1 to 1 and the optimal result is 0.4.

Figure  5.1:  Market Cap Weighted Benchmark: 
2019:012021:12

5.1 Minimum Variance Performance Analysis
In this section, we first analyze performance metrics including 
annualized return, annualized volatility, Sharpe Ratio (with the 
risk-free rate set to 0), and maximum drawdown on the test data 
from December 2018 to December 2021. Then, we compare the 
differences between covariance estimators in terms of the value 
of correlation and their eigenvalue distribution.

The results are presented in Table 5.1. ”Market” represents the 
capitalization-weighted portfolio. ”Exp” is the minimum variance 
portfolio with exponentially weighted sample covariance matrix. 
”Gerber Mad” is the minimum variance portfolio with Gerber 
covariance matrix using median absolute deviation (MAD) as 
the threshold. ”Gerber Std” is the minimum variance portfolio 
with Gerber covariance matrix using standard deviation as the 
threshold. ”Ledoit Optimal” is the minimum variance portfolio 
using the optimal shrinkage parameter, while ”Ledoit” is the one 
for which we tuned the best shrinkage parameter using cross-
validation.

Among all portfolios,”Gerber Mad” has the largest annual 
Sharpe ratio with the highest annual return and the smallest 
annual volatility. The excess return of the”Gerber Mad”portfolio 
compared to o ther portfolios keep swidening starting from June 
2020(refertoFigure5.2). Both Gerber portfolios, ”Gerber Mad” 
and ”Gerber Std,” are in the leading position during the bull 
market, but ”Gerber Std” slightly underperforms ”Gerber Mad.” 
While”Ledoit Optimal” and”Ledoit” portfolios have smaller 
annual returns than the two Gerber portfolios, they can still 
outperform the market.

In general, each minimum variance portfolio can beat the market 
benchmark in terms of cumulative return if the market is in an 
upward trend, for example, from June 2019 to December 2019 
and from April 2021 to December 2021 (refer to Figure 5.2). 
However, they all suffer larger losses when the market declines. 
The cumulative return of each portfolio does not differ much 
during bear markets. Due to Covid-19, the maximum drawdown 
all takes place during March 2020, and we can see that all 
portfolios suffer from an average 30% loss, which is 5% larger 

than the maximum drawdown of the market portfolio in this bear 
market (refer to Table 5.1)).

Table 5.1: MinVar Portfolio Statistics: 2019:01-2021:12

Figure 5.2: MinVar Cumulative Return

It is interesting to note that the performance of the two Ledoit 
covariance matrices, ”Ledoit Optimal” and ”Ledoit,” are similar 
to each other. The core difference between using the optimal 
shrinkage parameter and the parameter obtained through 
cross-validation is that the former allows us to find the optimal 
shrinkage matrix in an adaptive manner, while the latter is 
subject to back-testing limitations.

However, we found that the optimal shrinkage constant in ”Le-
doit Optimal” eventually converges to the parameter obtained 
from cross-validation(refertoFigure5.3). Inparticular,theopti-
malshrinkage parameter reaches the maximum possible value of 
1 during March 2020. This indicates that the Ledoit shrinkage 
covariance matrix becomes exactly the pre-specified structure 
(constant correlation model) and refuses to use historical sam-
ples. This behavior is reasonable since the market becomes high-
ly volatile during this time period and is believed to deviate from 
the true structure of the covariance matrix. However, it may not 
be optimal to perform such strong shrinkage here because we 
want to exploit the differences in correlation between assets for 
a portfolio to survive the market plunge.

Figure 5.3: Shrinkage Parameter in Ledoit Covariance

VaR estimates how much at least a portfolio might lose with a given
probability or quantile. Based on this, CVaR is defined as the expectation
of portfolio loss given that loss is occurring at or below the q-quantile.
More specifically, CVaR is calculated by taking the weighted average
of the losses above some threshold in the tail of the return distribution.
Thus, CVaR works better than traditional VaR because it could deal with
distribution of tails.

We tried to add to our original minimum variance portfolios one
CVaR constraint (𝛼𝛼 = 0.95, 𝛽𝛽 = 0.05) and two CVaR constraints (𝛼𝛼1 =
0.95, 𝛽𝛽1 = 0.05; 𝛼𝛼2 = 0.99, 𝛽𝛽2 = 0.08) respectively. The optimization
is written as follow:

minw,𝑙𝑙 w𝑇𝑇Vw + 𝜆𝜆 ∥w − w0∥1
s.t. w𝑇𝑇1𝑁𝑁 = 1

𝑙𝑙 + 1
1−𝛼𝛼

∑
𝜔𝜔∈Ω P(𝜔𝜔) max (loss(w, 𝜔𝜔) − 𝑙𝑙𝑙 0) ≤ 𝛽𝛽

As mentioned, w is the portfolio weight vector. 𝑉𝑉 ∈ R𝑁𝑁×𝑁𝑁 is the
estimated covariance matrix of asset returns, 𝜆𝜆 ∈ R is the transaction
cost parameter, w0 ∈ R𝑁𝑁 is the weight in the beginning of the portfolio
re-balance date. 1𝑁𝑁 ∈ R𝑁𝑁 is the vector of ones.

In the CVaR constraint, 𝜔𝜔 is an event in the sample space Ω with
probability P(𝑤𝑤). We use historical return sample as the sample space
and define P to be 1

𝑇𝑇
. Thus, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(w, 𝑤𝑤) is sampled from historical

return and defined as 𝑅𝑅′w (𝑅𝑅 ∈ R𝑇𝑇×𝑁𝑁 )

4 DATA and PORTFOLIO RE-BALANCING
We collected data of S&P500 equities over the time period January
2012 to January 2022 as well as sector information from yahoo finance.
We choose S&P500 universe equities because they have high liquidity,
relatively high quality and long trading period.

