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Abstract
This paper addresses the challenging problem of parameter estimation in bilinear systems under colored noise. A novel 
approach, termed B-PF-RLS, is proposed, combining a particle filter (PF) with a recursive least squares (RLS) estimator. 
The B-PF-RLS algorithm tackles the complexities arising from system nonlinearities and colored noise by effectively 
estimating unknown system states using the particle filter, which are then integrated into the RLS parameter estimation 
process. Furthermore, the paper introduces an enhanced particle filter that eliminates the need for explicit knowledge of 
the measurement noise variance, enhancing the method's practicality for real-world applications. Numerical examples 
demonstrate the B-PF-RLS algorithm's superior performance in accurately estimating both system parameters and states, 
even under uncertain noise conditions. This work offers a robust and effective solution for system identification in various 
engineering applications involving bilinear models subject to complex noise environments.
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Sudan. 

Keywords: Bilinear Systems, Particle Filter, Parameter Estimation, Colored Noise, Optimal State Estimator

1. Introduction
In control systems, a bilinear system is a specific type of nonlinear system where the control input appears linearly but is multiplied 
by the state variables, creating a bilinear product term. Bilinear systems are particularly useful for describing processes where the 
effect of the control input on the system's state varies depending on the current state of the system [1]. For example, in a chemical 
reactor, the state of the reaction depends on both the concentration of reactants (state variables) and the temperature or pressure 
(control input) [2]. Similarly, the behavior of an electrical network with nonlinear components like diodes can be approximated by a 
bilinear system, where the state could be the voltage or current, and the control input could be an external voltage source [3].

The prominence of bilinear systems in numerous real-world control applications underscores the significance of the system 
identification process for these systems. This importance encourages control engineers to dedicate substantial attention to simulating 
and developing various models for such systems, aiming to achieve highly efficient and reliable system controllers [4]. A variety 
of methods for identifying bilinear systems have been introduced. For instance, a study on a filtering-based least-squares iterative 
algorithm has been conducted for the parameter estimation of bilinear systems affected by autoregressive noises [5]. Another study 
derived a state observer-based multi-innovation stochastic gradient algorithm and yet another introduced a bilinear state observer-
based hierarchical least-squares method for bilinear state-space systems [6,7]. Identification of bilinear systems with colored noise 
using least-squares based iterative methods and maximum likelihood methods were developed by  and [ 8, 9].

One challenge in estimating bilinear system parameters is that the information vector in the parameter estimation algorithm may 
contain unknown system states. Deriving a state estimation algorithm for the bilinear system to replace the unknown state with its 
estimate can address this challenge [10]. Several studies have developed bilinear state observers using the Kalman filtering principle 
to effectively estimate unknown states and parameters. For example, propose a bilinear state observer-based recursive least squares 
algorithm for joint state-parameter estimation in bilinear systems, improving computational efficiency by decomposing the system 
into subsystems [11,12]. present an interactive estimation algorithm for unmeasurable states and parameters in bilinear systems 
with moving average noise, using a novel bilinear state observer and multi-innovation extended stochastic gradient algorithm 
[7].  proposed a bilinear state observer-based hierarchical multi-innovation stochastic gradient algorithm that effectively estimates 
parameters and states in bilinear systems, converging to their true values. developed optimal bilinear observers for bilinear state-

ISSN: 2994- 9459

Current Research in Statistics & Mathematics



 Volume 3 | Issue 3 | 2Curr Res Stat Math, 2024

space models, using interaction matrices to simplify the identification of models and observers from noisy measurements [13]. 
A stable bilinear observer can estimate the state of bilinear systems under any constant or nonconstant input, with the estimation 
error speed being independent of the applied input [14]. Minimal order state observers for bilinear systems can be designed without 
considering inputs, making the estimation error independent of inputs presented a design procedure for state observers in bilinear 
systems with bounded input, allowing for trade-offs between feedback amplification and input function bounds [15-17]. presented 
a new method for designing minimal order state-disturbance composite observers, which can effectively control bilinear systems, 
with applications in the headbox control system in the papermaking process.

The use of state observers in the model identification of bilinear systems presents several disadvantages, including the inapplicability 
of the Kalman filter, increased computational burden, challenges in handling measurement delays, and sensitivity to noise. These 
factors necessitate the development of specialized algorithms and models to ensure accurate and efficient state and parameter 
estimation [18,19]. Designing observers for discrete stochastic bilinear systems involves deriving mean square optimal linear 
unbiased observer equations, which can be sensitive to noisy output measurements, potentially affecting the accuracy of state 
reconstruction. This paper investigates the identification of bilinear system parameters influenced by different types of measurement 
noises such as white noise and colored noise based on a particle filtering approach. The particle filter is adapted with few particles, 
reducing the influence of distant observations on weight calculations, thereby reducing noise sensitivity [20].

The main contributions of this paper are as follows:
• The proposed algorithms in this paper achieve interactive state and parameter estimation for the bilinear system using the joint least 
squares principle combined with a particle filter state estimator.
• The particle filter is identified as the optimal state estimator for bilinear systems, effectively reducing noise sensitivity.
• The effects of colored measurement noises on the accuracy of bilinear system parameter estimation are investigated.
• In practical engineering applications, measuring output signals often entails dealing with output noise of unknown variance. 
Consequently, it becomes crucial to estimate the state, which is part of the information vector, under these circumstances. In such 
cases, the particle filter is optimized to calculate particle weights without requiring noise variance information. This modification 
makes the particle filter a more suitable choice compared to alternatives like the Kalman filter, which relies on known noise variance.

The layout of the remainder of this paper is as follows: Section 2 derives the identification model for the bilinear state-space models. 
In Section 3, we derive the particle filtering algorithm and present a particle weight calculation without knowing the measurement 
noise variance. A bilinear particle filter-based B-PF-RLS algorithm is developed to estimate the unknown parameters and states in 
Section 4. Numerical examples are shown in Section 5 to illustrate the benefits of the proposed methods in this paper. Finally, some 
concluding remarks are given in Section 6.

2. Identification Model for The Bilinear State-Space Models
Consider the following bilinear system in its observer canonical state-space form:
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2. Identification model for the bilinear state-space models 
 

Consider the following bilinear system in its observer canonical state-space form [21]: 
 
𝑥𝑥(𝑡𝑡 + 1) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵 𝑥𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝑓𝑓 𝑢𝑢(𝑡𝑡) + 𝑤𝑤(𝑡𝑡),       (1) 
 
y(𝑡𝑡) = 𝐻𝐻𝐻𝐻(𝑡𝑡) + 𝑒𝑒(𝑡𝑡),          (2) 
 
𝑒𝑒(𝑡𝑡): = (1 + 𝑘𝑘1𝑞𝑞−1 + 𝑘𝑘2𝑞𝑞−2 + ⋯ + 𝑘𝑘𝑛𝑛𝑘𝑘𝑞𝑞−𝑛𝑛𝑘𝑘)𝑣𝑣(𝑡𝑡).       (3) 
 

Here, 𝑣𝑣(𝑡𝑡) is a white noise with zero mean, and 𝑒𝑒(𝑡𝑡) represents a colored noise. 
Here, v(t) is a white noise with zero mean, and e(t) represents a colored noise [21].

Let’s introduced some Notation and Assumptions for the Bilinear System

Assumptions:
•	 	 The bilinear system described by equations (1) and (2) is stable, observable, and controllable.
•	 	 Noise processes w(t) and v(t) are uncorrelated and have the following properties:
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𝐴𝐴:=
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 −𝑎𝑎1 1 0 ⋯ 0

−𝑎𝑎2 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

−𝑎𝑎𝑛𝑛−1 0 0 ⋯ 1
−𝑎𝑎𝑛𝑛 0 0 ⋯ 0]

 
 
 
 
∈ ℝ𝑛𝑛×𝑛𝑛,  𝐵𝐵:=

[
 
 
 
 𝒃𝒃1

𝒃𝒃2
⋮

𝒃𝒃𝑛𝑛−1
𝒃𝒃𝑛𝑛 ]

 
 
 
 
∈ ℝ𝑛𝑛×𝑛𝑛 ; 𝒃𝒃1 ∈ ℝ1×𝑛𝑛, 𝑓𝑓:=

[
 
 
 
 𝑓𝑓1

𝑓𝑓2
⋮

𝑓𝑓𝑛𝑛−1
𝑓𝑓𝑛𝑛 ]

 
 
 
 
∈ ℝ𝑛𝑛 

 
 
  𝐻𝐻:= [1, 0, ⋯ 0] ∈ ℝ1×𝑛𝑛.         (4)
  
The parameters 𝑎𝑎𝑖𝑖 , 𝒃𝒃𝑖𝑖 , 𝑗𝑗𝑖𝑖   and 𝑓𝑓𝑖𝑖 are to be identified from the collected input 𝑢𝑢(𝑡𝑡) and output y(𝑡𝑡). 
 
Remark 1: By transforming the bilinear state-space system presented in equations (1)-(2) into the observer 
canonical form, the identification process is simplified. This transformation effectively reduces the parameter 
space, resulting in more efficient and precise estimation. 
 
Substituting these parameters into their matrix form within the system defined by equations (1) and (2), and 
applying straightforward transformations and manipulations detailed in reference [22] the system can be 
rewritten as: 
𝑥𝑥1(𝑡𝑡) = −∑ 𝑎𝑎𝑖𝑖  𝑛𝑛

𝑖𝑖=1  𝑥𝑥1(𝑡𝑡 − 𝑖𝑖) + ∑  𝑛𝑛
𝑖𝑖=1  𝑏𝑏𝑖𝑖 𝑥𝑥(𝑡𝑡 − 𝑖𝑖)𝑢𝑢(𝑡𝑡 − 𝑖𝑖) + ∑  𝑛𝑛

𝑖𝑖=1  𝑓𝑓𝑖𝑖 𝑢𝑢(𝑡𝑡 − 𝑖𝑖) + ∑  𝑛𝑛
𝑖𝑖=1  𝑤𝑤𝑖𝑖(𝑡𝑡 − 𝑖𝑖)   

𝑦𝑦(𝑡𝑡) = [1, 0, ⋯ 0]

[
 
 
 
 𝑥𝑥1(𝑡𝑡)

𝑥𝑥2(𝑡𝑡)
⋮

𝑥𝑥𝑛𝑛−1(𝑡𝑡)
𝑥𝑥𝑛𝑛(𝑡𝑡) ]

 
 
 
 
+ 𝑒𝑒(𝑡𝑡)         (5) 

Using (3), system output can be written as 
 
𝑦𝑦(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡) + 𝑘𝑘1𝑣𝑣(𝑡𝑡 − 1) + 𝑘𝑘2𝑣𝑣(𝑡𝑡 − 2) + ⋯+ 𝑘𝑘𝑛𝑛𝑘𝑘𝑣𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘) + 𝑣𝑣(𝑡𝑡).    (6) 

Substitute (5) in (6) yields  
 

3 
 

 

Let’s introduced some Notation and Assumptions for the Bilinear System 

SYMBOL DESCRIPTION 
"𝑨𝑨 =:𝑿𝑿" 𝒐𝒐𝒐𝒐 "𝑿𝑿: = 𝑨𝑨"  Indicates that "𝐴𝐴" is defined as "𝑋𝑋" 
𝒒𝒒  Unit back-shift operator, where 𝑞𝑞−1𝑣𝑣(𝑡𝑡) denotes 𝑣𝑣(𝑡𝑡 − 1) 
𝑻𝑻  Superscript denoting the transpose of vectors/matrices 
𝒘𝒘(𝒕𝒕) , 𝒗𝒗(𝒕𝒕)  Process noise, measurement noise 
𝑸𝑸  Covariance matrix of 𝑤𝑤(𝑡𝑡), 𝑄𝑄  ∈ ℝ𝑛𝑛×𝑛𝑛 
𝑹𝑹  Covariance matrix of 𝑣𝑣(𝑡𝑡), 𝑅𝑅  ∈ ℝ 
𝒑𝒑𝟎𝟎  is a large number  = 106 ≫ 1 

Assumptions: 

• The bilinear system described by equations (1) and (2) is stable, observable, and controllable. 
• Noise processes 𝑤𝑤(𝑡𝑡) and 𝑣𝑣(𝑡𝑡) are uncorrelated and have the following properties: 

 
𝐸𝐸[𝑤𝑤(𝑡𝑡)] = 0, 𝐸𝐸[𝑣𝑣(𝑡𝑡)] = 0 , 𝐸𝐸[𝑤𝑤(𝑡𝑡)𝑣𝑣(𝑖𝑖)] = 0 

• The system is at rest for 𝑡𝑡 ≤ 0, 𝑖𝑖. 𝑒𝑒. : 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑢𝑢(𝑡𝑡) = 0 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜: 𝑦𝑦(𝑡𝑡)  = 0 , 𝑥𝑥(𝑡𝑡)  = 0, 𝑤𝑤(𝑡𝑡)  = 0  and 
𝑣𝑣(𝑡𝑡)  = 0. 

The matrices 𝐴𝐴, 𝐵𝐵 , 𝑓𝑓 and 𝐻𝐻 representing system parameter are defined as follows: 
 

𝐴𝐴:=

[
 
 
 
 −𝑎𝑎1 1 0 ⋯ 0

−𝑎𝑎2 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

−𝑎𝑎𝑛𝑛−1 0 0 ⋯ 1
−𝑎𝑎𝑛𝑛 0 0 ⋯ 0]

 
 
 
 
∈ ℝ𝑛𝑛×𝑛𝑛,  𝐵𝐵:=

[
 
 
 
 𝒃𝒃1

𝒃𝒃2
⋮

𝒃𝒃𝑛𝑛−1
𝒃𝒃𝑛𝑛 ]

 
 
 
 
∈ ℝ𝑛𝑛×𝑛𝑛 ; 𝒃𝒃1 ∈ ℝ1×𝑛𝑛, 𝑓𝑓:=

[
 
 
 
 𝑓𝑓1

𝑓𝑓2
⋮

𝑓𝑓𝑛𝑛−1
𝑓𝑓𝑛𝑛 ]

 
 
 
 
∈ ℝ𝑛𝑛 

 
 
  𝐻𝐻:= [1, 0, ⋯ 0] ∈ ℝ1×𝑛𝑛.         (4)
  
The parameters 𝑎𝑎𝑖𝑖 , 𝒃𝒃𝑖𝑖 , 𝑗𝑗𝑖𝑖   and 𝑓𝑓𝑖𝑖 are to be identified from the collected input 𝑢𝑢(𝑡𝑡) and output y(𝑡𝑡). 
 
Remark 1: By transforming the bilinear state-space system presented in equations (1)-(2) into the observer 
canonical form, the identification process is simplified. This transformation effectively reduces the parameter 
space, resulting in more efficient and precise estimation. 
 
Substituting these parameters into their matrix form within the system defined by equations (1) and (2), and 
applying straightforward transformations and manipulations detailed in reference [22] the system can be 
rewritten as: 
𝑥𝑥1(𝑡𝑡) = −∑ 𝑎𝑎𝑖𝑖  𝑛𝑛

𝑖𝑖=1  𝑥𝑥1(𝑡𝑡 − 𝑖𝑖) + ∑  𝑛𝑛
𝑖𝑖=1  𝑏𝑏𝑖𝑖 𝑥𝑥(𝑡𝑡 − 𝑖𝑖)𝑢𝑢(𝑡𝑡 − 𝑖𝑖) + ∑  𝑛𝑛

𝑖𝑖=1  𝑓𝑓𝑖𝑖 𝑢𝑢(𝑡𝑡 − 𝑖𝑖) + ∑  𝑛𝑛
𝑖𝑖=1  𝑤𝑤𝑖𝑖(𝑡𝑡 − 𝑖𝑖)   

𝑦𝑦(𝑡𝑡) = [1, 0, ⋯ 0]

[
 
 
 
 𝑥𝑥1(𝑡𝑡)

𝑥𝑥2(𝑡𝑡)
⋮

𝑥𝑥𝑛𝑛−1(𝑡𝑡)
𝑥𝑥𝑛𝑛(𝑡𝑡) ]

 
 
 
 
+ 𝑒𝑒(𝑡𝑡)         (5) 

Using (3), system output can be written as 
 
𝑦𝑦(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡) + 𝑘𝑘1𝑣𝑣(𝑡𝑡 − 1) + 𝑘𝑘2𝑣𝑣(𝑡𝑡 − 2) + ⋯+ 𝑘𝑘𝑛𝑛𝑘𝑘𝑣𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘) + 𝑣𝑣(𝑡𝑡).    (6) 

Substitute (5) in (6) yields  
 



 Volume 3 | Issue 3 | 3Curr Res Stat Math, 2024

•	 The system is at rest for t ≤ 0, i.e. : input:u(t) = 0 , output: y(t) = 0 , x(t) = 0, w(t) = 0  and v(t) = 0.

The matrices A, B , f and H representing system parameter are defined as follows:

The parameters ai , bi , ji   and fi are to be identified from the collected input u(t) and output y(t).

Remark 1: By transforming the bilinear state-space system presented in equations (1)-(2) into the observer canonical form, the 
identification process is simplified. This transformation effectively reduces the parameter space, resulting in more efficient and 
precise estimation.

Substituting these parameters into their matrix form within the system defined by equations (1) and (2), and applying straightforward 
transformations and manipulations detailed in reference  the system can be rewritten as
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• The bilinear system described by equations (1) and (2) is stable, observable, and controllable. 
• Noise processes 𝑤𝑤(𝑡𝑡) and 𝑣𝑣(𝑡𝑡) are uncorrelated and have the following properties: 

 
𝐸𝐸[𝑤𝑤(𝑡𝑡)] = 0, 𝐸𝐸[𝑣𝑣(𝑡𝑡)] = 0 , 𝐸𝐸[𝑤𝑤(𝑡𝑡)𝑣𝑣(𝑖𝑖)] = 0 

• The system is at rest for 𝑡𝑡 ≤ 0, 𝑖𝑖. 𝑒𝑒. : 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑢𝑢(𝑡𝑡) = 0 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜: 𝑦𝑦(𝑡𝑡)  = 0 , 𝑥𝑥(𝑡𝑡)  = 0, 𝑤𝑤(𝑡𝑡)  = 0  and 
𝑣𝑣(𝑡𝑡)  = 0. 

The matrices 𝐴𝐴, 𝐵𝐵 , 𝑓𝑓 and 𝐻𝐻 representing system parameter are defined as follows: 
 

𝐴𝐴:=

[
 
 
 
 −𝑎𝑎1 1 0 ⋯ 0

−𝑎𝑎2 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

−𝑎𝑎𝑛𝑛−1 0 0 ⋯ 1
−𝑎𝑎𝑛𝑛 0 0 ⋯ 0]

 
 
 
 
∈ ℝ𝑛𝑛×𝑛𝑛,  𝐵𝐵:=

[
 
 
 
 𝒃𝒃1

𝒃𝒃2
⋮

𝒃𝒃𝑛𝑛−1
𝒃𝒃𝑛𝑛 ]

 
 
 
 
∈ ℝ𝑛𝑛×𝑛𝑛 ; 𝒃𝒃1 ∈ ℝ1×𝑛𝑛, 𝑓𝑓:=

[
 
 
 
 𝑓𝑓1

𝑓𝑓2
⋮

𝑓𝑓𝑛𝑛−1
𝑓𝑓𝑛𝑛 ]

 
 
 
 
∈ ℝ𝑛𝑛 

 
 
  𝐻𝐻:= [1, 0, ⋯ 0] ∈ ℝ1×𝑛𝑛.         (4)
  
The parameters 𝑎𝑎𝑖𝑖 , 𝒃𝒃𝑖𝑖 , 𝑗𝑗𝑖𝑖   and 𝑓𝑓𝑖𝑖 are to be identified from the collected input 𝑢𝑢(𝑡𝑡) and output y(𝑡𝑡). 
 
Remark 1: By transforming the bilinear state-space system presented in equations (1)-(2) into the observer 
canonical form, the identification process is simplified. This transformation effectively reduces the parameter 
space, resulting in more efficient and precise estimation. 
 
Substituting these parameters into their matrix form within the system defined by equations (1) and (2), and 
applying straightforward transformations and manipulations detailed in reference [22] the system can be 
rewritten as: 
𝑥𝑥1(𝑡𝑡) = −∑ 𝑎𝑎𝑖𝑖  𝑛𝑛

𝑖𝑖=1  𝑥𝑥1(𝑡𝑡 − 𝑖𝑖) + ∑  𝑛𝑛
𝑖𝑖=1  𝑏𝑏𝑖𝑖 𝑥𝑥(𝑡𝑡 − 𝑖𝑖)𝑢𝑢(𝑡𝑡 − 𝑖𝑖) + ∑  𝑛𝑛

𝑖𝑖=1  𝑓𝑓𝑖𝑖 𝑢𝑢(𝑡𝑡 − 𝑖𝑖) + ∑  𝑛𝑛
𝑖𝑖=1  𝑤𝑤𝑖𝑖(𝑡𝑡 − 𝑖𝑖)   

𝑦𝑦(𝑡𝑡) = [1, 0, ⋯ 0]

[
 
 
 
 𝑥𝑥1(𝑡𝑡)

𝑥𝑥2(𝑡𝑡)
⋮

𝑥𝑥𝑛𝑛−1(𝑡𝑡)
𝑥𝑥𝑛𝑛(𝑡𝑡) ]

 
 
 
 
+ 𝑒𝑒(𝑡𝑡)         (5) 

Using (3), system output can be written as 
 
𝑦𝑦(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡) + 𝑘𝑘1𝑣𝑣(𝑡𝑡 − 1) + 𝑘𝑘2𝑣𝑣(𝑡𝑡 − 2) + ⋯+ 𝑘𝑘𝑛𝑛𝑘𝑘𝑣𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘) + 𝑣𝑣(𝑡𝑡).    (6) 

Substitute (5) in (6) yields  
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Let’s introduced some Notation and Assumptions for the Bilinear System 

SYMBOL DESCRIPTION 
"𝑨𝑨 =:𝑿𝑿" 𝒐𝒐𝒐𝒐 "𝑿𝑿: = 𝑨𝑨"  Indicates that "𝐴𝐴" is defined as "𝑋𝑋" 
𝒒𝒒  Unit back-shift operator, where 𝑞𝑞−1𝑣𝑣(𝑡𝑡) denotes 𝑣𝑣(𝑡𝑡 − 1) 
𝑻𝑻  Superscript denoting the transpose of vectors/matrices 
𝒘𝒘(𝒕𝒕) , 𝒗𝒗(𝒕𝒕)  Process noise, measurement noise 
𝑸𝑸  Covariance matrix of 𝑤𝑤(𝑡𝑡), 𝑄𝑄  ∈ ℝ𝑛𝑛×𝑛𝑛 
𝑹𝑹  Covariance matrix of 𝑣𝑣(𝑡𝑡), 𝑅𝑅  ∈ ℝ 
𝒑𝒑𝟎𝟎  is a large number  = 106 ≫ 1 

Assumptions: 

• The bilinear system described by equations (1) and (2) is stable, observable, and controllable. 
• Noise processes 𝑤𝑤(𝑡𝑡) and 𝑣𝑣(𝑡𝑡) are uncorrelated and have the following properties: 

 
𝐸𝐸[𝑤𝑤(𝑡𝑡)] = 0, 𝐸𝐸[𝑣𝑣(𝑡𝑡)] = 0 , 𝐸𝐸[𝑤𝑤(𝑡𝑡)𝑣𝑣(𝑖𝑖)] = 0 

• The system is at rest for 𝑡𝑡 ≤ 0, 𝑖𝑖. 𝑒𝑒. : 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑢𝑢(𝑡𝑡) = 0 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜: 𝑦𝑦(𝑡𝑡)  = 0 , 𝑥𝑥(𝑡𝑡)  = 0, 𝑤𝑤(𝑡𝑡)  = 0  and 
𝑣𝑣(𝑡𝑡)  = 0. 

