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Abstract
The article examines rose curves in the polar coordinate system, where each rose curve is determined by a cosine function 
with arbitrary positive amplitude and angular frequency. The amplitude refers to the radius of a circle whose center is the 
pole in which a rose curve is completely inscribed, and the angular frequency refers to the number of petals of a rose curve. 
Depending on the values of the angular frequency, which can be an integer, a rational number in the form of an irreducible 
fraction or an irrational number, the number of petals of a rose curve, the length of the interval for which a rose curve is 
complete and the polar angle between the peaks of the successive petals of a rose curve are examined. All mathematical 
considerations are accompanied by suitable examples and pictures.
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1. Introduction
This article examines and describes a rose curve in more detail. 
The special feature of a rose curve is its shape, which resembles 
the shape of a flower with petals. It can therefore be associated 
in nature with many flowers with petals (e.g. asters, daisies, 
composite flowers or sunflowers), but also with leaves. The rose 
curve is not only associated with shapes in nature, but is also used 
in art, especially in architecture, where it is used as a decorative 
element in the form of a rose blossom with stylized petals. It can 
be found on many church facades, where it is used as a decorative 
window. Figure 1shows the Church of St. Mary of a Benedictine 
monastery in Zadar, whose facade is decorated with rose windows.

It should be noted that rose arches are also found in the cuisine of 
many cultures, known as rosettes. They are made with a rosette 
iron, which has a long handle with flowers in metal shapes. 
Rosettes are crisp and are characterized by their lace-like pattern. 
They are typical of Anglo-Indian cuisine and there are many 
versions of this cookie in Northern Europe, Tunis, the Middle East 
and West Asia and other places under different names. Rosettes are 
also popular with families in many countries and are traditionally 
baked at Christmas time.In mathematics, a rose curve has been 
studied by many researchers and mathematicians. One of them is 
Luigi Guido Grandi, who is known for his definition of the rodonea 
curve. Rodonea is the Latin word for rose, and Grandi was the first 
to define this curve [1-4]. 

Fig. 1 The Church of St. Mary of a Benedictine monastery in Zadar, Croatia.

this curve. We therefore briefly describe his biography, part of which we quote from
[2]. Grandi was a Camaldolese monk, philosopher, mathematician and engineer who
worked in geometry and hydraulics. He was born on October 1, 1671 in Cremona and
died on July 4, 1742 in Pisa. In 1694, Grandi became a teacher of philosophy and the-
ology at the Camaldolese monastery of Santa Maria degli Angeli in Florence. Until
then, he had shown little interest in mathematics, but then he turned to mathematics
and studied the works of Euclid1, Apollonius2, Pappus3 and Archimedes4. He learned
the methods of classical geometry from Vincenzo Viviani5 and his students as well as
the infinitesimal methods of Bonaventura Cavalieri6. In 1699 he published Geometrica
divinatio Vivianeorum problematum. After learning a great deal about geometry, he
began to research applications for optics, mechanics and astronomy. In 1700, Grandi
began teaching mathematics at the monastery of Santa Maria degli Angeli in Flo-
rence. Grandi began to work more intensively on mathematics and exchanged letters
with many scientists and theologians. In 1703, he published the book Quadratura cir-
coli et hyperbolae per infinitas hyperbolas et parabolas quadrabiles geometrice exhibita,
which contained nothing particularly original but was important for the introduction

1Euclid (325 BC - 265 BC) was an ancient Greek mathematician, geometer and logician. He is best
known for his treatise on geometry. His most famous work is Elements, which influenced the development
of Western mathematics until the early 19th century.

2Apollonius (262 BC – 190 BC) was an ancient Greek mathematician known as ”The Great Geometer”.
His works had a great influence on the development of mathematics and his famous book Conics introduced
the concepts of the parabola, ellipse and hyperbola.

3Pappus (290 – 350) is the last of the great ancient Greek geometers. Pappus great work on geometry
is the Synagogue or Mathematical Collection, which consists of eight books and has not survived in its
entirety. The first book has been lost and the rest has suffered considerably. One of his theorems, the
Hexagon Theorem of Pappus, is cited as the basis of modern projective geometry. He wrote commentaries
on Euclid’s Elements and Ptolemy’s Almagest.

4Archimedes of Syracuse (287 BC – 212 BC) was an ancient mathematician, physicist, engineer,
astronomer, inventor and the greatest mathematician. He is considered the greatest mathematician in
ancient history. His contributions to geometry revolutionised the subject and his methods anticipated
integral calculus. He was a practical man who invented a multitude of machines.

5Vincenzo Viviani (1622 – 1703) was an Italian mathematician and scientist who worked on the geometry
of cycloids.

6Bonaventura Francesco Cavalieri (1598 – 1647) was an Italian mathematician and Jesuit who worked
on problems of optics and motion and developed a method of indivisibilities, the forerunner of infinitesimal
calculus.
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We therefore briefly describe his biography, part of which we 
quote from [2]. Grandi was a Camaldolese monk, philosopher, 
mathematician and engineer who worked in geometry and 
hydraulics. He was born on October 1, 1671 in Cremona and 
died on July 4, 1742 in Pisa. In 1694, Grandi became a teacher of 
philosophy and theology at the Camaldolese monastery of Santa 
Maria degli Angeli in Florence. Until then, he had shown little 
interest in mathematics, but then he turned to mathematics and 
studied the works of Euclid, Apollonius, Pappus and Archimedes. 
He learned the methods of classical geometry from Vincenzo 
Viviani and his students as well as the infinitesimal methods of 
Bonaventura Cavalieri. In 1699 he published Geometrica divinatio 
Vivianeorum problematum. After learning a great deal about 
geometry, he began to research applications for optics, mechanics 
and astronomy. In 1700, Grandi began teaching mathematics at the 
monastery of Santa Maria degli Angeli in Florence. Grandi began 
to work more intensively on mathematics and exchanged letters 
with many scientists and theologians. In 1703, he published the 
book Quadratura circoli et hyperbolae per infinitas hyperbolas 
et parabolas quadrabiles geometrice exhibita, which contained 
nothing particularly original but was important for the introduction 
of the infinitesimal method in Italy. In Italy, he was the first to teach 
the infinitesimal methods of calculus in private lessons. Grandi 
had studied Newton’s fluxions and Leibniz’s differentials and 
used both approaches, although he preferred Leibniz’s approach. 
Grandi was appointed professor of mathematics at the University 
of Pisa in 1714. As already mentioned, one of the results for which 
Grandi is best known today is his definition of the Rodonea curve, 
i.e. the rose curve. He first defined these curves in December 1713 
in a letter he wrote to Leibniz. He only published his results on 
these curves ten years later in the Philosophical Transactions of 
the Royal Society of London under the title Handful or bouquet 
of geometrical roses. In 1728, Grandi expanded the material on 
these curves in Flores geometrici ex Rhodonearum, et Cloeliarum 
curvarum descriptione resultantes. According to this, a rose curve 
is a curve in the plane that has the shape of a flower and is also 
known as Grandi’s rose or multifolium. Folium is the Latin word 
for leaf and refers to a curve with leaf-shaped, rounded lobes.

2. The Polar Coordinate System
Since we are dealing in more detail with rose curves in the polar 
coordinate system, we will first briefly explain the properties of 
the polar coordinate system, the description of a point in polar 
coordinates depending on the sign of the radius and the polar angle 
and then the graphs of a function determined by a polar equation.
The polar coordinate system is a two-dimensional coordinate 
system defined by a reference point, the pole, and the ray emanating 
from the pole in the reference direction, the polar axis. We denote 
the pole by P and the polar axis by p. In contrast to the Cartesian 
plane (or the rectangular coordinate system in the plane), which is 
defined by a reference point O, the origin, and two perpendicular 
reference lines, the x-axis and the y-axis, whose intersection is the 
origin, where the coordinates (x0,y0) of a point P0 are determined 
by the intersection of two lines x = x0 and y = y0 (the first line is 
perpendicular to the x-axis, the other perpendicular to the y-axis), 
the polar coordinate system is a system of circles whose center 

is the pole P and rays emanating from P. We note that the pole 
is analogous to the origin of the Cartesian coordinate system in 
the plane and the polar axis can be considered analogous to the 
positive x-axis of the Cartesian plane.

Each point T in the polar coordinate system is determined by the 
intersection of the circle with the radius r, whose center is the pole 
P, and the ray PT emanating from the pole P, which determines 
the polar angle ϕ with the polar axis. The distance between the 
point T and the pole P is a positive real number that is equal to 
the radius r of the circle. A point in the polar coordinate system is 
therefore determined by a distance from the pole and an angle to 
the polar axis, so that the polar coordinates of a point T in the polar 
coordinate system are given by the ordered pair (r,ϕ), where r is 
the radius (or the radial coordinate or the radial distance), and ϕ is 
the polar angle (or the angular coordinate or the azimuth). The two 
r and ϕ are referred to as the polar coordinates of a point P in the 
polar coordinate system.

The measure of the polar angle ϕ can be expressed either in degrees 
or radians. In this article, we will only use radians. Recall that the 
conversion from radians to degrees is given by the relationship 
that π radians equals 180 degrees. In accordance with the fact that 
radius and polar angle are constants that can have a positive or 
negative sign, we have the following cases.
1. A polar angle ϕ is measured counterclockwise from the polar 
axis if ϕ > 0, while it is measured clockwise if ϕ < 0.
2. A point (r,ϕ) with r > 0 is measured for r units along the ray that 
determines the polar angle ϕ with the polar axis.
3. A point (r,ϕ) with r < 0 is measured for |r| units along the ray 
that determines the polar angle ϕ+π with the polar axis, where |r| 
denotes the absolute value of r.

We note that in contrast to the origin of the Cartesian coordinate 
system, which is uniquely determined by the point (0,0), the pole 
in the polar coordinate system is determined by an infinite number 
of points (0,ϕ), where ϕ is any polar angle. The second and third 
properties imply

 (r,ϕ) = (−r,ϕ + π),                                  (1)

which means that the point (r,ϕ) with a positive radius is identical 
to the point whose polar coordinates consist of the corresponding 
negative radius and the opposite direction of the polar angle ϕ. 
In contrast to points in the Cartesian plane, where each point is 
uniquely determined by its coordinates, a point (r,ϕ) in the polar 
coordinate system has an infinite number of representations, which 
are written in the following form

 (r,ϕ) = (r,ϕ + 2lπ),                                       (2)

where l is an integer, see [1]. The following identity (r,ϕ) = 
(−r,ϕ+(2l+1)π) results from (1) and (2), where l is an integer. In 
this way, the radius r can be restricted to any positive real number 
and the polar angle ϕ can be restricted to the interval [0,2π), since 
the line ϕ = 2π is identical to the line ϕ = 0 (the polar axis). Due 
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to the uniqueness of the pole, it is common to choose the polar 
coordinates r = 0 and ϕ = 0 for the pole.

Example 1. Two points in the polar coordinate system are shown 
on the left-hand side of Figure 2. One is the point        whose radius 
is equal to     and polar angle is equal to   , and the other is the 
point        whose radius is equal to 2 and polar angle is equal to    
       . The right-hand side of Figure 2 also shows two points with the 
corresponding positive and negative radius, whose polar angles 
run in opposite directions.

A curve in the polar coordinate system is the locus of all points 
(r,ϕ) that are the solution of a polar equation expressed in the form

 r = r(ϕ),                                        (3)

where the radius is defined as a real-valued function of a real 
variable. In other words, the value of the radius r is a real number 
that depends on the independent variable (polar angle) ϕ.
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Fig. 2 Points in the polar coordinate system.

(polar angle) ϕ. Therefore the curve determined by (3) consists of all points of the
form9 (r(ϕ), ϕ) that fulfil the three properties mentioned above.

A curve determined by the polar equation (3) is symmetric with respect to the polar
axis if replacing (r, ϕ) by (r,−ϕ) leads to the same equation, while it is symmetric with
respect to the pole if replacing (r, ϕ) by (−r, ϕ) leads to the same equation. Similarly,
it is symmetrical with respect to the line ϕ = π

2 if replacing (r, ϕ) with (r, π−ϕ) leads
to the same equation.

3 A rose curve

In general, the polar equation of rose curves is given by

r = a cos kϕ (4)

or r = a sin kϕ, where a �= 0 and k �= 0 are non-zero constants. Recall that the general
forms of the sine and cosine functions in the Cartesian plane are y = a sin(bx− c) + d
and y = a cos(bx− c) + d, or

y = a sin
(
b
(
x− c

b

))
+ d and y = a cos

(
b
(
x− c

b

))
+ d (5)

where a �= 0, b �= 0, c and d are constants. The domain of each of these two functions
is a set of real numbers R = 〈−∞,∞〉 and the range is an interval [−‖a‖, ‖a‖] ⊂ R,
where ‖a‖ denotes the absolute values of a constant a ∈ R\{0} and is referred to as
amplitude or greatest distance from rest.

A constant b ∈ R\{0} is related to the period10 by P = 2π
‖b‖ , where if ‖b‖ > 1, the

period is less than 2π and the function undergoes horizontal compression, while if
‖b‖ < 1, the period is greater than 2π and the function undergoes horizontal expansion.

The value c
b is called the phase shift or horizontal shift of the basic11 sine or cosine

function, where the graph shifts to the right when c
b > 0 and the graph shifts to the

left when c
b < 0.

A constant d is the vertical shift from the midline. In particular, the midline of
each of the two functions (5) is at y = d.

9Note that unlike Cartesian coordinates (x, y(x)) (where the independent variable x is the first entry in
the ordered pair), here the independent variable ϕ is the second entry in the ordered pair.