Our portfolios are re-balanced weekly and all data are sampled weekly
so that we do not need to adjust our estimation of asset return and covari-
ance. We employed the following procedure to benchmark performance
among different covariance estimators under the context of portfolio
optimization:

At the beginning of each week, the 200 weekly returns of our selected
list of equities from a window are utilized to estimate our covariance
matrix in the minimum variance matrix. For CVaR constraints, we will
use 400 weekly samples. Then we re-balance our previous portfolios
according to the optimal weight vector and hold the new portfolio for one
week. At the end of the week, the realized portfolio value is computed
with deducted transaction cost. If some equities are removed from the
list, we will liquidate them and account for liquidation fee. We repeat this
process by moving the period one week forward. This rolling-window
method allows us to be more adaptive to the market.

In terms of the size of portfolio, We will use a total size of 55
individual stocks. We adopted the market capitalization regime for
equity selection: choose the top 5 equities in each of 11 sector (in total
55 equities) with largest market capitalization.

We split the data into two subsets: 50% for training set and 50% for
testing set for minimum variance portfolios, minimum variance port-
folios using Nested Clustering Optimization, and minimum variance
portfolios with CVaR constraint. Our split of data can ensure that test
set includes both bull and bear market trend such as the bear market
from Feb 2020 Covid-19 outburst and the subsequent bull market.

5 PORTFOLIO CONSTRUCTION
Our test set portfolio construction began at the end of December 2018
and will continue to be re-balanced weekly until the end of 2020. We
constructed a market capitalization weighted portfolio of large-cap eq-
uities as our benchmark (refer to Figure 5.1).

To tune the parameters for the Ledoit and Gerber covariance mea-
sures, we performed 5-fold cross-validation on the training dataset. All
five validation sets are disjoint from each other, and we use the Sharpe
Ratio averaged over 5 folds as the evaluation criterion. The parameter
corresponding to the highest Sharpe Ratio on the validation set will be
used to construct portfolios on the test set. Each validation set includes

25 weekly rebalancing, holding the portfolio for approximately half a
year. The transaction cost is set to be 50 basis points for both purchasing
and selling.

There are three covariance matrices for which we need to tune pa-
rameters:

1.Two Gerber covariance measures (using median absolute deviation
and standard deviation as the threshold, respectively) contain a param-
eter on the threshold (𝑐𝑐 in 𝑐𝑐 × 𝐻𝐻𝑘𝑘). We tested possible values ranging
from 0.3 to 1. The optimal parameter for the one using median absolute
deviation is 0.4. The optimal parameter for the one using standard de-
viation is 0.6. 2. Ledoit covariance measure also contains a shrinkage
parameter (𝛿𝛿). We tuned from 0.1 to 1 and the optimal result is 0.4.

Figure 5.1: Market Cap Weighted Benchmark:2019:01-
2021:12

5.1 Minimum Variance Performance Analysis
In this section, we first analyze performance metrics including annual-
ized return, annualized volatility, Sharpe Ratio (with the risk-free rate
set to 0), and maximum drawdown on the test data from December 2018
to December 2021. Then, we compare the differences between covari-
ance estimators in terms of the value of correlation and their eigenvalue
distribution.

The results are presented in Table 5.1. ”Market” represents the
capitalization-weighted portfolio. ”Exp” is the minimum variance port-
folio with exponentially-weighted sample covariance matrix. ”Ger-
ber Mad” is the minimum variance portfolio with Gerber covariance
matrix using median absolute deviation (MAD) as the threshold. ”Ger-
ber Std” is the minimum variance portfolio with Gerber covariance
matrix using standard deviation as the threshold. ”Ledoit Optimal” is
the minimum variance portfolio using the optimal shrinkage parame-
ter, while ”Ledoit” is the one for which we tuned the best shrinkage
parameter using cross-validation.

Among all portfolios, ”Gerber Mad” has the largest annual Sharpe
ratio with the highest annual return and the smallest annual volatility.
The excess return of the ”Gerber Mad” portfolio compared to other port-
folios keeps widening starting from June 2020 (refer to Figure 5.2). Both
Gerber portfolios, ”Gerber Mad” and ”Gerber Std,” are in the leading
position during the bull market, but ”Gerber Std” slightly underper-
forms ”Gerber Mad.” While ”Ledoit Optimal” and ”Ledoit” portfolios
have smaller annual returns than the two Gerber portfolios, they can still
outperform the market.

In general, each minimum variance portfolio can beat the market
benchmark in terms of cumulative return if the market is in an upward
trend, for example, from June 2019 to December 2019 and from April
2021 to December 2021 (refer to Figure 5.2). However, they all suffer
larger losses when the market declines. The cumulative return of each
portfolio does not differ much during bear markets. Due to Covid-19,
the maximum drawdown all takes place during March 2020, and we
can see that all portfolios suffer from an average 30% loss, which is 5%
larger than the maximum drawdown of the market portfolio in this bear
market (refer to Table 5.1)).

Table 5.1: MinVar Portfolio Statistics:2019:01-2021:12
AnnRet AnnVol Drawdown Sharpe

Market 31.91% 23.16% 25.59% 1.10
Exp 31.81% 23.12% 31.92% 1.10
Gerber Mad 39.03% 23.06% 30.50% 1.25
Gerber Std 34.13% 23.09% 31.70% 1.15
Ledoit Optimal 31.86% 23.38% 31.31% 1.12
Ledoit 32.28% 23.35% 31.63% 1.13

Figure 5.2: MinVar Cumulative Return

It is interesting to note that the performance of the two Ledoit covari-
ance matrices, ”Ledoit Optimal” and ”Ledoit,” are similar to each other.
The core difference between using the optimal shrinkage parameter and
the parameter obtained through cross-validation is that the former allows
us to find the optimal shrinkage matrix in an adaptive manner, while the
latter is subject to back-testing limitations.