The matrices 𝐴𝐴, 𝐵𝐵 , 𝑓𝑓 and 𝐻𝐻 representing system parameter are defined as follows: 
 

𝐴𝐴:=

[
 
 
 
 −𝑎𝑎1 1 0 ⋯ 0

−𝑎𝑎2 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

−𝑎𝑎𝑛𝑛−1 0 0 ⋯ 1
−𝑎𝑎𝑛𝑛 0 0 ⋯ 0]

 
 
 
 
∈ ℝ𝑛𝑛×𝑛𝑛,  𝐵𝐵:=

[
 
 
 
 𝒃𝒃1

𝒃𝒃2
⋮

𝒃𝒃𝑛𝑛−1
𝒃𝒃𝑛𝑛 ]

 
 
 
 
∈ ℝ𝑛𝑛×𝑛𝑛 ; 𝒃𝒃1 ∈ ℝ1×𝑛𝑛, 𝑓𝑓:=

[
 
 
 
 𝑓𝑓1

𝑓𝑓2
⋮

𝑓𝑓𝑛𝑛−1
𝑓𝑓𝑛𝑛 ]

 
 
 
 
∈ ℝ𝑛𝑛 

 
 
  𝐻𝐻:= [1, 0, ⋯ 0] ∈ ℝ1×𝑛𝑛.         (4)
  
The parameters 𝑎𝑎𝑖𝑖 , 𝒃𝒃𝑖𝑖 , 𝑗𝑗𝑖𝑖   and 𝑓𝑓𝑖𝑖 are to be identified from the collected input 𝑢𝑢(𝑡𝑡) and output y(𝑡𝑡). 
 
Remark 1: By transforming the bilinear state-space system presented in equations (1)-(2) into the observer 
canonical form, the identification process is simplified. This transformation effectively reduces the parameter 
space, resulting in more efficient and precise estimation. 
 
Substituting these parameters into their matrix form within the system defined by equations (1) and (2), and 
applying straightforward transformations and manipulations detailed in reference [22] the system can be 
rewritten as: 
𝑥𝑥1(𝑡𝑡) = −∑ 𝑎𝑎𝑖𝑖  𝑛𝑛

𝑖𝑖=1  𝑥𝑥1(𝑡𝑡 − 𝑖𝑖) + ∑  𝑛𝑛
𝑖𝑖=1  𝑏𝑏𝑖𝑖 𝑥𝑥(𝑡𝑡 − 𝑖𝑖)𝑢𝑢(𝑡𝑡 − 𝑖𝑖) + ∑  𝑛𝑛

𝑖𝑖=1  𝑓𝑓𝑖𝑖 𝑢𝑢(𝑡𝑡 − 𝑖𝑖) + ∑  𝑛𝑛
𝑖𝑖=1  𝑤𝑤𝑖𝑖(𝑡𝑡 − 𝑖𝑖)   

𝑦𝑦(𝑡𝑡) = [1, 0, ⋯ 0]

[
 
 
 
 𝑥𝑥1(𝑡𝑡)

𝑥𝑥2(𝑡𝑡)
⋮

𝑥𝑥𝑛𝑛−1(𝑡𝑡)
𝑥𝑥𝑛𝑛(𝑡𝑡) ]

 
 
 
 
+ 𝑒𝑒(𝑡𝑡)         (5) 

Using (3), system output can be written as 
 
𝑦𝑦(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡) + 𝑘𝑘1𝑣𝑣(𝑡𝑡 − 1) + 𝑘𝑘2𝑣𝑣(𝑡𝑡 − 2) + ⋯+ 𝑘𝑘𝑛𝑛𝑘𝑘𝑣𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘) + 𝑣𝑣(𝑡𝑡).    (6) 

Substitute (5) in (6) yields  
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𝑦𝑦(𝑡𝑡) = − 𝑎𝑎1𝑥𝑥1(𝑡𝑡 − 1), … , − 𝑎𝑎𝑛𝑛𝑥𝑥1(𝑡𝑡 − 𝑛𝑛) + 𝒃𝒃𝟏𝟏𝑥𝑥(𝑡𝑡 − 1)𝑢𝑢(𝑡𝑡 − 1) … + 𝒃𝒃𝒏𝒏𝑥𝑥(𝑡𝑡 − 𝑛𝑛)𝑢𝑢(𝑡𝑡 − 𝑛𝑛) + 𝑓𝑓1𝑢𝑢(𝑡𝑡 − 1) + ⋯ +
               𝑓𝑓𝑛𝑛𝑢𝑢(𝑡𝑡 − 𝑛𝑛) + 𝐽𝐽1𝑣𝑣(𝑡𝑡 − 1) + ⋯ + 𝐽𝐽𝑛𝑛𝑣𝑣(𝑡𝑡 − 𝑛𝑛) + 𝛽𝛽(𝑡𝑡)      (7) 
Where  𝒃𝒃𝒏𝒏 = 𝐵𝐵(𝑛𝑛, : ). 
 
Now, define:  
 
𝜑𝜑𝑎𝑎(𝑡𝑡) ∶= [−𝑥𝑥1(𝑡𝑡 − 1), … , −𝑥𝑥1(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇 ,  𝜑𝜑𝑥𝑥𝑥𝑥(𝑡𝑡) ∶= [𝒙𝒙(𝑡𝑡 − 1)𝑇𝑇  𝑢𝑢(𝑡𝑡 − 1), … , 𝒙𝒙(𝑡𝑡 − 𝑛𝑛)𝑇𝑇𝑢𝑢(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇, 
 
𝜑𝜑𝑢𝑢(𝑡𝑡) ∶= [𝑢𝑢(𝑡𝑡 − 1), … , 𝑢𝑢(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇,   𝜑𝜑𝑣𝑣(𝑡𝑡) ∶= [𝑣𝑣(𝑡𝑡 − 1), … , 𝑣𝑣(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇,  𝛽𝛽(𝑡𝑡) = ∑  𝑛𝑛

𝑖𝑖=1  𝑤𝑤𝑖𝑖(𝑡𝑡 − 𝑖𝑖). 
 
Based on equation (7) we define the information vector 𝜑𝜑(𝑡𝑡) and the parameter vector 𝜃𝜃 as  
 
𝜑𝜑(𝑡𝑡): = [𝜑𝜑𝑎𝑎

𝑇𝑇(𝑡𝑡), 𝜑𝜑𝑥𝑥𝑥𝑥
𝑇𝑇(𝑡𝑡), 𝜑𝜑𝑢𝑢

𝑇𝑇(𝑡𝑡), 𝜑𝜑𝑣𝑣
𝑇𝑇(𝑡𝑡)]𝑇𝑇  and  𝜃𝜃 = [𝑎𝑎1, … , 𝑎𝑎𝑛𝑛, 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛, 𝑓𝑓1, … , 𝑓𝑓𝑛𝑛, 𝐽𝐽1, … , 𝐽𝐽𝑛𝑛]𝑇𝑇  respectively. 

Therefor, equation (7) can be rewritten as 

𝑦𝑦(𝑡𝑡) = 𝜑𝜑(𝑡𝑡)𝑇𝑇𝜃𝜃 + 𝛽𝛽(𝑡𝑡) + 𝑣𝑣(𝑡𝑡)         (8) 

Equation (8) is the identification model of the bilinear state-space system in (1) and (2). 
 
Remark 2: Estimating the parameters of a bilinear system (defined by equations (1) and (2)) proves difficult 
due to the presence of unknown states 𝑥𝑥 (𝑡𝑡 −  𝑖𝑖) and noise 𝑣𝑣 (𝑡𝑡 −  𝑖𝑖) within the information vector 𝜑𝜑(𝑡𝑡). This 
paper proposes a solution by integrating the recursive least squares identification technique with particle 
filtering. By leveraging this combined approach, we can effectively estimate both the system states and the 
parameter vector (containing 𝑎𝑎𝑖𝑖 , 𝒃𝒃𝒊𝒊 , 𝑓𝑓𝑖𝑖   and 𝑘𝑘𝑖𝑖) using only available input and output data. 
 

3. Formulation of state estimation methods 
 
This paper introduces a novel approach to bilinear system analysis, departing from the linearization techniques 
employed in previous methods, such as [23]. By utilizing a particle filter for state estimation, we directly handle 
the system's nonlinearities, eliminating the limitations of approximation. This framework also offers greater 
flexibility, allowing the incorporation of complex system models, even those with unknown parameters and 
measurement noise variances. 

3.1 Particle filter algorithm 
Particle filtering is a powerful technique for estimating the state of a dynamic system, especially when dealing 
with non-linear and non-Gaussian models. It employs a Monte Carlo approach, representing the probability 
distribution of the state with a set of weighted particles [24]. Here's a step-by-step breakdown of the algorithm: 
Step-1: Initialization: 

• Number of particles: Select the number of particles N. 
• Initial particles: Sample initial particles 𝑥𝑥0

(𝑖𝑖) from the prior distribution 𝑝𝑝(𝑥𝑥0) for 𝑖𝑖 = 1,2, … , 𝑁𝑁. 
• Initial weights: Set the initial weights  𝑤𝑤0

(𝑖𝑖) = 1
𝑁𝑁 for all particles 𝑖𝑖. 

Step-2: Time update (Prediction step): 
• For each particle 𝑖𝑖 at time 𝑡𝑡, propagate the state using the system dynamics:  

𝑥𝑥𝑡𝑡+1
(𝑖𝑖) = 𝐴𝐴𝑥𝑥𝑡𝑡

(𝑖𝑖) + 𝐵𝐵𝐵𝐵𝑡𝑡
(𝑖𝑖)𝑢𝑢𝑡𝑡 + 𝑓𝑓𝑢𝑢𝑡𝑡 + 𝑤𝑤𝑡𝑡

(𝑖𝑖)       (9) 
where 𝑤𝑤𝑡𝑡

(𝑖𝑖) is a sample from the process noise distribution 𝑝𝑝(𝑤𝑤𝑡𝑡). 
Step-3: Measurement update (Correction step): 

• Compute the predicted measurement for each particle:  
𝑦̂𝑦𝑡𝑡

(𝑖𝑖) = 𝑐𝑐𝑥𝑥𝑡𝑡
(𝑖𝑖)          (10) 

• Given 𝑒𝑒(𝑡𝑡) = 𝐽𝐽(𝑞𝑞)𝑣𝑣(𝑡𝑡), calculate the measurement noise 𝑒𝑒𝑡𝑡
(𝑖𝑖):  

𝑒𝑒𝑡𝑡
(𝑖𝑖) = 𝑦𝑦𝑡𝑡 − 𝑦̂𝑦𝑡𝑡

(𝑖𝑖)          (11) 
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Remark 2: Estimating the parameters of a bilinear system (defined by equations (1) and (2)) proves difficult due to the presence 
of unknown states x (t - i) and noise v (t - i) within the information vector φ(t). This paper proposes a solution by integrating the 
recursive least squares identification technique with particle filtering. By leveraging this combined approach, we can effectively 
estimate both the system states and the parameter vector (containing ai , bi , fi and ki) using only available input and output data.

3. Formulation of State Estimation Methods
This paper introduces a novel approach to bilinear system analysis, departing from the linearization techniques employed in previous 
methods, such as [23]. By utilizing a particle filter for state estimation, we directly handle the system's nonlinearities, eliminating the 
limitations of approximation. This framework also offers greater flexibility, allowing the incorporation of complex system models, 
even those with unknown parameters and measurement noise variances.

3.1 Particle Filter Algorithm
Particle filtering is a powerful technique for estimating the state of a dynamic system, especially when dealing with non-linear 
and non-Gaussian models. It employs a Monte Carlo approach, representing the probability distribution of the state with a set of 
weighted particles [24]. Here's a step-by-step breakdown of the algorithm:
Step-1: Initialization:
•	 Number of particles: Select the number of particles N.
•	 Initial particles: Sample initial particles x0

(i) from the prior distribution p(x0) for i=1,2,…,N.
•	 Initial weights: Set the initial weights 	         for all particles i.

Step-2: Time update (Prediction step):
•	 For each particle i at time t, propagate the state using the system dynamics: 

Step-3: Measurement update (Correction step):

Step-4: Update weights:

Step-5: Resampling:
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𝑦𝑦(𝑡𝑡) = − 𝑎𝑎1𝑥𝑥1(𝑡𝑡 − 1), … , − 𝑎𝑎𝑛𝑛𝑥𝑥1(𝑡𝑡 − 𝑛𝑛) + 𝒃𝒃𝟏𝟏𝑥𝑥(𝑡𝑡 − 1)𝑢𝑢(𝑡𝑡 − 1) … + 𝒃𝒃𝒏𝒏𝑥𝑥(𝑡𝑡 − 𝑛𝑛)𝑢𝑢(𝑡𝑡 − 𝑛𝑛) + 𝑓𝑓1𝑢𝑢(𝑡𝑡 − 1) + ⋯ +
               𝑓𝑓𝑛𝑛𝑢𝑢(𝑡𝑡 − 𝑛𝑛) + 𝐽𝐽1𝑣𝑣(𝑡𝑡 − 1) + ⋯ + 𝐽𝐽𝑛𝑛𝑣𝑣(𝑡𝑡 − 𝑛𝑛) + 𝛽𝛽(𝑡𝑡)      (7) 
Where  𝒃𝒃𝒏𝒏 = 𝐵𝐵(𝑛𝑛, : ). 
 
Now, define:  
 
𝜑𝜑𝑎𝑎(𝑡𝑡) ∶= [−𝑥𝑥1(𝑡𝑡 − 1), … , −𝑥𝑥1(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇 ,  𝜑𝜑𝑥𝑥𝑥𝑥(𝑡𝑡) ∶= [𝒙𝒙(𝑡𝑡 − 1)𝑇𝑇  𝑢𝑢(𝑡𝑡 − 1), … , 𝒙𝒙(𝑡𝑡 − 𝑛𝑛)𝑇𝑇𝑢𝑢(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇, 
 
𝜑𝜑𝑢𝑢(𝑡𝑡) ∶= [𝑢𝑢(𝑡𝑡 − 1), … , 𝑢𝑢(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇,   𝜑𝜑𝑣𝑣(𝑡𝑡) ∶= [𝑣𝑣(𝑡𝑡 − 1), … , 𝑣𝑣(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇,  𝛽𝛽(𝑡𝑡) = ∑  𝑛𝑛

𝑖𝑖=1  𝑤𝑤𝑖𝑖(𝑡𝑡 − 𝑖𝑖). 
 
Based on equation (7) we define the information vector 𝜑𝜑(𝑡𝑡) and the parameter vector 𝜃𝜃 as  
 
𝜑𝜑(𝑡𝑡): = [𝜑𝜑𝑎𝑎
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𝑇𝑇(𝑡𝑡)]𝑇𝑇  and  𝜃𝜃 = [𝑎𝑎1, … , 𝑎𝑎𝑛𝑛, 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛, 𝑓𝑓1, … , 𝑓𝑓𝑛𝑛, 𝐽𝐽1, … , 𝐽𝐽𝑛𝑛]𝑇𝑇  respectively. 

Therefor, equation (7) can be rewritten as 

𝑦𝑦(𝑡𝑡) = 𝜑𝜑(𝑡𝑡)𝑇𝑇𝜃𝜃 + 𝛽𝛽(𝑡𝑡) + 𝑣𝑣(𝑡𝑡)         (8) 

Equation (8) is the identification model of the bilinear state-space system in (1) and (2). 
 
Remark 2: Estimating the parameters of a bilinear system (defined by equations (1) and (2)) proves difficult 
due to the presence of unknown states 𝑥𝑥 (𝑡𝑡 −  𝑖𝑖) and noise 𝑣𝑣 (𝑡𝑡 −  𝑖𝑖) within the information vector 𝜑𝜑(𝑡𝑡). This 
paper proposes a solution by integrating the recursive least squares identification technique with particle 
filtering. By leveraging this combined approach, we can effectively estimate both the system states and the 
parameter vector (containing 𝑎𝑎𝑖𝑖 , 𝒃𝒃𝒊𝒊 , 𝑓𝑓𝑖𝑖   and 𝑘𝑘𝑖𝑖) using only available input and output data. 
 

3. Formulation of state estimation methods 
 
This paper introduces a novel approach to bilinear system analysis, departing from the linearization techniques 
employed in previous methods, such as [23]. By utilizing a particle filter for state estimation, we directly handle 
the system's nonlinearities, eliminating the limitations of approximation. This framework also offers greater 
flexibility, allowing the incorporation of complex system models, even those with unknown parameters and 
measurement noise variances. 

3.1 Particle filter algorithm 
Particle filtering is a powerful technique for estimating the state of a dynamic system, especially when dealing 
with non-linear and non-Gaussian models. It employs a Monte Carlo approach, representing the probability 
distribution of the state with a set of weighted particles [24]. Here's a step-by-step breakdown of the algorithm: 
Step-1: Initialization: 

• Number of particles: Select the number of particles N. 
• Initial particles: Sample initial particles 𝑥𝑥0

(𝑖𝑖) from the prior distribution 𝑝𝑝(𝑥𝑥0) for 𝑖𝑖 = 1,2, … , 𝑁𝑁. 
• Initial weights: Set the initial weights  𝑤𝑤0

(𝑖𝑖) = 1
𝑁𝑁 for all particles 𝑖𝑖. 

Step-2: Time update (Prediction step): 
• For each particle 𝑖𝑖 at time 𝑡𝑡, propagate the state using the system dynamics:  

𝑥𝑥𝑡𝑡+1
(𝑖𝑖) = 𝐴𝐴𝑥𝑥𝑡𝑡

(𝑖𝑖) + 𝐵𝐵𝐵𝐵𝑡𝑡
(𝑖𝑖)𝑢𝑢𝑡𝑡 + 𝑓𝑓𝑢𝑢𝑡𝑡 + 𝑤𝑤𝑡𝑡

(𝑖𝑖)       (9) 
where 𝑤𝑤𝑡𝑡

(𝑖𝑖) is a sample from the process noise distribution 𝑝𝑝(𝑤𝑤𝑡𝑡). 
Step-3: Measurement update (Correction step): 

• Compute the predicted measurement for each particle:  
𝑦̂𝑦𝑡𝑡

(𝑖𝑖) = 𝑐𝑐𝑥𝑥𝑡𝑡
(𝑖𝑖)          (10) 

• Given 𝑒𝑒(𝑡𝑡) = 𝐽𝐽(𝑞𝑞)𝑣𝑣(𝑡𝑡), calculate the measurement noise 𝑒𝑒𝑡𝑡
(𝑖𝑖):  

𝑒𝑒𝑡𝑡
(𝑖𝑖) = 𝑦𝑦𝑡𝑡 − 𝑦̂𝑦𝑡𝑡

(𝑖𝑖)          (11) 
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𝑦𝑦(𝑡𝑡) = − 𝑎𝑎1𝑥𝑥1(𝑡𝑡 − 1), … , − 𝑎𝑎𝑛𝑛𝑥𝑥1(𝑡𝑡 − 𝑛𝑛) + 𝒃𝒃𝟏𝟏𝑥𝑥(𝑡𝑡 − 1)𝑢𝑢(𝑡𝑡 − 1) … + 𝒃𝒃𝒏𝒏𝑥𝑥(𝑡𝑡 − 𝑛𝑛)𝑢𝑢(𝑡𝑡 − 𝑛𝑛) + 𝑓𝑓1𝑢𝑢(𝑡𝑡 − 1) + ⋯ +
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Here, 𝐽𝐽(𝑞𝑞)𝑣𝑣(𝑡𝑡) needs to be modeled. Assume 𝑣𝑣(𝑡𝑡) is white noise, then: 
 𝑒𝑒𝑡𝑡

(𝑖𝑖) = 𝑣𝑣𝑡𝑡 + 𝐽𝐽1𝑣𝑣𝑡𝑡−1 + 𝐽𝐽2𝑣𝑣𝑡𝑡−2 + ⋯ + 𝐽𝐽𝑛𝑛𝑣𝑣𝑡𝑡−𝑛𝑛       (12) 
• Compute the likelihood of the measurement given the predicted state for each particle:  

𝑝𝑝(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡
(𝑖𝑖)) ∝ exp (− 1

2 (𝑒𝑒𝑡𝑡
(𝑖𝑖))𝑇𝑇𝑹𝑹−1𝑒𝑒𝑡𝑡

(𝑖𝑖)       (13) 
where 𝑅𝑅 is the covariance matrix of the measurement noise 𝑒𝑒(𝑡𝑡). 

Step-4: Update weights: 
• Update the weights of each particle:  

𝑤𝑤𝑡𝑡+1
(𝑖𝑖) = 𝑤𝑤𝑡𝑡

(𝑖𝑖)𝑝𝑝(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡
(𝑖𝑖))         (14) 

 
• Normalize the weights:  
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Step-6: State Estimation:

Step-7: Repeat:
•	 Repeat steps 2 to 6 for each time step t.

3.2 Particle Weight Calculation Without Knowing the Measurement Noise Variance
The standard particle filter assumes known measurement noise variance, a limitation in real-world applications. This paper addresses 
this challenge by introducing a novel weight optimization method that directly estimates particle weights without relying on the 
explicit knowledge of noise variance.

Problem: Standard particle filters assume a known Gaussian distribution with a known variance for the measurement noise. 
However, in real-world scenarios, this variance is often unknown.

Solution: Based on the work in this paper proposes a modification that introduces a direct weight optimization method to address 
the issue of unknown measurement noise variance [25]. This method used Lagrange Multipliers for Constrained Optimization to 
directly estimates the weights of each particle, circumventing the need for explicit knowledge of the noise variance.
To solve this problem for the propose bilinear system we go through the following steps:

•	 Particle Representation:
A set of particles, zˆj (t), are drawn from the predicted state distribution. The likelihood of observing the measurement y(t) given a 
particle xˆj (t) is denoted as Ψj (t).
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▪ Reset the weights of the resampled particles to 1

𝑁𝑁. 
Step-6: State Estimation: 

• Estimate the state at time 𝑡𝑡 as the weighted mean of the particles:  
𝑥̂𝑥𝑡𝑡+1 = ∑ 𝑤𝑤𝑡𝑡+1

(𝑖𝑖) 𝑥𝑥𝑡𝑡+1
(𝑖𝑖)𝑁𝑁

𝑖𝑖=1          (17) 
Step-7: Repeat: 

• Repeat steps 2 to 6 for each time step 𝑡𝑡. 
 

3.2 Particle weight calculation without knowing the measurement noise 
variance 
 
The standard particle filter assumes known measurement noise variance, a limitation in real-world applications. 
This paper addresses this challenge by introducing a novel weight optimization method that directly estimates 
particle weights without relying on the explicit knowledge of noise variance. 
Problem: Standard particle filters assume a known Gaussian distribution with a known variance for the 
measurement noise. However, in real-world scenarios, this variance is often unknown. 
Solution: Based on the work in [25], this paper proposes a modification that introduces a direct weight 
optimization method to address the issue of unknown measurement noise variance. This method used Lagrange 
Multipliers for Constrained Optimization to directly estimates the weights of each particle, circumventing the 
need for explicit knowledge of the noise variance. 
To solve this problem for the propose bilinear system we go through the following steps: 
 

• Particle Representation: 
A set of particles, 𝑥̂𝑥𝑗𝑗(𝑡𝑡), are drawn from the predicted state distribution. The likelihood of observing the 
measurement 𝑦𝑦(𝑡𝑡) given a particle 𝑥̂𝑥𝑗𝑗(𝑡𝑡) is denoted as Ψ𝑗𝑗(𝑡𝑡). 

