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Plant science, in particular plant breeding, with its emphasis 
on gene manipulation thereby containing extraordinarily large 
datasets, can benefit from greater penetration of Machine-
Learning (ML) and Deep Learning (DL) tools for solutions to 
problems from multi-classification (M-class) and optimization to 
anomaly detection, to time-series analysis and forecasting [1,2]. 
Deep learning (DL) contributes to plant science by simulating 
biochemical behaviors and assisting with the spatial analysis of 
plant evolution. A majority of the improvements made in machine 
learning (ML) and deep learning (DL) are not fully explored by 
disciplines outside of computer science, the physical sciences, 
engineering, and mathematics [3]. Plant science will advance 
more rapidly if it makes better use of related advances in ML, 
DL, and other constructs to solve the growing complexity of 
challenges in food security [4,5]. Of particular utility is physics-
informed ML; physics-informed, or scientific ML, analyzes 
and interprets scientific datasets using novel methods drawn 
from both ML and the advanced mathematics field known as 
scientific computing. These techniques are critical for the next 
set of advances in data-heavy scientific disciplines, including 
plant breeding.  

This research communication specifically posits that gene 
editing for plant breeding has yet to begin exploration into 
physics-informed ML. The intent of this short communication 
is to promote further interests in the utility ML modelling can 
offer to plant sciences. As ML modelling performance improves 
and other aspects of computation become available, including 
as quantum computing continues to develop, the probability of 
computational intractability will decrease, as will the likelihood 
of adverse computational environmental effects. If these factors 
reach equilibrium, the potential for more effective plant breeding 
experiments using ML modelling will significantly benefit both 
fields of research.  

Leveraging the full capacity of AI techniques and connecting 
somewhat disparate forms of mathematics to accelerate 
scientific discovery in discipline-dependent domains requires 
a comprehensive and incisive understanding of AI constraints 
and capabilities, such as the vastly different approaches used 
in model selection and tuning effectiveness of robotics as 
compared to natural language processing model development 
and physical artificial intelligence. ML model selection is 
critically important in scientific computing; when it is done 
incorrectly, computations will not properly resolve, making 
what was a problem of intractability likely an impossibility. 
For example, the uniformed loss function of Sum of Squared 
Errors (SSE) results in computation and environmental energy 
waste and algorithm non-convergence [6]. Failure to identify 
anomalous environments and adapt model parameters in the 
simplest design, a feed-forward neural network, can result in a 
chain-reaction of conditions which render modeling vulnerable 
to irregularities common as Type-I (false positive) or Type-II 
(false negatives) in confusion matrices; they also can include the 
more challenging-to-detect stationarity issues associated with 
time-series or streaming datatypes [7].  

Classical DL, defined as inference calculated on a classical 
information system, has been used in plant science already to 
help draw conclusions about yield. However, quantum deep 
learning informed by quantum Bayesianism (QBism), has 
not been fully exploited by the plant sciences [8]. QBism is a 
philosophical interpretation of quantum mechanics wherein the 
perspective of the observer is considered quantum deep learning 
is an approach used in machine learning model architecture 
[9,10]. Quantum deep learning informed by QBism permits 
the user to perform calculations on a quantum system from the 
Bayesian perspective. This helps overcome the computational 
intractability of large datasets, including those found in plant 
science.  

No two ML models behave the same and this exclusivity 
is amplified when considering the application of relational 
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quantum ML methods, a derivation of scientific ML, directed 
at biomolecular processes. Developing biology-centric scientific 
functions in statistical and multi-purpose of programming 
languages, R and Python respectively [11,12]. This is because the 
datasets are so large and the data in question are so complex, the 
task of initial exploratory data analysis’ time intensity outweighs 
the benefit of model development. Future research will analyze 
a derivation of a physics-informed M-class intelligent agent 
designated as a Relational Quantum-Informed Neural Network 
or RQINN.  

Classical neural networks may encounter datatypes causing 
computational intractability or conditions comparable to 
those seen in currently insoluble problems from relatively 
common anomalies such as noisy datasets, non-static time 
series, missing values in streaming datasets and biomolecular 
processes containing robust molecules composed of (> 15) non-
hydrogen atoms. Therefore, physics-informed ML provides 
tools unavailable in current ML techniques. Considering plant 
breeding as the end-goal, the initial challenge may include 
deciding the most utilitarian physical approach to employ, 
for instance chemical versus biological and establishing the 
applicable partial differential equation (PDE), which is part of 
physics-informed ML.  

These potential RQINN exploits will positively impact the 
trajectory of a number of crucial areas in molecular plant science; 
as described by these areas include, but are not limited to, genome 
editing in plant breeding; plant-based edible vaccines, RNA 
interference biotechnology, sustainable agriculture supporting 
food security, and many other areas. These advances provide 
enhanced granularity by describing some of the emerging 
technologies, or new plant breeding technology, associated with 
the plant sciences.  