However, we found that the optimal shrinkage constant in
”Ledoit Optimal” eventually converges to the parameter obtained from
cross-validation (refer to Figure 5.3). In particular, the optimal shrinkage
parameter reaches the maximum possible value of 1 during March 2020.
This indicates that the Ledoit shrinkage covariance matrix becomes ex-
actly the pre-specified structure (constant correlation model) and refuses
to use historical samples. This behavior is reasonable since the market
becomes highly volatile during this time period and is believed to de-
viate from the true structure of the covariance matrix. However, it may
not be optimal to perform such strong shrinkage here because we want
to exploit the differences in correlation between assets for a portfolio to
survive the market plunge.

Figure 5.3: Shrinkage Parameter in Ledoit Covariance

Next, we examined whether the resulting portfolios are diversified by
looking at the maximum absolute weight in each portfolio across time
(refer to Figure 5.4). The weight allocations of all portfolios are rela-

Table 5.2: MinVar Turnover Rate
Portfolio Turnover Rate
Gerber Mad 7.98%
Gerber std 7.58%
Ledoit Optimal 8.22%
Ledoit 7.94%
Exp 7.90%

tively diversified, with the largest weight allocation being around 25%.
Two portfolios, ”Gerber Mad” and ”Exp,” exhibit the largest changes in
maximum weights over the period. On the other hand, other portfolios,
including the two Ledoit portfolios and ”Gerber Std,” do not allocate
more than 10% weight to a single asset, and their maximum weights
do not vary much across time. This is a desirable property, especially
when portfolio managers need to adhere to regulatory constraints on
maximum weight allocations or when regularization requires imposing
constraints on maximum weight.

Figure 5.4: MinVar Maximum Absolute Weight

The transaction cost of all minimum variance portfolios are very
similar to each other (Figure 5.5). As a proxy for transaction costs,
we also calculated the average daily turnover rate and we found that all
portfolios have around 8% turnover rate (Table 5.2). It could be that the
ℓ1 regularization on weight contributes a lot to controlling the turnover
rate and transaction cost.

Figure 5.5: MinVar Transaction Cost

Comparison of Covariance Matrices To shed more light
on the introduced covariance measures, we examined all matrices us-
ing the first 200 weekly sample returns on 55 equities in the test set.
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Next, we examined whether the resulting portfolios are diversi-
fied by looking at the maximum absolute weight in each portfo-
lio across time (refer to Figure 5.4). The weight allocations of 
all portfolios are relatively diversified, with the largest weight 
allocation being around 25%.

Table 5.2: MinVar Turnover Rate

Two portfolios, ”Gerber Mad” and ”Exp,” exhibit the largest 
changes in maximum weights over the period. On the other 
hand, other portfolios, including the two Ledoit portfolios and 
”Gerber Std,” do not allocate more than 10% weight to a single 
asset, and their maximum weights do not vary much across time. 
This is a desirable property, especially when portfolio managers 
need to adhere to regulatory constraints on maximum weight al-
locations or when regularization requires imposing constraints 
on maximum weight.

Figure 5.4: MinVar Maximum Absolute Weight

The transaction cost of all minimum variance portfolios are very 
similar to each other (Figure 5.5). As a proxy for transaction 
costs, we also calculated the average daily turnover rate and we 
found that all portfolios have around 8% turnover rate (Table 
5.2). It could be that the ℓ1 regularization on weight contributes 
a lot to controlling the turnover rate and transaction cost.

Figure 5.5: MinVar Transaction Cost

• Comparison of Covariance Matrices To shed more light on 
the introduced covariance measures, we examined all matrices 
using the first 200 weekly sample returns on 55 equities in the 
test set.

We computed two Gerber covariance matrices (Gerber Mad and 
Gerber  Std), the Ledoit covariance matrix (Ledoit), and the ex-
ponentiallyweighted sample covariance (Exp). Additionally, we 
performed denoising method mentioned in section 3.2.3 on sam-
ple covariance to obtain the de-noised covariance matrix. This 
method serves as an alternative way to handle noise instability.

According to the correlation matrix heatmaps (refer to Figure 
5.6), Ledoit shrinks the sample correlation matrix to the greatest 
extent, followed by the de-noising method.

Figure 5.6: Correlation Matrix Heatmap
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survive the market plunge.

Figure 5.3: Shrinkage Parameter in Ledoit Covariance

Next, we examined whether the resulting portfolios are diversified by
looking at the maximum absolute weight in each portfolio across time
(refer to Figure 5.4). The weight allocations of all portfolios are rela-

Table 5.2: MinVar Turnover Rate
Portfolio Turnover Rate
Gerber Mad 7.98%
Gerber std 7.58%
Ledoit Optimal 8.22%
Ledoit 7.94%
Exp 7.90%

tively diversified, with the largest weight allocation being around 25%.
Two portfolios, ”Gerber Mad” and ”Exp,” exhibit the largest changes in
maximum weights over the period. On the other hand, other portfolios,
including the two Ledoit portfolios and ”Gerber Std,” do not allocate
more than 10% weight to a single asset, and their maximum weights
do not vary much across time. This is a desirable property, especially
when portfolio managers need to adhere to regulatory constraints on
maximum weight allocations or when regularization requires imposing
constraints on maximum weight.

