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Abstract
Oral squamous cell carcinoma (OSCC) presents significant challenges due to increasing incidence rates and late diagnoses, 
despite advancements in understanding its molecular mechanisms. Early detection is vital for improving patient outcomes, 
and precision medicine offers personalized treatment options. Deep learning, particularly EfficientNetB3, shows promise 
in enhancing OSCC detection through automated image analysis. EfficientNetB3 demonstrated high performance in image 
classification, with an accuracy of 0.9833, precision of 0.9782, and recall of 0.9782. This article explores deep learning’s role 
in improving OSCC diagnosis, image analysis, and treatment planning, contributing to more timely interventions and better 
patient outcomes.
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1. Introduction
Oral squamous cell carcinoma (OSCC) is one of the most prevalent 
forms of cancer globally, with its incidence steadily rising in many 
populations like Coletta et al. [1]. This type of cancer affects the 
mouth and throat, posing significant challenges in terms of early 
detection and effective treatment planning. OSCC is particularly 
concerning due to its high incidence rate, late-stage diagnosis, 
and suboptimal treatment outcomes, all of which contribute to a 
high mortality rate. Effective management and early detection are 
crucial for improving prognosis, treatment efficacy, and survival 
rates for patients. Oral squamous cell carcinoma (OSCC) accounts 
for 90% of all oral cancers and represents a significant global health 
concern due to its high incidence and mortality rates Jiang et al. 
[2]. It can affect any anatomical site in the mouth, most commonly 
the tongue and the floor of the mouth. OSCC often arises from pre-
existing potentially malignant lesions or de novo within a field of 
precancerous epithelium. Each year, approximately 405,000 new 
cases of oral cancer are reported worldwide, making it the seventh 
most common type of cancer in some regions, such as Brazil 
Montero and Patel [3]. The etiology of OSCC is multifactorial, 
with tobacco and alcohol consumption being the most significant 
risk factors, especially when used synergistically Pinnika and Rao 
[4]. Additional risk factors include poor diet (low in fruits and 
vegetables), betel nut chewing (prevalent in Asian populations), 
poor oral hygiene, and excessive exposure to ultraviolet light 
(for lip carcinomas). There is also evidence that high-risk HPV 
infections contribute to the development of OSCC, although 
the prevalence and impact of this factor remain under debate. 

Epidemiological data show a higher prevalence of OSCC among 
males, likely due to greater exposure to risk factors. Typically, 
OSCC affects older individuals, with a mean age of diagnosis 
around 62 years. Clinically, it often presents as a painless ulcer 
on the border of the tongue or the floor of the mouth. Important 
prognostic factors include the size of the tumor at diagnosis, the 
presence of metastases in regional lymph nodes, and the depth of 
tumor invasion. Treatment generally involves surgery, radiation, 
and chemotherapy, either singularly or in combination Despite 
the advancements in understanding the molecular mechanisms of 
OSCC, early detection remains a significant challenge. The current 
diagnostic methods are often invasive, time-consuming, and 
dependent on the clinician’s expertise, which can lead to late-stage 
diagnoses. Early detection is crucial for improving prognosis, 
treatment efficacy, and survival rates. The advent of deep learning, 
a subset of artificial intelligence (AI) and machine learning, offers 
promising avenues for enhancing the early detection and diagnosis 
of OSCC. Deep learning models, particularly convolutional neural 
networks (CNNs), have demonstrated remarkable progress in 
medical image analysis, enabling the extraction and analysis of 
crucial information from medical images.
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2.   Related Work
In recent years, a plethora of research studies have explored the 
application of deep learning methodologies for early detection, 
diagnosis, and prognosis of oral squamous cell carcinoma (OSCC) 
as well as other types of cancers. In this section, we conduct a 
thorough examination of the existing literature on OSCC detection 
and the integration of deep learning techniques in medical imaging. 
Our aim is to gain a comprehensive understanding of the landscape 
surrounding OSCC diagnosis, highlighting both conventional 
methods and novel approaches driven by advancements in deep 
learning technology. Kim et al. [5] collected data from 255 patients 
treated at a surgical department between 2000 and 2017. They used 
deep learning with DeepSurv to predict survival outcomes and 
compared it to two other models. DeepSurv (.781) performed the 
best, with higher accuracy in predicting survival compared to the 
other models. In another study by Jeyaraj and Samuel Nadar [6], 
a deep convolutional neural network (CNN) model was proposed 
for OSCC detection. Remarkably, the model achieved the highest 
accuracy of 91.4% with a sensitivity of 0.94 and specificity of 0.91 
when tested on a dataset consisting of 100 images. In another study 
by Bur et al. [7], data from the National Cancer Database (NCDB) 
involving 782 patients were collected. Subsequently, using test data 
from 654 patients, they proposed a model based on the decision 
forest algorithm. Impressively, their model achieved an area under 
the curve (AUC) of 0.840, indicating its efficacy in predicting 
outcomes related to oral squamous cell carcinoma. applied support 
vector machine (SVM) and random forest classifiers [8]. Their 
proposed methodology efficiently detected mitotic cells from 
histopathological images of OSCC with 89% precision, 95% recall 
or sensitivity, 97.35% specificity, 96.92% accuracy, 96.45% AUC, 
and a 92% F-score measure. In a study conducted by biopsy data 
of Oral Squamous Cell Carcinoma (OSCC) were collected from 
Kaggle [9]. They proposed the AlexNet model, which achieved 
an impressive accuracy of 90.06% and a loss rate of 9.08% in 
predicting OSCC. In the study conducted by the ResNet-101 
model was proposed[10]. They achieved the highest F1 score of 
87.07% with this model [11]. tissue samples from 20 patients were 
collected. They proposed the MobileNet model, which achieved a 
sensitivity of 0.47 and a specificity of 0.96, indicating its ability 
to effectively detect oral squamous cell carcinoma. In the study 
by a histopathological imaging database for oral cancer analysis 
was utilized, comprising 1224 images from 230 patients. Their 
customized deep learning model demonstrated significant success, 
achieving an impressive 99% accuracy when tested on the dataset 
[12]. In a study conducted by various models including AlexNet, 
DenseNet-169, DenseNet-201, and ResNet-18 were employed [13]. 
They achieved accuracies of 87.05%, 95%, 93.5%, and 75.95%, 
respectively, using these employed various models including 
DenseNet-169, ResNet-101, SqueezeNet, and Swin-S [14]. The 
study proposed that the AUC of multiclass image classification 
for the best CNN model, DenseNet-169, was1.00, and 0.98 
respectively. conducted a study where they randomly collected 
1406 clinical photographs (CPs) from the Department of Oral and 
Maxillofacial Surgery, Charité - Universitätsmedizin Berlin. They 
utilized YOLOv5, ResNet-152, DenseNet-161, Inception-v4, and 
EfficientNet-b4 for their analysis [15].] retrospectively collected 