𝑝𝑝 (𝑦𝑦(𝑡𝑡)|𝑥̂𝑥𝑗𝑗(𝑡𝑡)) ≔ Ψ𝑗𝑗(𝑡𝑡)           (18) 

• Approximation of Function: 
 
𝑥𝑥(𝑡𝑡)= 𝐴𝐴 𝑥𝑥(𝑡𝑡 − 1)+𝐵𝐵 𝑥𝑥(𝑡𝑡 − 1)𝑢𝑢(𝑡𝑡 − 1) + 𝑓𝑓 𝑢𝑢(𝑡𝑡 − 1) + 𝑒𝑒(𝑡𝑡).      (19) 
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• 	 Approximation of Function:
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𝑦𝑦(𝑡𝑡) = 𝑔𝑔(𝑥𝑥(𝑡𝑡)) = 𝑐𝑐 𝑥𝑥(𝑡𝑡) + 𝑘𝑘1𝑣𝑣(𝑡𝑡 − 1) + ⋯ + 𝑘𝑘𝑛𝑛𝑘𝑘𝑣𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘) + 𝑣𝑣(𝑡𝑡)     (20) 
The goal is to approximate a non-linear function 𝑔𝑔(𝑥𝑥(𝑡𝑡)) using the particles and their associated weights. This 
approximation is given by: 

𝑔𝑔(𝑥𝑥(𝑡𝑡)) ≈  ∑ Ψ𝑗𝑗(𝑡𝑡)𝑔𝑔(𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁
𝑗𝑗=1          (21) 

• Weight Optimization: 
 
To find the optimal weights Ψ𝑗𝑗(𝑡𝑡), minimizes a cost function: 

[ ∑ Ψ𝑗𝑗(𝑡𝑡)(𝑔𝑔 (𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁
𝑗𝑗=1 + 𝑒𝑒(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)) ]

2
= (∑ Ψ𝑗𝑗(𝑡𝑡)𝑔𝑔 (𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁

𝑗𝑗=1 + ∑ Ψ𝑗𝑗(𝑡𝑡)𝑒𝑒(𝑡𝑡)𝑁𝑁
𝑗𝑗=1 − ∑ Ψ𝑗𝑗(𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 )
2
 (22) 

 
This cost function represents the squared error between the predicted output based on the weighted particle 
values and the actual measurement. 
 

• Conditional Expectation: 
 
Taking the conditional expectation of the cost function (22) with respect to the measurement noise 𝑒𝑒(𝑡𝑡) leads to: 
 

𝐸𝐸 [ ∑ Ψ𝑗𝑗(𝑡𝑡)(𝑔𝑔 (𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁
𝑗𝑗=1 + 𝑒𝑒(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)) ]

2
     = (∑ Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 )2 + 𝜎𝜎2 ∑ Ψ𝑗𝑗
2(𝑡𝑡)𝑁𝑁

𝑗𝑗=1    (23) 

 
where 𝛾𝛾𝑗𝑗(𝑡𝑡) = |𝑦𝑦(𝑡𝑡) − 𝑔𝑔(𝑥̂𝑥𝑗𝑗(𝑡𝑡))| represents the absolute difference between the measurement and the predicted 
output for each particle. 

• Probability Minimization: 
Define 𝑧𝑧(𝑡𝑡) as a function of the weights and error terms. The goal is to find weights that minimize the 
probability of 𝑧𝑧(𝑡𝑡) being larger than a threshold 𝛾𝛾(𝑡𝑡). This threshold is chosen as the maximum of all 
𝛾𝛾𝑗𝑗(𝑡𝑡) plus 1 [25]. 

𝛾𝛾(𝑡𝑡) = max{𝛾𝛾𝑗𝑗(𝑡𝑡), 𝑗𝑗 = 1, … , 𝑁𝑁} + 1        (24) 
Assuming the measurement noise is Gaussian,  
Given that 𝑧𝑧(𝑡𝑡) is a linear combination of Gaussian random variables (due to the Gaussian noise assumption), 
𝑧𝑧(𝑡𝑡) itself follows a Gaussian distribution. 
The mean 𝑧𝑧0 of 𝑧𝑧(𝑡𝑡) is given by: 
 
𝑧𝑧0 = ∑𝑗𝑗=1

𝑁𝑁  Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)          (25) 
The variance 𝜁𝜁2 of 𝑧𝑧(𝑡𝑡) is given by: 
𝜁𝜁2 = 𝜎𝜎2∑𝑗𝑗=1

𝑁𝑁  Ψ𝑗𝑗
2(𝑡𝑡)          (26) 

Since 𝑧𝑧(𝑡𝑡) is Gaussian with mean 𝑧𝑧0 and variance 𝜁𝜁2, the probability density function of 𝑧𝑧(𝑡𝑡) for 𝑧𝑧 ≥ 𝑧𝑧0 is 
 

𝑝𝑝(𝑧𝑧) = {
2

√(2𝜋𝜋)𝜁𝜁2

0
  exp (− (𝑧𝑧−𝑧𝑧0)2

2𝜁𝜁2 ) , 𝑧𝑧 ≥ 𝑧𝑧0        (27) 

 

where 𝑧𝑧0 = ∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡) and 𝜁𝜁 = 𝜎𝜎√∑𝑗𝑗=1

𝑁𝑁  Ψ𝑗𝑗
2(𝑡𝑡). 

Here, the factor of 2 accounts for the fact that we are considering the distribution only for 𝑧𝑧 ≥ 𝑧𝑧0, effectively 
doubling the density in this region to maintain the correct normalization over the positive half. The density 
function (27) represents the likelihood of 𝑧𝑧(𝑡𝑡) given the weights Ψ𝑗𝑗(𝑡𝑡) and the Gaussian noise assumption. We 
are trying to optimize the weights Ψ𝑗𝑗(𝑡𝑡) in the context of a modified Particle Filter algorithm to minimize the 
probability that 𝑧𝑧(𝑡𝑡), a function of the weights and the errors, exceeds a threshold 𝛾𝛾(𝑡𝑡). 
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values and the actual measurement. 
 

• Conditional Expectation: 
 
Taking the conditional expectation of the cost function (22) with respect to the measurement noise 𝑒𝑒(𝑡𝑡) leads to: 
 

𝐸𝐸 [ ∑ Ψ𝑗𝑗(𝑡𝑡)(𝑔𝑔 (𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁
𝑗𝑗=1 + 𝑒𝑒(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)) ]

2
     = (∑ Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 )2 + 𝜎𝜎2 ∑ Ψ𝑗𝑗
2(𝑡𝑡)𝑁𝑁

𝑗𝑗=1    (23) 

 
where 𝛾𝛾𝑗𝑗(𝑡𝑡) = |𝑦𝑦(𝑡𝑡) − 𝑔𝑔(𝑥̂𝑥𝑗𝑗(𝑡𝑡))| represents the absolute difference between the measurement and the predicted 
output for each particle. 

• Probability Minimization: 
Define 𝑧𝑧(𝑡𝑡) as a function of the weights and error terms. The goal is to find weights that minimize the 
probability of 𝑧𝑧(𝑡𝑡) being larger than a threshold 𝛾𝛾(𝑡𝑡). This threshold is chosen as the maximum of all 
𝛾𝛾𝑗𝑗(𝑡𝑡) plus 1 [25]. 

𝛾𝛾(𝑡𝑡) = max{𝛾𝛾𝑗𝑗(𝑡𝑡), 𝑗𝑗 = 1, … , 𝑁𝑁} + 1        (24) 
Assuming the measurement noise is Gaussian,  
Given that 𝑧𝑧(𝑡𝑡) is a linear combination of Gaussian random variables (due to the Gaussian noise assumption), 
𝑧𝑧(𝑡𝑡) itself follows a Gaussian distribution. 
The mean 𝑧𝑧0 of 𝑧𝑧(𝑡𝑡) is given by: 
 
𝑧𝑧0 = ∑𝑗𝑗=1

𝑁𝑁  Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)          (25) 
The variance 𝜁𝜁2 of 𝑧𝑧(𝑡𝑡) is given by: 
𝜁𝜁2 = 𝜎𝜎2∑𝑗𝑗=1

𝑁𝑁  Ψ𝑗𝑗
2(𝑡𝑡)          (26) 

Since 𝑧𝑧(𝑡𝑡) is Gaussian with mean 𝑧𝑧0 and variance 𝜁𝜁2, the probability density function of 𝑧𝑧(𝑡𝑡) for 𝑧𝑧 ≥ 𝑧𝑧0 is 
 

𝑝𝑝(𝑧𝑧) = {
2

√(2𝜋𝜋)𝜁𝜁2

0
  exp (− (𝑧𝑧−𝑧𝑧0)2

2𝜁𝜁2 ) , 𝑧𝑧 ≥ 𝑧𝑧0        (27) 

 

where 𝑧𝑧0 = ∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡) and 𝜁𝜁 = 𝜎𝜎√∑𝑗𝑗=1

𝑁𝑁  Ψ𝑗𝑗
2(𝑡𝑡). 

Here, the factor of 2 accounts for the fact that we are considering the distribution only for 𝑧𝑧 ≥ 𝑧𝑧0, effectively 
doubling the density in this region to maintain the correct normalization over the positive half. The density 
function (27) represents the likelihood of 𝑧𝑧(𝑡𝑡) given the weights Ψ𝑗𝑗(𝑡𝑡) and the Gaussian noise assumption. We 
are trying to optimize the weights Ψ𝑗𝑗(𝑡𝑡) in the context of a modified Particle Filter algorithm to minimize the 
probability that 𝑧𝑧(𝑡𝑡), a function of the weights and the errors, exceeds a threshold 𝛾𝛾(𝑡𝑡). 
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𝑦𝑦(𝑡𝑡) = 𝑔𝑔(𝑥𝑥(𝑡𝑡)) = 𝑐𝑐 𝑥𝑥(𝑡𝑡) + 𝑘𝑘1𝑣𝑣(𝑡𝑡 − 1) + ⋯ + 𝑘𝑘𝑛𝑛𝑘𝑘𝑣𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘) + 𝑣𝑣(𝑡𝑡)     (20) 
The goal is to approximate a non-linear function 𝑔𝑔(𝑥𝑥(𝑡𝑡)) using the particles and their associated weights. This 
approximation is given by: 

𝑔𝑔(𝑥𝑥(𝑡𝑡)) ≈  ∑ Ψ𝑗𝑗(𝑡𝑡)𝑔𝑔(𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁
𝑗𝑗=1          (21) 

• Weight Optimization: 
 
To find the optimal weights Ψ𝑗𝑗(𝑡𝑡), minimizes a cost function: 

[ ∑ Ψ𝑗𝑗(𝑡𝑡)(𝑔𝑔 (𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁
𝑗𝑗=1 + 𝑒𝑒(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)) ]

2
= (∑ Ψ𝑗𝑗(𝑡𝑡)𝑔𝑔 (𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁

𝑗𝑗=1 + ∑ Ψ𝑗𝑗(𝑡𝑡)𝑒𝑒(𝑡𝑡)𝑁𝑁
𝑗𝑗=1 − ∑ Ψ𝑗𝑗(𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 )
2
 (22) 

 
This cost function represents the squared error between the predicted output based on the weighted particle 
values and the actual measurement. 
 

• Conditional Expectation: 
 
Taking the conditional expectation of the cost function (22) with respect to the measurement noise 𝑒𝑒(𝑡𝑡) leads to: 
 

𝐸𝐸 [ ∑ Ψ𝑗𝑗(𝑡𝑡)(𝑔𝑔 (𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁
𝑗𝑗=1 + 𝑒𝑒(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)) ]

2
     = (∑ Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 )2 + 𝜎𝜎2 ∑ Ψ𝑗𝑗
2(𝑡𝑡)𝑁𝑁

𝑗𝑗=1    (23) 

 
where 𝛾𝛾𝑗𝑗(𝑡𝑡) = |𝑦𝑦(𝑡𝑡) − 𝑔𝑔(𝑥̂𝑥𝑗𝑗(𝑡𝑡))| represents the absolute difference between the measurement and the predicted 
output for each particle. 

• Probability Minimization: 
Define 𝑧𝑧(𝑡𝑡) as a function of the weights and error terms. The goal is to find weights that minimize the 
probability of 𝑧𝑧(𝑡𝑡) being larger than a threshold 𝛾𝛾(𝑡𝑡). This threshold is chosen as the maximum of all 
𝛾𝛾𝑗𝑗(𝑡𝑡) plus 1 [25]. 

𝛾𝛾(𝑡𝑡) = max{𝛾𝛾𝑗𝑗(𝑡𝑡), 𝑗𝑗 = 1, … , 𝑁𝑁} + 1        (24) 
Assuming the measurement noise is Gaussian,  
Given that 𝑧𝑧(𝑡𝑡) is a linear combination of Gaussian random variables (due to the Gaussian noise assumption), 
𝑧𝑧(𝑡𝑡) itself follows a Gaussian distribution. 
The mean 𝑧𝑧0 of 𝑧𝑧(𝑡𝑡) is given by: 
 
𝑧𝑧0 = ∑𝑗𝑗=1

𝑁𝑁  Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)          (25) 
The variance 𝜁𝜁2 of 𝑧𝑧(𝑡𝑡) is given by: 
𝜁𝜁2 = 𝜎𝜎2∑𝑗𝑗=1

𝑁𝑁  Ψ𝑗𝑗
2(𝑡𝑡)          (26) 

Since 𝑧𝑧(𝑡𝑡) is Gaussian with mean 𝑧𝑧0 and variance 𝜁𝜁2, the probability density function of 𝑧𝑧(𝑡𝑡) for 𝑧𝑧 ≥ 𝑧𝑧0 is 
 

𝑝𝑝(𝑧𝑧) = {
2

√(2𝜋𝜋)𝜁𝜁2

0
  exp (− (𝑧𝑧−𝑧𝑧0)2

2𝜁𝜁2 ) , 𝑧𝑧 ≥ 𝑧𝑧0        (27) 

 

where 𝑧𝑧0 = ∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡) and 𝜁𝜁 = 𝜎𝜎√∑𝑗𝑗=1

𝑁𝑁  Ψ𝑗𝑗
2(𝑡𝑡). 

Here, the factor of 2 accounts for the fact that we are considering the distribution only for 𝑧𝑧 ≥ 𝑧𝑧0, effectively 
doubling the density in this region to maintain the correct normalization over the positive half. The density 
function (27) represents the likelihood of 𝑧𝑧(𝑡𝑡) given the weights Ψ𝑗𝑗(𝑡𝑡) and the Gaussian noise assumption. We 
are trying to optimize the weights Ψ𝑗𝑗(𝑡𝑡) in the context of a modified Particle Filter algorithm to minimize the 
probability that 𝑧𝑧(𝑡𝑡), a function of the weights and the errors, exceeds a threshold 𝛾𝛾(𝑡𝑡). 
 
 

The goal is to approximate a non-linear function g(x(t)) using the particles and their associated weights. This approximation is given 
by:

This cost function represents the squared error between the predicted output based on the weighted particle values and the actual 
measurement.

• 	 Conditional Expectation:
Taking the conditional expectation of the cost function (22) with respect to the measurement noise e(t) leads to:

•  Probability Minimization:
Define z(t) as a function of the weights and error terms. The goal is to find weights that minimize the probability of z(t) being larger 
than a threshold γ(t). This threshold is chosen as the maximum of all γj (t) plus 1 [26].

• 	 Weight Optimization:
To find the optimal weights Ψj (t), minimizes a cost function:
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𝑦𝑦(𝑡𝑡) = 𝑔𝑔(𝑥𝑥(𝑡𝑡)) = 𝑐𝑐 𝑥𝑥(𝑡𝑡) + 𝑘𝑘1𝑣𝑣(𝑡𝑡 − 1) + ⋯ + 𝑘𝑘𝑛𝑛𝑘𝑘𝑣𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘) + 𝑣𝑣(𝑡𝑡)     (20) 
The goal is to approximate a non-linear function 𝑔𝑔(𝑥𝑥(𝑡𝑡)) using the particles and their associated weights. This 
approximation is given by: 

𝑔𝑔(𝑥𝑥(𝑡𝑡)) ≈  ∑ Ψ𝑗𝑗(𝑡𝑡)𝑔𝑔(𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁
𝑗𝑗=1          (21) 

• Weight Optimization: 
 
To find the optimal weights Ψ𝑗𝑗(𝑡𝑡), minimizes a cost function: 

[ ∑ Ψ𝑗𝑗(𝑡𝑡)(𝑔𝑔 (𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁
𝑗𝑗=1 + 𝑒𝑒(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)) ]

2
= (∑ Ψ𝑗𝑗(𝑡𝑡)𝑔𝑔 (𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁

𝑗𝑗=1 + ∑ Ψ𝑗𝑗(𝑡𝑡)𝑒𝑒(𝑡𝑡)𝑁𝑁
𝑗𝑗=1 − ∑ Ψ𝑗𝑗(𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 )
2
 (22) 

 
This cost function represents the squared error between the predicted output based on the weighted particle 
values and the actual measurement. 
 

• Conditional Expectation: 
 
Taking the conditional expectation of the cost function (22) with respect to the measurement noise 𝑒𝑒(𝑡𝑡) leads to: 
 

𝐸𝐸 [ ∑ Ψ𝑗𝑗(𝑡𝑡)(𝑔𝑔 (𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁
𝑗𝑗=1 + 𝑒𝑒(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)) ]

2
     = (∑ Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 )2 + 𝜎𝜎2 ∑ Ψ𝑗𝑗
2(𝑡𝑡)𝑁𝑁

𝑗𝑗=1    (23) 

 
where 𝛾𝛾𝑗𝑗(𝑡𝑡) = |𝑦𝑦(𝑡𝑡) − 𝑔𝑔(𝑥̂𝑥𝑗𝑗(𝑡𝑡))| represents the absolute difference between the measurement and the predicted 
output for each particle. 

• Probability Minimization: 
Define 𝑧𝑧(𝑡𝑡) as a function of the weights and error terms. The goal is to find weights that minimize the 
probability of 𝑧𝑧(𝑡𝑡) being larger than a threshold 𝛾𝛾(𝑡𝑡). This threshold is chosen as the maximum of all 
𝛾𝛾𝑗𝑗(𝑡𝑡) plus 1 [25]. 

𝛾𝛾(𝑡𝑡) = max{𝛾𝛾𝑗𝑗(𝑡𝑡), 𝑗𝑗 = 1, … , 𝑁𝑁} + 1        (24) 
Assuming the measurement noise is Gaussian,  
Given that 𝑧𝑧(𝑡𝑡) is a linear combination of Gaussian random variables (due to the Gaussian noise assumption), 
𝑧𝑧(𝑡𝑡) itself follows a Gaussian distribution. 
The mean 𝑧𝑧0 of 𝑧𝑧(𝑡𝑡) is given by: 
 
𝑧𝑧0 = ∑𝑗𝑗=1

𝑁𝑁  Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)          (25) 
The variance 𝜁𝜁2 of 𝑧𝑧(𝑡𝑡) is given by: 
𝜁𝜁2 = 𝜎𝜎2∑𝑗𝑗=1

𝑁𝑁  Ψ𝑗𝑗
2(𝑡𝑡)          (26) 

Since 𝑧𝑧(𝑡𝑡) is Gaussian with mean 𝑧𝑧0 and variance 𝜁𝜁2, the probability density function of 𝑧𝑧(𝑡𝑡) for 𝑧𝑧 ≥ 𝑧𝑧0 is 
 

𝑝𝑝(𝑧𝑧) = {
2

√(2𝜋𝜋)𝜁𝜁2

0
  exp (− (𝑧𝑧−𝑧𝑧0)2

2𝜁𝜁2 ) , 𝑧𝑧 ≥ 𝑧𝑧0        (27) 

 

where 𝑧𝑧0 = ∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡) and 𝜁𝜁 = 𝜎𝜎√∑𝑗𝑗=1

𝑁𝑁  Ψ𝑗𝑗
2(𝑡𝑡). 

Here, the factor of 2 accounts for the fact that we are considering the distribution only for 𝑧𝑧 ≥ 𝑧𝑧0, effectively 
doubling the density in this region to maintain the correct normalization over the positive half. The density 
function (27) represents the likelihood of 𝑧𝑧(𝑡𝑡) given the weights Ψ𝑗𝑗(𝑡𝑡) and the Gaussian noise assumption. We 
are trying to optimize the weights Ψ𝑗𝑗(𝑡𝑡) in the context of a modified Particle Filter algorithm to minimize the 
probability that 𝑧𝑧(𝑡𝑡), a function of the weights and the errors, exceeds a threshold 𝛾𝛾(𝑡𝑡). 
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𝑦𝑦(𝑡𝑡) = 𝑔𝑔(𝑥𝑥(𝑡𝑡)) = 𝑐𝑐 𝑥𝑥(𝑡𝑡) + 𝑘𝑘1𝑣𝑣(𝑡𝑡 − 1) + ⋯ + 𝑘𝑘𝑛𝑛𝑘𝑘𝑣𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘) + 𝑣𝑣(𝑡𝑡)     (20) 
The goal is to approximate a non-linear function 𝑔𝑔(𝑥𝑥(𝑡𝑡)) using the particles and their associated weights. This 
approximation is given by: 

𝑔𝑔(𝑥𝑥(𝑡𝑡)) ≈  ∑ Ψ𝑗𝑗(𝑡𝑡)𝑔𝑔(𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁
𝑗𝑗=1          (21) 

• Weight Optimization: 
 
To find the optimal weights Ψ𝑗𝑗(𝑡𝑡), minimizes a cost function: 

[ ∑ Ψ𝑗𝑗(𝑡𝑡)(𝑔𝑔 (𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁
𝑗𝑗=1 + 𝑒𝑒(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)) ]

2
= (∑ Ψ𝑗𝑗(𝑡𝑡)𝑔𝑔 (𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁

𝑗𝑗=1 + ∑ Ψ𝑗𝑗(𝑡𝑡)𝑒𝑒(𝑡𝑡)𝑁𝑁
𝑗𝑗=1 − ∑ Ψ𝑗𝑗(𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 )
2
 (22) 

 
This cost function represents the squared error between the predicted output based on the weighted particle 
values and the actual measurement. 
 

• Conditional Expectation: 
 
Taking the conditional expectation of the cost function (22) with respect to the measurement noise 𝑒𝑒(𝑡𝑡) leads to: 
 

𝐸𝐸 [ ∑ Ψ𝑗𝑗(𝑡𝑡)(𝑔𝑔 (𝑥̂𝑥𝑗𝑗(𝑡𝑡))𝑁𝑁
𝑗𝑗=1 + 𝑒𝑒(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)) ]

2
     = (∑ Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 )2 + 𝜎𝜎2 ∑ Ψ𝑗𝑗
2(𝑡𝑡)𝑁𝑁

𝑗𝑗=1    (23) 

 
where 𝛾𝛾𝑗𝑗(𝑡𝑡) = |𝑦𝑦(𝑡𝑡) − 𝑔𝑔(𝑥̂𝑥𝑗𝑗(𝑡𝑡))| represents the absolute difference between the measurement and the predicted 
output for each particle. 

• Probability Minimization: 
Define 𝑧𝑧(𝑡𝑡) as a function of the weights and error terms. The goal is to find weights that minimize the 
probability of 𝑧𝑧(𝑡𝑡) being larger than a threshold 𝛾𝛾(𝑡𝑡). This threshold is chosen as the maximum of all 
𝛾𝛾𝑗𝑗(𝑡𝑡) plus 1 [25]. 