Figure 5.4: MinVar Maximum Absolute Weight

The transaction cost of all minimum variance portfolios are very
similar to each other (Figure 5.5). As a proxy for transaction costs,
we also calculated the average daily turnover rate and we found that all
portfolios have around 8% turnover rate (Table 5.2). It could be that the
ℓ1 regularization on weight contributes a lot to controlling the turnover
rate and transaction cost.

Figure 5.5: MinVar Transaction Cost

Comparison of Covariance Matrices To shed more light
on the introduced covariance measures, we examined all matrices us-
ing the first 200 weekly sample returns on 55 equities in the test set.

Table 5.1: MinVar Portfolio Statistics:2019:01-2021:12
AnnRet AnnVol Drawdown Sharpe

Market 31.91% 23.16% 25.59% 1.10
Exp 31.81% 23.12% 31.92% 1.10
Gerber Mad 39.03% 23.06% 30.50% 1.25
Gerber Std 34.13% 23.09% 31.70% 1.15
Ledoit Optimal 31.86% 23.38% 31.31% 1.12
Ledoit 32.28% 23.35% 31.63% 1.13

Figure 5.2: MinVar Cumulative Return

It is interesting to note that the performance of the two Ledoit covari-
ance matrices, ”Ledoit Optimal” and ”Ledoit,” are similar to each other.
The core difference between using the optimal shrinkage parameter and
the parameter obtained through cross-validation is that the former allows
us to find the optimal shrinkage matrix in an adaptive manner, while the
latter is subject to back-testing limitations.

However, we found that the optimal shrinkage constant in
”Ledoit Optimal” eventually converges to the parameter obtained from
cross-validation (refer to Figure 5.3). In particular, the optimal shrinkage
parameter reaches the maximum possible value of 1 during March 2020.
This indicates that the Ledoit shrinkage covariance matrix becomes ex-
actly the pre-specified structure (constant correlation model) and refuses
to use historical samples. This behavior is reasonable since the market
becomes highly volatile during this time period and is believed to de-
viate from the true structure of the covariance matrix. However, it may
not be optimal to perform such strong shrinkage here because we want
to exploit the differences in correlation between assets for a portfolio to
survive the market plunge.

Figure 5.3: Shrinkage Parameter in Ledoit Covariance

Next, we examined whether the resulting portfolios are diversified by
looking at the maximum absolute weight in each portfolio across time
(refer to Figure 5.4). The weight allocations of all portfolios are rela-

Table 5.2: MinVar Turnover Rate
Portfolio Turnover Rate
Gerber Mad 7.98%
Gerber std 7.58%
Ledoit Optimal 8.22%
Ledoit 7.94%
Exp 7.90%

tively diversified, with the largest weight allocation being around 25%.
Two portfolios, ”Gerber Mad” and ”Exp,” exhibit the largest changes in
maximum weights over the period. On the other hand, other portfolios,
including the two Ledoit portfolios and ”Gerber Std,” do not allocate
more than 10% weight to a single asset, and their maximum weights
do not vary much across time. This is a desirable property, especially
when portfolio managers need to adhere to regulatory constraints on
maximum weight allocations or when regularization requires imposing
constraints on maximum weight.

Figure 5.4: MinVar Maximum Absolute Weight

The transaction cost of all minimum variance portfolios are very
similar to each other (Figure 5.5). As a proxy for transaction costs,
we also calculated the average daily turnover rate and we found that all
portfolios have around 8% turnover rate (Table 5.2). It could be that the
ℓ1 regularization on weight contributes a lot to controlling the turnover
rate and transaction cost.

Figure 5.5: MinVar Transaction Cost

Comparison of Covariance Matrices To shed more light
on the introduced covariance measures, we examined all matrices us-
ing the first 200 weekly sample returns on 55 equities in the test set.

Table 5.1: MinVar Portfolio Statistics:2019:01-2021:12
AnnRet AnnVol Drawdown Sharpe

Market 31.91% 23.16% 25.59% 1.10
Exp 31.81% 23.12% 31.92% 1.10
Gerber Mad 39.03% 23.06% 30.50% 1.25
Gerber Std 34.13% 23.09% 31.70% 1.15
Ledoit Optimal 31.86% 23.38% 31.31% 1.12
Ledoit 32.28% 23.35% 31.63% 1.13

Figure 5.2: MinVar Cumulative Return

It is interesting to note that the performance of the two Ledoit covari-
ance matrices, ”Ledoit Optimal” and ”Ledoit,” are similar to each other.
The core difference between using the optimal shrinkage parameter and
the parameter obtained through cross-validation is that the former allows
us to find the optimal shrinkage matrix in an adaptive manner, while the
latter is subject to back-testing limitations.

However, we found that the optimal shrinkage constant in
”Ledoit Optimal” eventually converges to the parameter obtained from
cross-validation (refer to Figure 5.3). In particular, the optimal shrinkage
parameter reaches the maximum possible value of 1 during March 2020.
This indicates that the Ledoit shrinkage covariance matrix becomes ex-
actly the pre-specified structure (constant correlation model) and refuses
to use historical samples. This behavior is reasonable since the market
becomes highly volatile during this time period and is believed to de-
viate from the true structure of the covariance matrix. However, it may
not be optimal to perform such strong shrinkage here because we want
to exploit the differences in correlation between assets for a portfolio to
survive the market plunge.