600 oral photograph images, comprising 300 images of oral 
potentially malignant disorders (OPMDs) and 300 images of normal 
oral mucosa [16]. They employed DenseNet-121 and ResNet-50 
convolutional neural network (CNN)-based classification models. 
The image classification using DenseNet-121 achieved a precision 
of 91%, a recall of 89.51%, an F1 score of 95%, a sensitivity of 
100%, a specificity of 90%, and an AUC of the ROC curve of 
95%. On the other hand, the image classification using ResNet-50 
achieved a precision of 92%, a recall of 98%, an F1 score of 
95%, a sensitivity of 98.39%, and a specificity of 91.67%. In 
their study, utilized an oral dataset collected from a repository 
containing images of normal oral cavities and oral squamous cell 
carcinoma (OSCC)[17,18]. They experimented with several deep 
learning models including VGG16, VGG19, AlexNet, ResNet50, 
ResNet101, MobileNet, and InceptionNet. The proposed model 
achieved an impressive crossvalidation accuracy of 97.82%, 
demonstrating its efficacy in automatically classifying oral cancer 
data. Specifically, the performance of the models varied, with 
AlexNet, ResNet50, ResNet101, MobileNet, and InceptionNet 
showing promising accuracy rates of 88%, 91%, 89%, 93%, and 
92%, respectively. In contrast, VGG16 and VGG19 exhibited 
lower performance with accuracies of 74% and 71%, respectively. 
The existing literature underscores the potential of deep learning 
techniques in improving the classification of oral squamous cell 
carcinoma (OSCC) without the need for manual feature extraction. 
Despite this potential, there is a scarcity of research focusing on 
histopathological images of oral cancer cells using deep learning 
approaches. The literature emphasizes the significance of deep 
learning methods for classification tasks, indicating a promising 
avenue for further exploration. Building upon this literature 
analysis, our proposed study aims to address the gap by focusing 
on the binary classification of oral histopathological images using 
various CNN architectures with different configurations and 
layers. By comparing the outcomes of these variations, we seek 
to identify the best-performing model for accurate classification. 
In summary, the collective findings from these studies underscore 
the promising role of deep learning techniques in improving 
OSCC detection, diagnosis, and prognosis. This not only holds 
potential for enhancing patient outcomes but also contributes to 
the advancement of cancer research and treatment strategies.

3. Methodology
3.1 Workflow
According to the workflow illustrated in Figure 1, the first step 
of this project involves data collection. Data for this project 
was sourced primarily from the Oral Cancer Database (OCDB) 
available on supplemented by additional high-resolution oral cell 
images obtained through collaboration with various hospitals[19]. 
The dataset consists of images distributed across training, testing, 
and validation sets, each containing two categories: Normal 
and OSCC (Oral Squamous Cell Carcinoma). The training data 
comprises 2435 images labeled as Normal, and 2511 images labeled 
as OSCC. The testing data includes 31 images labeled as Normal 
and 95 images labeled as OSCC, while the validation data contains 
28 images labeled as Normal and 92 images labeled as OSCC. In 
total, the dataset comprises 5192 images, with a distribution of 
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approximately 52% OSCC and 48% Normal images.

3.2 Image Processing
The collected images exhibit variability in terms of sizes, zoom 
levels, angles, lighting conditions, and orientations. To standardize 
the dataset for model training, all images underwent preprocessing 
steps. Specifically, they were manually cropped, resized to 
dimensions of 224 × 224 × 3, and converted into the JPG file 
format. This preprocessing ensures consistency in the input data 
format across all images, facilitating compatibility with the chosen 
deep learning model architecture. After the preprocessing of the 
images, the images are used for the image augmentation process 
like, zooming, right shifting, flipping etc. Figure 2, illustrates the 
preprocessed data.