𝛾𝛾(𝑡𝑡) = max{𝛾𝛾𝑗𝑗(𝑡𝑡), 𝑗𝑗 = 1, … , 𝑁𝑁} + 1        (24) 
Assuming the measurement noise is Gaussian,  
Given that 𝑧𝑧(𝑡𝑡) is a linear combination of Gaussian random variables (due to the Gaussian noise assumption), 
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• 𝛾𝛾(𝑡𝑡) = max{𝛾𝛾𝑗𝑗(𝑡𝑡), 𝑗𝑗 = 1, … , 𝑁𝑁} + 1 

• 𝜁𝜁 = 𝜎𝜎√∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗

2(𝑡𝑡) 

• Deriving the Optimization Problem 
 
We want to minimize the probability 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑧𝑧 ≥ 𝛾𝛾(𝑡𝑡)). From the Gaussian density function (27). Consider the 
cumulative distribution function (CDF) of 𝑧𝑧: 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑧𝑧(𝑡𝑡) ≥ 𝛾𝛾(𝑡𝑡)) = ∫ 𝑝𝑝(𝑧𝑧)𝑑𝑑𝑑𝑑∞

𝛾𝛾(𝑡𝑡)          (28) 

The smaller this probability, the better. 
Minimizing (28) is equivalent to maximizing the argument inside the exponential of the Gaussian density 
function, as this will reduce the probability that 𝑧𝑧(𝑡𝑡) exceeds 𝛾𝛾(𝑡𝑡). Therefore, we focus on maximizing the 
quantity: 
 
𝛾𝛾(𝑡𝑡)−𝑧𝑧0

𝜁𝜁 = 𝛾𝛾(𝑡𝑡)− ∑ Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

𝜎𝜎√∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗

2(𝑡𝑡)
         (29) 

We need to find Ψ𝑗𝑗(𝑡𝑡) that maximize: 
𝛾𝛾(𝑡𝑡)− ∑ Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1

√∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗

2(𝑡𝑡)
          (30) 

subject to the constraint  ∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗(𝑡𝑡) = 1 

To solve constrained optimization problem (30), we use the method of Lagrange Multipliers for Constrained 
Optimization. Define Lagrangian: 
 

𝐿𝐿(Ψ𝑗𝑗, 𝜆𝜆) = 𝛾𝛾(𝑡𝑡)− ∑ Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

√∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗

2(𝑡𝑡)
+  𝜆𝜆(∑ Ψ𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1   − 1)       (31) 

here 𝜆𝜆 is the Lagrange multiplier. Take the partial derivatives of 𝐿𝐿 with respect to Ψ𝑗𝑗 and set them to zero: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕Ψ𝑗𝑗 = −𝛾𝛾𝑗𝑗(𝑡𝑡)

√∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗

2(𝑡𝑡)
− (𝛾𝛾(𝑡𝑡)−∑ Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 )Ψ𝑗𝑗

(∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗

2(𝑡𝑡))
3
2

+ 𝜆𝜆 = 0       (32) 

 
Simplify and solve the resulting system (32) the optimal weights Ψ𝑗𝑗(𝑡𝑡) will be 

Ψ𝑗𝑗(𝑡𝑡) = 𝛾𝛾(𝑡𝑡)−𝛾𝛾𝑗𝑗(𝑡𝑡)
𝑁𝑁 𝛾𝛾(𝑡𝑡)−∑ 𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1
          (33) 

 
These weights are then used to update the particle weights in the Particle Filter algorithm. 
Therefore, the weight is: 
 
𝜔𝜔𝑗𝑗(𝑡𝑡) = Ψ𝑗𝑗(𝑡𝑡)𝜔𝜔𝑗𝑗(𝑡𝑡 − 1)          (34) 
 
The weights 𝜔𝜔𝑗𝑗(𝑡𝑡) are then normalized to ensure that they sum to 1: 

𝜔̅𝜔𝑗𝑗(𝑡𝑡) = 𝜔𝜔𝑗𝑗(𝑡𝑡)
∑ 𝜔𝜔𝑘𝑘(𝑡𝑡)𝑁𝑁

𝑘𝑘=1
          (35) 

 
Remark 3: This modified particle filter uses a direct weight optimization approach to address the issue of 
unknown measurement noise variance. The key idea is to minimize a cost function that measures the error 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑧𝑧(𝑡𝑡) ≥ 𝛾𝛾(𝑡𝑡)) = ∫ 𝑝𝑝(𝑧𝑧)𝑑𝑑𝑑𝑑∞

𝛾𝛾(𝑡𝑡)          (28) 

The smaller this probability, the better. 
Minimizing (28) is equivalent to maximizing the argument inside the exponential of the Gaussian density 
function, as this will reduce the probability that 𝑧𝑧(𝑡𝑡) exceeds 𝛾𝛾(𝑡𝑡). Therefore, we focus on maximizing the 
quantity: 
 
𝛾𝛾(𝑡𝑡)−𝑧𝑧0

𝜁𝜁 = 𝛾𝛾(𝑡𝑡)− ∑ Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁
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We need to find Ψ𝑗𝑗(𝑡𝑡) that maximize: 
𝛾𝛾(𝑡𝑡)− ∑ Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1

√∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗

2(𝑡𝑡)
          (30) 

subject to the constraint  ∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗(𝑡𝑡) = 1 

To solve constrained optimization problem (30), we use the method of Lagrange Multipliers for Constrained 
Optimization. Define Lagrangian: 
 

𝐿𝐿(Ψ𝑗𝑗, 𝜆𝜆) = 𝛾𝛾(𝑡𝑡)− ∑ Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

√∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗

2(𝑡𝑡)
+  𝜆𝜆(∑ Ψ𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1   − 1)       (31) 

here 𝜆𝜆 is the Lagrange multiplier. Take the partial derivatives of 𝐿𝐿 with respect to Ψ𝑗𝑗 and set them to zero: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕Ψ𝑗𝑗 = −𝛾𝛾𝑗𝑗(𝑡𝑡)

√∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗

2(𝑡𝑡)
− (𝛾𝛾(𝑡𝑡)−∑ Ψ𝑗𝑗(𝑡𝑡)𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1 )Ψ𝑗𝑗

(∑𝑗𝑗=1
𝑁𝑁  Ψ𝑗𝑗

2(𝑡𝑡))
3
2

+ 𝜆𝜆 = 0       (32) 

 
Simplify and solve the resulting system (32) the optimal weights Ψ𝑗𝑗(𝑡𝑡) will be 

Ψ𝑗𝑗(𝑡𝑡) = 𝛾𝛾(𝑡𝑡)−𝛾𝛾𝑗𝑗(𝑡𝑡)
𝑁𝑁 𝛾𝛾(𝑡𝑡)−∑ 𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1
          (33) 

 
These weights are then used to update the particle weights in the Particle Filter algorithm. 
Therefore, the weight is: 
 
𝜔𝜔𝑗𝑗(𝑡𝑡) = Ψ𝑗𝑗(𝑡𝑡)𝜔𝜔𝑗𝑗(𝑡𝑡 − 1)          (34) 
 
The weights 𝜔𝜔𝑗𝑗(𝑡𝑡) are then normalized to ensure that they sum to 1: 

𝜔̅𝜔𝑗𝑗(𝑡𝑡) = 𝜔𝜔𝑗𝑗(𝑡𝑡)
∑ 𝜔𝜔𝑘𝑘(𝑡𝑡)𝑁𝑁

𝑘𝑘=1
          (35) 

 
Remark 3: This modified particle filter uses a direct weight optimization approach to address the issue of 
unknown measurement noise variance. The key idea is to minimize a cost function that measures the error 

We want to minimize the probability Prob (z ≥ γ (t)). From the Gaussian density function (27). Consider the cumulative distribution 
function (CDF) of z:

The smaller this probability, the better.
Minimizing (28) is equivalent to maximizing the argument inside the exponential of the Gaussian density function, as this will 
reduce the probability that z(t) exceeds γ(t). Therefore, we focus on maximizing the quantity:

To solve constrained optimization problem (30), we use the method of Lagrange Multipliers for Constrained Optimization. Define 
Lagrangian:

here λ is the Lagrange multiplier. Take the partial derivatives of L with respect to Ψj and set them to zero:
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here 𝜆𝜆 is the Lagrange multiplier. Take the partial derivatives of 𝐿𝐿 with respect to Ψ𝑗𝑗 and set them to zero: 
 

𝜕𝜕𝜕𝜕
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Ψ𝑗𝑗(𝑡𝑡) = 𝛾𝛾(𝑡𝑡)−𝛾𝛾𝑗𝑗(𝑡𝑡)
𝑁𝑁 𝛾𝛾(𝑡𝑡)−∑ 𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1
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These weights are then used to update the particle weights in the Particle Filter algorithm. 
Therefore, the weight is: 
 
𝜔𝜔𝑗𝑗(𝑡𝑡) = Ψ𝑗𝑗(𝑡𝑡)𝜔𝜔𝑗𝑗(𝑡𝑡 − 1)          (34) 
 
The weights 𝜔𝜔𝑗𝑗(𝑡𝑡) are then normalized to ensure that they sum to 1: 

𝜔̅𝜔𝑗𝑗(𝑡𝑡) = 𝜔𝜔𝑗𝑗(𝑡𝑡)
∑ 𝜔𝜔𝑘𝑘(𝑡𝑡)𝑁𝑁

𝑘𝑘=1
          (35) 

 
Remark 3: This modified particle filter uses a direct weight optimization approach to address the issue of 
unknown measurement noise variance. The key idea is to minimize a cost function that measures the error 
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Remark 3: This modified particle filter uses a direct weight optimization approach to address the issue of 
unknown measurement noise variance. The key idea is to minimize a cost function that measures the error 

Simplify and solve the resulting system (32) the optimal weights Ψj (t) will be

Remark 3: This modified particle filter uses a direct weight optimization approach to address the issue of unknown measurement 
noise variance. The key idea is to minimize a cost function that measures the error between the predicted and actual measurements, 
considering the uncertain noise variance. This method allows the filter to adapt to situations where the noise characteristics are 
unknown or change over time.

3.3 Bilinear State Observer for Bilinear Systems (BSO)
For comparative purposes to demonstrate the effectiveness of the proposed algorithm, this paper references common approaches to 
estimating the state of bilinear systems, such as in which typically rely on minimizing the state estimation error covariance matrix to 
obtain optimal states [10, 26, 27]. Inspired by this concept, a bilinear state observer for bilinear systems is derived using observation 
information. According to the state estimation part of a bilinear state observer algorithm (BSO-RLS) is implemented through the 
following iterative equations:

Where, P and G represents estimation error covariance and observer gain respectively. 
The algorithm (36) – (38) are combined with the parameter estimation techniques used in different studies to jointly estimate the 
state and parameters of a proposed bilinear system.

4. A Bilinear Particle Filter-Based B-PF-RLS Algorithm
This section presents an algorithm for jointly estimating parameters and states of a bilinear system with colored measurement 
noise. The algorithm combines a recursive least squares (RLS) estimator for parameter identification and a particle filter (PF) for 
state estimation with its weight calculated with a known measurement noise variance and unknown measurement noise variance. 
This approach effectively handles the challenges posed by the system's nonlinear nature and the presence of colored noise with and 
without knowing measurement noise variance.

4.1. The Parameter Estimation Algorithm
Define the quadratic criterion function as

Based on the minimization of the criterion function (39), the system parameters are estimated according to the identification model 
(8) using least squares principle. Therefore, we have the following recursion relation [28].
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3.3 Bilinear State Observer for Bilinear Systems (BSO) 
 
For comparative purposes to demonstrate the effectiveness of the proposed algorithm, this paper references 
common approaches to estimating the state of bilinear systems, such as in [10], [26], [27], which typically rely on 
minimizing the state estimation error covariance matrix to obtain optimal states. Inspired by this concept, a bilinear 
state observer for bilinear systems is derived using observation information. According to [10], the state estimation 
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𝑥̂𝑥(𝑡𝑡 + 1) = 𝐴̂𝐴 𝑥̂𝑥(𝑡𝑡) + 𝐵̂𝐵𝑥̂𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝐺𝐺[𝑦𝑦(𝑡𝑡) − 𝐻𝐻𝑥̂𝑥(𝑡𝑡) − 𝐽𝐽1𝑣̂𝑣(𝑡𝑡 − 1) − ⋯ − 𝐽𝐽𝑛𝑛𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛)]   (36) 
 
𝐺𝐺 = [𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)]𝑃𝑃(𝑡𝑡)𝐻𝐻𝑇𝑇[1 + 𝐻𝐻𝐻𝐻(𝑡𝑡)𝐻𝐻𝑇𝑇]−1        (37) 
 

𝑃𝑃(𝑡𝑡 + 1) = [𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)]𝑃𝑃(𝑡𝑡)[𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)] 𝑇𝑇 − 𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡)[𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)]𝑇𝑇
     (38) 

 
Where, 𝑃𝑃 and 𝐺𝐺 represents estimation error covariance and observer gain respectively.  
 
The algorithm (36) – (38) are combined with the parameter estimation techniques used in different studies [10], 
[26], [27] to jointly estimate the state and parameters of a proposed bilinear system. 
 

4. A bilinear particle filter-based B-PF-RLS algorithm 
 

This section presents an algorithm for jointly estimating parameters and states of a bilinear system with colored 
measurement noise. The algorithm combines a recursive least squares (RLS) estimator for parameter identification 
and a particle filter (PF) for state estimation with its weight calculated with a known measurement noise variance 
and unknown measurement noise variance. This approach effectively handles the challenges posed by the system's 
nonlinear nature and the presence of colored noise with and without knowing measurement noise variance. 

4.1. The parameter estimation algorithm 
 
Define the quadratic criterion function as 
 
𝐶𝐶(𝜃𝜃): = ∑𝑗𝑗=1

𝐿𝐿  ∥∥𝑦𝑦(𝑗𝑗) − 𝜑𝜑(𝑗𝑗)𝑇𝑇𝜃𝜃 − 𝛽𝛽(𝑗𝑗)∥∥2,        (39) 
 
Based on the minimization of the criterion function (39), the system parameters are estimated according to the 
identification model (8) using least squares principle. Therefore, we have the following recursion relation [28]. 

 
𝜃̂𝜃(𝑡𝑡) = 𝜃̂𝜃(𝑡𝑡 − 1) + 𝐿𝐿(𝑡𝑡) [𝑦𝑦(𝑡𝑡) − 𝛽𝛽(𝑡𝑡) − 𝜑𝜑(𝑡𝑡)𝑇𝑇𝜃̂𝜃(𝑡𝑡 − 1)]      (40) 

 
𝐿𝐿(𝑡𝑡) = 𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)

1+𝜑𝜑(𝑡𝑡)𝑇𝑇𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)                        (41) 

 
𝑃𝑃(𝑡𝑡) = 𝑃𝑃(𝑡𝑡 − 1) − 𝐿𝐿(𝑡𝑡)[𝑃𝑃(𝑡𝑡 − 1)𝜑𝜑(𝑡𝑡)]𝑇𝑇, 𝑃𝑃(0) = 𝑝𝑝0𝐼𝐼𝑛𝑛,      (42) 
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between the predicted and actual measurements, considering the uncertain noise variance. This method allows 
the filter to adapt to situations where the noise characteristics are unknown or change over time. 
 

3.3 Bilinear State Observer for Bilinear Systems (BSO) 
 
For comparative purposes to demonstrate the effectiveness of the proposed algorithm, this paper references 
common approaches to estimating the state of bilinear systems, such as in [10], [26], [27], which typically rely on 
minimizing the state estimation error covariance matrix to obtain optimal states. Inspired by this concept, a bilinear 
state observer for bilinear systems is derived using observation information. According to [10], the state estimation 
part of a bilinear state observer algorithm (BSO-RLS) is implemented through the following iterative equations: 
 
𝑥̂𝑥(𝑡𝑡 + 1) = 𝐴̂𝐴 𝑥̂𝑥(𝑡𝑡) + 𝐵̂𝐵𝑥̂𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝐺𝐺[𝑦𝑦(𝑡𝑡) − 𝐻𝐻𝑥̂𝑥(𝑡𝑡) − 𝐽𝐽1𝑣̂𝑣(𝑡𝑡 − 1) − ⋯ − 𝐽𝐽𝑛𝑛𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛)]   (36) 
 
𝐺𝐺 = [𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)]𝑃𝑃(𝑡𝑡)𝐻𝐻𝑇𝑇[1 + 𝐻𝐻𝐻𝐻(𝑡𝑡)𝐻𝐻𝑇𝑇]−1        (37) 
 

𝑃𝑃(𝑡𝑡 + 1) = [𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)]𝑃𝑃(𝑡𝑡)[𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)] 𝑇𝑇 − 𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡)[𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)]𝑇𝑇
     (38) 

 
Where, 𝑃𝑃 and 𝐺𝐺 represents estimation error covariance and observer gain respectively.  
 
The algorithm (36) – (38) are combined with the parameter estimation techniques used in different studies [10], 
[26], [27] to jointly estimate the state and parameters of a proposed bilinear system. 
 

4. A bilinear particle filter-based B-PF-RLS algorithm 
 

This section presents an algorithm for jointly estimating parameters and states of a bilinear system with colored 
measurement noise. The algorithm combines a recursive least squares (RLS) estimator for parameter identification 
and a particle filter (PF) for state estimation with its weight calculated with a known measurement noise variance 
and unknown measurement noise variance. This approach effectively handles the challenges posed by the system's 
nonlinear nature and the presence of colored noise with and without knowing measurement noise variance. 

4.1. The parameter estimation algorithm 
 
Define the quadratic criterion function as 
 
𝐶𝐶(𝜃𝜃): = ∑𝑗𝑗=1

𝐿𝐿  ∥∥𝑦𝑦(𝑗𝑗) − 𝜑𝜑(𝑗𝑗)𝑇𝑇𝜃𝜃 − 𝛽𝛽(𝑗𝑗)∥∥2,        (39) 
 
Based on the minimization of the criterion function (39), the system parameters are estimated according to the 
identification model (8) using least squares principle. Therefore, we have the following recursion relation [28]. 

 
𝜃̂𝜃(𝑡𝑡) = 𝜃̂𝜃(𝑡𝑡 − 1) + 𝐿𝐿(𝑡𝑡) [𝑦𝑦(𝑡𝑡) − 𝛽𝛽(𝑡𝑡) − 𝜑𝜑(𝑡𝑡)𝑇𝑇𝜃̂𝜃(𝑡𝑡 − 1)]      (40) 

 
𝐿𝐿(𝑡𝑡) = 𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)

1+𝜑𝜑(𝑡𝑡)𝑇𝑇𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)                        (41) 

 
𝑃𝑃(𝑡𝑡) = 𝑃𝑃(𝑡𝑡 − 1) − 𝐿𝐿(𝑡𝑡)[𝑃𝑃(𝑡𝑡 − 1)𝜑𝜑(𝑡𝑡)]𝑇𝑇, 𝑃𝑃(0) = 𝑝𝑝0𝐼𝐼𝑛𝑛,      (42) 
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between the predicted and actual measurements, considering the uncertain noise variance. This method allows 
the filter to adapt to situations where the noise characteristics are unknown or change over time. 
 

3.3 Bilinear State Observer for Bilinear Systems (BSO) 
 
For comparative purposes to demonstrate the effectiveness of the proposed algorithm, this paper references 
common approaches to estimating the state of bilinear systems, such as in [10], [26], [27], which typically rely on 
minimizing the state estimation error covariance matrix to obtain optimal states. Inspired by this concept, a bilinear 
state observer for bilinear systems is derived using observation information. According to [10], the state estimation 
part of a bilinear state observer algorithm (BSO-RLS) is implemented through the following iterative equations: 
 
𝑥̂𝑥(𝑡𝑡 + 1) = 𝐴̂𝐴 𝑥̂𝑥(𝑡𝑡) + 𝐵̂𝐵𝑥̂𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝐺𝐺[𝑦𝑦(𝑡𝑡) − 𝐻𝐻𝑥̂𝑥(𝑡𝑡) − 𝐽𝐽1𝑣̂𝑣(𝑡𝑡 − 1) − ⋯ − 𝐽𝐽𝑛𝑛𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛)]   (36) 
 
𝐺𝐺 = [𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)]𝑃𝑃(𝑡𝑡)𝐻𝐻𝑇𝑇[1 + 𝐻𝐻𝐻𝐻(𝑡𝑡)𝐻𝐻𝑇𝑇]−1        (37) 
 

𝑃𝑃(𝑡𝑡 + 1) = [𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)]𝑃𝑃(𝑡𝑡)[𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)] 𝑇𝑇 − 𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡)[𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)]𝑇𝑇
     (38) 

 
Where, 𝑃𝑃 and 𝐺𝐺 represents estimation error covariance and observer gain respectively.  
 
The algorithm (36) – (38) are combined with the parameter estimation techniques used in different studies [10], 
[26], [27] to jointly estimate the state and parameters of a proposed bilinear system. 
 

4. A bilinear particle filter-based B-PF-RLS algorithm 
 

This section presents an algorithm for jointly estimating parameters and states of a bilinear system with colored 
measurement noise. The algorithm combines a recursive least squares (RLS) estimator for parameter identification 
and a particle filter (PF) for state estimation with its weight calculated with a known measurement noise variance 
and unknown measurement noise variance. This approach effectively handles the challenges posed by the system's 
nonlinear nature and the presence of colored noise with and without knowing measurement noise variance. 

4.1. The parameter estimation algorithm 
 
Define the quadratic criterion function as 
 
𝐶𝐶(𝜃𝜃): = ∑𝑗𝑗=1

𝐿𝐿  ∥∥𝑦𝑦(𝑗𝑗) − 𝜑𝜑(𝑗𝑗)𝑇𝑇𝜃𝜃 − 𝛽𝛽(𝑗𝑗)∥∥2,        (39) 
 
Based on the minimization of the criterion function (39), the system parameters are estimated according to the 
identification model (8) using least squares principle. Therefore, we have the following recursion relation [28]. 

 
𝜃̂𝜃(𝑡𝑡) = 𝜃̂𝜃(𝑡𝑡 − 1) + 𝐿𝐿(𝑡𝑡) [𝑦𝑦(𝑡𝑡) − 𝛽𝛽(𝑡𝑡) − 𝜑𝜑(𝑡𝑡)𝑇𝑇𝜃̂𝜃(𝑡𝑡 − 1)]      (40) 

 
𝐿𝐿(𝑡𝑡) = 𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)

1+𝜑𝜑(𝑡𝑡)𝑇𝑇𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)                        (41) 

 
𝑃𝑃(𝑡𝑡) = 𝑃𝑃(𝑡𝑡 − 1) − 𝐿𝐿(𝑡𝑡)[𝑃𝑃(𝑡𝑡 − 1)𝜑𝜑(𝑡𝑡)]𝑇𝑇, 𝑃𝑃(0) = 𝑝𝑝0𝐼𝐼𝑛𝑛,      (42) 
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between the predicted and actual measurements, considering the uncertain noise variance. This method allows 
the filter to adapt to situations where the noise characteristics are unknown or change over time. 
 