Figure 5.3: Shrinkage Parameter in Ledoit Covariance

Next, we examined whether the resulting portfolios are diversified by
looking at the maximum absolute weight in each portfolio across time
(refer to Figure 5.4). The weight allocations of all portfolios are rela-

Table 5.2: MinVar Turnover Rate
Portfolio Turnover Rate
Gerber Mad 7.98%
Gerber std 7.58%
Ledoit Optimal 8.22%
Ledoit 7.94%
Exp 7.90%

tively diversified, with the largest weight allocation being around 25%.
Two portfolios, ”Gerber Mad” and ”Exp,” exhibit the largest changes in
maximum weights over the period. On the other hand, other portfolios,
including the two Ledoit portfolios and ”Gerber Std,” do not allocate
more than 10% weight to a single asset, and their maximum weights
do not vary much across time. This is a desirable property, especially
when portfolio managers need to adhere to regulatory constraints on
maximum weight allocations or when regularization requires imposing
constraints on maximum weight.

Figure 5.4: MinVar Maximum Absolute Weight

The transaction cost of all minimum variance portfolios are very
similar to each other (Figure 5.5). As a proxy for transaction costs,
we also calculated the average daily turnover rate and we found that all
portfolios have around 8% turnover rate (Table 5.2). It could be that the
ℓ1 regularization on weight contributes a lot to controlling the turnover
rate and transaction cost.

Figure 5.5: MinVar Transaction Cost

Comparison of Covariance Matrices To shed more light
on the introduced covariance measures, we examined all matrices us-
ing the first 200 weekly sample returns on 55 equities in the test set.

We computed two Gerber covariance matrices (Gerber Mad and Ger-
ber Std), the Ledoit covariance matrix (Ledoit), and the exponentially-
weighted sample covariance (Exp). Additionally, we performed de-
noising method mentioned in section 3.2.3 on sample covariance to
obtain the de-noised covariance matrix. This method serves as an alter-
native way to handle noise instability.

According to the correlation matrix heatmaps (refer to Figure 5.6),
Ledoit shrinks the sample correlation matrix to the greatest extent,
followed by the de-noising method.

Figure 5.6: Correlation Matrix Heatmap

Figure 5.7 presents the top ten eigenvalues of covariance matrices.
We can observe that the top eigenvalue is significantly different from the
other eigenvalues, which can lead to signal instability. The two Gerber
covariance matrices (Gerber Mad and Gerber Std) are more similar to
each other and have relatively smaller top eigenvalues compared to other
covariance measures.

There is no significant difference between the sample covariance ma-
trix and the Ledoit covariance matrix, as well as the de-noised covariance
matrix. Although both methods aim to level eigenvalues and minimize
the influence of noise, they seem to have little effect in resolving signal
instability. For this purpose, we need to introduce Nested Clustering
Optimization.

5.2 Nested Clustering Optimization Performance
Analysis

Although the aforementioned covariance estimators aim to provide a
more stable and accurate covariance estimation, they still suffer from
signal instability, as evidenced by the presence of a top eigenvalue far
from the others. This instability can lead to worse portfolio performance,
particularly in bear markets.

In this section, we implemented Nested Clustering Optimization
(NCO) on top of our minimum variance portfolio with the sample co-
variance matrix. The number of clusters across the test period ranges
from 2 to 4. The t-value of the Silhouette Coefficient indicates that all

Figure 5.7: Top Ten Eigenvalues

Table 5.3: Statistics of NCO
Statistics NCO
Annual Return 21.12%
Annual Volatility 19.72%
Sharpe Ratio 0.94
Max Drawdown 24.51%

clusters are significantly separated from each other, with t-values above
2 (refer to Figure 5.8).

Figure 5.8: t-value of Silhouette Coefficient

We observe that after using NCO to enhance our minimum variance
portfolio, the max draw-down of minimum variance portfolio on average
decreases by 5% (from 30% to 24.51%). Although we achieve less re-
turn, the performance is more robust (Figure 5.9). The annual volatility
19.72% is also the smallest among other minimum variance portfolios.

As shown in Figure 5.10, all portfolios are very diversified. A single
asset will not be assigned with over 20% across test periods. Compared
to the minimum variance portfolio using sample covariance matrix, the
extent of diversification is improved.

The transaction cost is higher than the original minimum variance
portfolios (Figure 5.11) with 25.13% turnover rate. One possible reason
could be that we did not apply ℓ1 regularization on turnover of synthetic
‘funds’ in the phase of inter-cluster optimization, since no actual turnover
is carried with it.

In conclusion, Nested Clustering Algorithm can reduce volatility and
portfolio draw-down and gives a more diversified portfolio.

5.3 CVaR Portfolio Performance Analysis
In this section, we consider another extension on minimum variance
portfolio by adding Conditional Value-at-Risk constraint. While Nested
Cluster Optimization focuses on improving the covariance measure,
CVaR introduces a new and coherent risk measure to account for ex-
treme risk. It can be helpful when we are faced with extreme market
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Figure 5.7 presents the top ten eigenvalues of covariance ma-
trices. We can observe that the top eigenvalue is significantly 
different from the other eigenvalues, which can lead to signal in-
stability. The two Gerber covariance matrices (Gerber Mad and 
Gerber Std) are more similar to each other and have relatively 
smaller top eigenvalues compared to other covariance measures.

There is no significant difference between the sample covari-
ance matrix and the Ledo it covariance matrix, as well as the de-
noised covariance matrix. Although both methods aim to level 
eigenvalues and minimize the influence of noise, they seem to 
have little effect in resolving signal instability. For this purpose, 
we need to introduce Nested Clustering Optimization.

5.2. Nested Clustering Optimization Performance Analysis
Although the aforementioned covariance estimators aim to pro-
vide a more stable and accurate covariance estimation, they still 
suffer from signal instability, as evidenced by the presence of a 
top eigenvalue far from the others. This instability can lead to 
worse portfolio performance, particularly in bear markets.