10A period of y = sin x or y = cos x is equal to 2π
11We say that y = sin x or y = cos x is the basic sine or cosine function.
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period is less than 2π and the function undergoes horizontal compression, while if
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function, where the graph shifts to the right when c
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corresponding to the function f that we write as f(x + h) = f(x) 
for all values of x in the domain of f, it follows that the sine and 
cosine functions are periodic functions with a period              . 
For a simpler explanation, let us assume that a = b = 1 and c = d 
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2 units. These properties of the shifted graphs of the sine and
cosine functions generally also apply under the assumption that the sine and cosine
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graph of the sine function and also the graph of the cosine function are usually referred
to as sinusoids. In this way, we obtain in the polar coordinate system
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which means that a rose curve r = a sin kϕ is identical to the rose curve r = a cos kϕ
rotated counterclockwise by π

2k radians, which leads us to the conclusion that the
equation of the rose curve in the polar coordinate system can also be given by the
sine function as r = a sin kϕ with a �= 0 and k �= 0. We note that the horizontal
displacement in the Cartesian plane leads to a rotation in the polar coordinate system.
Example 2. Figure 3 shows the rose curve r = 2 cos 3ϕ on the left and the rose curve
r = 2 sin 3ϕ on the right. If we compare these two curves, we can see in Figure 3 that
the rose curve r = 2 sin 3ϕ can also be obtained by the rose curve r = 2 cos 3ϕ rotated
counterclockwise by π

6 radians, which is consistent with (6) for a = 2 and k = 3. In
fact, 2 sin 3ϕ = 2 cos
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.

Fig. 3 Rose curves r = 2 cos 3ϕ and r = 2 sin 3ϕ in the polar coordinate system.

We emphasize that the non-zero constants a and ϕ, which refer to the cosine
function in the equation (4) can be regarded as positive real numbers. Let us assume
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(polar angle) ϕ. Therefore the curve determined by (3) consists of all points of the
form9 (r(ϕ), ϕ) that fulfil the three properties mentioned above.

A curve determined by the polar equation (3) is symmetric with respect to the polar
axis if replacing (r, ϕ) by (r,−ϕ) leads to the same equation, while it is symmetric with
respect to the pole if replacing (r, ϕ) by (−r, ϕ) leads to the same equation. Similarly,
it is symmetrical with respect to the line ϕ = π

2 if replacing (r, ϕ) with (r, π−ϕ) leads
to the same equation.
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9Note that unlike Cartesian coordinates (x, y(x)) (where the independent variable x is the first entry in
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Since a periodic function is a function f for which a given horizontal shift h yields
a function corresponding to the function f that we write as f(x+ h) = f(x) for all
values of x in the domain of f , it follows that the sine and cosine functions are
periodic functions with a period P = 2π

‖b‖ . For a simpler explanation, let us assume that

a = b = 1 and c = d = 0. Then it follows from (5) that y = sinx and y = cosx, i.e. 2π
is the period of this sine and cosine function for which the identities sinx = cos
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are satisfied. In other words, the graph of the sine function

is identical to the graph of the cosine function shifted to the right by π
2 units, and

likewise the graph of the cosine function is identical to the graph of the sine function
shifted to the left by π

2 units. These properties of the shifted graphs of the sine and
cosine functions generally also apply under the assumption that the sine and cosine
functions have the same amplitude, period, phase shift and vertical shift. In fact, the
graph of the sine function and also the graph of the cosine function are usually referred
to as sinusoids. In this way, we obtain in the polar coordinate system
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which means that a rose curve r = a sin kϕ is identical to the rose curve r = a cos kϕ
rotated counterclockwise by π

2k radians, which leads us to the conclusion that the
equation of the rose curve in the polar coordinate system can also be given by the
sine function as r = a sin kϕ with a �= 0 and k �= 0. We note that the horizontal
displacement in the Cartesian plane leads to a rotation in the polar coordinate system.
Example 2. Figure 3 shows the rose curve r = 2 cos 3ϕ on the left and the rose curve
r = 2 sin 3ϕ on the right. If we compare these two curves, we can see in Figure 3 that
the rose curve r = 2 sin 3ϕ can also be obtained by the rose curve r = 2 cos 3ϕ rotated
counterclockwise by π

6 radians, which is consistent with (6) for a = 2 and k = 3. In
fact, 2 sin 3ϕ = 2 cos
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.
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Fig. 2 Points in the polar coordinate system.

(polar angle) ϕ. Therefore the curve determined by (3) consists of all points of the
form9 (r(ϕ), ϕ) that fulfil the three properties mentioned above.

A curve determined by the polar equation (3) is symmetric with respect to the polar
axis if replacing (r, ϕ) by (r,−ϕ) leads to the same equation, while it is symmetric with
respect to the pole if replacing (r, ϕ) by (−r, ϕ) leads to the same equation. Similarly,
it is symmetrical with respect to the line ϕ = π

2 if replacing (r, ϕ) with (r, π−ϕ) leads
to the same equation.

3 A rose curve

In general, the polar equation of rose curves is given by

r = a cos kϕ (4)

or r = a sin kϕ, where a �= 0 and k �= 0 are non-zero constants. Recall that the general
forms of the sine and cosine functions in the Cartesian plane are y = a sin(bx− c) + d
and y = a cos(bx− c) + d, or

y = a sin
(
b
(
x− c

b

))
+ d and y = a cos

(
b
(
x− c

b

))
+ d (5)

where a �= 0, b �= 0, c and d are constants. The domain of each of these two functions
is a set of real numbers R = 〈−∞,∞〉 and the range is an interval [−‖a‖, ‖a‖] ⊂ R,
where ‖a‖ denotes the absolute values of a constant a ∈ R\{0} and is referred to as
amplitude or greatest distance from rest.

A constant b ∈ R\{0} is related to the period10 by P = 2π
‖b‖ , where if ‖b‖ > 1, the

period is less than 2π and the function undergoes horizontal compression, while if
‖b‖ < 1, the period is greater than 2π and the function undergoes horizontal expansion.

The value c
b is called the phase shift or horizontal shift of the basic11 sine or cosine

function, where the graph shifts to the right when c
b > 0 and the graph shifts to the

left when c
b < 0.

A constant d is the vertical shift from the midline. In particular, the midline of
each of the two functions (5) is at y = d.

9Note that unlike Cartesian coordinates (x, y(x)) (where the independent variable x is the first entry in
the ordered pair), here the independent variable ϕ is the second entry in the ordered pair.

10A period of y = sin x or y = cos x is equal to 2π
11We say that y = sin x or y = cos x is the basic sine or cosine function.
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(or the angular coordinate or the azimuth). The two r and ϕ are referred to as the
polar coordinates of a point P in the polar coordinate system.

The measure of the polar angle ϕ can be expressed either in degrees or radians.
In this article, we will only use radians. Recall that the conversion from radians to
degrees is given by the relationship that π radians equals 180 degrees. In accordance
with the fact that radius and polar angle are constants that can have a positive or
negative sign, we have the following cases.

1. A polar angle ϕ is measured counterclockwise from the polar axis if ϕ > 0, while
it is measured clockwise if ϕ < 0.

2. A point (r, ϕ) with r > 0 is measured for r units along the ray that determines the
polar angle ϕ with the polar axis.

3. A point (r, ϕ) with r < 0 is measured for ‖r‖ units along the ray that determines
the polar angle ϕ+π with the polar axis, where ‖r‖ denotes the absolute value of r.

We note that in contrast to the origin of the Cartesian coordinate system, which is
uniquely determined by the point (0, 0), the pole in the polar coordinate system is
determined by an infinite number of points (0, ϕ), where ϕ is any polar angle. The
second and third properties imply

(r, ϕ) = (−r, ϕ+ π), (1)

which means that the point (r, ϕ) with a positive radius is identical to the point
whose polar coordinates consist of the corresponding negative radius and the opposite
direction of the polar angle ϕ. In contrast to points in the Cartesian plane, where each
point is uniquely determined by its coordinates, a point (r, ϕ) in the polar coordinate
system has an infinite number of representations, which are written in the following
form

(r, ϕ) = (r, ϕ+ 2lπ), (2)

where l is an integer, see [1]. The following identity (r, ϕ) = (−r, ϕ+(2l+1)π) results
from (1) and (2), where l is an integer. In this way, the radius r can be restricted
to any positive real number and the polar angle ϕ can be restricted to the interval
[0, 2π〉, since the line ϕ = 2π is identical to the line ϕ = 0 (the polar axis). Due to the
uniqueness of the pole, it is common to choose the polar coordinates r = 0 and ϕ = 0
for the pole.
Example 1. Two points in the polar coordinate system are shown on the left-hand side
of Figure 2. One is the point (32 ,

π
6 ) whose radius is equal to

3
2 and polar angle is equal to

π
6 , and the other is the point (2, 2π

3 ) whose radius is equal to 2 and polar angle is equal
to 2π

3 . The right-hand side of Figure 2 also shows two points with the corresponding
positive and negative radius, whose polar angles run in opposite directions.

A curve in the polar coordinate system is the locus of all points (r, ϕ) that are the
solution of a polar equation expressed in the form

r = r(ϕ), (3)

where the radius is defined as a real-valued function of a real variable. In other words,
the value of the radius r is a real number that depends on the independent variable

4
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Figure 3: Rose Curves r = 2cos3ϕ and r = 2sin3ϕ In the Polar Coordinate System.

We emphasize that the non-zero constants a and ϕ, which refer to 
the cosine function in the equation (4) can be regarded as positive 
real numbers. Let us assume that a and k are positive constants. 
Since the cosine is an even function, i.e.
 
                 acos(−kϕ) = acoskϕ,                                          (7)

the same rose curve is determined by two identical polar equations. 
On the other hand, the well-known trigonometric formula for 
cosine addition and cosine subtraction, i.e. cos(x ± π) = −cosx, 
implies that

                                                                                (8)

which can be interpreted to mean that a rose curve r = −acoskϕ is 
identical to a rose curve r = acoskϕ that has been rotated around 
the pole by    .

In this way, it is sufficient to consider the non-zero constants a 
≠ 0 and k ≠ 0 in the equation (4) as positive real numbers, where 
a constant a is the amplitude and k is the angular frequency of 
the cosine function. In the following, we therefore consider a rose 
curve in the polar coordinate system, which is determined by the 
equation (4), where a and k are positive real numbers (constants). 

We note that the amplitude refers to the radius of a circle whose 
center is the pole in which a rose curve is completely inscribed, 
and the angular frequency refers to the number of petals of a rose 
curve. In fact, each rose curve consists of petals and each petal has 
a peak that lies on the circle.

From the property that a curve determined by the polar equation 
(3) is symmetric with respect to the polar axis if replacing (r,ϕ) by 
(r,−ϕ) leads to the same equation, it follows from the identity (7) 
that a rose curve determined by (4) is symmetric with respect to the 
polar axis. On the other hand, it follows from the identity (8) that 
the rose curves r = −a cos kϕ and r = a cos kϕ are also symmetrical 
with respect to the line            .

Example 3. Figure 4 shows three rose curves determined by the 
equation (4) such that the angular frequency of the cosine function 
is the same for all three rose curves, but the amplitude of the cosine 
function is one for one of them and the same for the other two 
with different signs. The left side of Figure 4 shows the rose curve 
r = cos 3ϕ in purple and the rose curve r = 2 cos 3ϕ in red. On 
the right-hand side of Figure 4, the rose curve r = −2cos 3ϕ is 
shown in blue. The rose curves r = 2 cos 3ϕ and r = −2 cos 3ϕ are 
symmetrical with respect to the line  ϕ = pi/2           .
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Figure 4: Rose curves r = cos3ϕ, r = 2cos3ϕ and r = −2cos3ϕ. 
Furthermore, due to (8), the rose curve r = −2cos3ϕ is identical to r = 2cos3ϕ rotated by    radians.

With the motivation to find a better explanation for the properties 
of rose curves, we discuss below a positive angular frequency of 
the cosine function in the equation (4), which corresponds to a 
positive integer or a positive rational or a positive irrational angular 
frequency, see [3]. Based on the fact that every integer is a special 
case of the rational number whose denominator is equal to one, 

we will also explain that a rose curve determined by the equation 
(4) is complete if the angular frequency of the cosine function is a 
positive rational number, otherwise a rose curve is incomplete. In 
other words, a rose curve is complete if the angular frequency of 
the cosine function is any positive integer or rational number. Then 
the corresponding interval of polar angles can be any continuous 

ϕ ϕ ϕ

r = −2 cos 3ϕ are symmetrical with respect to the line ϕ = π
2 . Furthermore, due to (8),

the rose curve r = −2 cos 3ϕ is identical to r = 2 cos 3ϕ rotated by π
3 radians.

With the motivation to find a better explanation for the properties of rose curves,
we discuss below a positive angular frequency of the cosine function in the equation (4),
which corresponds to a positive integer or a positive rational or a positive irrational
angular frequency, see [3]. Based on the fact that every integer is a special case of the
rational number whose denominator is equal to one, we will also explain that a rose
curve determined by the equation (4) is complete if the angular frequency of the cosine
function is a positive rational number, otherwise a rose curve is incomplete. In other
words, a rose curve is complete if the angular frequency of the cosine function is any
positive integer or rational number. Then the corresponding interval of polar angles
can be any continuous interval that is a proper subset of the set of real numbers. In
the case of an irrational angular frequency, a rose curve is incomplete and the interval
of polar angles corresponds to a set of real numbers.
Remark 1. A rose curve with the equation (4) for a > 0, k = 1 in the polar coordinate
system is associated with the cosine function y = a cosx in the Cartesian plane. We
therefore recall the following properties of the cosine function y = a cosx in the Carte-
sian plane, which is a periodic function with a period 2π defined for all real numbers
with values in the interval [−a, a]. The graph of the cosine function consists of an infi-
nite number of parts of length 2π, which are called cycles and have the same shape. A
cycle consists of two half-cycles, one positive and one negative, both of length π, there-
fore a half-cycle is bounded by an interval of length π. If we denote the centre of the
interval by x0, then a half-cycle is symmetric with respect to the line x = x0 and has
the vertex at (x0, a) or (x0,−a), where the sign of a depends on the positivity or neg-
ativity of a half-cycle. The limits of each half-cycle are the points on the x-axis, which
are also the limits of the corresponding interval. In particular, the interval

[
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3π
2

]
of

length 2π refers to a cycle whose positive half-cycle coincides with the interval
[
−π

2 ,
π
2

]
and a negative half-cycle is assigned to the interval
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π
2 ,

3π
2

]
. The positive half-cycle is

symmetrical with respect to the line x = 0 and has the vertex (maximum) at (0, a),
and the negative half-cycle is symmetrical with respect to the line x = π and has the
vertex (minimum) at (π,−a).
Remark 2. In general, the shape of a petal of a rose curve determined by (4) is
formed by a half-cycle of the graph of the corresponding cosine function. The length of
a cycle corresponds to the period P of the cosine function, which is given by

P =
2π

k
. (9)

The length of each half-cycle is therefore equal to half the period P. According to
Remark 1, we consider the positive half-cycle of the graph of the cosine function, which
has the vertex at (0, a) and is assigned to the interval

[
−P

4 ,
P
4

]
of length P

2 . The positive
half-cycle forms the petal of a rose curve so that it begins and ends at the pole, has
the peak at (a, 0), is symmetric with respect to the polar axis and is bounded by the
interval [

−P

4
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P

4

]
. (10)
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interval that is a proper subset of the set of real numbers. In the case 
of an irrational angular frequency, a rose curve is incomplete and 
the interval of polar angles corresponds to a set of real numbers.