3.3 Bilinear State Observer for Bilinear Systems (BSO) 
 
For comparative purposes to demonstrate the effectiveness of the proposed algorithm, this paper references 
common approaches to estimating the state of bilinear systems, such as in [10], [26], [27], which typically rely on 
minimizing the state estimation error covariance matrix to obtain optimal states. Inspired by this concept, a bilinear 
state observer for bilinear systems is derived using observation information. According to [10], the state estimation 
part of a bilinear state observer algorithm (BSO-RLS) is implemented through the following iterative equations: 
 
𝑥̂𝑥(𝑡𝑡 + 1) = 𝐴̂𝐴 𝑥̂𝑥(𝑡𝑡) + 𝐵̂𝐵𝑥̂𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝐺𝐺[𝑦𝑦(𝑡𝑡) − 𝐻𝐻𝑥̂𝑥(𝑡𝑡) − 𝐽𝐽1𝑣̂𝑣(𝑡𝑡 − 1) − ⋯ − 𝐽𝐽𝑛𝑛𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛)]   (36) 
 
𝐺𝐺 = [𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)]𝑃𝑃(𝑡𝑡)𝐻𝐻𝑇𝑇[1 + 𝐻𝐻𝐻𝐻(𝑡𝑡)𝐻𝐻𝑇𝑇]−1        (37) 
 

𝑃𝑃(𝑡𝑡 + 1) = [𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)]𝑃𝑃(𝑡𝑡)[𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)] 𝑇𝑇 − 𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡)[𝐴̂𝐴 + 𝐵̂𝐵𝑢𝑢(𝑡𝑡)]𝑇𝑇
     (38) 

 
Where, 𝑃𝑃 and 𝐺𝐺 represents estimation error covariance and observer gain respectively.  
 
The algorithm (36) – (38) are combined with the parameter estimation techniques used in different studies [10], 
[26], [27] to jointly estimate the state and parameters of a proposed bilinear system. 
 

4. A bilinear particle filter-based B-PF-RLS algorithm 
 

This section presents an algorithm for jointly estimating parameters and states of a bilinear system with colored 
measurement noise. The algorithm combines a recursive least squares (RLS) estimator for parameter identification 
and a particle filter (PF) for state estimation with its weight calculated with a known measurement noise variance 
and unknown measurement noise variance. This approach effectively handles the challenges posed by the system's 
nonlinear nature and the presence of colored noise with and without knowing measurement noise variance. 

4.1. The parameter estimation algorithm 
 
Define the quadratic criterion function as 
 
𝐶𝐶(𝜃𝜃): = ∑𝑗𝑗=1

𝐿𝐿  ∥∥𝑦𝑦(𝑗𝑗) − 𝜑𝜑(𝑗𝑗)𝑇𝑇𝜃𝜃 − 𝛽𝛽(𝑗𝑗)∥∥2,        (39) 
 
Based on the minimization of the criterion function (39), the system parameters are estimated according to the 
identification model (8) using least squares principle. Therefore, we have the following recursion relation [28]. 

 
𝜃̂𝜃(𝑡𝑡) = 𝜃̂𝜃(𝑡𝑡 − 1) + 𝐿𝐿(𝑡𝑡) [𝑦𝑦(𝑡𝑡) − 𝛽𝛽(𝑡𝑡) − 𝜑𝜑(𝑡𝑡)𝑇𝑇𝜃̂𝜃(𝑡𝑡 − 1)]      (40) 

 
𝐿𝐿(𝑡𝑡) = 𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)

1+𝜑𝜑(𝑡𝑡)𝑇𝑇𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)                        (41) 

 
𝑃𝑃(𝑡𝑡) = 𝑃𝑃(𝑡𝑡 − 1) − 𝐿𝐿(𝑡𝑡)[𝑃𝑃(𝑡𝑡 − 1)𝜑𝜑(𝑡𝑡)]𝑇𝑇, 𝑃𝑃(0) = 𝑝𝑝0𝐼𝐼𝑛𝑛,      (42) 

 
There is a significant challenge in implementing algorithms (39)-(42) because the presence of x(t-1)  , either fully or partially, in 
the formulations of φ(t) defined in section 2 necessitates finding the actual or estimated elements of the vector x(t-1). Similarly, 
the presence of the actual or estimated values of wi (t - i) and v (t - i) complicates the formulations of both β (t) and φv (t), posing 
a significant challenge in formulating the information vector φ(t), which is a crucial element in executing and implementing the 
mentioned algorithms. This issue can be overcome by incorporating the estimated state xˆ(t - i) through the integration of the particle 
filtering algorithm within the overall execution of the algorithm to appropriately estimate the system state x (t - 1) and benefit from 
the advantages offered by the particle filter. Implementing and executing the particle filtering algorithm to estimate the system state 
x (t - 1) uses the system parameters to be estimated within the overall execution loop of the algorithm in an iterative manner, which 
is known as the idea of the auxiliary model mentioned in several previous studies such as and [8, 29]. As for wi (t - i) and v (t - i) 
mentioned in the formulations of β (t) and φv (t), the system parameters to be estimated can be used through the system equations 
under investigation according to the following equations

9 
 

There is a significant challenge in implementing algorithms (39)-(42) because the presence of 𝑥𝑥(𝑡𝑡 − 1)   , either 
fully or partially, in the formulations of 𝜑𝜑(𝑡𝑡) defined in section 2 necessitates finding the actual or estimated 
elements of the vector 𝑥𝑥(𝑡𝑡 − 1). Similarly, the presence of the actual or estimated values of 𝑤𝑤𝑖𝑖(𝑡𝑡 − 𝑖𝑖) and 𝑣𝑣(𝑡𝑡 − 𝑖𝑖) 
complicates the formulations of both 𝛽𝛽(𝑡𝑡) and 𝜑𝜑𝑣𝑣(𝑡𝑡), posing a significant challenge in formulating the information 
vector 𝜑𝜑(𝑡𝑡), which is a crucial element in executing and implementing the mentioned algorithms. This issue can 
be overcome by incorporating the estimated state 𝑥̂𝑥(𝑡𝑡 − 𝑖𝑖) through the integration of the particle filtering 
algorithm within the overall execution of the algorithm to appropriately estimate the system state 𝑥𝑥(𝑡𝑡 − 1) and 
benefit from the advantages offered by the particle filter. Implementing and executing the particle filtering 
algorithm to estimate the system state 𝑥𝑥(𝑡𝑡 − 1) uses the system parameters to be estimated within the overall 
execution loop of the algorithm in an iterative manner, which is known as the idea of the auxiliary model 
mentioned in several previous studies such as [8] and [29]. As for 𝑤𝑤𝑖𝑖(𝑡𝑡 − 𝑖𝑖) and 𝑣𝑣(𝑡𝑡 − 𝑖𝑖) mentioned in the 
formulations of 𝛽𝛽(𝑡𝑡) and 𝜑𝜑𝑣𝑣(𝑡𝑡), the system parameters to be estimated can be used through the system equations 
under investigation according to the following equations 
 

𝑒̂𝑒(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) − 𝐻𝐻 𝑥̂𝑥(𝑡𝑡)          (43) 

𝑣̂𝑣(𝑡𝑡) = 𝑒̂𝑒(𝑡𝑡) − 𝑘̂𝑘1𝑣̂𝑣(𝑡𝑡 − 1) − ⋯ − 𝑘̂𝑘𝑛𝑛𝑘𝑘𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛)       (43) 

𝑤̂𝑤(𝑡𝑡) = 𝑥̂𝑥(𝑡𝑡 + 1) − 𝐴̂𝐴𝑥̂𝑥(𝑡𝑡) − 𝐵̂𝐵𝑥̂𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) − 𝑓𝑓𝑢𝑢(𝑡𝑡)       (45) 

Thus, the actual algorithm used becomes as follows 
 
𝜃̂𝜃(𝑡𝑡) = 𝜃̂𝜃(𝑡𝑡 − 1) + 𝐿𝐿(𝑡𝑡) [𝑦𝑦(𝑡𝑡) − 𝛽̂𝛽(𝑡𝑡) − 𝜑̂𝜑(𝑡𝑡)𝑇𝑇 𝜃̂𝜃 (𝑡𝑡 − 1)]  (46) 

𝐿𝐿(𝑡𝑡) = 𝑃𝑃(𝑡𝑡−1)𝜑̂𝜑(𝑡𝑡)
1+𝜑̂𝜑(𝑡𝑡)𝑇𝑇𝑃𝑃(𝑡𝑡−1)𝜑̂𝜑(𝑡𝑡)  (47) 

𝑃𝑃(𝑡𝑡) = 𝑃𝑃(𝑡𝑡 − 1) − 𝐿𝐿(𝑡𝑡)[𝑃𝑃(𝑡𝑡 − 1)𝜑̂𝜑(𝑡𝑡)]𝑇𝑇, 𝑃𝑃(0) = 𝑝𝑝0𝐼𝐼𝑛𝑛,  (48) 

Where                 𝜑̂𝜑(𝑡𝑡): = [𝜑̂𝜑𝑎𝑎
𝑇𝑇(𝑡𝑡), 𝜑̂𝜑𝑥𝑥𝑥𝑥

𝑇𝑇(𝑡𝑡), 𝜑𝜑𝑢𝑢
𝑇𝑇(𝑡𝑡), 𝜑̂𝜑𝑣𝑣

𝑇𝑇(𝑡𝑡)]𝑇𝑇  ,     𝛽̂𝛽(𝑡𝑡) = ∑  𝑛𝑛
𝑖𝑖=1  𝑤̂𝑤𝑖𝑖(𝑡𝑡 − 𝑖𝑖). 

 

4.2. The state estimation algorithm 
 
The previous section dealt with the problem of the non-measurable states of the information vector 𝜑𝜑(𝑡𝑡) and based 
on the idea of the auxiliary model replaced the unknown states and the unknown noises with their estimates. In 
this section we use the Particle filter algorithm in section 3.1 to estimate the system state. The following steps 
leads to obtain 𝑥̂𝑥(𝑡𝑡 − 𝑖𝑖). 
 
Step 1:  Propagate particles using system model equation 
 
𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) = 𝐴̂𝐴 ∗ 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 − 1) + 𝐵̂𝐵 ∗ 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 − 1)𝑢𝑢(𝑡𝑡 − 1) + 𝑓𝑓 𝑢𝑢(𝑡𝑡 − 1) + 𝑤̂𝑤(𝑡𝑡 − 1)  (49) 
 
Step 2: Calculating weights 
 
𝑧𝑧 = 𝐻𝐻 ∗ 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) + 𝑒̂𝑒(𝑡𝑡)         (50) 
 
where 𝑧𝑧 is the predicted measurements. 
 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑧𝑧 − 𝐻𝐻 ∗ 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) + 𝑘̂𝑘1𝑣̂𝑣(𝑡𝑡 − 1) + ⋯ + 𝑘̂𝑘𝑛𝑛𝑘𝑘𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘)     (51) 
 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = 1
√(2𝜋𝜋)𝑹𝑹2   exp (− (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)2

2𝑅𝑅 )      (52) 
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There is a significant challenge in implementing algorithms (39)-(42) because the presence of 𝑥𝑥(𝑡𝑡 − 1)   , either 
fully or partially, in the formulations of 𝜑𝜑(𝑡𝑡) defined in section 2 necessitates finding the actual or estimated 
elements of the vector 𝑥𝑥(𝑡𝑡 − 1). Similarly, the presence of the actual or estimated values of 𝑤𝑤𝑖𝑖(𝑡𝑡 − 𝑖𝑖) and 𝑣𝑣(𝑡𝑡 − 𝑖𝑖) 
complicates the formulations of both 𝛽𝛽(𝑡𝑡) and 𝜑𝜑𝑣𝑣(𝑡𝑡), posing a significant challenge in formulating the information 
vector 𝜑𝜑(𝑡𝑡), which is a crucial element in executing and implementing the mentioned algorithms. This issue can 
be overcome by incorporating the estimated state 𝑥̂𝑥(𝑡𝑡 − 𝑖𝑖) through the integration of the particle filtering 
algorithm within the overall execution of the algorithm to appropriately estimate the system state 𝑥𝑥(𝑡𝑡 − 1) and 
benefit from the advantages offered by the particle filter. Implementing and executing the particle filtering 
algorithm to estimate the system state 𝑥𝑥(𝑡𝑡 − 1) uses the system parameters to be estimated within the overall 
execution loop of the algorithm in an iterative manner, which is known as the idea of the auxiliary model 
mentioned in several previous studies such as [8] and [29]. As for 𝑤𝑤𝑖𝑖(𝑡𝑡 − 𝑖𝑖) and 𝑣𝑣(𝑡𝑡 − 𝑖𝑖) mentioned in the 
formulations of 𝛽𝛽(𝑡𝑡) and 𝜑𝜑𝑣𝑣(𝑡𝑡), the system parameters to be estimated can be used through the system equations 
under investigation according to the following equations 
 

𝑒̂𝑒(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) − 𝐻𝐻 𝑥̂𝑥(𝑡𝑡)          (43) 

𝑣̂𝑣(𝑡𝑡) = 𝑒̂𝑒(𝑡𝑡) − 𝑘̂𝑘1𝑣̂𝑣(𝑡𝑡 − 1) − ⋯ − 𝑘̂𝑘𝑛𝑛𝑘𝑘𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛)       (43) 

𝑤̂𝑤(𝑡𝑡) = 𝑥̂𝑥(𝑡𝑡 + 1) − 𝐴̂𝐴𝑥̂𝑥(𝑡𝑡) − 𝐵̂𝐵𝑥̂𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) − 𝑓𝑓𝑢𝑢(𝑡𝑡)       (45) 

Thus, the actual algorithm used becomes as follows 
 
𝜃̂𝜃(𝑡𝑡) = 𝜃̂𝜃(𝑡𝑡 − 1) + 𝐿𝐿(𝑡𝑡) [𝑦𝑦(𝑡𝑡) − 𝛽̂𝛽(𝑡𝑡) − 𝜑̂𝜑(𝑡𝑡)𝑇𝑇 𝜃̂𝜃 (𝑡𝑡 − 1)]  (46) 

𝐿𝐿(𝑡𝑡) = 𝑃𝑃(𝑡𝑡−1)𝜑̂𝜑(𝑡𝑡)
1+𝜑̂𝜑(𝑡𝑡)𝑇𝑇𝑃𝑃(𝑡𝑡−1)𝜑̂𝜑(𝑡𝑡)  (47) 

𝑃𝑃(𝑡𝑡) = 𝑃𝑃(𝑡𝑡 − 1) − 𝐿𝐿(𝑡𝑡)[𝑃𝑃(𝑡𝑡 − 1)𝜑̂𝜑(𝑡𝑡)]𝑇𝑇, 𝑃𝑃(0) = 𝑝𝑝0𝐼𝐼𝑛𝑛,  (48) 

Where                 𝜑̂𝜑(𝑡𝑡): = [𝜑̂𝜑𝑎𝑎
𝑇𝑇(𝑡𝑡), 𝜑̂𝜑𝑥𝑥𝑥𝑥

𝑇𝑇(𝑡𝑡), 𝜑𝜑𝑢𝑢
𝑇𝑇(𝑡𝑡), 𝜑̂𝜑𝑣𝑣

𝑇𝑇(𝑡𝑡)]𝑇𝑇  ,     𝛽̂𝛽(𝑡𝑡) = ∑  𝑛𝑛
𝑖𝑖=1  𝑤̂𝑤𝑖𝑖(𝑡𝑡 − 𝑖𝑖). 

 

4.2. The state estimation algorithm 
 
The previous section dealt with the problem of the non-measurable states of the information vector 𝜑𝜑(𝑡𝑡) and based 
on the idea of the auxiliary model replaced the unknown states and the unknown noises with their estimates. In 
this section we use the Particle filter algorithm in section 3.1 to estimate the system state. The following steps 
leads to obtain 𝑥̂𝑥(𝑡𝑡 − 𝑖𝑖). 
 
Step 1:  Propagate particles using system model equation 
 
𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) = 𝐴̂𝐴 ∗ 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 − 1) + 𝐵̂𝐵 ∗ 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 − 1)𝑢𝑢(𝑡𝑡 − 1) + 𝑓𝑓 𝑢𝑢(𝑡𝑡 − 1) + 𝑤̂𝑤(𝑡𝑡 − 1)  (49) 
 
Step 2: Calculating weights 
 
𝑧𝑧 = 𝐻𝐻 ∗ 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) + 𝑒̂𝑒(𝑡𝑡)         (50) 
 
where 𝑧𝑧 is the predicted measurements. 
 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑧𝑧 − 𝐻𝐻 ∗ 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) + 𝑘̂𝑘1𝑣̂𝑣(𝑡𝑡 − 1) + ⋯ + 𝑘̂𝑘𝑛𝑛𝑘𝑘𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘)     (51) 
 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = 1
√(2𝜋𝜋)𝑹𝑹2   exp (− (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)2

2𝑅𝑅 )      (52) 

4.2. The State Estimation Algorithm
The previous section dealt with the problem of the non-measurable states of the information vector φ(t) and based on the idea of the 
auxiliary model replaced the unknown states and the unknown noises with their estimates. In this section we use the Particle filter 
algorithm in section 3.1 to estimate the system state. The following steps leads to obtain xˆ(t - i).

Step 1:  Propagate particles using system model equation
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Step 3: Normalize weights 
 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡(: , 𝑡𝑡) = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡
∑ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡         (53) 

Step 4: Resampling 
 
As done in section 3.1 equation (16) to prevent degeneracy (where a few particles have almost all the weight). 
 
Step 5: Estimate system states 
Resampled indices = 𝒇𝒇(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) , i.e. its a function of weight and number of particles. 
Resampled particles = 𝒇𝒇(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) , i.e. its a function of particles and resampled indices. 
Therefore,  
 
𝑥̂𝑥(𝑡𝑡 + 1) = 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(Resampled particles )        (54) 
 
Remark 4: A Particle filter estimates the state of the bilinear system under the assumption that the system 
parameters are known. To address this challenge, the idea of an auxiliary model that replaces all system parameters 
and system noises with their estimates in the particle propagate equation as shown in step 1 above. 
Remark 5: In step 3 of the weight’s calculation, the value of  𝑅𝑅  (measurement variance) must be known. However, 
in real-time practical applications, this value is typically unknown, posing a significant challenge for calculating 
the particles' weights. To address this issue, Section 3.2 introduces a direct weight optimization approach using 
Lagrange Multipliers for constrained optimization, which tackles the problem of unknown measurement noise 
variance. 

4.3. The joint parameter and state estimation algorithm 
 
Combining the parameter estimation algorithm in (43)-(48) with the state estimation algorithm in (49)-(54), we 
obtain a bilinear particle filter based recursive-least squares algorithm (B-PF-RLS) to combined estimated state 
with the estimated bilinear system parameter vectors. 
𝜃̂𝜃(𝑡𝑡) = 𝜃̂𝜃(𝑡𝑡 − 1) + 𝐿𝐿(𝑡𝑡) [𝑦𝑦(𝑡𝑡) − 𝛽̂𝛽(𝑡𝑡) − 𝜑̂𝜑(𝑡𝑡)𝑇𝑇 𝜃̂𝜃 (𝑡𝑡 − 1)]  (55) 

𝐿𝐿(𝑡𝑡) = 𝑃𝑃(𝑡𝑡−1)𝜑̂𝜑(𝑡𝑡)
1+𝜑̂𝜑(𝑡𝑡)𝑇𝑇𝑃𝑃(𝑡𝑡−1)𝜑̂𝜑(𝑡𝑡)  (56) 

𝑃𝑃(𝑡𝑡) = 𝑃𝑃(𝑡𝑡 − 1) − 𝐿𝐿(𝑡𝑡)[𝑃𝑃(𝑡𝑡 − 1)𝜑̂𝜑(𝑡𝑡)]𝑇𝑇, 𝑃𝑃(0) = 𝑝𝑝0𝐼𝐼𝑛𝑛,       (57)
       
𝜑̂𝜑𝑎𝑎(𝑡𝑡) ∶= [−𝑥̂𝑥1(𝑡𝑡 − 1), … , −𝑥̂𝑥1(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇        (58) 
 
𝜑̂𝜑𝑥𝑥𝑥𝑥(𝑡𝑡) ∶= [𝒙𝒙(𝑡𝑡 − 1)𝑇𝑇  𝑢𝑢(𝑡𝑡 − 1), … , 𝒙𝒙(𝑡𝑡 − 𝑛𝑛)𝑇𝑇𝑢𝑢(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇      (59) 
 
𝜑𝜑𝑢𝑢(𝑡𝑡) ∶= [𝑢𝑢(𝑡𝑡 − 1), … , 𝑢𝑢(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇         (60) 
 
𝜑̂𝜑𝑣𝑣(𝑡𝑡) ∶= [𝑣̂𝑣(𝑡𝑡 − 1), … , 𝑣𝑣(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇         (61) 
 
𝛽̂𝛽(𝑡𝑡) = ∑  𝑛𝑛

𝑖𝑖=1  𝑤̂𝑤𝑖𝑖(𝑡𝑡 − 𝑖𝑖)          (62) 
𝜑̂𝜑(𝑡𝑡): = [𝜑̂𝜑𝑎𝑎

𝑇𝑇(𝑡𝑡), 𝜑̂𝜑𝑥𝑥𝑥𝑥
𝑇𝑇(𝑡𝑡), 𝜑𝜑𝑢𝑢

𝑇𝑇(𝑡𝑡), 𝜑̂𝜑𝑣𝑣
𝑇𝑇(𝑡𝑡)]𝑇𝑇        (63) 

 

𝜃̂𝜃 = [𝑎̂𝑎1, … , 𝑎̂𝑎𝑛𝑛, 𝑏̂𝑏1, … , 𝑏̂𝑏𝑛𝑛, 𝑓𝑓1, … , 𝑓𝑓𝑛𝑛, 𝑘̂𝑘1, … , 𝑘̂𝑘𝑛𝑛𝑘𝑘]𝑇𝑇
       (64) 

 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(: , : ) = 𝐴̂𝐴 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(: , : , 𝑡𝑡) + 𝐵̂𝐵 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(: , : , 𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝑓𝑓 𝑢𝑢(𝑡𝑡) + 𝑤̂𝑤(𝑡𝑡)   (65) 
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Step 4: Resampling
As done in section 3.1 equation (16) to prevent degeneracy (where a few particles have almost all the weight).

Step 5: Estimate system states
Resampled indices = f(weights,number of particles) , i.e. its a function of weight and number of particles.
Resampled particles = f(particles,resampled indices) , i.e. its a function of particles and resampled indices.

Therefore, 

Remark 4: A Particle filter estimates the state of the bilinear system under the assumption that the system parameters are known. 
To address this challenge, the idea of an auxiliary model that replaces all system parameters and system noises with their estimates 
in the particle propagate equation as shown in step 1 above.

Remark 5: In step 3 of the weight’s calculation, the value of  R  (measurement variance) must be known. However, in real-time 
practical applications, this value is typically unknown, posing a significant challenge for calculating the particles' weights. To address 
this issue, Section 3.2 introduces a direct weight optimization approach using Lagrange Multipliers for constrained optimization, 
which tackles the problem of unknown measurement noise variance.

4.3. The Joint Parameter and State Estimation Algorithm
Combining the parameter estimation algorithm in (43)-(48) with the state estimation algorithm in (49)-(54), we obtain a bilinear 
particle filter based recursive-least squares algorithm (B-PF-RLS) to combined estimated state with the estimated bilinear system 
parameter vectors.
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Step 3: Normalize weights 
 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡(: , 𝑡𝑡) = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡
∑ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡         (53) 

Step 4: Resampling 
 
As done in section 3.1 equation (16) to prevent degeneracy (where a few particles have almost all the weight). 
 
Step 5: Estimate system states 
Resampled indices = 𝒇𝒇(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) , i.e. its a function of weight and number of particles. 
Resampled particles = 𝒇𝒇(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) , i.e. its a function of particles and resampled indices. 
Therefore,  
 
𝑥̂𝑥(𝑡𝑡 + 1) = 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(Resampled particles )        (54) 
 
Remark 4: A Particle filter estimates the state of the bilinear system under the assumption that the system 
parameters are known. To address this challenge, the idea of an auxiliary model that replaces all system parameters 
and system noises with their estimates in the particle propagate equation as shown in step 1 above. 
Remark 5: In step 3 of the weight’s calculation, the value of  𝑅𝑅  (measurement variance) must be known. However, 
in real-time practical applications, this value is typically unknown, posing a significant challenge for calculating 
the particles' weights. To address this issue, Section 3.2 introduces a direct weight optimization approach using 
Lagrange Multipliers for constrained optimization, which tackles the problem of unknown measurement noise 
variance. 