3.3 Image Augmentation
In this project, image augmentation is employed to enhance 
the diversity and robustness of the training dataset. Image 
augmentation is a technique that generates modified versions of 
images in the dataset, artificially expanding the size and variability 
of the dataset. This helps improve the model’s performance and 
generalization ability by introducing variations that the model 
might encounter in real-world scenarios. Specifically, we apply 
horizontal flipping to the training images, which randomly flips 
images along the horizontal axis. This augmentation technique 
is critical for training deep learning models as it allows them to 
learn to recognize objects in images regardless of their orientation, 
thereby improving robustness. Additionally, all images were 
resized to a uniform size of 224x224 pixels and color channels 
were standardized to RGB format to maintain consistency 
across the dataset. For validation and testing datasets, only basic 
preprocessing was applied without any augmentation to ensure that 

the evaluation metrics reflect the model’s performance on unaltered 
images. This augmentation strategy significantly contributes to the 
model’s ability to generalize well to new, unseen data, which is 
crucial for achieving high accuracy in image classification tasks.

3.4 Data Set Splitting
The dataset used in this study was split into training, validation, and 
test sets to facilitate model development and evaluation. Initially, 
the dataset was divided into training and temporary test sets in a 70-
30 ratio, ensuring that the class distribution was preserved across 
the splits. Subsequently, the temporary test set was further divided 
into validation and final test sets in a 50-50 ratio, maintaining the 
same class distribution. This strategy ensured that the training set 
was used to train the model, the validation set was employed for 
hyperparameter tuning and model selection, and the final test set 
served for unbiased evaluation of the trained model’s performance. 
Each set was encapsulated in DataFrame objects, containing image 
paths and corresponding labels. This rigorous splitting approach 
ensured that the model’s performance was robustly assessed on 
unseen data, contributing to the reliability and generalization 
ability of the developed model.

3.5 Pre-trained DL-CNN Model
Deep Learning Convolutional Neural Network (DL-CNN) models 
have revolutionized various image-based tasks, including object 
detection and recognition. CNNs consist of layers interconnected 
in a sequential manner, where each layer is linked to the subsequent 
layer [6]. These layers consist of neurons, forming a spatial 
architecture that creates a volume with width, height, and depth. 
The depth of the network corresponds to the number of stacked 
layers, with each
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layer contributing to feature extraction and representation. Key 
components of a CNN architecture include convolutional, pooling, 
and fully connected layers, along with activation functions like 
ReLU, batch normalization, and dropout layers. In a typical CNN, 
convolution layers comprise various filters with width, height, 
and depth, which extract different features from the input image. 
Each filter is parameterized and convolved over the input image to 

extract features via dot product operations. Parameters such as size, 
stride, and padding control the behavior of convolutional layers. 
Pooling layers further process the extracted features, reducing 
the size of the feature map to reduce computational complexity. 
Common pooling techniques include average pooling and max 
pooling. Batch normalization layers, along
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with activation functions like ReLU, help normalize shifts in 
middle layers, aiding in network convergence. Dropout layers 
mitigate overfitting by randomly dropping neurons during 
training. Finally, the reduced feature map is passed through fully 
connected layers with the SoftMax function for classification 
into corresponding classes. Pre-trained DL-CNN models such 
as VGG-16 Inception-V3, NASNetLarge , and DenseNet201 
are widely used for image classification tasks. These models, 
trained on large-scale datasets like ImageNet, demonstrate strong 
generalization capabilities when applied to external datasets. In 
this context ResNet101, VGG-16, DenseNet121, DenseNet201 
and EfficientNetB3 are considered as candidates for pre-trained 

models, which are further modified with additional layers for 
effective Oral Squamous Cell Carcinoma (OSCC) detection [20-
23].

3.5.1 ResNet
ResNet101 is a deep convolutional neural network architecture 
known for its depth and effectiveness in image recognition tasks. 
With 101 layers, it surpasses its predecessors, addressing the 
challenge of vanishing gradients through skip connections. These 
connections allow gradients to flow directly, enabling the training 
of very deep networks with improved convergence and accuracy. 
Each ResNet101 block consists of residual units, featuring 
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multiple convolutional layers with batch normalization and ReLU 
activation. Additionally, it adopts a bottleneck design in deeper 
layers to reduce complexity while maintaining performance. Pre-
trained ResNet101 models, often trained on datasets like ImageNet, 
excel in various computer vision tasks. Through its depth, skip 
connections, and innovative design, ResNet101 has significantly 
advanced deep learning in computer vision.

3.5.2 VGG-16
VGG-16 is a convolutional neural network created by the Visual 
Geometry Group (VGG) at the University of Oxford, known for its 
straightforward design and effectiveness in image classification. 
With 16 weight layers, including 13 convolutional layers and 3 
fully connected layers, VGG-16 maintains a consistent structure 
[24]. It processes 224x224 RGB images through convolutional 
blocks followed by max pooling layers to extract features and 
reduce dimensions. Each block contains multiple 3x3 convolutional 
layers with ReLU activation functions, increasing filter count for 
complex patterns. Fully connected layers with 4096 units and 
ReLU activation, along with dropout regularization, prevent 
overfitting. The final layer uses softmax activation to produce 
class probabilities. Despite its simplicity, VGG-16 performs well 
on image classification benchmarks, making it widely used in 
computer vision research.