Remark 1. A rose curve with the equation (4) for a >0, k = 1 in 
the polar coordinate system is associated with the cosine function 
y = acosx in the Cartesian plane. We therefore recall the following 
properties of the cosine function y = acosx in the Cartesian plane, 
which is a periodic function with a period 2π defined for all real 
numbers with values in the interval [−a,a]. The graph of the 
cosine function consists of an infinite number of parts of length 
2π, which are called cycles and have the same shape. A cycle 
consists of two half-cycles, one positive and one negative, both 
of length π, therefore a half-cycle is bounded by an interval of 
length π. If we denote the centre of the interval by x0, then a half-
cycle is symmetric with respect to the line x = x0 and has the vertex 
at (x0,a) or (x0,−a), where the sign of a depends on the positivity 
or negativity of a half-cycle. The limits of each half-cycle are the 
points on the x-axis, which are also the limits of the corresponding 
interval. In particular, the interval           of length 2π refers 
to a cycle whose positive half-cycle coincides with the interval                   
               and a negative half-cycle is assigned to the interval  
              . The positive half-cycle is symmetrical with respect to the 
line x = 0 and has the vertex (maximum) at (0,a), and the negative 
half-cycle is symmetrical with respect to the line x = π and has the 
vertex (minimum) at (π,−a).

Remark 2. In general, the shape of a petal of a rose curve 
determined by (4) is formed by a half-cycle of the graph of the 
corresponding cosine function. The length of a cycle corresponds 
to the period P of the cosine function, which is given by

                                                            (9)

The length of each half-cycle is therefore equal to half the period P. 
According to Remark 1, we consider the positive half-cycle of the 
graph of the cosine function, which has the vertex at (0,a) and is 
assigned to the interval               of length    . The positive half-cycle 
forms the petal of a rose curve so that it begins and ends at the 
pole, has the peak at (a,0), is symmetric with respect to the polar 
axis and is bounded by the interval

                                  .                      (10)

of length   , where P is given by (9). The peak at (a,0) is the 
intersection of the polar axis with the circle of radius a whose 
center is the pole, whereby a rose curve is completely inscribed in 
this circle.

Let np be the number of petals of a rose curve determined by (4). 
From the fact that every rose curve is inscribed in a circle of radius 
a, whose center is the pole, and consists of np equally shaped petals 
whose peaks lie on the circle, it follows that the distances between 
two peaks of successive petals are equal. Therefore, all polar 
angles between the peaks of successive petals are identical, which 
leads to the conclusion that the polar angle Φ between the peaks of 

the successive petals of a rose curve is given by

                                                                  (11)

where np denotes the number of petals of a rose curve. Here we use 
the fact that one full turn is equal to 2π.

Remark 3. From the identity (11) it follows that the measure of the 
polar angle between the peaks of the successive petals of a rose 
curve depends on the number of petals of a rose curve, so that it 
decreases as the number of petals increases and the petals become 
narrower.

Theorem 1. Let us assume that a rose curve is determined by (4), 
where the angular frequency k of the cosine function is a positive 
integer. Then we distinguish the following cases.If k is even, then a 
rose curve consisting of 2k petals is complete for every continuous 
interval of length 2π.If k is odd, then a rose curve consisting of k 
petals is complete for every continuous interval of length π.The 
polar angle between the peaks of the successive petals of a rose 
curve is given by                     is even, and                  by k is odd.  

Proof. According to Remark 2, in which the petal with the peak at 
(a,0) is considered, and from the fact that the graphs of all half-
cycles have the same shape, it follows that all petals of a rose curve 
are equal, so that each petal begins and ends at the pole, has a peak 
on the circle of radius a whose center is the pole, and is symmetric 
with respect to the line passing through the pole and the peak of 
this petal.Assuming that a rose curve is determined by (4), where 
the angular frequency k of the cosine function is a positive integer, 
the period of the cosine function is less than or equal to 2π for each 
positive integer k. The cycles and also half-cycles can therefore be 
considered in every continuous interval of length 2π, which means 
that a rose curve determined by (4) for a positive integer angular 
frequency is complete for every continuous interval of length 2π. 
There are therefore k cycles and 2k half-cycles, of which k are 
positive and k negative half-cycles, which means that a rose curve 
consists of 2k petals.

However, it should be noted that the positive half-cycles coincide 
with the negative half-cycles in the case of an odd angular 
frequency, when the negative half-cycles can be obtained from 
the positive half-cycles by a horizontal shift of π units and vice 
versa. The petals formed from the positive half-cycles are identical 
to the petals formed from the negative half-cycles. It is therefore 
sufficient to consider only the positive half-cycles or only the 
negative half-cycles, which means that a rose curve determined 
by (4) for an odd angular frequency consists of k petals and is 
complete for each continuous interval of length π. On the other 
hand, a rose curve determined by (4) for an even angular frequency 
consists of 2k petals and is complete for each continuous interval 
of length 2π. From (11) it follows that Φ =     if k is even and Φ =  
     if k is odd. 

Considering the identity (9), the length of each half-cycle of 
the graph of the cosine function with a positive integer angular 

r = −2 cos 3ϕ are symmetrical with respect to the line ϕ = π
2 . Furthermore, due to (8),

the rose curve r = −2 cos 3ϕ is identical to r = 2 cos 3ϕ rotated by π
3 radians.

With the motivation to find a better explanation for the properties of rose curves,
we discuss below a positive angular frequency of the cosine function in the equation (4),
which corresponds to a positive integer or a positive rational or a positive irrational
angular frequency, see [3]. Based on the fact that every integer is a special case of the
rational number whose denominator is equal to one, we will also explain that a rose
curve determined by the equation (4) is complete if the angular frequency of the cosine
function is a positive rational number, otherwise a rose curve is incomplete. In other
words, a rose curve is complete if the angular frequency of the cosine function is any
positive integer or rational number. Then the corresponding interval of polar angles
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interval by x0, then a half-cycle is symmetric with respect to the line x = x0 and has
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of length P
2 , where P is given by (9). The peak at (a, 0) is the intersection of the

polar axis with the circle of radius a whose center is the pole, whereby a rose curve is
completely inscribed in this circle.

Let np be the number of petals of a rose curve determined by (4). From the fact
that every rose curve is inscribed in a circle of radius a, whose center is the pole, and
consists of np equally shaped petals whose peaks lie on the circle, it follows that the
distances between two peaks of successive petals are equal. Therefore, all polar angles
between the peaks of successive petals are identical, which leads to the conclusion that
the polar angle Φ between the peaks of the successive petals of a rose curve is given by

Φ =
2π

np
, (11)

where np denotes the number of petals of a rose curve. Here we use the fact that one
full turn is equal to 2π.
Remark 3. From the identity (11) it follows that the measure of the polar angle
between the peaks of the successive petals of a rose curve depends on the number of
petals of a rose curve, so that it decreases as the number of petals increases and the
petals become narrower.
Theorem 1. Let us assume that a rose curve is determined by (4), where the angu-
lar frequency k of the cosine function is a positive integer. Then we distinguish the
following cases.

If k is even, then a rose curve consisting of 2k petals is complete for every
continuous interval of length 2π.
If k is odd, then a rose curve consisting of k petals is complete for every continuous
interval of length π.
The polar angle between the peaks of the successive petals of a rose curve is given
by Φ = π

k if k is even, and by Φ = 2π
k if k is odd.

Proof. According to Remark 2, in which the petal with the peak at (a, 0) is considered,
and from the fact that the graphs of all half-cycles have the same shape, it follows
that all petals of a rose curve are equal, so that each petal begins and ends at the
pole, has a peak on the circle of radius a whose center is the pole, and is symmetric
with respect to the line passing through the pole and the peak of this petal.

Assuming that a rose curve is determined by (4), where the angular frequency k
of the cosine function is a positive integer, the period of the cosine function is less
than or equal to 2π for each positive integer k. The cycles and also half-cycles can
therefore be considered in every continuous interval of length 2π, which means that
a rose curve determined by (4) for a positive integer angular frequency is complete
for every continuous interval of length 2π. There are therefore k cycles and 2k half-
cycles, of which k are positive and k negative half-cycles, which means that a rose
curve consists of 2k petals.

However, it should be noted that the positive half-cycles coincide with the negative
half-cycles in the case of an odd angular frequency, when the negative half-cycles can
be obtained from the positive half-cycles by a horizontal shift of π units and vice versa.
The petals formed from the positive half-cycles are identical to the petals formed from
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the negative half-cycles. It is therefore sufficient to consider only the positive half-
cycles or only the negative half-cycles, which means that a rose curve determined by (4)
for an odd angular frequency consists of k petals and is complete for each continuous
interval of length π. On the other hand, a rose curve determined by (4) for an even
angular frequency consists of 2k petals and is complete for each continuous interval of
length 2π. From (11) it follows that Φ = π

k if k is even and Φ = 2π
k if k is odd.

Considering the identity (9), the length of each half-cycle of the graph of the cosine
function with a positive integer angular frequency is equal to π

k . Therefore, the petal,
which has the peack at (a, 0) on the polar axis, is bounded by the interval

[
− π

2k
,
π

2k

]
(12)

of length π
k . Based on the first two statements of Theorem 1, we can assume that a rose

curve determined by (4) for an even angular frequency is complete for the following
continuous interval [

− π

2k
,
(4k − 1)π

2k

]
(13)

of length 2π. Similarly, a rose curve determined by (4) for an odd angular frequency
is complete for the continuous interval

[
− π

2k
,
(2k − 1)π

2k

]
. (14)

of length π. It is obvious that these intervals (13) and (14) are not the only intervals
for which the corresponding rose curve is complete. They are one of an infinite number
of intervals for which a rose curve is complete. They were chosen because they contain
the interval (12) that bounds the petal with the peak at (a, 0) on the polar axis.

From the comparison of the third statement of Theorem 1 with the period of the
cosine function given by (9), it follows that the polar angle between the peaks of the
successive petals of a rose curve is equal to the period of the cosine function if its
angular frequency is odd. If the angular frequency of the cosine function is even, then
the polar angle between the peaks of the successive petals of a rose curve is equal to
half the period of the cosine function.
Example 4. Here we look at three rose curves determined by (4), where the amplitude
of the corresponding cosine function is equal to one, which means that these rose
curves are inscribed in a circle of radius one whose center is the pole. Figure 5 shows
in particular the rose curve r = cosϕ on the left-hand side, which is connected to the
cosine function whose amplitude and angular frequency are equal to one. Looking at
the corresponding cosine function in the Cartesian plane, see Remark 1, it is easy to
prove that the positive half-cycle coincides with the negative half-cycle and forms a
petal bounded by an interval of length π. The rose curve r = cosϕ therefore consists
of a petal, which is actually a circle of radius one whose center is the point

(
1
2 , 0

)
.

In addition, with regard to Theorem 1, we also consider the two rose curves
r = cos 2ϕ and r = cos 3ϕ, which are shown in the center and on the right in Figure
5. The rose curve r = cos 3ϕ, also called trifolium, consists of 3 petals and is complete
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length 2π. From (11) it follows that Φ = π

k if k is even and Φ = 2π
k if k is odd.

Considering the identity (9), the length of each half-cycle of the graph of the cosine
function with a positive integer angular frequency is equal to π

k . Therefore, the petal,
which has the peack at (a, 0) on the polar axis, is bounded by the interval

[
− π

2k
,
π

2k

]
(12)

of length π
k . Based on the first two statements of Theorem 1, we can assume that a rose

curve determined by (4) for an even angular frequency is complete for the following
continuous interval [
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(4k − 1)π
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]
(13)

of length 2π. Similarly, a rose curve determined by (4) for an odd angular frequency
is complete for the continuous interval
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]
. (14)

of length π. It is obvious that these intervals (13) and (14) are not the only intervals
for which the corresponding rose curve is complete. They are one of an infinite number
of intervals for which a rose curve is complete. They were chosen because they contain
the interval (12) that bounds the petal with the peak at (a, 0) on the polar axis.

From the comparison of the third statement of Theorem 1 with the period of the
cosine function given by (9), it follows that the polar angle between the peaks of the
successive petals of a rose curve is equal to the period of the cosine function if its
angular frequency is odd. If the angular frequency of the cosine function is even, then
the polar angle between the peaks of the successive petals of a rose curve is equal to
half the period of the cosine function.
Example 4. Here we look at three rose curves determined by (4), where the amplitude
of the corresponding cosine function is equal to one, which means that these rose
curves are inscribed in a circle of radius one whose center is the pole. Figure 5 shows
in particular the rose curve r = cosϕ on the left-hand side, which is connected to the
cosine function whose amplitude and angular frequency are equal to one. Looking at
the corresponding cosine function in the Cartesian plane, see Remark 1, it is easy to
prove that the positive half-cycle coincides with the negative half-cycle and forms a
petal bounded by an interval of length π. The rose curve r = cosϕ therefore consists
of a petal, which is actually a circle of radius one whose center is the point

(
1
2 , 0

)
.

