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Abstract
In preceding papers we have shown that an initial Big-Bang explosion of the universe can not have happened as 
simply caused by a singularity of extremely hot, highly condensed cosmic matter due to the enhanced centripetal 
gravity field, enhanced by relativistic cosmic masses [1-3]. Instead, as we argue here, the initial "Bang" must have 
started from a pressurized cosmic vacuum. We analyse how to adequately describe this cosmic vacuum pressure and 
how to formulate the initial scale expansion of the universe as a reaction to it. We find that for a needed positive 
vacuum pressure the thermodynamic polytrope relation between vacuum energy density and vacuum pressure only 
allows for a range of the vacuum polytrope indices ξ of 3 ˂ ξvac ˂ 5. Furthermore we find that for the preferred value 
ξvac = 4 one can derive a complete description of the cosmic vacuum energy as function of the cosmic scale and the 
cosmic time with inclusion of a process of cosmic matter generation by a specific vacuum condensation process 
producing quantized matter. As result one obtains a matter universe well acquainted to all present day astronomers, 
however, without the need for an initial, material Big-Bang of a mass singularity. As a surprise, however, the Hubble 
expansion of the post-recombination universe under the action of cosmic vacuum pressure drives the baryonic 
distribution function into a more and more non-equilibrium shape with over-Maxwellian-ized populations of the 
high velocity wings demonstrating surprisingly enough that the cosmic matter temperatures in this expansion phase 
are in fact increasing, opposite to classical expectations which properly speaking would clearly predict adiabatic 
temperature decreases.

Advances in Theoretical & Computational Physics
ISSN: 2639-0108

*Corresponding Author
Hans J. Fahr, Argelander Institut für Astronomie, Universität Bonn, Auf dem 
Hügel 71, 53121 Bonn, Germany.

Submitted: 2024, Sep 02; Accepted: 2024, Oct 08; Published: 2024, Oct 21

1Argelander Institute for Astronomy, University of 
Bonn, Auf dem Huegel 71, 53121 Bonn, Germany

2German Space Agency, Dept.of Navigation, German 
Aerospace Center DLR, Königswinterer Str. 522-524, 
53227 Bonn, Germany

Keywords: Big-Bang Cosmogony, Relativistic Pressure, Vacuum Energy

1. Even the Hottest Cosmic Matter would not Explode!
We have shown in recent publications that an initial explosion 
of the virgin universe can at least not happen purely because of 
an extremely strong centripetal gravitational field in connection 
with a highly concentrated and extremely heated central mass 
singularity [1-3]. This is true even though one has to consider 
the natural centripetal material pressures which under these 
conditions certainly are enormous and somehow would enter 
definitely the cosmic game. But since the extremely hot 
cosmic matter has relativistic temperatures, this also leads to 
relativistically enhanced mass sources, and thus to even stronger 
centripetal gravitational fields connected with them. That may 
at first glance appear contra-visionary, but as can clearly be 
shown by the two cosmological Friedmann equations describing 
the cosmic scale R as function of the cosmic time t, it becomes 
evident, perhaps as a surprise, that the relativistically hot, 
enhanced cosmic matter increases the centripetal gravity field 
such that no explosive cosmic motion, but just the opposite - an 
implosion - would be caused [4,5]. The hotter the matter is in 

the mass singularity, the more the situation resembles that of a 
singular "black hole". As shown by Fahr, only a medium that 
can realize a cosmic pressure without an initial singularity of 
relativistically hot matter can cause an initial explosion of the 
universe; this namely is the cosmic vacuum energy connected 
with a specific, positive vacuum pressure as we are demonstrating 
and specifying further down now.

2. The Big-Bang Starts from A Pressurized Cosmic Vacuum
Perhaps the best explanation of the problematic begin of our 
universe would be to assume that this universe does not at all start 
from a matter singularity, but rather from a vacuum singularity 
with no initial matter involved. The latter first is systematically 
generated when the metric of the universe is expanded connected 
with the conversion of vacuum energy into matter energy. The 
concept of a pressurized cosmic vacuum doing this job at this 
physical event has to start from the unavoidable thermodynamic 
condition that energy needs to be consumed in order to cause a 
blow-up of the universe. This means the fact has to be respected 
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that the action of the cosmic vacuum pressure pvac, i.e the 
positive work that has been carried out in blowing up the volume 
of a spherically symmetric universe, requests a loss of vacuum 
energy ϵvac causing this change.