4.3. The joint parameter and state estimation algorithm 
 
Combining the parameter estimation algorithm in (43)-(48) with the state estimation algorithm in (49)-(54), we 
obtain a bilinear particle filter based recursive-least squares algorithm (B-PF-RLS) to combined estimated state 
with the estimated bilinear system parameter vectors. 
𝜃̂𝜃(𝑡𝑡) = 𝜃̂𝜃(𝑡𝑡 − 1) + 𝐿𝐿(𝑡𝑡) [𝑦𝑦(𝑡𝑡) − 𝛽̂𝛽(𝑡𝑡) − 𝜑̂𝜑(𝑡𝑡)𝑇𝑇 𝜃̂𝜃 (𝑡𝑡 − 1)]  (55) 

𝐿𝐿(𝑡𝑡) = 𝑃𝑃(𝑡𝑡−1)𝜑̂𝜑(𝑡𝑡)
1+𝜑̂𝜑(𝑡𝑡)𝑇𝑇𝑃𝑃(𝑡𝑡−1)𝜑̂𝜑(𝑡𝑡)  (56) 

𝑃𝑃(𝑡𝑡) = 𝑃𝑃(𝑡𝑡 − 1) − 𝐿𝐿(𝑡𝑡)[𝑃𝑃(𝑡𝑡 − 1)𝜑̂𝜑(𝑡𝑡)]𝑇𝑇, 𝑃𝑃(0) = 𝑝𝑝0𝐼𝐼𝑛𝑛,       (57)
       
𝜑̂𝜑𝑎𝑎(𝑡𝑡) ∶= [−𝑥̂𝑥1(𝑡𝑡 − 1), … , −𝑥̂𝑥1(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇        (58) 
 
𝜑̂𝜑𝑥𝑥𝑥𝑥(𝑡𝑡) ∶= [𝒙𝒙(𝑡𝑡 − 1)𝑇𝑇  𝑢𝑢(𝑡𝑡 − 1), … , 𝒙𝒙(𝑡𝑡 − 𝑛𝑛)𝑇𝑇𝑢𝑢(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇      (59) 
 
𝜑𝜑𝑢𝑢(𝑡𝑡) ∶= [𝑢𝑢(𝑡𝑡 − 1), … , 𝑢𝑢(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇         (60) 
 
𝜑̂𝜑𝑣𝑣(𝑡𝑡) ∶= [𝑣̂𝑣(𝑡𝑡 − 1), … , 𝑣𝑣(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇         (61) 
 
𝛽̂𝛽(𝑡𝑡) = ∑  𝑛𝑛

𝑖𝑖=1  𝑤̂𝑤𝑖𝑖(𝑡𝑡 − 𝑖𝑖)          (62) 
𝜑̂𝜑(𝑡𝑡): = [𝜑̂𝜑𝑎𝑎

𝑇𝑇(𝑡𝑡), 𝜑̂𝜑𝑥𝑥𝑥𝑥
𝑇𝑇(𝑡𝑡), 𝜑𝜑𝑢𝑢

𝑇𝑇(𝑡𝑡), 𝜑̂𝜑𝑣𝑣
𝑇𝑇(𝑡𝑡)]𝑇𝑇        (63) 

 

𝜃̂𝜃 = [𝑎̂𝑎1, … , 𝑎̂𝑎𝑛𝑛, 𝑏̂𝑏1, … , 𝑏̂𝑏𝑛𝑛, 𝑓𝑓1, … , 𝑓𝑓𝑛𝑛, 𝑘̂𝑘1, … , 𝑘̂𝑘𝑛𝑛𝑘𝑘]𝑇𝑇
       (64) 

 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(: , : ) = 𝐴̂𝐴 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(: , : , 𝑡𝑡) + 𝐵̂𝐵 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(: , : , 𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝑓𝑓 𝑢𝑢(𝑡𝑡) + 𝑤̂𝑤(𝑡𝑡)   (65) 
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Step 3: Normalize weights 
 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡(: , 𝑡𝑡) = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡
∑ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡         (53) 

Step 4: Resampling 
 
As done in section 3.1 equation (16) to prevent degeneracy (where a few particles have almost all the weight). 
 
Step 5: Estimate system states 
Resampled indices = 𝒇𝒇(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) , i.e. its a function of weight and number of particles. 
Resampled particles = 𝒇𝒇(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) , i.e. its a function of particles and resampled indices. 
Therefore,  
 
𝑥̂𝑥(𝑡𝑡 + 1) = 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(Resampled particles )        (54) 
 
Remark 4: A Particle filter estimates the state of the bilinear system under the assumption that the system 
parameters are known. To address this challenge, the idea of an auxiliary model that replaces all system parameters 
and system noises with their estimates in the particle propagate equation as shown in step 1 above. 
Remark 5: In step 3 of the weight’s calculation, the value of  𝑅𝑅  (measurement variance) must be known. However, 
in real-time practical applications, this value is typically unknown, posing a significant challenge for calculating 
the particles' weights. To address this issue, Section 3.2 introduces a direct weight optimization approach using 
Lagrange Multipliers for constrained optimization, which tackles the problem of unknown measurement noise 
variance. 

4.3. The joint parameter and state estimation algorithm 
 
Combining the parameter estimation algorithm in (43)-(48) with the state estimation algorithm in (49)-(54), we 
obtain a bilinear particle filter based recursive-least squares algorithm (B-PF-RLS) to combined estimated state 
with the estimated bilinear system parameter vectors. 
𝜃̂𝜃(𝑡𝑡) = 𝜃̂𝜃(𝑡𝑡 − 1) + 𝐿𝐿(𝑡𝑡) [𝑦𝑦(𝑡𝑡) − 𝛽̂𝛽(𝑡𝑡) − 𝜑̂𝜑(𝑡𝑡)𝑇𝑇 𝜃̂𝜃 (𝑡𝑡 − 1)]  (55) 

𝐿𝐿(𝑡𝑡) = 𝑃𝑃(𝑡𝑡−1)𝜑̂𝜑(𝑡𝑡)
1+𝜑̂𝜑(𝑡𝑡)𝑇𝑇𝑃𝑃(𝑡𝑡−1)𝜑̂𝜑(𝑡𝑡)  (56) 

𝑃𝑃(𝑡𝑡) = 𝑃𝑃(𝑡𝑡 − 1) − 𝐿𝐿(𝑡𝑡)[𝑃𝑃(𝑡𝑡 − 1)𝜑̂𝜑(𝑡𝑡)]𝑇𝑇, 𝑃𝑃(0) = 𝑝𝑝0𝐼𝐼𝑛𝑛,       (57)
       
𝜑̂𝜑𝑎𝑎(𝑡𝑡) ∶= [−𝑥̂𝑥1(𝑡𝑡 − 1), … , −𝑥̂𝑥1(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇        (58) 
 
𝜑̂𝜑𝑥𝑥𝑥𝑥(𝑡𝑡) ∶= [𝒙𝒙(𝑡𝑡 − 1)𝑇𝑇  𝑢𝑢(𝑡𝑡 − 1), … , 𝒙𝒙(𝑡𝑡 − 𝑛𝑛)𝑇𝑇𝑢𝑢(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇      (59) 
 
𝜑𝜑𝑢𝑢(𝑡𝑡) ∶= [𝑢𝑢(𝑡𝑡 − 1), … , 𝑢𝑢(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇         (60) 
 
𝜑̂𝜑𝑣𝑣(𝑡𝑡) ∶= [𝑣̂𝑣(𝑡𝑡 − 1), … , 𝑣𝑣(𝑡𝑡 − 𝑛𝑛)]𝑇𝑇         (61) 
 
𝛽̂𝛽(𝑡𝑡) = ∑  𝑛𝑛

𝑖𝑖=1  𝑤̂𝑤𝑖𝑖(𝑡𝑡 − 𝑖𝑖)          (62) 
𝜑̂𝜑(𝑡𝑡): = [𝜑̂𝜑𝑎𝑎

𝑇𝑇(𝑡𝑡), 𝜑̂𝜑𝑥𝑥𝑥𝑥
𝑇𝑇(𝑡𝑡), 𝜑𝜑𝑢𝑢

𝑇𝑇(𝑡𝑡), 𝜑̂𝜑𝑣𝑣
𝑇𝑇(𝑡𝑡)]𝑇𝑇        (63) 

 

𝜃̂𝜃 = [𝑎̂𝑎1, … , 𝑎̂𝑎𝑛𝑛, 𝑏̂𝑏1, … , 𝑏̂𝑏𝑛𝑛, 𝑓𝑓1, … , 𝑓𝑓𝑛𝑛, 𝑘̂𝑘1, … , 𝑘̂𝑘𝑛𝑛𝑘𝑘]𝑇𝑇
       (64) 

 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(: , : ) = 𝐴̂𝐴 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(: , : , 𝑡𝑡) + 𝐵̂𝐵 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(: , : , 𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝑓𝑓 𝑢𝑢(𝑡𝑡) + 𝑤̂𝑤(𝑡𝑡)   (65) 
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𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑧𝑧 − 𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(: , 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑡𝑡) + 𝑘̂𝑘1𝑣̂𝑣(𝑡𝑡 − 1) + ⋯+ 𝑘̂𝑘𝑛𝑛𝑘𝑘𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘)  (66) 
 
 

• If measurement noise variance known 

weights = 1
√(2𝜋𝜋)𝑹𝑹2   exp (− (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)2

2𝑅𝑅 )        (67) 

Resampled indices = 𝐹𝐹(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) i.e. its a function of weight and number of particles. 
Resampled particles = 𝐹𝐹(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) i.e. its a function of particles and resampled indices. 
 
𝑥̂𝑥(𝑡𝑡 + 1) = 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(Resampled particles)        (68) 
 

• If measurement noise variance unknown 
 

Ψ𝑗𝑗(𝑡𝑡) = 𝛾𝛾(𝑡𝑡)−𝛾𝛾𝑗𝑗(𝑡𝑡)
𝑁𝑁 𝛾𝛾(𝑡𝑡)−∑ 𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1
 , weights = Ψ𝑗𝑗(𝑡𝑡).      (69) 

 
Resampled indices = 𝑭𝑭(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) i.e. its a Function of weight and number of particles. 
Resampled particles = 𝑭𝑭(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) i.e. its a Function of particles and resampled indices. 
 
𝑥̂𝑥(𝑡𝑡 + 1) = 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(Resampled particles)        (70) 
 
𝑒̂𝑒(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) − 𝐻𝐻 𝑥̂𝑥(𝑡𝑡)          (71) 

𝑣̂𝑣(𝑡𝑡) = 𝑒̂𝑒(𝑡𝑡) − 𝑘̂𝑘1𝑣̂𝑣(𝑡𝑡 − 1) − ⋯− 𝑘̂𝑘𝑛𝑛𝑘𝑘𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘)       (72) 

𝑤̂𝑤(𝑡𝑡) = 𝑥̂𝑥(𝑡𝑡 + 1) − 𝐴̂𝐴𝑥̂𝑥(𝑡𝑡) − 𝐵̂𝐵𝑥̂𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) − 𝑓𝑓𝑢𝑢(𝑡𝑡)       (73) 

𝐴̂𝐴: =

[
 
 
 
 −𝑎̂𝑎1(𝑡𝑡) 1 0 ⋯ 0

−𝑎̂𝑎2(𝑡𝑡) 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

−𝑎̂𝑎𝑛𝑛−1(𝑡𝑡) 0 0 ⋯ 1
−𝑎̂𝑎𝑛𝑛(𝑡𝑡) 0 0 ⋯ 0]

 
 
 
 
 , 𝐵̂𝐵(𝑡𝑡) =

[
 
 
 
 
 𝒃̂𝒃1(𝑡𝑡)
𝒃̂𝒃2(𝑡𝑡)
𝒃̂𝒃3(𝑡𝑡)

⋮
𝒃̂𝒃𝑛𝑛(𝑡𝑡)]

 
 
 
 
 

  , 𝑓𝑓(𝑡𝑡) =

[
 
 
 
 
 𝑓𝑓1(𝑡𝑡)
𝑓𝑓2(𝑡𝑡)
𝑓𝑓3(𝑡𝑡)

⋮
𝑓𝑓𝑛𝑛(𝑡𝑡)]

 
 
 
 
 

.     (74) 

 
Remark 6: State estimation algorithm use equation (68) with different values of measurement noise variance or 
use (70) to deal with unknown measurement noise variance to obtain state estimates exploited in the parameter 
estimation process. The parameter estimates are improved by using a specified value of the number of particles in 
the state estimation process to obtain a minimized state estimation error to improve the accuracy of the parameter 
estimation. 

5. Numerical examples 
Example 1: Consider the following bilinear state - space system in its observable-canonical form 
 
𝑥𝑥(𝑡𝑡 + 1) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐺𝐺 𝑥𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝐹𝐹 𝑢𝑢(𝑡𝑡) + 𝑤𝑤(𝑡𝑡), 
𝑦𝑦(𝑡𝑡) = 𝐻𝐻𝐻𝐻(𝑡𝑡) + 𝑒𝑒(𝑡𝑡), 
𝑒𝑒(𝑡𝑡) = 𝑘𝑘1𝑣𝑣(𝑡𝑡 − 1) + 𝑘𝑘2𝑣𝑣(𝑡𝑡 − 2) + 𝑣𝑣(𝑡𝑡) . 
 

𝐴𝐴 = [−𝑎𝑎1 1
−𝑎𝑎2 0] = [−0.30 1

0.25 0] 

𝐺𝐺 = [𝑔𝑔11 𝑔𝑔12
𝑔𝑔21 𝑔𝑔22

] = [0.10 0.15
0.30 0.20] ,       𝐻𝐻 = [1, 0], 

𝐹𝐹 = [𝑓𝑓1𝑓𝑓2
] = [1.15

1.56] ,         𝑤𝑤(𝑡𝑡) = [𝑤𝑤1(𝑡𝑡)
𝑤𝑤2(𝑡𝑡)

], 
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𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑧𝑧 − 𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(: , 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑡𝑡) + 𝑘̂𝑘1𝑣̂𝑣(𝑡𝑡 − 1) + ⋯+ 𝑘̂𝑘𝑛𝑛𝑘𝑘𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘)  (66) 
 
 

• If measurement noise variance known 

weights = 1
√(2𝜋𝜋)𝑹𝑹2   exp (− (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)2

2𝑅𝑅 )        (67) 

Resampled indices = 𝐹𝐹(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) i.e. its a function of weight and number of particles. 
Resampled particles = 𝐹𝐹(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) i.e. its a function of particles and resampled indices. 
 
𝑥̂𝑥(𝑡𝑡 + 1) = 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(Resampled particles)        (68) 
 

• If measurement noise variance unknown 
 

Ψ𝑗𝑗(𝑡𝑡) = 𝛾𝛾(𝑡𝑡)−𝛾𝛾𝑗𝑗(𝑡𝑡)
𝑁𝑁 𝛾𝛾(𝑡𝑡)−∑ 𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1
 , weights = Ψ𝑗𝑗(𝑡𝑡).      (69) 

 
Resampled indices = 𝑭𝑭(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) i.e. its a Function of weight and number of particles. 
Resampled particles = 𝑭𝑭(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) i.e. its a Function of particles and resampled indices. 
 
𝑥̂𝑥(𝑡𝑡 + 1) = 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(Resampled particles)        (70) 
 
𝑒̂𝑒(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) − 𝐻𝐻 𝑥̂𝑥(𝑡𝑡)          (71) 

𝑣̂𝑣(𝑡𝑡) = 𝑒̂𝑒(𝑡𝑡) − 𝑘̂𝑘1𝑣̂𝑣(𝑡𝑡 − 1) − ⋯− 𝑘̂𝑘𝑛𝑛𝑘𝑘𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘)       (72) 

𝑤̂𝑤(𝑡𝑡) = 𝑥̂𝑥(𝑡𝑡 + 1) − 𝐴̂𝐴𝑥̂𝑥(𝑡𝑡) − 𝐵̂𝐵𝑥̂𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) − 𝑓𝑓𝑢𝑢(𝑡𝑡)       (73) 

𝐴̂𝐴: =

[
 
 
 
 −𝑎̂𝑎1(𝑡𝑡) 1 0 ⋯ 0

−𝑎̂𝑎2(𝑡𝑡) 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

−𝑎̂𝑎𝑛𝑛−1(𝑡𝑡) 0 0 ⋯ 1
−𝑎̂𝑎𝑛𝑛(𝑡𝑡) 0 0 ⋯ 0]

 
 
 
 
 , 𝐵̂𝐵(𝑡𝑡) =

[
 
 
 
 
 𝒃̂𝒃1(𝑡𝑡)
𝒃̂𝒃2(𝑡𝑡)
𝒃̂𝒃3(𝑡𝑡)

⋮
𝒃̂𝒃𝑛𝑛(𝑡𝑡)]

 
 
 
 
 

  , 𝑓𝑓(𝑡𝑡) =

[
 
 
 
 
 𝑓𝑓1(𝑡𝑡)
𝑓𝑓2(𝑡𝑡)
𝑓𝑓3(𝑡𝑡)

⋮
𝑓𝑓𝑛𝑛(𝑡𝑡)]

 
 
 
 
 

.     (74) 

 
Remark 6: State estimation algorithm use equation (68) with different values of measurement noise variance or 
use (70) to deal with unknown measurement noise variance to obtain state estimates exploited in the parameter 
estimation process. The parameter estimates are improved by using a specified value of the number of particles in 
the state estimation process to obtain a minimized state estimation error to improve the accuracy of the parameter 
estimation. 

5. Numerical examples 
Example 1: Consider the following bilinear state - space system in its observable-canonical form 
 
𝑥𝑥(𝑡𝑡 + 1) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐺𝐺 𝑥𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝐹𝐹 𝑢𝑢(𝑡𝑡) + 𝑤𝑤(𝑡𝑡), 
𝑦𝑦(𝑡𝑡) = 𝐻𝐻𝐻𝐻(𝑡𝑡) + 𝑒𝑒(𝑡𝑡), 
𝑒𝑒(𝑡𝑡) = 𝑘𝑘1𝑣𝑣(𝑡𝑡 − 1) + 𝑘𝑘2𝑣𝑣(𝑡𝑡 − 2) + 𝑣𝑣(𝑡𝑡) . 
 

𝐴𝐴 = [−𝑎𝑎1 1
−𝑎𝑎2 0] = [−0.30 1

0.25 0] 

𝐺𝐺 = [𝑔𝑔11 𝑔𝑔12
𝑔𝑔21 𝑔𝑔22

] = [0.10 0.15
0.30 0.20] ,       𝐻𝐻 = [1, 0], 

𝐹𝐹 = [𝑓𝑓1𝑓𝑓2
] = [1.15

1.56] ,         𝑤𝑤(𝑡𝑡) = [𝑤𝑤1(𝑡𝑡)
𝑤𝑤2(𝑡𝑡)

], 

• If measurement noise variance known
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𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑧𝑧 − 𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(: , 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑡𝑡) + 𝑘̂𝑘1𝑣̂𝑣(𝑡𝑡 − 1) + ⋯+ 𝑘̂𝑘𝑛𝑛𝑘𝑘𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘)  (66) 
 
 

• If measurement noise variance known 

weights = 1
√(2𝜋𝜋)𝑹𝑹2   exp (− (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)2

2𝑅𝑅 )        (67) 

Resampled indices = 𝐹𝐹(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) i.e. its a function of weight and number of particles. 
Resampled particles = 𝐹𝐹(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) i.e. its a function of particles and resampled indices. 
 
𝑥̂𝑥(𝑡𝑡 + 1) = 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(Resampled particles)        (68) 
 

• If measurement noise variance unknown 
 

Ψ𝑗𝑗(𝑡𝑡) = 𝛾𝛾(𝑡𝑡)−𝛾𝛾𝑗𝑗(𝑡𝑡)
𝑁𝑁 𝛾𝛾(𝑡𝑡)−∑ 𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1
 , weights = Ψ𝑗𝑗(𝑡𝑡).      (69) 

 
Resampled indices = 𝑭𝑭(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) i.e. its a Function of weight and number of particles. 
Resampled particles = 𝑭𝑭(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) i.e. its a Function of particles and resampled indices. 
 
𝑥̂𝑥(𝑡𝑡 + 1) = 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(Resampled particles)        (70) 
 
𝑒̂𝑒(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) − 𝐻𝐻 𝑥̂𝑥(𝑡𝑡)          (71) 

𝑣̂𝑣(𝑡𝑡) = 𝑒̂𝑒(𝑡𝑡) − 𝑘̂𝑘1𝑣̂𝑣(𝑡𝑡 − 1) − ⋯− 𝑘̂𝑘𝑛𝑛𝑘𝑘𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘)       (72) 

𝑤̂𝑤(𝑡𝑡) = 𝑥̂𝑥(𝑡𝑡 + 1) − 𝐴̂𝐴𝑥̂𝑥(𝑡𝑡) − 𝐵̂𝐵𝑥̂𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) − 𝑓𝑓𝑢𝑢(𝑡𝑡)       (73) 

𝐴̂𝐴: =

[
 
 
 
 −𝑎̂𝑎1(𝑡𝑡) 1 0 ⋯ 0

−𝑎̂𝑎2(𝑡𝑡) 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

−𝑎̂𝑎𝑛𝑛−1(𝑡𝑡) 0 0 ⋯ 1
−𝑎̂𝑎𝑛𝑛(𝑡𝑡) 0 0 ⋯ 0]

 
 
 
 
 , 𝐵̂𝐵(𝑡𝑡) =

[
 
 
 
 
 𝒃̂𝒃1(𝑡𝑡)
𝒃̂𝒃2(𝑡𝑡)
𝒃̂𝒃3(𝑡𝑡)

⋮
𝒃̂𝒃𝑛𝑛(𝑡𝑡)]

 
 
 
 
 

  , 𝑓𝑓(𝑡𝑡) =

[
 
 
 
 
 𝑓𝑓1(𝑡𝑡)
𝑓𝑓2(𝑡𝑡)
𝑓𝑓3(𝑡𝑡)

⋮
𝑓𝑓𝑛𝑛(𝑡𝑡)]

 
 
 
 
 

.     (74) 

 
Remark 6: State estimation algorithm use equation (68) with different values of measurement noise variance or 
use (70) to deal with unknown measurement noise variance to obtain state estimates exploited in the parameter 
estimation process. The parameter estimates are improved by using a specified value of the number of particles in 
the state estimation process to obtain a minimized state estimation error to improve the accuracy of the parameter 
estimation. 

5. Numerical examples 
Example 1: Consider the following bilinear state - space system in its observable-canonical form 
 
𝑥𝑥(𝑡𝑡 + 1) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐺𝐺 𝑥𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝐹𝐹 𝑢𝑢(𝑡𝑡) + 𝑤𝑤(𝑡𝑡), 
𝑦𝑦(𝑡𝑡) = 𝐻𝐻𝐻𝐻(𝑡𝑡) + 𝑒𝑒(𝑡𝑡), 
𝑒𝑒(𝑡𝑡) = 𝑘𝑘1𝑣𝑣(𝑡𝑡 − 1) + 𝑘𝑘2𝑣𝑣(𝑡𝑡 − 2) + 𝑣𝑣(𝑡𝑡) . 
 