In addition, with regard to Theorem 1, we also consider the two rose curves
r = cos 2ϕ and r = cos 3ϕ, which are shown in the center and on the right in Figure
5. The rose curve r = cos 3ϕ, also called trifolium, consists of 3 petals and is complete
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for each continuous interval of length π, see Figure 5 on the right. The peaks of the
corresponding petals of this rose curve are the points

(
1, i · 2π

3

)
for i = 0, 1, 2, which

lie on the circle of radius one whose center is the pole. Therefore, the polar angle
between the peaks of the successive petals is given by Φ = 2π

3 , see the second and third
statements of Theorem 1. If we take into account that the period of the corresponding
cosine function is given by P = 2π

3 , we obtain from the application of (10) or equiva-
lently (12), that the petal with the peak at (1, 0) is bounded by the interval

[
−π

6 ,
π
6

]
of

length π
3 . We can therefore assume that the rose curve r = cos 3ϕ is complete on the

interval
[
−π

6 ,
5π
6

]
of length π, see (14).

Fig. 5 Rose curves r = cosϕ, r = cos 2ϕ and r = cos 3ϕ.

The first and third statements of Theorem 1 can be illustrated using the rose curve
r = cos 2ϕ, also called quadrifolium, see Figure 5 in the middle. Since the angular
frequency of the cosine function is even, this rose curve consists of 4 petals and is
complete for each continuous interval of length 2π. Therefore, the peaks of the corre-
sponding petals of this rose curve are the points

(
1, i · π

2

)
for i = 0, 1, 2, 3, which lie on

the circle of radius one whose center is the pole. The polar angle between the peaks of
the successive petals is therefore given by Φ = π

2 . If we consider the period P = π of
the corresponding cosine function, the petal with the peak at (1, 0) is bounded by the
interval

[
−π

4 ,
π
4

]
of length π

2 , so it can be assumed that this rose curve is complete on

the interval
[
−π

4 ,
7π
4

]
of length 2π, see (13). If we look at Figure 5, we see that each

petal of the rose curve is symmetrical about the line through the pole and its peak.
In accordance with Theorem 1 and Remark 3, we show in the following two figures

that as the number of petals in a rose curve increases, the polar angle between the
peaks of successive petals decreases, making the petals narrower. In addition, the rose
curves are shown in Figure 6 with respect to odd angular frequencies and in Figure
7 with respect to even angular frequencies of the corresponding cosine functions. We
have also assumed that the amplitude of the corresponding cosine functions is equal to
one, which means that these rose curves are inscribed in a circle of radius one whose
center is the pole.

The two rose curves in Figure 6 are complete for each continuous interval of length
π. The left side of Figure 6 shows that the rose curve r = cos 7ϕ consists of 7 petals,
therefore Φ = 2π

7 is the polar angle between the peaks of the successive petals, which is
also equal to the period of the cosine function, see (9). The peaks of the corresponding
petals of the rose curve are

(
1, i · 2π

7

)
for i = 0, 1, 2, . . . , 6. The petal with the peak at
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of this rose curve. Similarly, the rose curve r = cos 10ϕ consists of 20 petals. The
petal with the peak at (1, 0) is bounded by the interval
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39π
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]
for which this rose curve is complete. The polar angle between the

peaks of the successive petals is given by Φ = π
10 , which means that the peaks of the

corresponding petals of this rose curve are the points
(
1, i · π

10

)
for i = 0, 1, 2, . . . , 19.

In the following, we assume that the angular frequency of the cosine function in
equation (4) is a positive rational number whose numerator m and denominator n are
positive integers, so that they are relatively prime. In this way, we consider that k has
the form of an irreducible fraction given by k = m

n , so it follows from (9) that the
period of the cosine function is given by

P =
2nπ

m
. (15)

Theorem 2. Suppose that a rose curve is determined by (4), where the angular fre-
quency k of the cosine function is a positive rational number that has the form of an
irreducible fraction given by k = m

n with m,n > 0. Then we have the following cases.

If m is odd and n is even, or vice versa, then a rose curve consisting of 2m petals
is complete for every continuous interval of length 2nπ.
If both m and n are odd, then a rose curve consisting of m petals is complete for
every continuous interval of length nπ.
The polar angle between the peaks of the successive petals of a rose curve is given
by Φ = π

m in the first case and by Φ = 2π
m in the second case.

Proof. From the assumption of Theorem 2 and the observation in Remark 2, it follows
that the length of each half-cycle is equal to nπ

m . The positive half-cycle of the graph
of the cosine function, which has the vertex at (0, a), therefore forms the petal with
the peak at (a, 0) on the polar axis, which is bounded by the interval

[
− nπ

2m
,
nπ

2m

]
(16)

of length nπ
m . Note that (16) follows from (10) for the period (15) of the cosine function

under consideration. The period (15) of the cosine function leads to the conclusion
that a rose curve determined by (4), where the angular frequency k = m

n of the cosine
function is a positive rational number, is complete for any continuous interval of length
2nπ or nπ, which depends on the even and odd numerators and denominators of the
angular frequency. Similar to the case of an integer angular frequency, we distinguish
two cases here: the first, when one of the numerators and denominators of the angular
frequency is even and the other odd, and the second, when both are odd. In the first
case, all half-cycles are different, but in the second case, the positive half-cycles coincide
with the negative half-cycles, so that a rose curve is complete for each continuous
interval of length 2nπ in the first case and length nπ in the second case.

With respect to an interval of length 2nπ, there are m cycles and 2m half-cycles,
of which all m positive and m negative half-cycles are different if one of m and n is
even and the other is odd. In this case, the rose curve therefore consists of 2m petals,
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every continuous interval of length nπ.
The polar angle between the peaks of the successive petals of a rose curve is given
by Φ = π

m in the first case and by Φ = 2π
m in the second case.

Proof. From the assumption of Theorem 2 and the observation in Remark 2, it follows
that the length of each half-cycle is equal to nπ

m . The positive half-cycle of the graph
of the cosine function, which has the vertex at (0, a), therefore forms the petal with
the peak at (a, 0) on the polar axis, which is bounded by the interval

[
− nπ

2m
,
nπ

2m

]
(16)

of length nπ
m . Note that (16) follows from (10) for the period (15) of the cosine function

under consideration. The period (15) of the cosine function leads to the conclusion
that a rose curve determined by (4), where the angular frequency k = m

n of the cosine
function is a positive rational number, is complete for any continuous interval of length
2nπ or nπ, which depends on the even and odd numerators and denominators of the
angular frequency. Similar to the case of an integer angular frequency, we distinguish
two cases here: the first, when one of the numerators and denominators of the angular
frequency is even and the other odd, and the second, when both are odd. In the first
case, all half-cycles are different, but in the second case, the positive half-cycles coincide
with the negative half-cycles, so that a rose curve is complete for each continuous
interval of length 2nπ in the first case and length nπ in the second case.

With respect to an interval of length 2nπ, there are m cycles and 2m half-cycles,
of which all m positive and m negative half-cycles are different if one of m and n is
even and the other is odd. In this case, the rose curve therefore consists of 2m petals,
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                                                               (16)

of length     . Note that (16) follows from (10) for the period (15) of 
the cosine function under consideration. The period (15) of the co-
sine function leads to the conclusion that a rose curve determined 
by (4), where the angular frequency           of the cosine function is 
a positive rational number, is complete for any continuous interval 
of length 2nπ or nπ, which depends on the even and odd numera-
tors and denominators of the angular frequency. Similar to the case 
of an integer angular frequency, we distinguish two cases here: the 
first, when one of the numerators and denominators of the angular 
frequency is even and the other odd, and the second, when both are 
odd. In the first case, all half-cycles are different, but in the second 
case, the positive half-cycles coincide with the negative half-cy-
cles, so that a rose curve is complete for each continuous interval 
of length 2nπ in the first case and length nπ in the second case.

With respect to an interval of length 2nπ, there are m cycles and 2m 
half-cycles, of which all m positive and m negative half-cycles are 
different if one of m and n is even and the other is odd. In this case, 
the rose curve therefore consists of 2m petals, since the number of 
half-cycles is equal to the number of petals of the rose curve. If, on 
the other hand, both m and n are odd, the positive half-cycles coin-
cide with the negative half-cycles, so that the rose curve consists of 
m petals. Finally, it follows from (11) that the polar angle between 
the peaks of the successive petals of a rose curve is given by Φ =      
if one of m and n is even and the other is odd, and by Φ =     if both 
m and n are odd. 

In the special case, if the denominator of the angular frequen-
cy             is equal to one, then k = m, so that Theorem 1 follows 
from Theorem 2. Using Theorem 2, we obtain that each peak of 
the corresponding petal of a rose curve determined by (4), where 
the angular frequency k of the cosine function is a positive rational 
number, belongs to the set of points 

since the number of half-cycles is equal to the number of petals of the rose curve. If,
on the other hand, both m and n are odd, the positive half-cycles coincide with the
negative half-cycles, so that the rose curve consists of m petals.

Finally, it follows from (11) that the polar angle between the peaks of the successive
petals of a rose curve is given by Φ = π

m if one of m and n is even and the other is
odd, and by Φ = 2π

m if both m and n are odd.

In the special case, if the denominator of the angular frequency k = m
n is equal to

one, then k = m, so that Theorem 1 follows from Theorem 2. Using Theorem 2, we
obtain that each peak of the corresponding petal of a rose curve determined by (4),
where the angular frequency k of the cosine function is a positive rational number,
belongs to the set of points

(
a, i · π

m

)
for i = 0, 1, 2, . . . , 2m − 1 in the first case and

the points
(
a, i · 2π

m

)
for i = 0, 1, 2, . . . ,m− 1 in the second case, which lie on a circle

of radius a whose center is the pole.
If we consider the petal with the peak at (a, 0) on the polar axis bounded by the

interval (16), a rose curve determined by (4), where the angular frequency k = m
n of

the cosine function is a positive rational number, is complete for the interval

[
− nπ

2m
,
n(4m− 1)π

2m

]
, (17)

if one of m and n is even and the other is odd, and for the interval

[
− nπ

2m
,
n(2m− 1)π

2m

]
, (18)

if both m and n are odd, where the length of the interval (17) is equal to 2nπ and the
length of the interval (18) is equal to nπ. The intervals (17) and (18), which contain
the interval (16), are one of an infinite number of intervals for which a corresponding
rose curve is complete.

We now briefly explain the shape of the petals of a rose curve, which is determined
by (4), where the cosine function has a positive rational angular frequency k = m

n
and m and n are relatively prime. Since all petals of the rose curve are identical, it is
sufficient to consider only the shape of one petal.

Depending on the period P of the cosine function with positive rational angular
frequency, the shape of a petal can be either a single closed loop or a petal forming
multiple loops, where each petal of a rose curve begins and ends at the pole, has a
peak on the circle of radius a whose center is the pole, and is symmetrical with respect
to the line passing through the pole and the peak of a petal.

From the fact that the shape of a petal of a rose curve is formed by a half-cycle
whose length is equal to the half period P given by (15), the shape of a petal is a single
closed loop if the half period of the cosine function is less than or equal to 2π or if the
period P of the cosine function is less than or equal to 4π. In addition, a petal forms
two loops if the period P of the cosine function fulfils the condition 4π < P ≤ 8π.
Similarly, a petal forms three loops if the period P of the cosine function fulfils the
condition 8π < P ≤ 12π. In general, a petal forms ξ loops if the period P of the cosine
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in the second case, which lie on a circle of radius a whose center 
is the pole.
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where the angular frequency            of the cosine function is a 
positive rational number, is complete for the interval
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if one of m and n is even and the other is odd, and for the interval

                                                             (18)
if both m and n are odd, where the length of the interval (17) is 
equal to 2nπ and the length of the interval (18) is equal to nπ. The 
intervals (17) and (18), which contain the interval (16), are one 
of an infinite number of intervals for which a corresponding rose 
curve is complete.

We now briefly explain the shape of the petals of a rose curve, 
which is determined by (4), where the cosine function has a pos-
itive rational angular frequency       and m and n are relatively 
prime. Since all petals of the rose curve are identical, it is sufficient 
to consider only the shape of one petal.Depending on the period P 
of the cosine function with positive rational angular frequency, the 
shape of a petal can be either a single closed loop or a petal form-
ing multiple loops, where each petal of a rose curve begins and 
ends at the pole, has a peak on the circle of radius a whose center 
is the pole, and is symmetrical with respect to the line passing 
through the pole and the peak of a petal.

From the fact that the shape of a petal of a rose curve is formed 
by a half-cycle whose length is equal to the half period P given by 
(15), the shape of a petal is a single closed loop if the half period 
of the cosine function is less than or equal to 2π or if the period 
P of the cosine function is less than or equal to 4π. In addition, a 
petal forms two loops if the period P of the cosine function fulfils 
the condition 4π < P ≤ 8π. Similarly, a petal forms three loops if 
the period P of the cosine function fulfils the condition 8π < P ≤ 
12π. In general, a petal forms ξ loops if the period P of the cosine 
function fulfils the condition

                  4(ξ − 1)π < P ≤ 4ξπ,                 (19)

where ξ is a positive integer. The shape of a petal of a rose curve 
is also a single closed loop if a rose curve is determined by (4), 
where the cosine function has a positive integer angular frequency. 
Note that in this case the period of the cosine function is always 
less than or equal to 2π, which is in agreement with (19) for ξ = 1.