3.5.3 DenseNet121
DenseNet121 is a unique convolutional neural network with 121 
layers, part of the DenseNet family. Its standout feature is the dense 
connectivity between layers, where each one is directly linked to 
every other in a feed-forward manner. These fosters feature reuse, 
propagation, and gradient flow, aiding in better performance 
and convergence. Each dense block in DenseNet121 includes 
multiple convolutional layers, batch normalization, and ReLU 
activations for feature extraction. Transition layers between dense 
blocks reduce spatial dimensions and parameters. DenseNet121 
effectively tackles the vanishing gradient problem and excels 
in various computer vision tasks like image classification and 
object detection. Pretrained on ImageNet, it’s widely used in both 
research and practical applications for its compact design and 
efficient parameter utilization.

3.5.4 DenseNet201
DenseNet201, an extension of the DenseNet architecture, is a deep 
convolutional neural network known for its dense connectivity 
patterns and impressive performance in image recognition. With 
201 layers, DenseNet201 features densely connected blocks where 
each layer receives input from all preceding layers, promoting 
feature reuse and gradient flow. These blocks contain multiple 
convolutional layers, batch normalization, and ReLU activations 
for effective feature extraction. Transition layers manage spatial 
dimensions and model complexity. Pretrained on datasets like 
ImageNet, DenseNet201 excels in tasks like image classification 
and object detection. Its depth, dense connectivity, and efficient 
parameter use make it a popular choice in both research and 
practical applications in deep learning and computer vision.

3.5.5 EfficientNetB3
EfficientNetB3, part of the EfficientNet family, is a convolutional 
neural network celebrated for its efficiency and effectiveness in 
image recognition. Developed by Google AI researchers, it strikes 
a balance between model size, computational resources, and 
performance, making it ideal for resource-limited environments. 
Through compound scaling, EfficientNetB3 optimizes its depth, 
width, and resolution for superior performance. It features 
multiple blocks with inverted bottleneck structures, utilizing 
depthwise separable convolutions and squeeze-and-excitation 
modules to enhance feature representation efficiently. Pretrained 
on datasets like ImageNet, EfficientNetB3 excels in tasks such as 
image classification and object detection. Its compact design and 
ability to achieve high accuracy with fewer parameters make it a 
compelling option for both research and practical applications in 
deep learning and computer vision.

3.6 Model Training
All models were trained using the NVIDIA GeForce MX110 GPU, 
leveraging the Scikit-learn 1.4.2 library for machine learning 
tasks. This setup ensured efficient processing and utilization of 
computational resources during model training and evaluation.

4. Experiment, Result, Analysis and Discussion
4.1 Evaluation Measures
In our experimental study, we opted for five recently developed 
pre-trained deep learning convolutional neural network
(DL-CNN) models—ResNet101, VGG-16, DenseNet121, 
DenseNet201, and EfficientNetB3—tailored for detecting oral 
squamous cell carcinoma (OSCC) in histopathological images 
of oral lesion biopsies. Evaluation metrics are used to assess the 
performance of the DL-CNN models. It provides quantitative 
measurements that help in comparing different models and 
selecting the most suitable one for a particular task. Common 
evaluation metrics are included as part of the analysis, including 
accuracy, precision, recall, F1-score, and area under the receiver 
operating characteristic curve (ROC AUC) which is defined by the 
equations (1)-(4). Accuracy measures the proportion of correctly 
classified instances out of the total number of instances, providing 
an overall assessment of model performance. Precision quantifies 
the proportion of true positive predictions among all positive 
predictions, highlighting the model’s ability to avoid false positives. 
Recall, also known as sensitivity, calculates the proportion of true 
positive predictions among all actual positive instances, indicating 
the model’s ability to capture all relevant instances. F1-score, the 
harmonic means of precision and recall, balances both metrics, 
providing a comprehensive measure of model accuracy. Lastly, 
ROC AUC evaluates the model’s ability to distinguish between 
positive and negative classes across various threshold values, 
with a higher AUC indicating better model performance. By 
considering these evaluation metrics collectively, researchers can 
make informed decisions regarding model selection and refinement 
to optimize performance for the specific task at hand.
• Accuracy: It measures the proportion of correctly classified 
instances out of the total number of instances. It can be formulated 
as:
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Where:
– TP: is the number of true positives (correctly predicted positive 
instances).
– TN: is the number of true negatives (correctly predicted negative 
instances).
– FP: is the number of false positives (incorrectly predicted as 
positive instances).
– FN: is the number of false negatives (incorrectly predicted as 
negative instances).
• Precision: It measures the proportion of correctly predicted 
positive instances out of all instances predicted as positive. It can 
be formulated as:

                                                    =

• Recall: It measures the proportion of correctly predicted positive 
instances out of all actual positive instances. It can be formulated 
as:
                                                

=

• F1-Score: It is the harmonic mean of precision and recall, 
providing a balance between the two metrics. It can be formulated 
as:

4.2 Comparison of Various DL-CNN Models Results
In our comparative analysis, we evaluated the performance of five 
candidate pre-trained DL-CNN models—ResNet101, VGG-16, 
DenseNet121, DenseNet201, and EfficientNetB3—each modified 
with additional layers, on the selected datasets. The evaluation 
encompassed various metrics including accuracy, precision, recall, 
and loss, shedding light on their classification capabilities. In 
Figure 3, we present the performance of different deep learning 
CNN models based on the evaluation metrics.