𝐴𝐴 = [−𝑎𝑎1 1
−𝑎𝑎2 0] = [−0.30 1

0.25 0] 

𝐺𝐺 = [𝑔𝑔11 𝑔𝑔12
𝑔𝑔21 𝑔𝑔22

] = [0.10 0.15
0.30 0.20] ,       𝐻𝐻 = [1, 0], 

𝐹𝐹 = [𝑓𝑓1𝑓𝑓2
] = [1.15

1.56] ,         𝑤𝑤(𝑡𝑡) = [𝑤𝑤1(𝑡𝑡)
𝑤𝑤2(𝑡𝑡)

], 
11 

 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑧𝑧 − 𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(: , 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑡𝑡) + 𝑘̂𝑘1𝑣̂𝑣(𝑡𝑡 − 1) + ⋯+ 𝑘̂𝑘𝑛𝑛𝑘𝑘𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘)  (66) 
 
 

• If measurement noise variance known 

weights = 1
√(2𝜋𝜋)𝑹𝑹2   exp (− (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)2

2𝑅𝑅 )        (67) 

Resampled indices = 𝐹𝐹(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) i.e. its a function of weight and number of particles. 
Resampled particles = 𝐹𝐹(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) i.e. its a function of particles and resampled indices. 
 
𝑥̂𝑥(𝑡𝑡 + 1) = 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(Resampled particles)        (68) 
 

• If measurement noise variance unknown 
 

Ψ𝑗𝑗(𝑡𝑡) = 𝛾𝛾(𝑡𝑡)−𝛾𝛾𝑗𝑗(𝑡𝑡)
𝑁𝑁 𝛾𝛾(𝑡𝑡)−∑ 𝛾𝛾𝑗𝑗(𝑡𝑡)𝑁𝑁

𝑗𝑗=1
 , weights = Ψ𝑗𝑗(𝑡𝑡).      (69) 

 
Resampled indices = 𝑭𝑭(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) i.e. its a Function of weight and number of particles. 
Resampled particles = 𝑭𝑭(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) i.e. its a Function of particles and resampled indices. 
 
𝑥̂𝑥(𝑡𝑡 + 1) = 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(Resampled particles)        (70) 
 
𝑒̂𝑒(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) − 𝐻𝐻 𝑥̂𝑥(𝑡𝑡)          (71) 

𝑣̂𝑣(𝑡𝑡) = 𝑒̂𝑒(𝑡𝑡) − 𝑘̂𝑘1𝑣̂𝑣(𝑡𝑡 − 1) − ⋯− 𝑘̂𝑘𝑛𝑛𝑘𝑘𝑣̂𝑣(𝑡𝑡 − 𝑛𝑛𝑘𝑘)       (72) 

𝑤̂𝑤(𝑡𝑡) = 𝑥̂𝑥(𝑡𝑡 + 1) − 𝐴̂𝐴𝑥̂𝑥(𝑡𝑡) − 𝐵̂𝐵𝑥̂𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) − 𝑓𝑓𝑢𝑢(𝑡𝑡)       (73) 

𝐴̂𝐴: =

[
 
 
 
 −𝑎̂𝑎1(𝑡𝑡) 1 0 ⋯ 0

−𝑎̂𝑎2(𝑡𝑡) 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

−𝑎̂𝑎𝑛𝑛−1(𝑡𝑡) 0 0 ⋯ 1
−𝑎̂𝑎𝑛𝑛(𝑡𝑡) 0 0 ⋯ 0]

 
 
 
 
 , 𝐵̂𝐵(𝑡𝑡) =

[
 
 
 
 
 𝒃̂𝒃1(𝑡𝑡)
𝒃̂𝒃2(𝑡𝑡)
𝒃̂𝒃3(𝑡𝑡)

⋮
𝒃̂𝒃𝑛𝑛(𝑡𝑡)]

 
 
 
 
 

  , 𝑓𝑓(𝑡𝑡) =

[
 
 
 
 
 𝑓𝑓1(𝑡𝑡)
𝑓𝑓2(𝑡𝑡)
𝑓𝑓3(𝑡𝑡)

⋮
𝑓𝑓𝑛𝑛(𝑡𝑡)]

 
 
 
 
 

.     (74) 

 
Remark 6: State estimation algorithm use equation (68) with different values of measurement noise variance or 
use (70) to deal with unknown measurement noise variance to obtain state estimates exploited in the parameter 
estimation process. The parameter estimates are improved by using a specified value of the number of particles in 
the state estimation process to obtain a minimized state estimation error to improve the accuracy of the parameter 
estimation. 

5. Numerical examples 
Example 1: Consider the following bilinear state - space system in its observable-canonical form 
 
𝑥𝑥(𝑡𝑡 + 1) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐺𝐺 𝑥𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝐹𝐹 𝑢𝑢(𝑡𝑡) + 𝑤𝑤(𝑡𝑡), 
𝑦𝑦(𝑡𝑡) = 𝐻𝐻𝐻𝐻(𝑡𝑡) + 𝑒𝑒(𝑡𝑡), 
𝑒𝑒(𝑡𝑡) = 𝑘𝑘1𝑣𝑣(𝑡𝑡 − 1) + 𝑘𝑘2𝑣𝑣(𝑡𝑡 − 2) + 𝑣𝑣(𝑡𝑡) . 
 

𝐴𝐴 = [−𝑎𝑎1 1
−𝑎𝑎2 0] = [−0.30 1

0.25 0] 

𝐺𝐺 = [𝑔𝑔11 𝑔𝑔12
𝑔𝑔21 𝑔𝑔22

] = [0.10 0.15
0.30 0.20] ,       𝐻𝐻 = [1, 0], 

𝐹𝐹 = [𝑓𝑓1𝑓𝑓2
] = [1.15

1.56] ,         𝑤𝑤(𝑡𝑡) = [𝑤𝑤1(𝑡𝑡)
𝑤𝑤2(𝑡𝑡)

], 

Remark 6: State estimation algorithm use equation (68) with different values of measurement noise variance or use (70) to deal 
with unknown measurement noise variance to obtain state estimates exploited in the parameter estimation process. The parameter 
estimates are improved by using a specified value of the number of particles in the state estimation process to obtain a minimized 
state estimation error to improve the accuracy of the parameter estimation.

5. Numerical Examples
Example 1: Consider the following bilinear state - space system in its observable-canonical form

The parameter vector to be identified is given by:
 

•	 When modelling, system parameters should ensure the stability, controllability, and observability of the system. In the simulation, 
the input {u (t)} is a pseudo-random binary sequence generated by the Matlab function u = idinput ([8191,1,1], prbs' ',[0,1], 
[-1,1]), w1 (t) and w2 (t) are random noise sequences with zero mean and variance σ2

w  = 0.072, and σ2
w = 0.012 respectively. v(t) 

is a random noise sequence with zero mean and variance σ2
v= 0.452, σ2

v = 0.502, σ2
v = 0.802 and σ2

v = 1.002. The data length L= 
3000 is set, and different values  are chosen for the number of particles and the measurement noise σ2

v. System parameter and 
state estimates are generated by applying the B-PF-RLS algorithm.

•	 The parameters estimates and errors δθ = ∥θˆ - θ ∥/∥ θ∥ at σ2
v = 0.452, 0.82, and 1.02are summarized in Table 1. According to these 

different values of the measurement noise variance the parameter estimation errors are plotted against t in Fig. 1. Figure (2) and 
Table 2 shows the σ2

v = 0.82 parameter estimation error of the proposed algorithm compared to the BSO-RLS algorithm. The 
noise estimates 				               are shown in figure (3). 

•	 The true state x1 and x2 with their estimates  x1̂ and x2̂ and their associated errors for σ2
v = 0.82  and 1002 particles are shown in 

Fig. (4). The collected input and output data are shown in Figure (5). 
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2 = 1.002. The data length 𝐿𝐿 = 3000 is set, and 

different values  are chosen for the number of particles and the measurement noise 𝜎𝜎𝑣𝑣
2. 

System parameter and state estimates are generated by applying the B-PF-RLS algorithm. 
• The parameters estimates and errors 𝛿𝛿𝜃𝜃 =∥ 𝜃̂𝜃 − 𝜃𝜃 ∥/∥ 𝜃𝜃 ∥ at 𝜎𝜎𝑣𝑣

2 = 0.452, 0.82, and 1.02are 
summarized in Table 1. According to these different values of the measurement noise variance 
the parameter estimation errors are plotted against 𝑡𝑡 in Fig. 1. Figure (2) and Table 2 shows the 
𝜎𝜎𝑣𝑣

2 = 0.82 parameter estimation error of the proposed algorithm compared to the BSO-RLS 
algorithm. The noise estimates 𝑣̂𝑣(𝑡𝑡), 𝑤𝑤1̂(𝑡𝑡) and 𝑤𝑤2̂(𝑡𝑡) for B-PF-RLS with 𝜎𝜎𝑣𝑣

2 = 0.82 are shown 
in figure (3).  

• The true state 𝑥𝑥1 and 𝑥𝑥2 with their estimates  𝑥̂𝑥1 and 𝑥̂𝑥2 and their associated errors for 𝜎𝜎𝑣𝑣
2 = 0.82  

and 1002 particles are shown in Fig. (4). The collected input and output data are shown in Figure 
(5).  

• The distribution of particles in the state space, with 𝑥𝑥1 on the 𝑥𝑥-axis and 𝑥𝑥2 on the 𝑦𝑦-axis with 
the weights of each particle at time t are shown in figure (6). Figure (7) illustrates the probability 
density of the particles' values at different time steps. Furthermore, the figure displays the 
weights of the particles over time using a heatmap.  

• The probability density functions (PDFs) of measurement values of the observed measurement 
is shown in figure (8).  

• Figure (9) compares the root mean square error for state 𝑥𝑥1 for B-PF-RLS algorithm with 
1002 particles and 2000 particles. 

• The Root mean -square error for state 𝑥𝑥1 with particle weight calculated with known  𝜎𝜎𝑣𝑣
2 and 

unknown  𝜎𝜎𝑣𝑣
2 is illustrated in figure (10). 

 
Looking at Tables 1-2 and Figures 1-10, we can draw some conclusions from these tables and figures. 
 

• As can be seen from Table 1, and figure (1) the parameter estimation error 𝛿𝛿𝜃𝜃 increase as the 
measurement noise variance 𝜎𝜎𝑣𝑣

2 increases and vice versa. 
• The best estimate of the state is obtained when the root mean -square error 𝛿𝛿𝑥𝑥 between the true 

state and estimated state decreases with the increase of number of particles. This is reflected in 
the improved accuracy of the parameter estimates presented by the B-PF-RLS algorithm. See 
figures (9). 

• We find that the B-PF-RLS algorithm provides better parameter estimation accuracy than the 
BSO-RLS algorithm under the same conditions, which makes this algorithm efficient and 
robust. See Figure (2) and Table 2. 

• The close clustering of particles indicates that the filter has converged to a highly certain state 
estimate. This tight grouping suggests that the particles are accurately tracking the system's 
dynamics, leading to a high level of confidence in the state estimation. The distribution 
confirms that the filter is accurately capturing the true state of the system, highlighting the 
effectiveness and reliability of the particle filter see figure (6). 

• Most of the particles having higher weights as in figure (6) indicating they are close to the true 
state. This distribution suggests the filter is performing well, with high-weight particles 
contributing most to the state estimate. The resampling step will maintain diversity by 
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•	 The distribution of particles in the state space, with x1 on the x-axis and x2 on the y-axis with the weights of each particle at time 
t are shown in figure (6). Figure (7) illustrates the probability density of the particles' values at different time steps. Furthermore, 
the figure displays the weights of the particles over time using a heatmap. 

•	 The probability density functions (PDFs) of measurement values of the observed measurement is shown in figure (8). 
•	 Figure (9) compares the root mean square error for state x1 for B-PF-RLS algorithm with 1002 particles and 2000 particles.
•	 The Root mean -square error for state x1 with particle weight calculated with known σ2

v and unknown σ2
v is illustrated in figure 

(10).

Looking at Tables 1-2 and Figures 1-10, we can draw some conclusions from these tables and figures.
•	 As can be seen from Table 1, and figure (1) the parameter estimation error δθ increase as the measurement noise variance σ2

v 
increases and vice versa.

•	 The best estimate of the state is obtained when the root mean -square error δx between the true state and estimated state decreases 
with the increase of number of particles. This is reflected in the improved accuracy of the parameter estimates presented by the 
B-PF-RLS algorithm. See figures (9).

•	 We find that the B-PF-RLS algorithm provides better parameter estimation accuracy than the BSO-RLS algorithm under the 
same conditions, which makes this algorithm efficient and robust. See Figure (2) and Table 2.

•	 The close clustering of particles indicates that the filter has converged to a highly certain state estimate. This tight grouping 
suggests that the particles are accurately tracking the system's dynamics, leading to a high level of confidence in the state 
estimation. The distribution confirms that the filter is accurately capturing the true state of the system, highlighting the 
effectiveness and reliability of the particle filter see figure (6).

•	 Most of the particles having higher weights as in figure (6) indicating they are close to the true state. This distribution suggests 
the filter is performing well, with high-weight particles contributing most to the state estimate. The resampling step will 
maintain diversity by replicating high-weight particles and removing low-weight ones, improving accuracy and reliability of 
state estimates. Particle filter is confirmed to offer precise and reliable state estimates.

•	 Figure (7) show that the particles are consistently concentrated around the true state values. This indicates that the filter accurately 
captures and maintains the true state over time, providing reliable and precise state estimates. The heatmap of particle weights 
demonstrates distinct bands of higher weights, indicating that specific particles consistently have higher weights and contribute 
significantly to the state estimate. This confirms that the filter effectively identifies and tracks the true state by prioritizing the 
most relevant particles, maintaining diversity and accuracy.

•	 For the actual output y and the observed measurement value z depicted in figure (8), the alignment of the peaks with expected 
values indicates that the particle filter accurately estimated state and measurement values, resulting in highly accurate PDFs. 
This demonstrates the filter's effectiveness in capturing true measurement distributions and confirming the reliability of state 
estimates. The figure serves as strong evidence of the filter's ability to provide precise and reliable measurement estimates, 
validating its performance in accurately tracking system dynamics.
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Fig. 1 The B-PF-RLS estimation errors 𝛿𝛿𝜃𝜃 for 𝑅𝑅𝑣𝑣 = 0.50,0.80 
and 1.00 , 1002 Particles,  𝑄𝑄𝑤𝑤 = [0.20,0.01]𝐼𝐼2). 
 
 

Fig. 2 The B-PF-RLS estimation error 𝛿𝛿𝜃𝜃 against 𝑡𝑡 compared 
to BSO-RLS algorithm for 1002 number of particles, 𝑅𝑅𝑣𝑣 =
0.8, 𝑄𝑄𝑤𝑤 = [0.07,0.01⌉𝐼𝐼2). 
 
 
 
 

  

Figuere 1: The B-PF-RLS estimation errors δθ for Rv 
=0.50,0.80 and 1.00 , 1002 Particles, Qw= [0.20,0.01]I2).

Figure 2: The B-PF-RLS estimation error δθ against t 
compared to BSO-RLS algorithm for 1002 number of 
particles, Rv = 0.8, Qw = [0.07,0.01⌉I2).
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Figure 3: The estimates of w1(t), w2(t), and v(t) for B-PF-RLS 
for R v = 0.80, Qw = [0.07,0.01]I2).

Figure 5:The input u(t) and output y(t) collected data used in 
example 1

Figure 7: The probability density of the particles' values at 
different time step with their weights using a heatmap     

Figure 4: The B-PF-RLS state estimates of x1t and 2t  with the 
deviation x̂1t - x1t and x2̂t - x2t against t (Rv = 0.8,1002 particles).

Figure 6: The distribution of particles in the state space, with 
the weights of each particle at time t

Figure 8: The Measurement Probability Density Functions 
(PDFs) of measurement values of the observed measurement        
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Fig. 3 The estimates of 𝑤𝑤1(𝑡𝑡), 𝑤𝑤2(𝑡𝑡), and 𝑣𝑣(𝑡𝑡) for B-PF-RLS  
for 𝑅𝑅𝑣𝑣 = 0.80, 𝑄𝑄𝑤𝑤 = [0.07,0.01]𝐼𝐼2). 
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Table 2 The parameter estimates and errors of the B-PF-RLS algorithm with unknown 𝑅𝑅𝑣𝑣 compared to BSO-RLS algorithm, 
𝑅𝑅𝑣𝑣 = 0.8, 𝑄𝑄𝑤𝑤 = [0.07,0.01⌉𝐼𝐼2). 
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Fig. 10 The root mean -square error for state 𝑥𝑥1 with              
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Example 2 
To evaluate the effectiveness of the proposed algorithm on a large-scale system, a fourth-order bilinear state-
space system is considered with colored noise for practical considerations, as follows: 
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0.16 0 0 1
−0.05 0 0 0

] 𝑥𝑥𝑡𝑡 + [
−0.45 0.32 0.18 −0.10
−0.02 0.10 −0.07 0
0.10 −0.05 0 0.20
0.05 0 0.30 −0.20

] 𝑥𝑥𝑡𝑡𝑢𝑢𝑡𝑡 + [
1.20
1.60
0.60
2.12

]𝑢𝑢𝑡𝑡 + 𝑤𝑤𝑡𝑡

 
𝑦𝑦𝑡𝑡 = [1,0,0,0]𝑥𝑥𝑡𝑡 − 0.41𝑣𝑣(𝑡𝑡 − 1) + 𝑣𝑣(𝑡𝑡) 

 
The parameter vector to be identified is 
𝜃𝜃 = [𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4, 𝑏𝑏11, 𝑏𝑏12, 𝑏𝑏12, 𝑏𝑏12, 𝑏𝑏12, 𝑏𝑏12, 𝑏𝑏12, 𝑏𝑏12, 𝑏𝑏12, 𝑏𝑏12, 𝑏𝑏12, 𝑏𝑏12, 𝑏𝑏12, 𝑏𝑏12, 𝑏𝑏12, 𝑏𝑏12, 𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓2, 𝑓𝑓2, 𝑘𝑘1]𝑇𝑇
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    = [0.40, −0.24, −0.16,0.05, −0.45,0.32,0.18, −0.10, −0.02,0.10, −0.07,0,0.10, −0.05,0,0.20,0.05,0,030,
−0.20,1.20,1.60,0.60,2.12, −0.41 ]

𝑇𝑇
 

In the simulation, the input {𝑢𝑢(𝑡𝑡)}  is a pseudo-random binary sequence generated by the MATLAB function. The 
process noise sequences 𝑤𝑤1(𝑡𝑡) , 𝑤𝑤2(𝑡𝑡) ,  𝑤𝑤3(𝑡𝑡)  and 𝑤𝑤4(𝑡𝑡) are random with zero mean and variances 𝜎𝜎𝑤𝑤1

2 = 0.072, 
𝜎𝜎𝑤𝑤2

2 = 0.012 , 𝜎𝜎𝑤𝑤3
2 = 0.022  and 𝜎𝜎𝑤𝑤4

2 = 0.042  respectively. The noise 𝑣𝑣(𝑡𝑡) is a white random sequence with zero 
mean and variances 𝜎𝜎𝑣𝑣

2 = 0.302  , 𝜎𝜎𝑣𝑣
2 = 0.802 and 𝜎𝜎𝑣𝑣

2 = 1.02. The data length 𝐿𝐿  is set to 5000. Under the 
measurement noise variances 𝜎𝜎𝑣𝑣

2 = 0.302  , 𝜎𝜎𝑣𝑣
2 = 0.802 and 𝜎𝜎𝑣𝑣

2 = 1.02, the B-PF-RLS algorithm is applied to 
estimate the parameters and states of this fourth-order bilinear system. There are 25 parameters to be identified, 
with their true values and estimates presented in Table 3. The error curves under different variances are shown in 
Figure 11. For the noise variance 𝜎𝜎𝑣𝑣

2 = 0.802, parameter estimates over time are displayed in Figure 12, showing 
initial fluctuations but convergence to true values as 𝑡𝑡 increases. To illustrate the probabilistic characteristics of 
the method, the parameter estimates, Mean Absolute Deviation (MAD), and Root Mean Squared Deviation 
(RMSD) of the B-PF-RLS algorithm are summarized in Table 3. It is evident that the average parameter estimates 
closely match their true values. From Table 3-4 and Figures 11-12, it is observed that parameter estimates are 
close to their true values and the estimation accuracy improves as noise variances decrease. 
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Figure 11: The B-PF-RLS estimation errors – against t with σ2
v= 0.302, σ2
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Figure 12: The B-PF-RLS parameters estimates against t ( σ2
v = 0.802, 217 particles)
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Table 3 B-PF-RLS parameter estimates Mean, Absolute Deviation (MAD) and Root Mean Squared Deviation 
(RMSD) for 5000 runs 

Parameter 𝜃̂𝜃 Mean MAD RMSD True values 
𝑎𝑎1 0.4087 0.40 ±0.0168 ±0.0587 0.40 
𝑎𝑎2 -0.2432 -0.22 ±0.0211 ±0.0370 -0.24 
𝑎𝑎3 -0.1752 -0.17 ±0.0099 ±0.0281 -0.16 
𝑎𝑎4 0.0444 0.05 ±0.0093 ±0.0330 0.05 
𝑏𝑏11 -0.4527 -0.43 ±0.0420 ±0.0834 -0.45 
𝑏𝑏12 0.3139 0.30 ±0.0169 ±0.0369 0.32 
𝑏𝑏13 0.1716 0.18 ±0.0227 ±0.0483 0.18 
𝑏𝑏14 -0.0779 -0.08 ±0.0159 ±0.0368 -0.10 
𝑏𝑏21 -0.0251 -0.03 ±0.0121 ±0.0310 -0.02 
𝑏𝑏22 0.1026 0.09 ±0.0192 ±0.0378 0.10 
𝑏𝑏23 -0.0497 -0.04 ±0.0219 ±0.0475 -0.07 
𝑏𝑏24 -0.0457 -0.06 ±0.0145 ±0.0276 0.00 
𝑏𝑏31 0.3945 0.36 ±0.0331 ±0.0640 0.40 
𝑏𝑏32 -0.0542 -0.03 ±0.0214 ±0.0549 -0.05 
𝑏𝑏33 -0.0032 -0.01 ±0.0155 ±0.0299 0.00 
𝑏𝑏34 0.1871 0.17 ±0.0218 ±0.0416 0.20 
𝑏𝑏41 0.0604 0.07 ±0.0112 ±0.0216 0.05 
𝑏𝑏42 -0.0013 -0.00 ±0.0156 ±0.0417 0.00 
𝑏𝑏43 0.2903 0.27 ±0.0233 ±0.0474 0.30 
𝑏𝑏44 -0.1817 -0.19 ±0.0241 ±0.0480 -0.20 
𝑓𝑓1 1.1890 0.67 ±0.0553 ±0.1434 1.20 
𝑓𝑓2 1.5758 1.55 ±0.0533 ±0.1776 1.60 
𝑓𝑓3 0.6074 0.67 ±0.0553 ±0.1434 0.60 
𝑓𝑓4 2.1112 2.08 ±0.0615 ±0.2311 2.12 
𝑘𝑘 -0.3987 -0.41 ±0.0258 ±0.0643 -0.41 
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Table 3 B-PF-RLS parameter estimates Mean, Absolute Deviation (MAD) and Root Mean Squared Deviation 
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Table 4 The parameter estimates and errors of the B-PF-RLS algorithm for the fourth-order system 
𝜎𝜎𝑣𝑣2 𝑎𝑎1 = 0.40 𝑎𝑎2 = −0.24 𝑎𝑎3 = −0.16 𝑎𝑎4 = 0.05 

0.302 0.3979 -0.2416 -0.1627 0.0455 
0.802  0.4087 -0.2432 -0.1752 0.0444 
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0.302 -0.4488 0.3162 0.1838 -0.0832 
0.802  -0.4527 0.3139 0.1716 -0.0779 
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 𝑏𝑏21 = −0.02 𝑏𝑏22 = 0.10 𝑏𝑏23 = −0.07 𝑏𝑏24 = 0.00 
0.302 -0.0209 0.1059 -0.0599 -0.0283 
0.802  -0.0251 0.1026 -0.0497 -0.0457 
1.02 -0.0349 0.1024 -0.0393 -0.0447 

 𝑏𝑏31 = 0.40 𝑏𝑏32 = −0.05 𝑏𝑏33 = 0.00 𝑏𝑏34 = 0.20 
0.302 0.3890 -0.0504 -0.0126 0.1987 
0.802  0.3945 -0.0542 -0.0032 0.1871 
1.02 0.3868 -0.0440 -0.0098 0.1721 

 𝑏𝑏41 = 0.05 𝑏𝑏42 = 0.00 𝑏𝑏43 = 0.30 𝑏𝑏44 = −0.20 
0.302 0.0502 0.0014 0.2918 -0.1876 
0.802  0.0604 -0.0013 0.2903 -0.1817 
1.02 0.0638 0.0050 0.2836 -0.1806 

 𝑓𝑓1 = 1.20 𝑓𝑓2 = 1.60 𝑓𝑓3 = 0.60 𝑓𝑓4 = 2.12 
0.302 1.1939 1.5777 0.5998 2.1146 
0.802  1.1890 1.5758 0.6074 2.1112 
1.02 1.1869 1.5818 0.6378 2.1389 

 𝑘𝑘 = −0.41 Total parameters estimation error (𝛿𝛿𝜃𝜃%) 
0.302 -0.4102 1.5298 

2.2598 
3.1516 

0.802  -0.3987 
1.02 -0.3938 

Example 3 
 
In this context, we evaluate the B-PF-RLS algorithm using two-tank model shown in Figure 13. From a 
practical standpoint, the simulation aims to demonstrate the algorithm’s effectiveness.  