The petals of a rose curve relating to a positive rational angular 
frequency overlap, in contrast to the petals of a rose curve relating 
to a positive integer angular frequency, which do not overlap. In 
the case of a rational angular frequency, similar to the case of an 
integer angular frequency, the distance between successive petals, 
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of this rose curve. Similarly, the rose curve r = cos 10ϕ consists of 20 petals. The
petal with the peak at (1, 0) is bounded by the interval
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]
belongs to the

interval
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39π
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]
for which this rose curve is complete. The polar angle between the

peaks of the successive petals is given by Φ = π
10 , which means that the peaks of the

corresponding petals of this rose curve are the points
(
1, i · π

10

)
for i = 0, 1, 2, . . . , 19.

In the following, we assume that the angular frequency of the cosine function in
equation (4) is a positive rational number whose numerator m and denominator n are
positive integers, so that they are relatively prime. In this way, we consider that k has
the form of an irreducible fraction given by k = m

n , so it follows from (9) that the
period of the cosine function is given by

P =
2nπ

m
. (15)

Theorem 2. Suppose that a rose curve is determined by (4), where the angular fre-
quency k of the cosine function is a positive rational number that has the form of an
irreducible fraction given by k = m

n with m,n > 0. Then we have the following cases.

If m is odd and n is even, or vice versa, then a rose curve consisting of 2m petals
is complete for every continuous interval of length 2nπ.
If both m and n are odd, then a rose curve consisting of m petals is complete for
every continuous interval of length nπ.
The polar angle between the peaks of the successive petals of a rose curve is given
by Φ = π

m in the first case and by Φ = 2π
m in the second case.

Proof. From the assumption of Theorem 2 and the observation in Remark 2, it follows
that the length of each half-cycle is equal to nπ

m . The positive half-cycle of the graph
of the cosine function, which has the vertex at (0, a), therefore forms the petal with
the peak at (a, 0) on the polar axis, which is bounded by the interval

[
− nπ

2m
,
nπ

2m

]
(16)

of length nπ
m . Note that (16) follows from (10) for the period (15) of the cosine function

under consideration. The period (15) of the cosine function leads to the conclusion
that a rose curve determined by (4), where the angular frequency k = m

n of the cosine
function is a positive rational number, is complete for any continuous interval of length
2nπ or nπ, which depends on the even and odd numerators and denominators of the
angular frequency. Similar to the case of an integer angular frequency, we distinguish
two cases here: the first, when one of the numerators and denominators of the angular
frequency is even and the other odd, and the second, when both are odd. In the first
case, all half-cycles are different, but in the second case, the positive half-cycles coincide
with the negative half-cycles, so that a rose curve is complete for each continuous
interval of length 2nπ in the first case and length nπ in the second case.

With respect to an interval of length 2nπ, there are m cycles and 2m half-cycles,
of which all m positive and m negative half-cycles are different if one of m and n is
even and the other is odd. In this case, the rose curve therefore consists of 2m petals,
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since the number of half-cycles is equal to the number of petals of the rose curve. If,
on the other hand, both m and n are odd, the positive half-cycles coincide with the
negative half-cycles, so that the rose curve consists of m petals.

Finally, it follows from (11) that the polar angle between the peaks of the successive
petals of a rose curve is given by Φ = π

m if one of m and n is even and the other is
odd, and by Φ = 2π

m if both m and n are odd.

In the special case, if the denominator of the angular frequency k = m
n is equal to

one, then k = m, so that Theorem 1 follows from Theorem 2. Using Theorem 2, we
obtain that each peak of the corresponding petal of a rose curve determined by (4),
where the angular frequency k of the cosine function is a positive rational number,
belongs to the set of points

(
a, i · π

m

)
for i = 0, 1, 2, . . . , 2m − 1 in the first case and

the points
(
a, i · 2π

m

)
for i = 0, 1, 2, . . . ,m− 1 in the second case, which lie on a circle

of radius a whose center is the pole.
If we consider the petal with the peak at (a, 0) on the polar axis bounded by the

interval (16), a rose curve determined by (4), where the angular frequency k = m
n of

the cosine function is a positive rational number, is complete for the interval

[
− nπ

2m
,
n(4m− 1)π

2m

]
, (17)

if one of m and n is even and the other is odd, and for the interval

[
− nπ

2m
,
n(2m− 1)π

2m

]
, (18)

if both m and n are odd, where the length of the interval (17) is equal to 2nπ and the
length of the interval (18) is equal to nπ. The intervals (17) and (18), which contain
the interval (16), are one of an infinite number of intervals for which a corresponding
rose curve is complete.

We now briefly explain the shape of the petals of a rose curve, which is determined
by (4), where the cosine function has a positive rational angular frequency k = m

n
and m and n are relatively prime. Since all petals of the rose curve are identical, it is
sufficient to consider only the shape of one petal.

Depending on the period P of the cosine function with positive rational angular
frequency, the shape of a petal can be either a single closed loop or a petal forming
multiple loops, where each petal of a rose curve begins and ends at the pole, has a
peak on the circle of radius a whose center is the pole, and is symmetrical with respect
to the line passing through the pole and the peak of a petal.

From the fact that the shape of a petal of a rose curve is formed by a half-cycle
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since the number of half-cycles is equal to the number of petals of the rose curve. If,
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n is equal to
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(
a, i · π

m

)
for i = 0, 1, 2, . . . , 2m − 1 in the first case and

the points
(
a, i · 2π

m

)
for i = 0, 1, 2, . . . ,m− 1 in the second case, which lie on a circle

of radius a whose center is the pole.
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interval (16), a rose curve determined by (4), where the angular frequency k = m
n of

the cosine function is a positive rational number, is complete for the interval

[
− nπ

2m
,
n(4m− 1)π

2m

]
, (17)

if one of m and n is even and the other is odd, and for the interval

[
− nπ

2m
,
n(2m− 1)π

2m

]
, (18)

if both m and n are odd, where the length of the interval (17) is equal to 2nπ and the
length of the interval (18) is equal to nπ. The intervals (17) and (18), which contain
the interval (16), are one of an infinite number of intervals for which a corresponding
rose curve is complete.

We now briefly explain the shape of the petals of a rose curve, which is determined
by (4), where the cosine function has a positive rational angular frequency k = m

n
and m and n are relatively prime. Since all petals of the rose curve are identical, it is
sufficient to consider only the shape of one petal.

Depending on the period P of the cosine function with positive rational angular
frequency, the shape of a petal can be either a single closed loop or a petal forming
multiple loops, where each petal of a rose curve begins and ends at the pole, has a
peak on the circle of radius a whose center is the pole, and is symmetrical with respect
to the line passing through the pole and the peak of a petal.

From the fact that the shape of a petal of a rose curve is formed by a half-cycle
whose length is equal to the half period P given by (15), the shape of a petal is a single
closed loop if the half period of the cosine function is less than or equal to 2π or if the
period P of the cosine function is less than or equal to 4π. In addition, a petal forms
two loops if the period P of the cosine function fulfils the condition 4π < P ≤ 8π.
Similarly, a petal forms three loops if the period P of the cosine function fulfils the
condition 8π < P ≤ 12π. In general, a petal forms ξ loops if the period P of the cosine

14

of this rose curve. Similarly, the rose curve r = cos 10ϕ consists of 20 petals. The
petal with the peak at (1, 0) is bounded by the interval

[
− π

20 ,
π
20

]
belongs to the

interval
[
− π

20 ,
39π
20

]
for which this rose curve is complete. The polar angle between the

peaks of the successive petals is given by Φ = π
10 , which means that the peaks of the

corresponding petals of this rose curve are the points
(
1, i · π

10

)
for i = 0, 1, 2, . . . , 19.

In the following, we assume that the angular frequency of the cosine function in
equation (4) is a positive rational number whose numerator m and denominator n are
positive integers, so that they are relatively prime. In this way, we consider that k has
the form of an irreducible fraction given by k = m

n , so it follows from (9) that the
period of the cosine function is given by

P =
2nπ

m
. (15)

Theorem 2. Suppose that a rose curve is determined by (4), where the angular fre-
quency k of the cosine function is a positive rational number that has the form of an
irreducible fraction given by k = m

n with m,n > 0. Then we have the following cases.

If m is odd and n is even, or vice versa, then a rose curve consisting of 2m petals
is complete for every continuous interval of length 2nπ.
If both m and n are odd, then a rose curve consisting of m petals is complete for
every continuous interval of length nπ.
The polar angle between the peaks of the successive petals of a rose curve is given
by Φ = π

m in the first case and by Φ = 2π
m in the second case.

Proof. From the assumption of Theorem 2 and the observation in Remark 2, it follows
that the length of each half-cycle is equal to nπ

m . The positive half-cycle of the graph
of the cosine function, which has the vertex at (0, a), therefore forms the petal with
the peak at (a, 0) on the polar axis, which is bounded by the interval

[
− nπ

2m
,
nπ

2m

]
(16)

of length nπ
m . Note that (16) follows from (10) for the period (15) of the cosine function

under consideration. The period (15) of the cosine function leads to the conclusion
that a rose curve determined by (4), where the angular frequency k = m

n of the cosine
function is a positive rational number, is complete for any continuous interval of length
2nπ or nπ, which depends on the even and odd numerators and denominators of the
angular frequency. Similar to the case of an integer angular frequency, we distinguish
two cases here: the first, when one of the numerators and denominators of the angular
frequency is even and the other odd, and the second, when both are odd. In the first
case, all half-cycles are different, but in the second case, the positive half-cycles coincide
with the negative half-cycles, so that a rose curve is complete for each continuous
interval of length 2nπ in the first case and length nπ in the second case.

With respect to an interval of length 2nπ, there are m cycles and 2m half-cycles,
of which all m positive and m negative half-cycles are different if one of m and n is
even and the other is odd. In this case, the rose curve therefore consists of 2m petals,
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curves, each of which is associated with the corresponding ratio-
nal angular frequency of the cosine function whose numerator is 
one and whose denominator is odd in Figure 8 and even in Figure 
9. Figure 10 shows a petal of the corresponding rose curve in Fig-
ure 9.

Figure 8 shows in particular, from left to right, the rose curves  
                                                         each consisting of a petal 
forming several loops. According to the second statement of Theo-
rem 2, these rose curves are complete for each continuous interval 
of length 3π, 5π, 7π in the order given. Since the period P of the 

corresponding cosine function is equal to 6π, 10π, 14π in the given 
order of the rose curves, the petal (i.e. the rose curve) forms 2, 3, 4 
loops in the given order, see (19) and also Figure 8. Furthermore, 
the points A, B1, B2, C1, C2, C3 are the intersections of the cor-
responding rose curve with itself. More precisely, the rose curve  

Fig. 8 Rose curves r = cos 1
3
ϕ, r = cos 1

5
ϕ and r = cos 1

7
ϕ consist of one petal forming several loops.

Let us now consider the rose curves that refer to the even denominators of the
angular frequencies whose numerator is one. These rose curves then consist of two
petals that are symmetrical with respect to the line ϕ = π

2 . In particular, Figure 9
shows the rose curves r = cos 1

2ϕ, r = cos 1
4ϕ, r = cos 1

6ϕ from left to right.

Fig. 9 Rose curves r = cos 1
2
ϕ, r = cos 1

4
ϕ and r = cos 1

6
ϕ consist of two petals.

If we use the first statement of Theorem 2 here, we obtain that these rose curves are
complete for each continuous interval of length 4π, 8π, 12π in the given order of rose
curves in the observation. To better explain the number of loops of a petal of these rose
curves, consider the petal with the peak at (1, 0) of each of these rose curves, as shown
in Figure 10, where the intersection points of the petal with itself are also indicated.

Fig. 10 The petal of the rose curves r = cos 1
2
ϕ, r = cos 1

4
ϕ and r = cos 1

6
ϕ.

According to the identity (19) and the period P = 4π of the cosine function with
respect to the rose curve r = cos 1

2ϕ, we obtain that each of the two petals is a single
closed loop, which means that the petal does not intersect itself, see Figure 10 left.
With respect to the rose curve r = cos 1

4ϕ, where the period of the corresponding cosine
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Figure 8: Rose Curves                                                            Consist of One Petal Forming Several Loops.

Figure 9: Rose Curves                                                                 consist of two petals.
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If we use the first statement of Theorem 2 here, we obtain that these 
rose curves are complete for each continuous interval of length 4π, 
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sider the petal with the peak at (1,0) of each of these rose curves, 
as shown in Figure 10, where the intersection points of the petal 
with itself are also indicated.
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According to the identity (19) and the period P = 4π of the cosine 
function with respect to the rose curve                   , we obtain that 
each of the two petals is a single closed loop, which means that the 
petal does not intersect itself, see Figure 10 left. With respect to 
the rose curve                      , where the period of the corresponding 
cosine function is equal to P = 8π, it follows from (19) that each of 

the two petals forms 2 loops and intersects itself at the point 
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function is equal to P = 8π, it follows from (19) that each of the two petals forms

2 loops and intersects itself at the point
(
cos π

4 , π
)
=

(√
2
2 , π

)
, where

(
cos π

4 , π
)
=(

cos π
4 ,−π

)
, see Figure 10 in the middle. Finally, we obtain in a similar way that

each of the two petals of the rose curve r = cos 1
6ϕ forms 3 loops, since the period of

the corresponding cosine function is equal to 12π. The intersection points of this rose

curve with itself are
(
cos π

6 , π
)
=

(√
3
2 , π

)
and

(
cos π

3 , 2π
)
=

(
1
2 , 2π

)
, Here we have

considered
(
cos π

6 , π
)
=

(
cos π

6 ,−π
)
and

(
cos π

3 , 2π
)
=

(
cos π

3 ,−2π
)
, see Figure 10 on

the right. If we compare each of the rose curves in Figure 9 with the corresponding
petal in Figure 10, we can see that the two petals of a rose curve overlap.
Example 6. We now examine the rose curves that refer to rational angular frequen-
cies less than one whose numerators are different from one and where one of the
numerators or denominators is even and the other odd, as well as the case where both
are odd. In particular, Figure 11 shows the rose curve r = cos 3

4ϕ on the left and the
rose curve r = cos 3

5ϕ on the right. By applying (19) we find that each of the petals
of the two rose curves is a single closed loop, since the period of the cosine function
is given by 8π

3 ≤ 4π and 10π
3 ≤ 4π respectively. According to Theorem 2, we find that

the rose curve r = cos 3
4ϕ is complete for every continuous interval of length 8π and

consists of 6 petals, of which the petal with the peak at (1, 0) is bounded by the inter-
val

[
− 2π

3 , 2π
3

]
, which belongs to the interval

[
− 2π

3 , 22π
3

]
, see (16) and (17). With (11)

for np = 6 we obtain that the polar angle between the peaks of the successive petals is
given by Φ = π

3 . Therefore, the peaks of the corresponding petals are points
(
1, i · π

3

)
for i = 0, 1, 2, . . . , 5.