In this section, we implemented Nested Clustering Optimization 
(NCO) on top of our minimum variance portfolio with the sam-
ple covariance matrix. The number of clusters across the test pe-
riod ranges from 2 to 4. The t-value of the Silhouette Coefficient 
indicates that all clusters are significantly separated from each 
other, with t-values above 2 (refer to Figure 5.8).

Figure 5.7: Top Ten Eigenvalues

Table 5.3: Statistics of NCO

Figure 5.8: t-value of Silhouette Coefficient

We observe that after using NCO to enhance our minimum 
variance portfolio, the max draw-down of minimum variance 
portfolio on average decreases by 5% (from 30% to 24.51%). 
Although we achieve less return, the performance is more robust 
(Figure 5.9). The annual volatility 19.72% is also the smallest 
among other minimum variance portfolios.

As shown in Figure 5.10, all portfolios are very diversified. A 
single asset will not be assigned with over 20% across test peri-
ods. Compared to the minimum variance portfolio using sample 
covariance matrix, the extent of diversification is improved.

The transaction cost is higher than the original minimum vari-
ance portfolios (Figure 5.11) with 25.13% turnover rate. One 
possible reason could be that we did not apply ℓ1 regularization 
on turnover of synthetic ‘funds’in the phase of inter-cluster opti-
mization, since no actual turnover is carried with it.

In conclusion, Nested Clustering Algorithm can reduce volatility 
and portfolio drawdown and gives a more diversified portfolio.

5.3 CVaR Portfolio Performance Analysis
In this section, we consider another extension on minimum vari-
ance portfolio by adding Conditional Value-at-Risk constraint. 
While Nested Cluster Optimization focuses on improving the 
covariance measure, CVaR introduces a new and coherent risk 
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are faced with extreme market condition. We constructed the 
minimum variance portfolio with one CVaR constraint and two 
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We computed two Gerber covariance matrices (Gerber Mad and Ger-
ber Std), the Ledoit covariance matrix (Ledoit), and the exponentially-
weighted sample covariance (Exp). Additionally, we performed de-
noising method mentioned in section 3.2.3 on sample covariance to
obtain the de-noised covariance matrix. This method serves as an alter-
native way to handle noise instability.

According to the correlation matrix heatmaps (refer to Figure 5.6),
Ledoit shrinks the sample correlation matrix to the greatest extent,
followed by the de-noising method.

Figure 5.6: Correlation Matrix Heatmap

Figure 5.7 presents the top ten eigenvalues of covariance matrices.
We can observe that the top eigenvalue is significantly different from the
other eigenvalues, which can lead to signal instability. The two Gerber
covariance matrices (Gerber Mad and Gerber Std) are more similar to
each other and have relatively smaller top eigenvalues compared to other
covariance measures.

There is no significant difference between the sample covariance ma-
trix and the Ledoit covariance matrix, as well as the de-noised covariance
matrix. Although both methods aim to level eigenvalues and minimize
the influence of noise, they seem to have little effect in resolving signal
instability. For this purpose, we need to introduce Nested Clustering
Optimization.

5.2 Nested Clustering Optimization Performance
Analysis

Although the aforementioned covariance estimators aim to provide a
more stable and accurate covariance estimation, they still suffer from
signal instability, as evidenced by the presence of a top eigenvalue far
from the others. This instability can lead to worse portfolio performance,
particularly in bear markets.

In this section, we implemented Nested Clustering Optimization
(NCO) on top of our minimum variance portfolio with the sample co-
variance matrix. The number of clusters across the test period ranges
from 2 to 4. The t-value of the Silhouette Coefficient indicates that all
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Table 5.3: Statistics of NCO
Statistics NCO
Annual Return 21.12%
Annual Volatility 19.72%
Sharpe Ratio 0.94
Max Drawdown 24.51%

clusters are significantly separated from each other, with t-values above
2 (refer to Figure 5.8).

Figure 5.8: t-value of Silhouette Coefficient
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condition. We constructed the minimum variance portfolio with one
CVaR constraint and two CVaR constraints.

Scenario 1 (𝛼𝛼 = 95%, 𝛽𝛽 = 5%) The performance of minimum
variance portfolio improved when we require weekly CVaR at 95% level
to be smaller than 5%.

As shown in table 5.4, all portfolio max draw-down on average de-
crease by 9% during March 2020, the period of pandemic. CVaR
constraint minimum variance portfolios also have on average 4% lower
max draw-down than the market (i.e. market capitalization weighted
portfolio). In terms of annual volatility, adding CVaR constraint makes
Ledoit Optimal and Ledoit portfolio have 3% less volatility. In terms
of Sharpe ratio, all portfolios have improved by more than 0.2. For
instance, Sharpe ratio of Gerber Mad portfolio increases from 1.25 to
1.45. To further demonstrate the effect of CVaR constraint, we calcu-
lated Sortino ratio. It replaces the volatility in Sharpe ratio with semi-
volatility (volatility of negative return). Given the fact that Sortino ratio
of all portfolios are larger than Sharpe ratio, we can infer that the the
loss of our portfolio is less volatile than the gain.

Figure 5.12 shows the maximum weight allocated to each asset in
the portfolio. Portfolios using Gerber Mad covariance (Gerber Mad)
and exponentially weighted covariance (Exp) have the most variable
weight allocation. Interestingly, all portfolios choose to put more than
30% weight on some asset around March 2020. After investigating into

Table 5.4: CVaR Portfolio Statistics Scenario1: 2019:01-
2021:01
alpha=95%
beta=5% AnnRet AnnVol Drawdown Sharpe Sortino

Exp 31.85% 19.85% 21.61% 1.25 1.37
Gerber Std 36.87% 20.28% 22.78% 1.35 1.44
Gerber Mad 40.45% 20.01% 22.90% 1.45 1.54
Ledoit Optimal 34.48% 20.57% 21.64% 1.27 1.37
Ledoit 34.44% 20.25% 21.92% 1.29 1.35

Figure 5.11: NCO Transaction Cost

weight allocation (Figure 5.13), we found that they all tend to long The
Clorox (NYSE: CLX) on March 20, 2020. It is likely that longing CLX
allows the portfolios’ CVaR to be smaller than the threshold 𝛽𝛽 = 5%.