 
Fig. 13 Schematic of the state coupled two-tanks system. 

 
The tank process is a pilot tank system comprising two water tanks connected in cascade. Using physical 
modelling based on Torricelli’s principle and the net change of volume in the tank, the system can be described 
by the following nonlinear model [30], [31]: 
 

ℎ1̇ = − 𝑎𝑎1√2𝑔𝑔
𝐴𝐴1

√ℎ1 +
𝑘𝑘𝑝𝑝
𝐴𝐴1
𝑢𝑢          (20) 
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Figure 13: Schematic of the state coupled two-tanks system.

The tank process is a pilot tank system comprising two water tanks connected in cascade. Using physical modelling based on 
Torricelli’s principle and the net change of volume in the tank, the system can be described by the following nonlinear model [30, 
31].

Where the input signal, u is the voltage to the electrical pump, and h1 and h2 are the water levels (in cm) in the upper and lower 
tanks, respectively. A1 and A2 represent the areas of the upper and lower tanks. The effluent areas are denoted by a1 and a2, and g 
and kp  are the gravity constant and pump constant respectively. The nonlinear system above can be further simplified by making 
a linearization around a working point. Working level considered here is L10 = 0.02556cm , L12 = 0.0567cm  about which is derived 
from the linearized model. Defining the output signals as the voltages h1 and h2 (in volts) from the water level sensors leads to the 
following linear state-space model [30]. The two tank model parameters are presented in Table 5.

Studying the linearized model with some modifications reveals that for the system Tank 1, the first order model will have u and 
h1 as single input and output, respectively. However, for the system Tank 2 the input is given by both u and h1, whereas it has a 
single output h2 see Figure 14. Hence, a cascade structure in Figure 14 gives the following second order bilinear system with some 
modifications to consider u(t) is the input and h2 is the output [32].
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ℎ2̇ = 𝑎𝑎1√2𝑔𝑔
𝐴𝐴2

√ℎ1 − 𝑎𝑎2√2𝑔𝑔
𝐴𝐴2

√ℎ2         (21) 

Where the input signal, 𝑢𝑢 is the voltage to the electrical pump, and ℎ1and ℎ2 are the water levels (in cm) in the 
upper and lower tanks, respectively. 𝐴𝐴1 and 𝐴𝐴2 represent the areas of the upper and lower tanks. The effluent areas 
are denoted by 𝑎𝑎1 and 𝑎𝑎2, and 𝑔𝑔 and 𝑘𝑘𝑝𝑝  are the gravity constant and pump constant respectively. The nonlinear 
system above can be further simplified by making a linearization around a working point. Working level 
considered here is 𝐿𝐿10 = 0.02556𝑐𝑐𝑐𝑐, 𝐿𝐿12 = 0.0567𝑐𝑐𝑐𝑐  about which is derived from the linearized model. 
Defining the output signals as the voltages ℎ1 and ℎ2 (in volts) from the water level sensors leads to the following 
linear state-space model [30]. The two tank model parameters are presented in Table 5. 

[ℎ̇1
ℎ̇2

] = [
− 𝑎𝑎1𝑔𝑔√2

2𝐴𝐴1√𝑔𝑔𝐿𝐿10
0

𝑎𝑎1𝑔𝑔√2
2𝐴𝐴1√𝑔𝑔𝐿𝐿10

−𝑎𝑎2𝑔𝑔√2
2𝐴𝐴2√𝑔𝑔𝐿𝐿20

] [ℎ1
ℎ2

] + [
𝑘𝑘𝑝𝑝
𝐴𝐴1
0

] 𝑢𝑢(𝑡𝑡)       (22) 

𝑦𝑦(𝑡𝑡) = [0 1] [ℎ1
ℎ2

]          (23) 

Studying the linearized model with some modifications reveals that for the system Tank 1, the first order model 
will have 𝑢𝑢 and ℎ1 as single input and output, respectively. However, for the system Tank 2 the input is given by 
both 𝑢𝑢 and ℎ1, whereas it has a single output ℎ2 see Figure 14. Hence, a cascade structure in Figure 14 gives the 
following second order bilinear system with some modifications to consider 𝑢𝑢(𝑡𝑡) is the input and ℎ2 is the 
output [32]. 

[𝑥̇𝑥1
𝑥̇𝑥2

] =

[
 
 
 
 −𝑎𝑎2𝑔𝑔√2
2𝐴𝐴2√𝑔𝑔𝐿𝐿20

𝑎𝑎1𝑔𝑔√2
2𝐴𝐴1√𝑔𝑔𝐿𝐿10

0 − 𝑎𝑎1𝑔𝑔√2
2𝐴𝐴1√𝑔𝑔𝐿𝐿10]

 
 
 
 
[𝑥𝑥1
𝑥𝑥2

] + [𝑏𝑏22 𝑏𝑏21
𝑏𝑏12 𝑏𝑏11

] [𝑥𝑥1
𝑥𝑥2

] 𝑢𝑢(𝑡𝑡) + [
0
𝑘𝑘𝑝𝑝
𝐴𝐴1

] 𝑢𝑢(𝑡𝑡) 

𝑦𝑦(𝑡𝑡) = [1 0] [𝑥𝑥1
𝑥𝑥2

] 

Here, 𝑥𝑥1 = ℎ2 and 𝑥𝑥2 = ℎ1 

 

Fig. 14 Subprocess for two-tank bilinear model 

To streamline the simulation process, we employ the original model and discretize it using the forward Euler 
method. As a result, and after substituting the tanks parameters according to Table 5 and transform the model 
into its observable canonical form the bilinear model to be identified will be 

[𝑥̇𝑥1
𝑥̇𝑥2

] = [−0.2773 1
0.0190 0] [𝑥𝑥1

𝑥𝑥2
] + [−0.007 0.0090

0 0.0095] [𝑥𝑥1
𝑥𝑥2

] 𝑢𝑢(𝑡𝑡) + [ 0.035
0.0092] 𝑢𝑢(𝑡𝑡) + 𝑤𝑤(𝑡𝑡) 

𝑦𝑦(𝑡𝑡) = [1 0] [𝑥𝑥1
𝑥𝑥2

] + 0.28(𝑣𝑣 − 1) + 𝑣𝑣(𝑡𝑡) 
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Where the input signal, 𝑢𝑢 is the voltage to the electrical pump, and ℎ1and ℎ2 are the water levels (in cm) in the 
upper and lower tanks, respectively. 𝐴𝐴1 and 𝐴𝐴2 represent the areas of the upper and lower tanks. The effluent areas 
are denoted by 𝑎𝑎1 and 𝑎𝑎2, and 𝑔𝑔 and 𝑘𝑘𝑝𝑝  are the gravity constant and pump constant respectively. The nonlinear 
system above can be further simplified by making a linearization around a working point. Working level 
considered here is 𝐿𝐿10 = 0.02556𝑐𝑐𝑐𝑐, 𝐿𝐿12 = 0.0567𝑐𝑐𝑐𝑐  about which is derived from the linearized model. 
Defining the output signals as the voltages ℎ1 and ℎ2 (in volts) from the water level sensors leads to the following 
linear state-space model [30]. The two tank model parameters are presented in Table 5. 

[ℎ̇1
ℎ̇2

] = [
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] 𝑢𝑢(𝑡𝑡)       (22) 

𝑦𝑦(𝑡𝑡) = [0 1] [ℎ1
ℎ2

]          (23) 

Studying the linearized model with some modifications reveals that for the system Tank 1, the first order model 
will have 𝑢𝑢 and ℎ1 as single input and output, respectively. However, for the system Tank 2 the input is given by 
both 𝑢𝑢 and ℎ1, whereas it has a single output ℎ2 see Figure 14. Hence, a cascade structure in Figure 14 gives the 
following second order bilinear system with some modifications to consider 𝑢𝑢(𝑡𝑡) is the input and ℎ2 is the 
output [32]. 

[𝑥̇𝑥1
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Here, 𝑥𝑥1 = ℎ2 and 𝑥𝑥2 = ℎ1 

 

Fig. 14 Subprocess for two-tank bilinear model 

To streamline the simulation process, we employ the original model and discretize it using the forward Euler 
method. As a result, and after substituting the tanks parameters according to Table 5 and transform the model 
into its observable canonical form the bilinear model to be identified will be 
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] 𝑢𝑢(𝑡𝑡) + [ 0.035
0.0092] 𝑢𝑢(𝑡𝑡) + 𝑤𝑤(𝑡𝑡) 
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model and discretize it using the forward Euler method. As a 
result, and after substituting the tanks parameters according to 

Table 5 and transform the model into its observable canonical 
form the bilinear model to be identified will be
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The parameter vector to be identified is 
𝜃𝜃 = [𝑎𝑎1, 𝑎𝑎2, 𝑏𝑏1, 𝑏𝑏1, 𝑏𝑏1, 𝑏𝑏1, 𝑓𝑓1, 𝑓𝑓2, 𝐽𝐽1]𝑇𝑇

    = [−0.2773,0.0190, −0.007,0.0090,0,0.0095,0.035,0.0092,0.28]𝑇𝑇 

• In the simulation, the input {𝑢𝑢(𝑡𝑡)} is a pseudo-random binary sequence generated by the MATLAB 
function modified to have varying amplitudes. ,𝑤𝑤1(𝑡𝑡) and 𝑤𝑤2(𝑡𝑡) are random noise sequences with zero 
mean and variance 𝜎𝜎𝑤𝑤1

2 = 0.052, and 𝜎𝜎𝑤𝑤2
2 = 0.0012 respectively. 𝑣𝑣(𝑡𝑡) is a random noise sequence with 

zero mean and variance 𝜎𝜎𝑣𝑣
2 = 0.602  , 𝜎𝜎𝑣𝑣

2 = 0.802 and 𝜎𝜎𝑣𝑣
2 = 1.02 . Set the data length 𝐿𝐿 = 5000 and 

Generate system parameter and state estimates by applying the B-PF-RLS algorithm with different 
number of particles according to 𝜎𝜎𝑣𝑣

2  selection. 
• The parameters estimates and errors 𝛿𝛿𝜃𝜃 =∥ 𝜃̂𝜃 − 𝜃𝜃 ∥/∥ 𝜃𝜃 ∥ at 𝜎𝜎𝑣𝑣

2 = 0.602  , 𝜎𝜎𝑣𝑣
2 = 0.82 and 𝜎𝜎𝑣𝑣

2 = 1.02 are 
summarized in Table 6. Specified value of the number of particles are chosen, and the parameter 
estimation errors are plotted against 𝑡𝑡 for 𝜎𝜎𝑣𝑣

2 = 0.602  , 𝜎𝜎𝑣𝑣
2 = 0.802 and 𝜎𝜎𝑣𝑣

2 = 1.02  in Fig. (15).  
• Without knowing the measurement noise variance, as discussed in section 2.2, Table 7 presents the 

parameter estimation and error using the proposed algorithm (55)-(65), (69)-(74) with unknown 
measurement noise. The process noise variances are 𝜎𝜎𝑤𝑤1

2 = 0.052, and 𝜎𝜎𝑤𝑤2
2 = 0.0012. 

• To further validate the effectiveness of the model obtained through the B-PF-RLS algorithm, a different 
data set consisting of 100 samples (𝐿𝐿𝑟𝑟 = 100) from 𝑡𝑡 =  𝐿𝐿 + 1 𝑡𝑡𝑡𝑡 𝑡𝑡 =  𝐿𝐿 + 𝐿𝐿𝑟𝑟 was used. The parameter 
estimates from the fifth row in Table 6 were employed to construct the resulting model. Figure 14 presents 
the actual output 𝑦𝑦(𝑡𝑡), the predicted output 𝑦̂𝑦(𝑡𝑡), and their errors 𝑦̂𝑦(𝑡𝑡) − 𝑦𝑦(𝑡𝑡). The figure demonstrates 
that the predicted output closely tracks the actual output with high accuracy and minimal errors. 

 
Table 5 Tanks Parameter values 

𝐴𝐴1 𝐴𝐴2 𝑎𝑎1 𝑎𝑎2 𝑘𝑘𝑝𝑝 𝐿𝐿10 𝐿𝐿20 
3.80 𝑐𝑐𝑐𝑐2 2.4697𝑐𝑐𝑐𝑐2 0.57 𝑐𝑐𝑐𝑐2 0.50 𝑐𝑐𝑐𝑐2 5.88 𝑐𝑐𝑐𝑐3 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣⁄ − 𝑠𝑠𝑠𝑠𝑠𝑠 0.02556 𝑐𝑐𝑐𝑐 0.05676 𝑐𝑐𝑐𝑐 

 
 
 

Table 6 The parameter estimates and errors of the B-PF-RLS algorithm for 𝜎𝜎𝑣𝑣
2 = 0.602, 𝜎𝜎𝑣𝑣

2 = 0.802 and 𝜎𝜎𝑣𝑣
2 = 1.02 

𝜎𝜎𝑣𝑣
2 𝒕𝒕 𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 𝒃𝒃𝟏𝟏𝟏𝟏 𝒃𝒃𝟏𝟏𝟏𝟏 𝒃𝒃𝟐𝟐𝟐𝟐 𝒃𝒃𝟐𝟐𝟐𝟐 𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐 𝒌𝒌 𝜹𝜹𝜽𝜽% 

0.602 

100 -0.0903 0.0502 -0.0007 0.0005 -0.0034 0.0034 0.0200 0.0389 0.0750 70.9952 

1000 -0.2517 0.0647 -0.0048 0.0015 -0.0044 0.0083 0.0362 0.0126 0.2670 13.8302 

2000 -0.2548 0.0537 -0.0059 0.0016 -0.0036 0.0087 0.0337 0.0128 0.2823 10.6990 

5000 -0.2777 0.0182 -0.0047 0.0017 -0.0009 0.0090 0.0359 0.0085 0.2878 2.7960 

0.802 

100 -0.0978 0.0135 -0.0038 -0.0009 -0.0022 0.0030 0.0227 0.0324 0.1025 64.1118 

1000 -0.2269 0.0107 -0.0034 -0.0010 -0.0025 0.0026 0.0342 0.0139 0.2304 18.2894 

2000 -0.2518 0.0209 -0.0041 -0.0015 -0.0028 0.0030 0.0360 0.0093 0.2570 9.2743 

5000 -0.2729 0.0085 -0.0041 -0.0010 -0.0012 0.0032 0.0365 0.0078 0.2744 4.4821 

1.02   

100 -0.0537 0.0170 0.0021 0.0005 -0.0015 -0.0009 0.0138 0.0434 0.0382 83.7903 

1000 -0.2245 0.0642 -0.0015 0.0006 -0.0037 -0.0004 0.0360 0.0138 0.2534 19.1713 

2000 -0.2278 0.0621 -0.0030 0.0006 -0.0034 -0.0003 0.0334 0.0147 0.2756 17.0136 

5000 -0.2514 0.0211 -0.0021 0.0005 -0.0003 -0.0003 0.0362 0.0098 0.2861 7.5785 

True value -0.2773 0.0190 -0.0070 0.0090 0.0000 0.0095 0.0350 0.0092 0.2800  
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estimates from the fifth row in Table 6 were employed to construct the resulting model. Figure 14 presents 
the actual output 𝑦𝑦(𝑡𝑡), the predicted output 𝑦̂𝑦(𝑡𝑡), and their errors 𝑦̂𝑦(𝑡𝑡) − 𝑦𝑦(𝑡𝑡). The figure demonstrates 
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• In the simulation, the input {𝑢𝑢(𝑡𝑡)} is a pseudo-random binary sequence generated by the MATLAB 
function modified to have varying amplitudes. ,𝑤𝑤1(𝑡𝑡) and 𝑤𝑤2(𝑡𝑡) are random noise sequences with zero 
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2 = 0.052, and 𝜎𝜎𝑤𝑤2
2 = 0.0012 respectively. 𝑣𝑣(𝑡𝑡) is a random noise sequence with 

zero mean and variance 𝜎𝜎𝑣𝑣
2 = 0.602  , 𝜎𝜎𝑣𝑣

2 = 0.802 and 𝜎𝜎𝑣𝑣
2 = 1.02 . Set the data length 𝐿𝐿 = 5000 and 

Generate system parameter and state estimates by applying the B-PF-RLS algorithm with different 
number of particles according to 𝜎𝜎𝑣𝑣
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estimation errors are plotted against 𝑡𝑡 for 𝜎𝜎𝑣𝑣
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measurement noise. The process noise variances are 𝜎𝜎𝑤𝑤1
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data set consisting of 100 samples (𝐿𝐿𝑟𝑟 = 100) from 𝑡𝑡 =  𝐿𝐿 + 1 𝑡𝑡𝑡𝑡 𝑡𝑡 =  𝐿𝐿 + 𝐿𝐿𝑟𝑟 was used. The parameter 
estimates from the fifth row in Table 6 were employed to construct the resulting model. Figure 14 presents 
the actual output 𝑦𝑦(𝑡𝑡), the predicted output 𝑦̂𝑦(𝑡𝑡), and their errors 𝑦̂𝑦(𝑡𝑡) − 𝑦𝑦(𝑡𝑡). The figure demonstrates 
that the predicted output closely tracks the actual output with high accuracy and minimal errors. 
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Table 7 The parameter estimates and errors of the B-PF-RLS algorithm for 𝜎𝜎𝑣𝑣2 actually unknown 

𝜎𝜎𝑣𝑣2 𝒕𝒕 𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 𝒃𝒃𝟏𝟏𝟏𝟏 𝒃𝒃𝟏𝟏𝟏𝟏 𝒃𝒃𝟐𝟐𝟐𝟐 𝒃𝒃𝟐𝟐𝟐𝟐 𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐 𝒌𝒌 𝜹𝜹𝜽𝜽% 

0.602 
(But 

actually 
unknown) 

100 -0.0803 0.0423 -0.0009 0.0005 -0.0027 0.0033 0.0198 0.0399 0.0691 73.6147 

1000 -0.2489 0.0555 -0.0052 0.0014 -0.0038 0.0080 0.0364 0.0124 0.2726 12.0496 

2000 -0.2509 0.0479 -0.0061 0.0014 -0.0032 0.0082 0.0339 0.0127 0.2858 10.2467 

5000 -0.2738 0.0160 -0.0047 0.0014 -0.0008 0.0082 0.0361 0.0085 0.2901 3.4725 

True value -0.2773 0.0190 -0.0070 0.0090 0.0000 0.0095 0.0350 0.0092 0.2800  

  
Fig. 15 The B-PF-RLS estimation errors – against t with 𝜎𝜎𝑣𝑣2 =
0.602, 𝜎𝜎𝑣𝑣2 = 0.802 and 𝜎𝜎𝑣𝑣2 = 1.02 

Fig. 16 The true outputs and the predicted outputs for the 
bilinear two tank system 

 
 

 

6. Conclusion  
 
 
In this study, we proposed a comprehensive algorithm for jointly estimating the parameters and states of a bilinear 
system affected by colored measurement noise. The proposed approach integrates a Recursive Least Squares 
(RLS) estimator for parameter identification and a Particle Filter (PF) for state estimation, effectively addressing 
the challenges posed by the system's nonlinear characteristics and the presence of noise. 
 
Through extensive simulations, including a two-tank system model and a higher-order system, we demonstrated 
the robustness and accuracy of our B-PF-RLS algorithm.  
The results confirm that our approach can reliably estimate both parameters and states even under challenging 
conditions, such as when process noise is unknown. This demonstrates the versatility and effectiveness of the 
algorithm in a variety of practical scenarios. 
 
Future work may explore further refinements to the algorithm to enhance its performance in real-time applications 
and investigate its applicability to other nonlinear systems. Additionally, the integration of more sophisticated 
noise modelling techniques could further improve estimation accuracy. 
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Table 7 The parameter estimates and errors of the B-PF-RLS algorithm for 𝜎𝜎𝑣𝑣2 actually unknown 

𝜎𝜎𝑣𝑣2 𝒕𝒕 𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 𝒃𝒃𝟏𝟏𝟏𝟏 𝒃𝒃𝟏𝟏𝟏𝟏 𝒃𝒃𝟐𝟐𝟐𝟐 𝒃𝒃𝟐𝟐𝟐𝟐 𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐 𝒌𝒌 𝜹𝜹𝜽𝜽% 

0.602 
(But 

actually 
unknown) 

100 -0.0803 0.0423 -0.0009 0.0005 -0.0027 0.0033 0.0198 0.0399 0.0691 73.6147 

1000 -0.2489 0.0555 -0.0052 0.0014 -0.0038 0.0080 0.0364 0.0124 0.2726 12.0496 

2000 -0.2509 0.0479 -0.0061 0.0014 -0.0032 0.0082 0.0339 0.0127 0.2858 10.2467 

5000 -0.2738 0.0160 -0.0047 0.0014 -0.0008 0.0082 0.0361 0.0085 0.2901 3.4725 

True value -0.2773 0.0190 -0.0070 0.0090 0.0000 0.0095 0.0350 0.0092 0.2800  
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6. Conclusion 
In this study, we proposed a comprehensive algorithm for jointly estimating the parameters and states of a bilinear system affected 
by colored measurement noise. The proposed approach integrates a Recursive Least Squares (RLS) estimator for parameter 
identification and a Particle Filter (PF) for state estimation, effectively addressing the challenges posed by the system's nonlinear 
characteristics and the presence of noise.Through extensive simulations, including a two-tank system model and a higher-order 
system, we demonstrated the robustness and accuracy of our B-PF-RLS algorithm. The results confirm that our approach can 
reliably estimate both parameters and states even under challenging conditions, such as when process noise is unknown. This 
demonstrates the versatility and effectiveness of the algorithm in a variety of practical scenarios. Future work may explore further 
refinements to the algorithm to enhance its performance in real-time applications and investigate its applicability to other nonlinear 
systems. Additionally, the integration of more sophisticated noise modelling techniques could further improve estimation accuracy.
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