Fig. 11 Rose curves r = cos 3
4
ϕ and r = cos 3

5
ϕ.

On the other hand, since both the numerator and the denominator of the angular
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function fulfils the condition

4(ξ − 1)π < P ≤ 4 ξπ, (19)

where ξ is a positive integer. The shape of a petal of a rose curve is also a single closed
loop if a rose curve is determined by (4), where the cosine function has a positive
integer angular frequency. Note that in this case the period of the cosine function is
always less than or equal to 2π, which is in agreement with (19) for ξ = 1.

The petals of a rose curve relating to a positive rational angular frequency overlap,
in contrast to the petals of a rose curve relating to a positive integer angular frequency,
which do not overlap. In the case of a rational angular frequency, similar to the case
of an integer angular frequency, the distance between successive petals, i.e. the polar
angle between the peaks of the successive petals of a rose curve, decreases as the
number of petals increases. We distinguish between the following two cases.

1. If the rational angular frequency is less than one and decreases towards zero, then
the petals become wider. In this case, it is possible that a petal of a rose curve is
a single closed loop or forms multiple loops.

2. If the rational angular frequency is greater than one, then the petal becomes nar-
rower and increases. In this case, each petal is a single closed loop, as in the case
of an integer angular frequency.

With reference to Theorem 2, in the following three examples we examine sev-
eral rose curves, each of which is associated with the corresponding rational angular
frequency of the cosine function. In particular, in Example 5 and Example 6 we con-
sider rational angular frequencies less than one and in Example 7 rational angular
frequencies greater than one, assuming that the amplitude of the corresponding cosine
functions is equal to one.
Example 5. We begin with Figure 8 and Figure 9 which show rose curves, each of
which is associated with the corresponding rational angular frequency of the cosine
function whose numerator is one and whose denominator is odd in Figure 8 and even
in Figure 9. Figure 10 shows a petal of the corresponding rose curve in Figure 9.
Figure 8 shows in particular, from left to right, the rose curves r = cos 1

3ϕ, r = cos 1
5ϕ,

r = cos 1
7ϕ, each consisting of a petal forming several loops. According to the second

statement of Theorem 2, these rose curves are complete for each continuous interval
of length 3π, 5π, 7π in the order given. Since the period P of the corresponding
cosine function is equal to 6π, 10π, 14π in the given order of the rose curves, the
petal (i.e. the rose curve) forms 2, 3, 4 loops in the given order, see (19) and also
Figure 8. Furthermore, the points A, B1, B2, C1, C2, C3 are the intersections of
the corresponding rose curve with itself. More precisely, the rose curve r = cos 1

3ϕ
intersects at the point A =

(
cos π

3 , π
)
=

(
1
2 , π

)
, gives the same point for the polar

angle ϕ = −π, where
(
cos

(
−π

3

)
,−π

)
=

(
cos π

3 ,−π
)
, see (7). Similarly, the inter-

sections of the rose curve r = cos 1
5ϕ with itself are B1 =

(
cos π

5 , π
)
=

(
cos π

5 ,−π
)

and B2 =
(
cos 2π

5 , 2π
)
=

(
cos 2π

5 ,−2π
)

and the intersection points of

the rose curve r = cos 1
7ϕ with itself are C1 =

(
cos π

7 , π
)
=

(
cos π

7 ,−π
)
,

C2 =
(
cos 2π

7 , 2π
)
=

(
cos 2π

7 ,−2π
)
and C3 =

(
cos 3π

7 , 3π
)
=

(
cos 3π

7 ,−3π
)
.
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5ϕ on the right. By applying (19) we find that each of the petals
of the two rose curves is a single closed loop, since the period of the cosine function
is given by 8π

3 ≤ 4π and 10π
3 ≤ 4π respectively. According to Theorem 2, we find that
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We give here two more rose curves that refer to rational angular frequencies less

than one and to a period greater than 4π, which results in each of the petals forming
multiple loops, as shown in Figure 12 and Figure 13.

Fig. 12 The rose curve r = cos 3
7
ϕ and its petal forming 2 loops.

In particular, Figure 12 shows on the left the rose curve r = cos 3
7ϕ, which consists

of 3 petals and is complete for each continuous interval of length 7π. Since the period
P of the cosine function is equal to 14π

3 , which is greater than 4π and less than or
equal to 8π, it follows from (19) that each of the three petals forms 2 loops, as Figure
12 on the right shows.

Fig. 13 The rose curve r = cos 6
29

ϕ and its petal forming 3 loops.

Similarly, Figure 13 on the left shows the rose curve r = cos 6
29ϕ, which is complete

for each continuous interval of length 58π and consists of 12 petals whose corresponding
peaks are the points

(
1, i · π

6

)
for i = 0, 1, 2, . . . , 11. The period of the cosine function

with respect to this rose curve is given by P = 29π
3 , so that from 8π < P ≤ 12π it follows

that each of the petals of this rose curve forms 3 loops, as Figure 13 on the right shows.
If we compare the treated rose curves in Figure 11, Figure 12, and Figure 13, we can

see that each of the first three is associated with the rational angular frequency whose
numerator is equal to 3. This may mean that each consists of 3 petals, but only the
rose curves r = cos 3

5ϕ and r = cos 3
7ϕ consist of 3 petals, because the numerator and

denominator of the angular frequency are odd, in contrast to the rose curve r = cos 3
4ϕ,

which consists of 6 petals because one of the numerators and denominators of the
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the right. If we compare each of the rose curves in Figure 9 with the corresponding
petal in Figure 10, we can see that the two petals of a rose curve overlap.
Example 6. We now examine the rose curves that refer to rational angular frequen-
cies less than one whose numerators are different from one and where one of the
numerators or denominators is even and the other odd, as well as the case where both
are odd. In particular, Figure 11 shows the rose curve r = cos 3

4ϕ on the left and the
rose curve r = cos 3

5ϕ on the right. By applying (19) we find that each of the petals
of the two rose curves is a single closed loop, since the period of the cosine function
is given by 8π
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3 ≤ 4π respectively. According to Theorem 2, we find that
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consists of 6 petals, of which the petal with the peak at (1, 0) is bounded by the inter-
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, which belongs to the interval
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given by Φ = π
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3 . Therefore, the peaks of the corresponding petals are points
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for i = 0, 1, 2, . . . , 5.
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)
, i = 0, 1, 2 are the

peaks of the corresponding petals.
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We give here two more rose curves that refer to rational angular frequencies less
than one and to a period greater than 4π, which results in each of the petals forming
multiple loops, as shown in Figure 12 and Figure 13.

Fig. 12 The rose curve r = cos 3
7
ϕ and its petal forming 2 loops.

In particular, Figure 12 shows on the left the rose curve r = cos 3
7ϕ, which consists

of 3 petals and is complete for each continuous interval of length 7π. Since the period
P of the cosine function is equal to 14π

3 , which is greater than 4π and less than or
equal to 8π, it follows from (19) that each of the three petals forms 2 loops, as Figure
12 on the right shows.

Fig. 13 The rose curve r = cos 6
29

ϕ and its petal forming 3 loops.

Similarly, Figure 13 on the left shows the rose curve r = cos 6
29ϕ, which is complete

for each continuous interval of length 58π and consists of 12 petals whose corresponding
peaks are the points

(
1, i · π

6

)
for i = 0, 1, 2, . . . , 11. The period of the cosine function

with respect to this rose curve is given by P = 29π
3 , so that from 8π < P ≤ 12π it follows

that each of the petals of this rose curve forms 3 loops, as Figure 13 on the right shows.
If we compare the treated rose curves in Figure 11, Figure 12, and Figure 13, we can

see that each of the first three is associated with the rational angular frequency whose
numerator is equal to 3. This may mean that each consists of 3 petals, but only the
rose curves r = cos 3

5ϕ and r = cos 3
7ϕ consist of 3 petals, because the numerator and

denominator of the angular frequency are odd, in contrast to the rose curve r = cos 3
4ϕ,

which consists of 6 petals because one of the numerators and denominators of the
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Similarly, Figure 13 on the left shows the rose curve                             , 
which is complete for each continuous interval of length 58π and 
consists of 12 petals whose corresponding peaks are the points                                           
                 for i = 0,1,2,...,11. The period of the cosine function with 
respect to this rose curve is given by            , so that from 8π < P 
≤ 12π it follows that each of the petals of this rose curve forms 3 
loops, as Figure 13 on the right shows.

If we compare the treated rose curves in Figure 11, Figure 12, and 
Figure 13, we can see that each of the first three is associated with 
the rational angular frequency whose numerator is equal to 3. This 
may mean that each consists of 3 petals, but only the rose curves                                                                                                                           
                     and                    consist of 3 petals, because the numer-
ator and denominator of the angular frequency are odd, in contrast 
to the rose curve                  , which consists of 6 petals because 
one of the numerators and denominators of the angular frequency 
is odd and the other is even. Recall that the rose curve r = cos3ϕ 
shown in Figure 5 on the right and each rose curve r = acos3ϕ, a>0 
also consists of 3 petals. The common property of the rose curves      
                                           and r = cos3ϕ is that the polar coordinates 
of the peaks of their corresponding petals coincide and they there-
fore have the same polar angle between the peaks of the successive 
petals, which is given by Φ =    . On the other hand, they differ in 
the length of the interval for which the corresponding rose curve 
is complete, but also in the number of loops of the petal, which 

depends on the period of the associated cosine function. As men-
tioned, each petal of the rose curves                        and r = acos3ϕ 
is a single closed loop, but each petal of the rose curve  
forms 2 loops. 

Example 7. We now examine two rose curves that refer to ratio-
nal angular frequencies greater than one, where the amplitudes 
of the two cosine functions are also equal to one. In the first case, 
shown on the left in Figure 14, we assume that the numerator of 
the angular frequency of the cosine function is even and the de-
nominator is odd. In the second case, shown on the right in Figure 
14, we assume that the numerator and denominator of the angular 
frequency of the cosine function are odd. In particular, Figure 14 
shows the rose curve 

angular frequency is odd and the other is even. Recall that the rose curve r = cos 3ϕ
shown in Figure 5 on the right and each rose curve r = a cos 3ϕ, a �= 0 also consists of 3
petals. The common property of the rose curves r = cos 3

5ϕ, r = cos 3
7ϕ and r = cos 3ϕ

is that the polar coordinates of the peaks of their corresponding petals coincide and
they therefore have the same polar angle between the peaks of the successive petals,
which is given by Φ = 2π

3 . On the other hand, they differ in the length of the interval for
which the corresponding rose curve is complete, but also in the number of loops of the
petal, which depends on the period of the associated cosine function. As mentioned,
each petal of the rose curves r = cos 3

5ϕ and r = a cos 3ϕ is a single closed loop, but
each petal of the rose curve r = cos 3

7ϕ forms 2 loops.
Example 7. We now examine two rose curves that refer to rational angular frequen-
cies greater than one, where the amplitudes of the two cosine functions are also equal
to one. In the first case, shown on the left in Figure 14, we assume that the numer-
ator of the angular frequency of the cosine function is even and the denominator is
odd. In the second case, shown on the right in Figure 14, we assume that the numer-
ator and denominator of the angular frequency of the cosine function are odd. In
particular, Figure 14 shows the rose curves r = cos 4

3ϕ on the left and the rose curves
r = cos 7

3ϕ on the right. The common characteristics of these rose curves, and also
of all rose curves associated with the cosine function with rational angular frequen-
cies greater than one, are that each of the petals is a single closed loop and that the
petals overlap, unlike the rose curves associated with the cosine function with integer
angular frequencies, whose petals do not overlap. Similar to the integer angular fre-
quency, the polar angle between the peaks of successive petals, decreases as the number
of petals increases. If the rational angular frequency k is greater than one, then the
petal becomes narrower as k increases from one and wider as k decreases towards one.

Fig. 14 Rose curves r = cos 4
3
ϕ and r = cos 7

3
ϕ

By applying Theorem 2, it is easy to verify that the rose curve r = cos 4
3ϕ is

complete for each continuous interval of length 6π and consists of 8 petals whose
corresponding peaks are the points

(
1, i · π

4

)
for i = 0, 1, 2, . . . , 7, as shown in Figure 14

left. The petal with the peak at (1, 0) is bounded by the interval
[
− 3π

8 , 3π
8

]
, which belongs

to the interval
[
− 3π

8 , 45π
8

]
. Similarly, one can verify that the rose curve r = cos 7

3ϕ
is complete for each continuous interval of length 3π and consists of 7 petals whose
corresponding peaks are the points

(
1, i · 2π

7

)
for i = 0, 1, 2, . . . , 6, see Figure 14 right.
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corresponding peaks are the points

(
1, i · π

4

)
for i = 0, 1, 2, . . . , 7, as shown in Figure 14

left. The petal with the peak at (1, 0) is bounded by the interval
[
− 3π

8 , 3π
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, which belongs
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ϕ   on the right. The common characteristics of these 
rose curves, and also of all rose curves associated with the cosine 
function with rational angular frequencies greater than one, are 
that each of the petals is a single closed loop and that the petals 
overlap, unlike the rose curves associated with the cosine func-
tion with integer angular frequencies, whose petals do not overlap. 
Similar to the integer angular frequency, the polar angle between 
the peaks of successive petals, decreases as the number of petals 
increases. If the rational angular frequency k is greater than one, 
then the petal becomes narrower as k increases from one and wid-
er as k decreases towards one.