ResNet101 demonstrated competitive performance with an 
accuracy of 0.8571, precision of 0.9140, recall of 0.8947, and a 
loss of 0.4435. VGG-16 exhibited moderate accuracy (0.7778) and 
recall (0.7895), with higher precision (0.9036) and a slightly lower 
loss of 0.4415 compared to ResNet101. DenseNet121 showcased 
superior accuracy (0.9178) and precision (0.9481), along with a 
commendable recall of 0.9012 and a loss of 0.6411. Conversely, 
DenseNet201 yielded lower performance metrics, with an accuracy 
of 0.7936, precision of 0.6700, recall of 0.6900, and a significantly 
higher loss of 2.2123.

EfficientNetB3 emerged as the top-performing model, surpassing 
its counterparts with an outstanding accuracy of 0.9833, precision 
of 0.9782, recall of 0.9782, and the lowest loss of 0.1117. Its 
exceptional performance can be attributed to the densely connected 
CNN layers, which optimize data flow and mitigate gradient-
related issues. Furthermore, EfficientNetB3’s parameter efficiency 
and regularization effects contribute to reduced overfitting, making 
it highly effective even with limited training data. Table 1 shows 
the models comparisons
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ResNet101 demonstrated competitive performance with an accuracy of 0.8571, precision of 

0.9140, recall of 0.8947, and a loss of 0.4435. VGG-16 exhibited moderate accuracy (0.7778) and 
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Models Loss Accuracy Precision Recall
ResNet101 0.4435 0.8571 0.9410 0.8947
VGG-16 0.4415 0.7778 0.9036 0.7895
DenseNet121 0.6411 0.9178 0.9481 0.9012
DenseNet201 2.2123 0.7936 0.6700 0.6900
EfficientNetB3 0.1117 0.9833 0.9782 0.9782

Table 1: Results of Oral Cancer Database (OCDB)
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lower performance metrics, with an accuracy of 0.7936, precision of 0.6700, recall of 0.6900, and 

a significantly higher loss of 2.2123. 

EfficientNetB3 emerged as the top-performing model, surpassing its counterparts with an 

outstanding accuracy of 0.9833, precision of 0.9782, recall of 0.9782, and the lowest loss of 

0.1117. Its exceptional performance can be attributed to the densely connected CNN layers, 

which optimize data flow and mitigate gradient-related issues. Furthermore, EfficientNetB3’s 

parameter efficiency and regularization effects contribute to reduced overfitting, making it highly 

effective even with limited training data. Table 1 shows the models comparisons 

Table 1: Results of Oral Cancer Database (OCDB) 
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4.3 Result Analysis Using Performance Measuring Graph
In this section, the results analysis of the proposed model is doing 
using a performance measuring graph, especially the accuracy and 
loss graph, generated during the training and validation process 
for all the comparative models. A model with minimum loss 
signifies the best result. The minimum loss indicates that the model 
learns from the training and validation phase with a lower error 
rate. On the other hand, the maximum accuracy value indicates 
optimal results for the model. In Figure 4, the VGG-16 model’s 
accuracy graphs reveal similar training and validation accuracies, 
suggesting no overfitting briefly. However, the loss graphs present 
a different perspective. When the training loss is 0.46, the training 
accuracy is 0.79. For the validation data, the loss is 0.51, and the 

accuracy is 0.75. This disparity indicates that while the model’s 
accuracy is good, the higher validation loss compared to training 
loss suggests some degree of overfitting. The model performs well 
on the training data but slightly less so on the validation data.

In Figure 5, ResNet101 model trained on the ImageNet dataset 
shows high performance with a training accuracy of 96% and a 
validation accuracy of 93%. The training loss decreased from 0.7 
to 0.2, and the validation loss decreased from 0.6 to 0.3. Despite 
the high accuracy, the lower training loss compared to validation 
loss suggests that the model is overfitting to the training data. In 
Figure 6, the DenseNet201 model achieved a training accuracy of 
about 80% and a
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validation accuracy of about 79%. The training loss decreased significantly from about 10 to 2, 

while the validation loss decreased from about 10 to 5. These results indicate that the model is 

learning effectively and not overfitting, maintaining a good balance between training and 

validation performance. 

 

In Figure 7, the DenseNet121 model was trained for 20 epochs. The training loss decreased 

dramatically from 11.5 to 0.5, while the validation loss decreased from 5.5 to 1.2. The training 

accuracy increased from 0.2 to 0.95, and the validation accuracy increased from 0.8 to 0.9. The 

model achieved an excellent performance on the validation set, with an accuracy of 90%, 

indicating that it can learn the features of the images effectively and classify them correctly 

without overfitting. 