Figure 5.12: CVaR Scenario1 Maximum Absolute Weight

The pie chart (Figure 5.13) gives an example of weight allocation of
our 1-CVaR Min-Var portfolio using exponentially weighted covariance
on day March 20, 2020. We can see that the stock CLX takes the largest
proportion.

Figure 5.14 shows the cumulative return for all five portfolios with
different covariance matrix measure hes. We can see that all the cu-
mulative returns are in a smoothing increasing trend despite a sharp
downturn in the first quarter of 2020. Moreover, similar to the re-
sults of minimum variance portfolios without CVaR constraint, 1-CVaR
portfolio using Gerber Mad covariance (Gerber Mad) have the highest
cumulative return than other portfolios over most periods.

The transaction cost of all portfolios are very similar and comparably
small (Figure 5.15). It is however, slightly higher than original minimum
variance portfolio.

Scenario 2 (𝛼𝛼1 = 95%, 𝛽𝛽1 = 5% 𝛼𝛼2 = 99%, 𝛽𝛽2 = 8%)
In addition to requiring weekly CVaR at 95% level to be smaller than
5%, we further constraining CVaR at 99% level to be smaller than 8%.
We found that adding another CVaR constraint produces portfolios with
lower risk.

As shown in table 5.5, the most significant improvement is max draw-
down: 2-CVaR constraint minimum variance portfolios have more than
2% lower max draw-down than the 1-CVaR constraint portfolio. The
reduction in annual volatility is, however, less noticeable. Adding one
more CVaR constraint reduce the volatility of all portfolios by 1%. In
terms of Sharpe Ratio, all portfolios have a slightly lower Sharpe Ratio
compared to 1-CVaR constraint portfolios. All portfolios Sortino ratio
are larger than Sharpe ratio and the gaps become wider compared to 1-
CVaR portfolios. For example, Gerber Std in 2-CVaR has larger Sortino
Ratio despite a similar Sharpe ratio. Sortino ratio of Ledoit optimal is
0.06 higher than Sharpe ratio in 1-CVaR and 0.1 higher than Sharpe
ratio in 2-CVaR. These results are consistent with the fact that portfolios
with more CVaR constraints are more risk-adverse.
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proportion.

Figure 5.14 shows the cumulative return for all five portfolios with
different covariance matrix measure hes. We can see that all the cu-
mulative returns are in a smoothing increasing trend despite a sharp
downturn in the first quarter of 2020. Moreover, similar to the re-
sults of minimum variance portfolios without CVaR constraint, 1-CVaR
portfolio using Gerber Mad covariance (Gerber Mad) have the highest
cumulative return than other portfolios over most periods.
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In addition to requiring weekly CVaR at 95% level to be smaller than
5%, we further constraining CVaR at 99% level to be smaller than 8%.
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lower risk.

As shown in table 5.5, the most significant improvement is max draw-
down: 2-CVaR constraint minimum variance portfolios have more than
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reduction in annual volatility is, however, less noticeable. Adding one
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terms of Sharpe Ratio, all portfolios have a slightly lower Sharpe Ratio
compared to 1-CVaR constraint portfolios. All portfolios Sortino ratio
are larger than Sharpe ratio and the gaps become wider compared to 1-
CVaR portfolios. For example, Gerber Std in 2-CVaR has larger Sortino
Ratio despite a similar Sharpe ratio. Sortino ratio of Ledoit optimal is
0.06 higher than Sharpe ratio in 1-CVaR and 0.1 higher than Sharpe
ratio in 2-CVaR. These results are consistent with the fact that portfolios
with more CVaR constraints are more risk-adverse.



 Volume 6 | Issue 2 | 11J Gene Engg Bio Res, 2024

• Scenario 1 (𝛼 = 95%, 𝛽 = 5%) The performance of minimum 
variance portfolio improved when we require weekly CVaR at 
95% level to be smaller than 5%.

As shown in table 5.4, all portfolio max draw-down on average 
decrease by 9% during March 2020, the period of pandemic. 
CVaR constraint minimum variance portfolios also have on 
average 4% lower max draw-down than the market (i.e. market 
capitalization weighted portfolio). In terms of annual volatility, 
adding CVaR constraint makes Ledoit Optimal and Ledoit 
portfolio have 3% less volatility. In terms of Sharpe ratio, all 
portfolios have improved by more than 0.2. For instance, Sharpe 
ratio of Gerber Mad portfolio increases from 1.25 to 1.45. To 
further demonstrate the effect of CVaR constraint, we calculated 
Sortino ratio. It replaces the volatility in Sharpe ratio with 
semivolatility (volatility of negative return). Given the fact that 
Sortino ratio of all portfolios are larger than Sharpe ratio, we 
can infer that the the loss of our portfolio is less volatile than 
the gain.

Figure 5.12 shows the maximum weight allocated to each asset 
in the portfolio. Portfolios using Gerber Mad covariance (Gerber 
Mad) and exponentially weighted covariance (Exp) have the 
most variable weight allocation. Interestingly, all portfolios 
choose to put more than 30% weight on some asset around 
March 2020. After investigating into
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Weight allocation (Figure 5.13), we found that they all tend to 
long The Clorox (NYSE: CLX) on March 20, 2020. It is likely 
that longing CLX allows the portfolios’ CVaR to be smaller than 
the threshold 𝛽 = 5%.
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The pie chart (Figure 5.13) gives an example of weight allocation 
of our 1-CVaR Min-Var portfolio using exponentially weighted 
covariance on day March 20, 2020. We can see that the stock 
CLX takes the largest proportion.