We give here two more rose curves that refer to rational angular frequencies less
than one and to a period greater than 4π, which results in each of the petals forming
multiple loops, as shown in Figure 12 and Figure 13.

Fig. 12 The rose curve r = cos 3
7
ϕ and its petal forming 2 loops.

In particular, Figure 12 shows on the left the rose curve r = cos 3
7ϕ, which consists

of 3 petals and is complete for each continuous interval of length 7π. Since the period
P of the cosine function is equal to 14π

3 , which is greater than 4π and less than or
equal to 8π, it follows from (19) that each of the three petals forms 2 loops, as Figure
12 on the right shows.

Fig. 13 The rose curve r = cos 6
29

ϕ and its petal forming 3 loops.

Similarly, Figure 13 on the left shows the rose curve r = cos 6
29ϕ, which is complete

for each continuous interval of length 58π and consists of 12 petals whose corresponding
peaks are the points

(
1, i · π

6

)
for i = 0, 1, 2, . . . , 11. The period of the cosine function

with respect to this rose curve is given by P = 29π
3 , so that from 8π < P ≤ 12π it follows

that each of the petals of this rose curve forms 3 loops, as Figure 13 on the right shows.
If we compare the treated rose curves in Figure 11, Figure 12, and Figure 13, we can

see that each of the first three is associated with the rational angular frequency whose
numerator is equal to 3. This may mean that each consists of 3 petals, but only the
rose curves r = cos 3

5ϕ and r = cos 3
7ϕ consist of 3 petals, because the numerator and

denominator of the angular frequency are odd, in contrast to the rose curve r = cos 3
4ϕ,

which consists of 6 petals because one of the numerators and denominators of the
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function is equal to P = 8π, it follows from (19) that each of the two petals forms

2 loops and intersects itself at the point
(
cos π

4 , π
)
=

(√
2
2 , π

)
, where

(
cos π

4 , π
)
=(

cos π
4 ,−π

)
, see Figure 10 in the middle. Finally, we obtain in a similar way that

each of the two petals of the rose curve r = cos 1
6ϕ forms 3 loops, since the period of

the corresponding cosine function is equal to 12π. The intersection points of this rose

curve with itself are
(
cos π

6 , π
)
=

(√
3
2 , π

)
and

(
cos π

3 , 2π
)
=

(
1
2 , 2π

)
, Here we have

considered
(
cos π

6 , π
)
=

(
cos π

6 ,−π
)
and

(
cos π

3 , 2π
)
=

(
cos π

3 ,−2π
)
, see Figure 10 on

the right. If we compare each of the rose curves in Figure 9 with the corresponding
petal in Figure 10, we can see that the two petals of a rose curve overlap.
Example 6. We now examine the rose curves that refer to rational angular frequen-
cies less than one whose numerators are different from one and where one of the
numerators or denominators is even and the other odd, as well as the case where both
are odd. In particular, Figure 11 shows the rose curve r = cos 3

4ϕ on the left and the
rose curve r = cos 3

5ϕ on the right. By applying (19) we find that each of the petals
of the two rose curves is a single closed loop, since the period of the cosine function
is given by 8π

3 ≤ 4π and 10π
3 ≤ 4π respectively. According to Theorem 2, we find that

the rose curve r = cos 3
4ϕ is complete for every continuous interval of length 8π and

consists of 6 petals, of which the petal with the peak at (1, 0) is bounded by the inter-
val

[
− 2π

3 , 2π
3

]
, which belongs to the interval

[
− 2π

3 , 22π
3

]
, see (16) and (17). With (11)

for np = 6 we obtain that the polar angle between the peaks of the successive petals is
given by Φ = π

3 . Therefore, the peaks of the corresponding petals are points
(
1, i · π

3

)
for i = 0, 1, 2, . . . , 5.

Fig. 11 Rose curves r = cos 3
4
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5
ϕ.

On the other hand, since both the numerator and the denominator of the angular
frequency of the cosine function with respect to the rose curve r = cos 3

5ϕ are odd,
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,
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]
, see (16) and (18). The polar angle between

the peaks of the successive petals is given by Φ = 2π
3 and

(
1, i · 2π

3

)
, i = 0, 1, 2 are the

peaks of the corresponding petals.
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angular frequency is odd and the other is even. Recall that the rose curve r = cos 3ϕ
shown in Figure 5 on the right and each rose curve r = a cos 3ϕ, a �= 0 also consists of 3
petals. The common property of the rose curves r = cos 3

5ϕ, r = cos 3
7ϕ and r = cos 3ϕ

is that the polar coordinates of the peaks of their corresponding petals coincide and
they therefore have the same polar angle between the peaks of the successive petals,
which is given by Φ = 2π

3 . On the other hand, they differ in the length of the interval for
which the corresponding rose curve is complete, but also in the number of loops of the
petal, which depends on the period of the associated cosine function. As mentioned,
each petal of the rose curves r = cos 3

5ϕ and r = a cos 3ϕ is a single closed loop, but
each petal of the rose curve r = cos 3

7ϕ forms 2 loops.
Example 7. We now examine two rose curves that refer to rational angular frequen-
cies greater than one, where the amplitudes of the two cosine functions are also equal
to one. In the first case, shown on the left in Figure 14, we assume that the numer-
ator of the angular frequency of the cosine function is even and the denominator is
odd. In the second case, shown on the right in Figure 14, we assume that the numer-
ator and denominator of the angular frequency of the cosine function are odd. In
particular, Figure 14 shows the rose curves r = cos 4

3ϕ on the left and the rose curves
r = cos 7

3ϕ on the right. The common characteristics of these rose curves, and also
of all rose curves associated with the cosine function with rational angular frequen-
cies greater than one, are that each of the petals is a single closed loop and that the
petals overlap, unlike the rose curves associated with the cosine function with integer
angular frequencies, whose petals do not overlap. Similar to the integer angular fre-
quency, the polar angle between the peaks of successive petals, decreases as the number
of petals increases. If the rational angular frequency k is greater than one, then the
petal becomes narrower as k increases from one and wider as k decreases towards one.
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By applying Theorem 2, it is easy to verify that the rose curve r = cos 4
3ϕ is

complete for each continuous interval of length 6π and consists of 8 petals whose
corresponding peaks are the points

(
1, i · π
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)
for i = 0, 1, 2, . . . , 7, as shown in Figure 14

left. The petal with the peak at (1, 0) is bounded by the interval
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]
, which belongs

to the interval
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]
. Similarly, one can verify that the rose curve r = cos 7

3ϕ
is complete for each continuous interval of length 3π and consists of 7 petals whose
corresponding peaks are the points

(
1, i · 2π
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)
for i = 0, 1, 2, . . . , 6, see Figure 14 right.
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petal, which depends on the period of the associated cosine function. As mentioned,
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5ϕ and r = a cos 3ϕ is a single closed loop, but
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cies greater than one, where the amplitudes of the two cosine functions are also equal
to one. In the first case, shown on the left in Figure 14, we assume that the numer-
ator of the angular frequency of the cosine function is even and the denominator is
odd. In the second case, shown on the right in Figure 14, we assume that the numer-
ator and denominator of the angular frequency of the cosine function are odd. In
particular, Figure 14 shows the rose curves r = cos 4

3ϕ on the left and the rose curves
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3ϕ on the right. The common characteristics of these rose curves, and also
of all rose curves associated with the cosine function with rational angular frequen-
cies greater than one, are that each of the petals is a single closed loop and that the
petals overlap, unlike the rose curves associated with the cosine function with integer
angular frequencies, whose petals do not overlap. Similar to the integer angular fre-
quency, the polar angle between the peaks of successive petals, decreases as the number
of petals increases. If the rational angular frequency k is greater than one, then the
petal becomes narrower as k increases from one and wider as k decreases towards one.
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they therefore have the same polar angle between the peaks of the successive petals,
which is given by Φ = 2π

3 . On the other hand, they differ in the length of the interval for
which the corresponding rose curve is complete, but also in the number of loops of the
petal, which depends on the period of the associated cosine function. As mentioned,
each petal of the rose curves r = cos 3

5ϕ and r = a cos 3ϕ is a single closed loop, but
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Example 7. We now examine two rose curves that refer to rational angular frequen-
cies greater than one, where the amplitudes of the two cosine functions are also equal
to one. In the first case, shown on the left in Figure 14, we assume that the numer-
ator of the angular frequency of the cosine function is even and the denominator is
odd. In the second case, shown on the right in Figure 14, we assume that the numer-
ator and denominator of the angular frequency of the cosine function are odd. In
particular, Figure 14 shows the rose curves r = cos 4

3ϕ on the left and the rose curves
r = cos 7

3ϕ on the right. The common characteristics of these rose curves, and also
of all rose curves associated with the cosine function with rational angular frequen-
cies greater than one, are that each of the petals is a single closed loop and that the
petals overlap, unlike the rose curves associated with the cosine function with integer
angular frequencies, whose petals do not overlap. Similar to the integer angular fre-
quency, the polar angle between the peaks of successive petals, decreases as the number
of petals increases. If the rational angular frequency k is greater than one, then the
petal becomes narrower as k increases from one and wider as k decreases towards one.
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 is complete for each continuous 
interval of length 3π and consists of 7 petals whose corresponding 
peaks are the points                 for i = 0,1,2,...,6, see Figure 14 right.
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of petals increases. If the rational angular frequency k is greater than one, then the
petal becomes narrower as k increases from one and wider as k decreases towards one.

Fig. 14 Rose curves r = cos 4
3
ϕ and r = cos 7

3
ϕ

By applying Theorem 2, it is easy to verify that the rose curve r = cos 4
3ϕ is

complete for each continuous interval of length 6π and consists of 8 petals whose
corresponding peaks are the points

(
1, i · π

4

)
for i = 0, 1, 2, . . . , 7, as shown in Figure 14

left. The petal with the peak at (1, 0) is bounded by the interval
[
− 3π

8 , 3π
8

]
, which belongs

to the interval
[
− 3π

8 , 45π
8

]
. Similarly, one can verify that the rose curve r = cos 7

3ϕ
is complete for each continuous interval of length 3π and consists of 7 petals whose
corresponding peaks are the points

(
1, i · 2π

7

)
for i = 0, 1, 2, . . . , 6, see Figure 14 right.

19

angular frequency is odd and the other is even. Recall that the rose curve r = cos 3ϕ
shown in Figure 5 on the right and each rose curve r = a cos 3ϕ, a �= 0 also consists of 3
petals. The common property of the rose curves r = cos 3

5ϕ, r = cos 3
7ϕ and r = cos 3ϕ

is that the polar coordinates of the peaks of their corresponding petals coincide and
they therefore have the same polar angle between the peaks of the successive petals,
which is given by Φ = 2π

3 . On the other hand, they differ in the length of the interval for
which the corresponding rose curve is complete, but also in the number of loops of the
petal, which depends on the period of the associated cosine function. As mentioned,
each petal of the rose curves r = cos 3

5ϕ and r = a cos 3ϕ is a single closed loop, but
each petal of the rose curve r = cos 3

7ϕ forms 2 loops.
Example 7. We now examine two rose curves that refer to rational angular frequen-
cies greater than one, where the amplitudes of the two cosine functions are also equal
to one. In the first case, shown on the left in Figure 14, we assume that the numer-
ator of the angular frequency of the cosine function is even and the denominator is
odd. In the second case, shown on the right in Figure 14, we assume that the numer-
ator and denominator of the angular frequency of the cosine function are odd. In
particular, Figure 14 shows the rose curves r = cos 4

3ϕ on the left and the rose curves
r = cos 7

3ϕ on the right. The common characteristics of these rose curves, and also
of all rose curves associated with the cosine function with rational angular frequen-
cies greater than one, are that each of the petals is a single closed loop and that the
petals overlap, unlike the rose curves associated with the cosine function with integer
angular frequencies, whose petals do not overlap. Similar to the integer angular fre-
quency, the polar angle between the peaks of successive petals, decreases as the number
of petals increases. If the rational angular frequency k is greater than one, then the
petal becomes narrower as k increases from one and wider as k decreases towards one.
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By applying Theorem 2, it is easy to verify that the rose curve r = cos 4
3ϕ is

complete for each continuous interval of length 6π and consists of 8 petals whose
corresponding peaks are the points

(
1, i · π
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)
for i = 0, 1, 2, . . . , 7, as shown in Figure 14
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, which belongs
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19

angular frequency is odd and the other is even. Recall that the rose curve r = cos 3ϕ
shown in Figure 5 on the right and each rose curve r = a cos 3ϕ, a �= 0 also consists of 3
petals. The common property of the rose curves r = cos 3

5ϕ, r = cos 3
7ϕ and r = cos 3ϕ

is that the polar coordinates of the peaks of their corresponding petals coincide and
they therefore have the same polar angle between the peaks of the successive petals,
which is given by Φ = 2π

3 . On the other hand, they differ in the length of the interval for
which the corresponding rose curve is complete, but also in the number of loops of the
petal, which depends on the period of the associated cosine function. As mentioned,
each petal of the rose curves r = cos 3

5ϕ and r = a cos 3ϕ is a single closed loop, but
each petal of the rose curve r = cos 3

7ϕ forms 2 loops.
Example 7. We now examine two rose curves that refer to rational angular frequen-
cies greater than one, where the amplitudes of the two cosine functions are also equal
to one. In the first case, shown on the left in Figure 14, we assume that the numer-
ator of the angular frequency of the cosine function is even and the denominator is
odd. In the second case, shown on the right in Figure 14, we assume that the numer-
ator and denominator of the angular frequency of the cosine function are odd. In
particular, Figure 14 shows the rose curves r = cos 4

3ϕ on the left and the rose curves
r = cos 7

3ϕ on the right. The common characteristics of these rose curves, and also
of all rose curves associated with the cosine function with rational angular frequen-
cies greater than one, are that each of the petals is a single closed loop and that the
petals overlap, unlike the rose curves associated with the cosine function with integer
angular frequencies, whose petals do not overlap. Similar to the integer angular fre-
quency, the polar angle between the peaks of successive petals, decreases as the number
of petals increases. If the rational angular frequency k is greater than one, then the
petal becomes narrower as k increases from one and wider as k decreases towards one.