 

In Figure 8, the EfficientNetB3 model achieved its best validation loss of 0.05 at epoch 74 and its 

best validation accuracy of 0.99 at epoch 50. The training loss and accuracy curves indicate that 

the model learns the training data well and does not overfit, maintaining high performance across 

both training and validation sets. 

 

Overall, the models exhibit varying degrees of overfitting and learning efficiency. The VGG-16 

and ResNet101 models show some signs of overfitting, with higher validation losses compared to 
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data. The EfficientNetB3 model stands out with exceptional performance and no signs of 
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the model learns the training data well and does not overfit, 
maintaining high performance across both training and validation 
sets.

Overall, the models exhibit varying degrees of overfitting and 
learning efficiency. The VGG-16 and ResNet101 models show 
some signs of overfitting, with higher validation losses compared 

to training losses. In contrast, the DenseNet201 and DenseNet121 
models demonstrate effective learning with minimal overfitting, 
maintaining good performance on both training and validation 
data. The EfficientNetB3 model stands out with exceptional 
performance and no signs of overfitting, achieving near-
perfect validation accuracy and very low validation loss. These 
observations highlight
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overfitting, achieving near-perfect validation accuracy and very low validation loss. These 

observations highlight 
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Figure 7: Accuracy and Loss of model DenseNet121 

the importance of analyzing both accuracy and loss metrics to fully understand model 

performance and generalization capabilities. 

 

5 Future work 

To build upon our findings and further enhance the automated detection and diagnosis of oral 

squamous cell carcinoma 

(OSCC), several avenues for future improvement can be considered. Firstly, expanding the 

datasets used for training and validation to encompass larger and more diverse populations could 
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The importance of analyzing both accuracy and loss metrics to fully 
understand model performance and generalization capabilities.

5. Future Work
To build upon our findings and further enhance the automated 
detection and diagnosis of oral squamous cell carcinoma(OSCC), 
several avenues for future improvement can be considered. 
Firstly, expanding the datasets used for training and validation to 
encompass larger and more diverse populations could enhance 
the robustness and generalizability of the models. Additionally, 
implementing more advanced data augmentation techniques 
can help in creating more diverse training samples, potentially 
improving model performance. Furthermore, conducting further 
hyperparameter optimization, including fine-tuning learning rates, 

batch sizes, and the number of training epochs, could lead to better 
model performance. Exploring ensemble learning techniques 
by combining multiple models through ensemble methods may 
leverage the strengths of individual models, resulting in improved 
detection accuracy. Moreover, applying transfer learning from 
models trained on large, diverse datasets could enhance the 
detection capabilities of histopathological images, especially 
for rare or complex cancer types. Extending the model to detect 
distinct stages of oral cancer could provide valuable insights 
for both patients and doctors, aiding in more effective treatment 
planning and prognosis assessment. Finally, conducting extensive 
clinical trials to validate the models’ performance in real-world 
settings is
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crucial for their adoption in medical practice. By addressing these limitations and exploring the 

suggested improvements, future research endeavors can advance the field of automated cancer 

detection, ultimately leading to better patient outcomes and more efficient treatment processes. 

 

References 

Ricardo D Coletta, W Andrew Yeudall, and TuulaSalo. Grand challenges in oral cancers, 2020. 

Xiaoge Jiang, Jiaxin Wu, Jiexue Wang, and Ruijie Huang. Tobacco and oral squamous cell 

carcinoma: A review of carcinogenic pathways. Tobacco induced diseases, 17, 2019. 

Figure 8: Accuracy and Loss of model EfficientNetB3

crucial for their adoption in medical practice. By addressing these 
limitations and exploring the suggested improvements, future 
research endeavors can advance the field of automated cancer 
detection, ultimately leading to better patient outcomes and more 
efficient treatment processes.

References
1. Coletta, R. D., Yeudall, W. A., & Salo, T. (2020). Grand 

challenges in oral cancers. Frontiers in oral health, 1, 3.
2. Jiang XiaoGe, J. X., Wu JiaXin, W. J., Wang JieXue, W. J., & 

Huang RuiJie, H. R. (2019). Tobacco and oral squamous cell 
carcinoma: a review of carcinogenic pathways.

3. Montero, P. H., & Patel, S. G. (2015). Cancer of the oral 
cavity. Surgical Oncology Clinics, 24(3), 491-508.

4. Pinnika, P., & Rao, K. V. (2024, July). Analysis of Oral 
Cancer Detection based Segmentation and Classification 
using Deep Learning Algorithms. In International Conference 
on Computational Innovations and Emerging Trends 
(ICCIET-2024) (pp. 683-690). Atlantis Press.

5. Kim, D. W., Lee, S., Kwon, S., Nam, W., Cha, I. H., & Kim, 
H. J. (2019). Deep learning-based survival prediction of oral 
cancer patients. Scientific reports, 9(1), 6994.

6. Jeyaraj, P. R., & Samuel Nadar, E. R. (2019). Computer-
assisted medical image classification for early diagnosis of 
oral cancer employing deep learning algorithm. Journal of 
cancer research and clinical oncology, 145, 829-837.

7. Bur, A. M., Holcomb, A., Goodwin, S., Woodroof, J., 
Karadaghy, O., Shnayder, Y., ... & Shew, M. (2019). Machine 
learning to predict occult nodal metastasis in early oral 
squamous cell carcinoma. Oral oncology, 92, 20-25.