This prerequisite is fulfilled, if the following, well known 
thermodynamic relation holds [8]:

We have shown in recent publications (Fahr, 2023, Fahr and Heyl, 2024) that an initial
explosion of the virgin universe can at least not happen purely because of an extremely
strong centripetal gravitational field in connection with a highly concentrated and
extremely heated central mass singularity. This is true even though one has to consider
the natural centripetal material pressures which under these conditions certainly are
enormous and somehow would enter definitely the cosmic game. But since the
extremely hot cosmic matter has relativistic temperatures, this also leads to
relativistically enhanced mass sources, and thus to even stronger centripetal
gravitational fields connected with them. That may at first glance appear
contra-visionary, but as can clearly be shown by the two cosmological Friedmann
equations (see Friedmann, 1922,1924) describing the cosmic scale R as function of the
cosmic time t, it becomes evident, perhaps as a surprise, that the relativistically hot,
enhanced cosmic matter increases the centripetal gravity field such that no explosive
cosmic motion, but just the opposite - an implosion - would be caused (Einstein, 1917,
Goenner, 1996). The hotter the matter is in the mass singularity, the more the situation
resembles that of a singular "black hole". As shown by Fahr (2022, 2023) only a medium
that can realize a cosmic pressure without an initial singularity of relativistically hot
matter can cause an initial explosion of the universe; this namely is the cosmic vacuum
energy connected with a specific, positive vacuum pressure as we are demonstrating
and specifying further down now.

The Big-Bang starts from a pressurized cosmic vacuum

Perhaps the best explanation of the problematic begin of our universe would be to
assume that this universe does not at all start from a matter singularity, but rather from a
vacuum singularity with no initial matter involved. The latter first is systematically
generated when the metric of the universe is expanded connected with the conversion of
vacuum energy into matter energy. The concept of a pressurized cosmic vacuum doing
this job at this physical event has to start from the unavoidable thermodynamic condition
that energy needs to be consumed in order to cause a blow-up of the universe. This
means the fact has to be respected that the action of the cosmic vacuum pressure pvac,
i.e the positive work that has been carried out in blowing up the volume of a spherically
symmetric universe, requests a loss of vacuum energy vac causing this change.

This prerequisite is fulfilled, if the following, well known thermodynamic relation holds
(see e.g. Fahr, 2022) :

d
dR vacR3  pvac d

dR R3   #   

where R is the radial scale of the universe. As shown by Fahr (2023) this relation can
be mathematically satisfied e.g. by
where R is the radial scale of the universe. As shown by Fahr this relation can be mathematically satisfied e.g. by [1]

vac  vac,0   R0
R    #   

which leads to the relation

pvac   3  
3 vac   #   

Here  is a pure number, namely the so-called, yet at present unknown vacuum
polytrope index   vac. For normal, mono-atomic gases for example this index is given
by the number   5/3. In case of a vacuum pressure the exact value of the
corresponding number here, i.e.   vac, is ,however, not yet known or physically
prescribed at this moment, though the range of permitted values can drastically be
reduced. So, for a non-vanishing, positive cosmic vacuum pressure, needed to explain
the initial expansion of the universe, it is at least required that the following relation
vac  3 holds for a positive vacuum energy and a positive vacuum pressure. A positive
vacuum pressure hereby must be requested in analogy to the thermodynamic pressure
expressing the quantity "pressure" as the mean kinetic energy, i.e. a positive moment of
the distribution function fv as function of the particle velocity v (see e.g. Chapman,
1952, Cercignani, 1988), - if symmetric and isotropic - given by

 fv  mv2/2  v2dv  4m
3  fvv4dv  0.   #   

Furthermore one can derive in addition from the second Friedmann equation for an
initially expanding universe with vacuum energy only at the very beginning, R as its radial
scale and R  0 (see e.g. Fahr, 2023) the result:

R /R 
8Gvac

3  4G
c2


  3
3 vacc2  4G

3 vac  2    3   #   

which for R  0 leads to the request vac  5. This then, together with the above
requirement vac  3 permits the following range of polytrope values for vac:

vac3,5   #   
where the brackets hereby mean that the border values   3 and   5 must be

excluded for an expanding universe with positive vacuum pressure, when causing an
initial scale expansion. Hence the permitted range of values for the vacuum polytrope
index is given by:

3  vac  5   #   
This result strongly suggests a value of   4 which then yields a vacuum energy (see

Eq. (2))

vacR  vac,o   R0
R 4   #   

where vac,o  vac,oR0 is the vacuum energy density at the reference scale R0  R0.
In order to fulfill the request for an initially explosive Big-Bang- universe one had to

have at the beginning of cosmic time t  0 no cosmic matter at all compressed by its
gravitational pull in a singularity, but only a dominating cosmic vacuum energy. This
means that we start with the initial vacuum energy density vac  vac,0R0 and the
cosmic matter energy density mR0  0.