The technology associated with the physical and biological 
sciences has progressed concurrently with classical ML 
evolutions but not quantum ML [13]. A vital method in 
evaluating and understanding physical traits associated with a 
given species is the use of the breeder’s equation [14]. As with a 
majority of PDEs, solving for an unknown function, for instance 
𝑓𝑓 𝑖𝑖𝑖𝑖 𝑓(𝑥𝑥), is dependent on myriad factors not initially 
identifiable [15]. Therein lies the importance in knowledge of 
the structure of those data and how relations among metadata, 
example include nodes and the composition of entities, objects, 
elements [14]. Moreover, due to the complexity of biological 
systems, these domains often provide favorable test-beds for 
often intractable M-class from a classical optic. Considering the 
QBism perspective, we can to update our understanding of the 
breeder’s equation as more data are made available [16]. This 
update of data does not interfere with the initial data quality 
and potentially enhances the classifier at convergence or the 
understanding of the observer.  

It is questionable that conducting biological computation renders 
the operation inconsequential due to computational cost. This 
postulation is non-linear and should be considered subjective 
without the presence of a comprehensive problem statement 
and successive hypotheses development, a necessary exercise in 
preparation for discretization of experimental data. Moreover, 

this inherent complexity accompanying biological data effects 
both binary and M-class problems. Let us briefly consider a 
utilitarian aspect of the breeder’s equation, where 𝑍𝑍 represents 
the central limit of an unidentified trait of a species population. 
From a PDE point of observation, this is equivalent to some 
unknown function 𝑓(𝑥𝑥). Moreover, ∆𝑍𝑍 = ℎ2𝑆𝑆 denotes the 
breeder’s equation rate of change over time and should indicate 
to plant scientists or ML engineers that time series analysis and 
forecasting may produce a useful modeling alternative or exists 
as an additional tool to aid in the understanding and manipulation 
of biological data. Time series analysis can help to identify trends 
and patterns in the data, which can inform breeding decisions 
and improve prediction accuracy. Additionally, machine learning 
techniques such as neural networks and decision trees can be 
applied to biological data to improve classification accuracy and 
aid in the discovery of new knowledge. However, it is important 
to note that the application of these techniques requires careful 
consideration of the unique characteristics and complexities of 
biological data, as well as appropriate data preprocessing and 
feature selection technique. 

One of the main challenges in plant science and plant breeding 
is the large and complex datasets that need to be analyzed. 
Machine learning (ML) and deep learning (DL) techniques have 
shown promise in handling such data and have the potential to 
significantly advance plant science research. These techniques 
can assist in solving complex problems, such as multi-
classification and optimization, anomaly detection, time-series 
analysis, and forecasting. Furthermore, physics-informed ML is 
a useful tool that can provide additional capabilities to handle 
data-heavy scientific disciplines, including plant breeding.  

A critical aspects of ML is model selection, which plays a crucial 
role in scientific computing. 

Selecting the wrong model can result in computations that do not 
resolve, rendering the problem intractable or even impossible to 
solve. For example, the uniform loss function of Sum of Squared 
Errors (SSE) can result in computation and environmental 
energy waste and algorithm nonconvergence. 

Additionally, failure to identify anomalous environments and 
adapt model parameters in a feedforward neural network can 
result in confusion matrices vulnerable to irregularities such as 
Type-I (false positive) or Type-II (false negatives) or the more 
challenging-to-detect stationarity issues associated with time-
series or streaming datatypes.  

DL has already been applied in plant science to simulate 
biochemical behaviors and assist with the spatial analysis of 
plant evolution. However, quantum deep learning, informed by 
quantum Bayesianism (QBism), has not been fully exploited in 
plant science. QBism is a philosophical interpretation of quantum 
mechanics that considers the perspective of the observer, while 
quantum deep learning is an approach used in machine learning 
model architecture. Using quantum deep learning informed by 
QBism can help overcome the computational intractability of 
large datasets, including those found in plant science.  

Relational quantum ML methods, a derivation of scientific ML, 
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are directed at biomolecular processes. Developing biology-
centric scientific functions in statistical and multi-purpose 
programming languages such as R and Python, respectively, is 
critical because the datasets are large and the data in question 
are complex 

The potential of physics-informed M-class intelligent agents, 
such as the Relational Quantum-Informed Neural Network or 
RQINN, can positively impact molecular plant science in areas 
such as genome editing in plant breeding, plant-based edible 
vaccines, RNA interference biotechnology, and sustainable 
agriculture supporting food security.  

In conclusion, plant science is a complex and data-intensive field 
that can benefit greatly from the application of machine learning 
and deep learning techniques. However, the complexity of 
biological systems and the large-scale datasets involved present 
significant challenges for traditional machine learning methods. 
Physics-informed machine learning techniques offer a promising 
solution to these challenges by incorporating known physical 
properties of biological systems into the model architecture. By 
leveraging these physical properties, physics-informed machine 
learning can improve the accuracy of predictions, reduce the 
amount of training data required, and enable faster and more 
efficient modeling of complex biological systems. 
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