8. Das, D. K., Mitra, P., Chakraborty, C., Chatterjee, S., Maiti, 
A. K., & Bose, S. (2017). Computational approach for 
mitotic cell detection and its application in oral squamous cell 
carcinoma. Multidimensional Systems and Signal Processing, 
28, 1031-1050.

9. Rahman, A. U., Alqahtani, A., Aldhafferi, N., Nasir, M. 
U., Khan, M. F., Khan, M. A., & Mosavi, A. (2022). 

Histopathologic oral cancer prediction using oral squamous 
cell carcinoma biopsy empowered with transfer learning. 
Sensors, 22(10), 3833.

10. Welikala, R. A., Remagnino, P., Lim, J. H., Chan, C. S., 
Rajendran, S., Kallarakkal, T. G., ... & Barman, S. A. (2020). 
Automated detection and classification of oral lesions using 
deep learning for early detection of oral cancer. Ieee Access, 
8, 132677-132693.

11. Shavlokhova, V., Sandhu, S., Flechtenmacher, C., Koveshazi, 
I., Neumeier, F., Padrón-Laso, V., ... & Freudlsperger, C. 
(2021). Deep learning on oral squamous cell carcinoma ex 
vivo fluorescent confocal microscopy data: a feasibility study. 
Journal of clinical medicine, 10(22), 5326.

12. Albalawi, E., Thakur, A., Ramakrishna, M. T., Bhatia Khan, 
S., SankaraNarayanan, S., Almarri, B., & Hadi, T. H. (2024). 
Oral squamous cell carcinoma detection using EfficientNet on 
histopathological images. Frontiers in Medicine, 10, 1349336.

13. Welikala, R. A., Remagnino, P., Lim, J. H., Chan, C. S., 
Rajendran, S., Kallarakkal, T. G., ... & Barman, S. A. (2020). 
Fine-tuning deep learning architectures for early detection of 
oral cancer. In Mathematical and Computational Oncology: 
Second International Symposium, ISMCO 2020, San Diego, 
CA, USA, October 8–10, 2020, Proceedings 2 (pp. 25-31). 
Springer International Publishing.

14. Warin, K., Limprasert, W., Suebnukarn, S., Jinaporntham, S., 
Jantana, P., & Vicharueang, S. (2022). AI-based analysis of 
oral lesions using novel deep convolutional neural networks 
for early detection of oral cancer. Plos one, 17(8), e0273508.

15. Flügge, T., Gaudin, R., Sabatakakis, A., Tröltzsch, D., 
Heiland, M., van Nistelrooij, N., & Vinayahalingam, S. 
(2023). Detection of oral squamous cell carcinoma in clinical 
photographs using a vision transformer. Scientific Reports, 
13(1), 2296.

16. Warin, K., Limprasert, W., Suebnukarn, S., Jinaporntham, S., 
& Jantana, P. (2022). Performance of deep convolutional neural 
network for classification and detection of oral potentially 
malignant disorders in photographic images. International 

https://doi.org/10.3389/froh.2020.00003
https://doi.org/10.3389/froh.2020.00003
https://doi.org/10.18332/tid/105844
https://doi.org/10.18332/tid/105844
https://doi.org/10.18332/tid/105844
https://pmc.ncbi.nlm.nih.gov/articles/PMC5018209/
https://pmc.ncbi.nlm.nih.gov/articles/PMC5018209/
https://doi.org/10.2991/978-94-6463-471-6_66
https://doi.org/10.2991/978-94-6463-471-6_66
https://doi.org/10.2991/978-94-6463-471-6_66
https://doi.org/10.2991/978-94-6463-471-6_66
https://doi.org/10.2991/978-94-6463-471-6_66
https://www.nature.com/articles/s41598-019-43372-7
https://www.nature.com/articles/s41598-019-43372-7
https://www.nature.com/articles/s41598-019-43372-7
https://www.nature.com/articles/s41598-019-43372-7
https://www.nature.com/articles/s41598-019-43372-7
https://www.nature.com/articles/s41598-019-43372-7
https://www.nature.com/articles/s41598-019-43372-7
https://doi.org/10.1016/j.oraloncology.2019.03.011
https://doi.org/10.1016/j.oraloncology.2019.03.011
https://doi.org/10.1016/j.oraloncology.2019.03.011
https://doi.org/10.1016/j.oraloncology.2019.03.011
https://link.springer.com/article/10.1007/s11045-017-0488-6
https://link.springer.com/article/10.1007/s11045-017-0488-6
https://link.springer.com/article/10.1007/s11045-017-0488-6
https://link.springer.com/article/10.1007/s11045-017-0488-6
https://link.springer.com/article/10.1007/s11045-017-0488-6
https://doi.org/10.3390/s22103833
https://doi.org/10.3390/s22103833
https://doi.org/10.3390/s22103833
https://doi.org/10.3390/s22103833
https://doi.org/10.3390/s22103833
https://doi.org/10.1109/ACCESS.2020.3010180
https://doi.org/10.1109/ACCESS.2020.3010180
https://doi.org/10.1109/ACCESS.2020.3010180
https://doi.org/10.1109/ACCESS.2020.3010180
https://doi.org/10.1109/ACCESS.2020.3010180
https://doi.org/10.3390/jcm10225326
https://doi.org/10.3390/jcm10225326
https://doi.org/10.3390/jcm10225326
https://doi.org/10.3390/jcm10225326
https://doi.org/10.3390/jcm10225326
https://doi.org/10.3389/fmed.2023.1349336
https://doi.org/10.3389/fmed.2023.1349336
https://doi.org/10.3389/fmed.2023.1349336
https://doi.org/10.3389/fmed.2023.1349336
https://doi.org/10.1007/978-3-030-64511-3_3
https://doi.org/10.1007/978-3-030-64511-3_3
https://doi.org/10.1007/978-3-030-64511-3_3
https://doi.org/10.1007/978-3-030-64511-3_3
https://doi.org/10.1007/978-3-030-64511-3_3
https://doi.org/10.1007/978-3-030-64511-3_3
https://doi.org/10.1007/978-3-030-64511-3_3
https://doi.org/10.1007/978-3-030-64511-3_3
https://doi.org/10.1007/978-3-030-64511-3_3
https://doi.org/10.1007/978-3-030-64511-3_3
https://doi.org/10.1007/978-3-030-64511-3_3
https://doi.org/10.1038/s41598-023-29204-9
https://doi.org/10.1038/s41598-023-29204-9
https://doi.org/10.1038/s41598-023-29204-9
https://doi.org/10.1038/s41598-023-29204-9
https://doi.org/10.1038/s41598-023-29204-9
https://doi.org/10.1016/j.ijom.2021.09.001
https://doi.org/10.1016/j.ijom.2021.09.001
https://doi.org/10.1016/j.ijom.2021.09.001
https://doi.org/10.1016/j.ijom.2021.09.001