Figure 5.14 shows the cumulative return for all five portfolios 
with different covariance matrix measure hes. We can see that 
all the cumulative returns are in a smoothing increasing trend 
despite a sharp downturn in the first quarter of 2020. Moreover, 
similar to the results of minimum variance portfolios without 
CVaR constraint, 1-CVaR portfolio using Gerber Mad covariance 
(Gerber Mad) have the highest cumulative return than other 
portfolios over most periods.

The transaction cost of all portfolios are very similar and 
comparably small (Figure5.15). It is however, slightly higher 
than original minimum variance portfolio.
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addition to requiring weekly CVaR at 95% level to be smaller 
than 5%, we further constraining CVaR at 99% level to be 
smaller than 8%. We found that adding another CVaR constraint 
produces portfolios with lower risk.

As shown in table 5.5, the most significant improvement is max 
drawdown: 2-CVaR constraint minimum variance portfolios 
have more than 2% lower max drawdown than the 1-CVaR 
constraint portfolio. The reduction in annual volatility is, 
however, less noticeable. Adding one, more CVaR constraint 
reduce the volatility of all portfolios by 1%. In terms of Sharpe 
Ratio, all portfolios have a slightly lower Sharpe Ratio compared 
to 1-CVaR constraint portfolios. All portfolios Sortino ratio are 
larger than Sharpe ratio and the gaps become wider compared 
to 1CVaR portfolios. For example, Gerber Std in 2-CVaR has 
larger Sortino Ratio despite a similar Sharpe ratio. Sortino ratio 
of Ledoit optimal is 0.06 higher than Sharpe ratio in 1-CVaR 
and 0.1 higher than Sharpe ratio in 2-CVaR. These results 
are consistent with the fact that portfolios with more CVaR 
constraints are more risk-adverse.

Figure 5.9: NCO Cumulative Return

Figure 5.10: NCO Maximum Absolute Weight

condition. We constructed the minimum variance portfolio with one
CVaR constraint and two CVaR constraints.

Scenario 1 (𝛼𝛼 = 95%, 𝛽𝛽 = 5%) The performance of minimum
variance portfolio improved when we require weekly CVaR at 95% level
to be smaller than 5%.

As shown in table 5.4, all portfolio max draw-down on average de-
crease by 9% during March 2020, the period of pandemic. CVaR
constraint minimum variance portfolios also have on average 4% lower
max draw-down than the market (i.e. market capitalization weighted
portfolio). In terms of annual volatility, adding CVaR constraint makes
Ledoit Optimal and Ledoit portfolio have 3% less volatility. In terms
of Sharpe ratio, all portfolios have improved by more than 0.2. For
instance, Sharpe ratio of Gerber Mad portfolio increases from 1.25 to
1.45. To further demonstrate the effect of CVaR constraint, we calcu-
lated Sortino ratio. It replaces the volatility in Sharpe ratio with semi-
volatility (volatility of negative return). Given the fact that Sortino ratio
of all portfolios are larger than Sharpe ratio, we can infer that the the
loss of our portfolio is less volatile than the gain.

Figure 5.12 shows the maximum weight allocated to each asset in
the portfolio. Portfolios using Gerber Mad covariance (Gerber Mad)
and exponentially weighted covariance (Exp) have the most variable
weight allocation. Interestingly, all portfolios choose to put more than
30% weight on some asset around March 2020. After investigating into

Table 5.4: CVaR Portfolio Statistics Scenario1: 2019:01-
2021:01
alpha=95%
beta=5% AnnRet AnnVol Drawdown Sharpe Sortino

Exp 31.85% 19.85% 21.61% 1.25 1.37
Gerber Std 36.87% 20.28% 22.78% 1.35 1.44
Gerber Mad 40.45% 20.01% 22.90% 1.45 1.54
Ledoit Optimal 34.48% 20.57% 21.64% 1.27 1.37
Ledoit 34.44% 20.25% 21.92% 1.29 1.35
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weight allocation (Figure 5.13), we found that they all tend to long The
Clorox (NYSE: CLX) on March 20, 2020. It is likely that longing CLX
allows the portfolios’ CVaR to be smaller than the threshold 𝛽𝛽 = 5%.
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gate signal instability in the covariance estimator. The resulting mini-
mum variance portfolio with NCO decreases the maximum drawdown
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However, they all exhibit higher volatility and greater losses 
during bear periods compared to the market benchmark.
Next, we implemented Nested Cluster Optimization (NCO) 
to mitigate signal instability in the covariance estimator. The 
resulting minimum variance portfolio with NCO decreases the 
maximum drawdown by 5%, despite having a more conservative 
return and higher transaction costs.
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Finally, the introduction of constraints on Conditional Value-
at-Risk (CVaR) significantly improves portfolio performance. 
Specifically, the minimum variance portfolio with one CVaR 
constraint has a 4% smaller maximum drawdown compared to 
the market portfolio. Adding a second CVaR constraint further 
reduces the maximum drawdown, but the improvement is less 
noticeable. Moreover, adding more CVaR constraints can lead 
to a more risk-averse weight allocation, resulting in a less 
diversified portfolio. Therefore, one CVaR constraint with a 
discrete choice of threshold should be adequate for managing 
extreme risk.

Figure 5.18: CVaR Scenario2 Transaction Cost
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