Fig. 14 Rose curves r = cos 4
3
ϕ and r = cos 7

3
ϕ

By applying Theorem 2, it is easy to verify that the rose curve r = cos 4
3ϕ is

complete for each continuous interval of length 6π and consists of 8 petals whose
corresponding peaks are the points

(
1, i · π

4

)
for i = 0, 1, 2, . . . , 7, as shown in Figure 14

left. The petal with the peak at (1, 0) is bounded by the interval
[
− 3π

8 , 3π
8

]
, which belongs

to the interval
[
− 3π

8 , 45π
8

]
. Similarly, one can verify that the rose curve r = cos 7

3ϕ
is complete for each continuous interval of length 3π and consists of 7 petals whose
corresponding peaks are the points

(
1, i · 2π

7

)
for i = 0, 1, 2, . . . , 6, see Figure 14 right.

19

ϕ

ϕ

ϕ ϕ

ϕ

ϕ ϕ

ϕ

ϕ ϕ

ϕ ϕ

ϕ
ϕ



Curr Res Stat Math, 2024 Volume 3 | Issue 3 | 12

The petal with the peak at (1,0) is bounded by the interval                         
                 , which belongs to the interval                    .

In the following, we finally examine the rose curves with regard to 
irrational angular frequencies.

Theorem 3. If the angular frequency k of the cosine function is a 
positive irrational number, then a rose curve consists of an infinite 
number of petals. Proof. Assuming that a rose curve is determined 
by (4), where the angular frequency k of the cosine function is a 
positive irrational number, the period of the cosine function can 
have a rational or irrational value. In particular, the period P of 
the cosine function has a rational value if an irrational angular fre-
quency is given in the form of k = λ•π, where λ is a rational num-
ber, otherwise the period P has an irrational value. In both cases, 
however, the period P cannot be represented as the product of a 
rational number and the number π, in contrast to the case of a ratio-
nal angular frequency, where the period P is given as the product of 
a rational number     and the number π, see (15). Since a cycle is a 
part of the graph of the cosine function whose length corresponds 
to a period of the cosine function, there are no cycles that coincide. 
Consequently, all cycles are accounted for, which means that there 
are no identical petals, resulting in a rose curve consisting of an 
infinite number of petals. 

It follows from Theorem 3 that a rose curve determined by (4), 
where the angular frequency of the cosine function is a positive 
irrational number, is incomplete in the set of real numbers. On the 
other hand, it follows from the fact that a rose curve consists of an 
infinite number of petals that the polar angle between the peaks 
of the successive petals of a rose curve is not unique. In fact, it 
decreases as the number of petals increases.

Theorem 4. Let us assume that a rose curve is determined by (4), 
where the angular frequency of the cosine function is a positive ir-
rational number. Assuming that P denotes the period of the cosine 
function, the following statements are fulfilled.The petal with the 
peak at           ,  is bounded by the interval

                                                                    (20)

of length     , where l is any integer. The j −i+1 petals of a rose 
curve are bounded by the interval

                                                                                               (21)

of length                  , where i and j are arbitrary integers such that 
i ≤ j.
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             , whose centre is ϕ = 0, see (10). The centre of an interval 
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In accordance with (20) for every integer l, we obtain that the petal 
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together with the interval obtained, we find that the two petals, one 
of which has the peak at           ,  and the other at                       , 
are bounded by the interval
                                                                       (22)

of length P. Considering that 2l + 3 = 2(l + 1) + 1 and introducing 
the abbreviations i = l and j = l+1, we obtain that the j −i+1 = 2 
petals are bounded by the interval (22), which can be written as                      
                        ,     compare with (21). Therefore, the j − i + 1 
petals of a rose curve are generally bounded by the interval (21) of 
length      for any integers i and j such that i ≤ j. 

Although a rose curve is incomplete with respect to the irrational 
angular frequency of the cosine function and consists of an in-
finite number of petals, in general any finite number of its petals 
is bounded by an interval that is a subset of the set of real num-
bers. As the length of the interval (21) increases, the number of 
petals increases and thus the polar angle between the peaks of the 
successive petals decreases. It is obvious that all the peaks of the 
corresponding petals of a rose curve with respect to the irrational 
angular frequency of the cosine function associated with (4) lie on 
the circle of radius a whose center is the pole. In the special case 
for i = j = l, the interval (20) follows from (21). We note that the 
interval (21) of polar angles of length                     with i ≤ j bounding 
j − i + 1 petals of a rose curve with respect to an irrational angu-
lar frequency can be considered as a generalization of the above 
intervals of polar angles with respect to the integer or the rational 
angular frequency of the corresponding cosine function. In partic-
ular, if we assume that i = j = 0, then from (21) follows the interval 
(10) bounding the petal with the peak on the polar axis. It is also 
easy to check that in the case of an integer angular frequency the 
intervals (12), (13) and (14) can be determined from (21) and also 
in the case of a rational angular frequency the intervals (16), (17) 
and (18) can be determined from (21). 

Example 8. Let us consider the rose curve r = cos(2πϕ). Since 
the angular frequency of the cosine function is given by k = 2π, 
the period of the cosine function is equal to one, see (9). Using 
(20) with l = 0 and P = 1 (or equivalently (10) with P = 1), we 
obtain that the petal with the peak at (a,0) on the polar axis is 
bounded by the interval 
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We note that the given sequence of intervals, for which the given petals are com-
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, where l is an integer such that −25 ≤ l ≤ 31, see (20).
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the rose curve r = a cos(eϕ) with k = e, where e is a mathematical constant also known
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The petal with the peak at (1, 0) is bounded by the interval
[
− 3π

14 ,
3π
14

]
, which belongs

to the interval
[
− 3π

14 ,
39π
14

]
.

In the following, we finally examine the rose curves with regard to irrational angular
frequencies.
Theorem 3. If the angular frequency k of the cosine function is a positive irrational
number, then a rose curve consists of an infinite number of petals.

Proof. Assuming that a rose curve is determined by (4), where the angular frequency k
of the cosine function is a positive irrational number, the period of the cosine function
can have a rational or irrational value. In particular, the period P of the cosine function
has a rational value if an irrational angular frequency is given in the form of k = λ ·π,
where λ is a rational number, otherwise the period P has an irrational value. In both
cases, however, the period P cannot be represented as the product of a rational number
and the number π, in contrast to the case of a rational angular frequency, where the
period P is given as the product of a rational number 2n

m and the number π, see (15).
Since a cycle is a part of the graph of the cosine function whose length corresponds
to a period of the cosine function, there are no cycles that coincide. Consequently, all
cycles are accounted for, which means that there are no identical petals, resulting in
a rose curve consisting of an infinite number of petals.

It follows from Theorem 3 that a rose curve determined by (4), where the angular
frequency of the cosine function is a positive irrational number, is incomplete in the
set of real numbers. On the other hand, it follows from the fact that a rose curve
consists of an infinite number of petals that the polar angle between the peaks of the
successive petals of a rose curve is not unique. In fact, it decreases as the number of
petals increases.
Theorem 4. Let us assume that a rose curve is determined by (4), where the angu-
lar frequency of the cosine function is a positive irrational number. Assuming that P
denotes the period of the cosine function, the following statements are fulfilled.

The petal with the peak at
(
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2

)
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of length (j−i+1)·P
2 , where i and j are arbitrary integers such that i ≤ j.

Proof. Since the shape of each petal is the same and each petal is bounded by the
corresponding interval of length P

2 , we first consider the petal with the peak at (a, 0),

which is bounded by the interval
[
−P

4 ,
P
4

]
, whose centre is ϕ = 0, see (10). The centre

of an interval (of polar angles) is connected to the peak of a petal that is bounded by
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number, then a rose curve consists of an infinite number of petals.
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can have a rational or irrational value. In particular, the period P of the cosine function
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where λ is a rational number, otherwise the period P has an irrational value. In both
cases, however, the period P cannot be represented as the product of a rational number
and the number π, in contrast to the case of a rational angular frequency, where the
period P is given as the product of a rational number 2n

m and the number π, see (15).
Since a cycle is a part of the graph of the cosine function whose length corresponds
to a period of the cosine function, there are no cycles that coincide. Consequently, all
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centre is ϕ = l·P
2 , then we obtain that the petal with the peak at

(
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is bounded

by the interval (20) whose centre is ϕ = l·P
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In accordance with (20) for every integer l, we obtain that the petal with the
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(
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[
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, whose centre is

ϕ = (l+1)·P
2 . If we now consider the interval (20) together with the interval obtained,

we find that the two petals, one of which has the peak at
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and the other at(
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, are bounded by the interval

[
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of length P. Considering that 2l + 3 = 2(l + 1) + 1 and introducing the abbreviations
i = l and j = l+1, we obtain that the j− i+1 = 2 petals are bounded by the interval

(22), which can be written as
[
(2i−1)·P

4 , (2j+1)·P
4

]
, compare with (21). Therefore, the

j − i + 1 petals of a rose curve are generally bounded by the interval (21) of length
(j−i+1)·P

2 for any integers i and j such that i ≤ j.

Although a rose curve is incomplete with respect to the irrational angular frequency
of the cosine function and consists of an infinite number of petals, in general any
finite number of its petals is bounded by an interval that is a subset of the set of real
numbers. As the length of the interval (21) increases, the number of petals increases
and thus the polar angle between the peaks of the successive petals decreases. It is
obvious that all the peaks of the corresponding petals of a rose curve with respect
to the irrational angular frequency of the cosine function associated with (4) lie on
the circle of radius a whose center is the pole. In the special case for i = j = l,
the interval (20) follows from (21). We note that the interval (21) of polar angles of

length (j−i+1)·P
2 with i ≤ j bounding j − i + 1 petals of a rose curve with respect

to an irrational angular frequency can be considered as a generalization of the above
intervals of polar angles with respect to the integer or the rational angular frequency
of the corresponding cosine function. In particular, if we assume that i = j = 0, then
from (21) follows the interval (10) bounding the petal with the peak on the polar axis.
It is also easy to check that in the case of an integer angular frequency the intervals
(12), (13) and (14) can be determined from (21) and also in the case of a rational
angular frequency the intervals (16), (17) and (18) can be determined from (21).
Example 8. Let us consider the rose curve r = cos(2πϕ). Since the angular frequency
of the cosine function is given by k = 2π, the period of the cosine function is equal to
one, see (9). Using (20) with l = 0 and P = 1 (or equivalently (10) with P = 1), we
obtain that the petal with the peak at (a, 0) on the polar axis is bounded by the interval[
− 1
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1
4

]
of length 1

2 . In addition, the petal with the peak at
(
a, l

2

)
is bounded by the

interval
[
2l−1
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]
, where l is an integer. In particular, if we assume that l = −3,

then according to (20) the petal with the peak at
(
1,− 3

2

)
is bounded by the interval[

− 7
4 ,−

5
4

]
. Similarly, for l = −2,−1, 0, 1, 2, 3 we note that the sequence of the following

six petals with the corresponding peak at (1,−1),
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1,− 1

2

)
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)
, (1, 1),

(
1, 3
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)
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the interval (21) for i = −3 and j = 3, as shown in Figure 15, top 
left, where the polar coordinates of the peaks of the corresponding 
petals are given.
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]
. In fact, these intervals are contained in the interval[
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4 ,

7
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]
, which corresponds to the interval (21) for i = −3 and j = 3, as shown in

Figure 15, top left, where the polar coordinates of the peaks of the corresponding petals
are given.

Fig. 15 The petals of the rose curve r = cos(2πϕ) in relation to the different lengths of the intervals
of the polar angles.

We note that the given sequence of intervals, for which the given petals are com-
plete, are not simultaneously adjacent petals. By applying (21) we also find that 7, 22,
57, 92, 187 petals are bounded by the following intervals in the given sequence

[
− 7

4 ,
7
4

]
,[

− 23
4 , 21

4

]
,
[
− 51

4 , 63
4

]
,
[
− 97

4 , 87
4

]
,
[
− 117

4 , 257
4

]
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bottom right. Indeed, for i = −25 and j = 31, using (21), we obtain that 57 petals of the
rose curve r = cos(2πϕ) are bounded by the interval

[
− 51

4 , 63
4

]
because j − i+ 1 = 57.

Moreover, each of these 57 petals has the peak at
(
1, l

2

)
and is bounded by the interval[

(2l−1)
4 , (2l+1)

4

]
, where l is an integer such that −25 ≤ l ≤ 31, see (20).

Example 9. Another interesting example related to an irrational angular frequency is
the rose curve r = a cos(eϕ) with k = e, where e is a mathematical constant also known
as Euler’s number. It is an irrational and transcendental number that is approximately
equal to 2.72. Again, this rose curve is never complete, but we can find the interval in
which some of its petals are complete. Since P = 2π

e is the period of the cosine function,

the petal with the peak at
(
1, l·π

e

)
is bounded by the interval

[
(2l−1)π

2e , (2l+1)π
2e

]
, where

l is an arbitrary integer, see (20). Moreover, by (21) we obtain that j − i+ 1 petals

are bounded by an interval
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2e

]
where i, j are such integers that i ≤ j.

Then we obtain, similarly as above, that 22, 57, 93 petals are bounded by the following
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]
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]
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Fig. 16 The petals of the rose curve r = cos(eϕ) in relation to the different lengths of the intervals
of the polar angles.

We note that the number of petals does not depend on the interval, but on its
length. In this way, the same number of petals is bounded by an infinite number of
intervals of the same length. For different intervals of the same length, however, we
obtain different petals.
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Figure 16: The petals of the rose curve r = cos(eϕ) in relation to the different lengths of the intervals of the polar angles.
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We note that the number of petals does not depend on the interval, 
but on its length. In this way, the same number of petals is bounded 
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intervals of the same length, however, we obtain different petals.
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