Trans Med OA, 2025 Volume 3 | Issue 1 | 10

Copyright: ©2025 Samrat Kumar Dev Sharma. This is an open-access 
article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in 
any medium, provided the original author and source are credited.

https://opastpublishers.com/

Journal of Oral and Maxillofacial Surgery, 51(5), 699-704.
17. Das, M., Dash, R., & Mishra, S. K. (2023). Automatic detection 

of oral squamous cell carcinoma from histopathological 
images of oral mucosa using deep convolutional neural 
network. International Journal of Environmental Research 
and Public Health, 20(3), 2131.

18. Rahman, T. Y., Mahanta, L. B., Das, A. K., & Sarma, J. D. 
(2020). Histopathological imaging database for oral cancer 
analysis. Data in brief, 29, 105114.

19. Ashenafi Fasil Kebede. Dataset, 2023. URL https://www.
kaggle.com/datasets/ashenafifasilkebede/ dataset. [Online].

20. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, 
Z. (2016). Rethinking the inception architecture for computer 
vision. In Proceedings of the IEEE conference on computer 
vision and pattern recognition (pp. 2818-2826).

21. Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). 
Learning transferable architectures for scalable image 
recognition. In Proceedings of the IEEE conference on 
computer vision and pattern recognition (pp. 8697-8710).

22. Chollet, F. (2017). Xception: Deep learning with depthwise 
separable convolutions. In Proceedings of the IEEE conference 
on computer vision and pattern recognition (pp. 1251-1258).

23. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. 
Q. (2017). Densely connected convolutional networks. In 
Proceedings of the IEEE conference on computer vision and 
pattern recognition (pp. 4700-4708).

24. Albalawi, E., Thakur, A., Ramakrishna, M. T., Bhatia Khan, 
S., SankaraNarayanan, S., Almarri, B., & Hadi, T. H. (2024). 
Oral squamous cell carcinoma detection using EfficientNet on 
histopathological images. Frontiers in Medicine, 10, 1349336.

https://doi.org/10.1016/j.ijom.2021.09.001
https://doi.org/10.3390/ijerph20032131
https://doi.org/10.3390/ijerph20032131
https://doi.org/10.3390/ijerph20032131
https://doi.org/10.3390/ijerph20032131
https://doi.org/10.3390/ijerph20032131
https://doi.org/10.3390/ijerph20032131
https://doi.org/10.3390/ijerph20032131
https://doi.org/10.3390/ijerph20032131
https://doi.org/10.48550/arXiv.1512.00567
https://doi.org/10.48550/arXiv.1512.00567
https://doi.org/10.48550/arXiv.1512.00567
https://doi.org/10.48550/arXiv.1512.00567
https://doi.org/10.48550/arXiv.1707.07012
https://doi.org/10.48550/arXiv.1707.07012
https://doi.org/10.48550/arXiv.1707.07012
https://doi.org/10.48550/arXiv.1707.07012
https://doi.org/10.48550/arXiv.1610.02357
https://doi.org/10.48550/arXiv.1610.02357
https://doi.org/10.48550/arXiv.1610.02357
https://doi.org/10.48550/arXiv.1608.06993
https://doi.org/10.48550/arXiv.1608.06993
https://doi.org/10.48550/arXiv.1608.06993
https://doi.org/10.48550/arXiv.1608.06993
https://doi.org/10.3389/fmed.2023.1349336
https://doi.org/10.3389/fmed.2023.1349336
https://doi.org/10.3389/fmed.2023.1349336
https://doi.org/10.3389/fmed.2023.1349336