The conversion from vacuum energy into matter ( Fahr and Heyl, 2007, Mach, 1912,
Aghirescu, 2015) could then for instance be described by the following relations:
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reduced. So, for a non-vanishing, positive cosmic vacuum pressure, needed to explain
the initial expansion of the universe, it is at least required that the following relation
vac  3 holds for a positive vacuum energy and a positive vacuum pressure. A positive
vacuum pressure hereby must be requested in analogy to the thermodynamic pressure
expressing the quantity "pressure" as the mean kinetic energy, i.e. a positive moment of
the distribution function fv as function of the particle velocity v (see e.g. Chapman,
1952, Cercignani, 1988), - if symmetric and isotropic - given by

 fv  mv2/2  v2dv  4m
3  fvv4dv  0.   #   

Furthermore one can derive in addition from the second Friedmann equation for an
initially expanding universe with vacuum energy only at the very beginning, R as its radial
scale and R  0 (see e.g. Fahr, 2023) the result:
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which for R  0 leads to the request vac  5. This then, together with the above
requirement vac  3 permits the following range of polytrope values for vac:

vac3,5   #   
where the brackets hereby mean that the border values   3 and   5 must be

excluded for an expanding universe with positive vacuum pressure, when causing an
initial scale expansion. Hence the permitted range of values for the vacuum polytrope
index is given by:
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This result strongly suggests a value of   4 which then yields a vacuum energy (see
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where vac,o  vac,oR0 is the vacuum energy density at the reference scale R0  R0.
In order to fulfill the request for an initially explosive Big-Bang- universe one had to

have at the beginning of cosmic time t  0 no cosmic matter at all compressed by its
gravitational pull in a singularity, but only a dominating cosmic vacuum energy. This
means that we start with the initial vacuum energy density vac  vac,0R0 and the
cosmic matter energy density mR0  0.
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is not a cosmic constant but grows exponentially with cosmic time t.

With the above equations for vac and m the time dependence of Rt can be simply
calculated with the 1st Friedmann equation:
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Introducing the Hubble time 0 and roughly identifying it with the recombination time
0  1/ 8G

3 vac,0  t0 , and setting Y  t/0 one finds as a condensed relation between
cosmic scale and cosmic time:

X2  2Y  1   #   
This relation defines for the given conditions after the recombination of baryonic

matter, how the scale R and the time t of the universe are further on related to each
other.

Thermodynamics under vacuum-driven cosmic expansion

In a full gas kinetic study of the cosmic baryon gas behaviour in a vacuum-driven,
expanding Hubble universe after the time of recombination by Fahr (2021) it had been
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3. Thermodynamics under Vacuum-Driven Cosmic Expansion
In a full gas kinetic study of the cosmic baryon gas behaviour in 
a vacuum-driven, expanding Hubble universe after the time of 
recombination by Fahr it had been shown (see Figure 3 there) 
that the gas temperature during the expansion of the gas over 
1, 2, 3, 4 Gigayears - instead of adiabatically decreasing - in 
fact does increase by a total factor of 1. 8, due to occurence 
of the conversion of the initial Maxwell-Boltzmann distribution 

into a more and more non-Maxwellian NLTE- distribution with 
over Maxwellian-ized high velocity wing populations under the 
vacuum-driven Hubble expansion of the cosmic gas [13]. This 
latter phenomenon is due to expansion of the universe by the 
action of the vacuum pressure, instead of by the action of the 
thermal pressure!

One may want to see this result compared with the normal case, 
when the thermal pressure would be responsible and would drive 
instead an adiabatic expansion, then temperatures instead should 
have decreased, namely according to the following Poissonian 
relation:
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If we start from an age of the universe of 0  14 Gigayears at recombination time t0,

then we obtain from the upper equation (17):
X2  R/R02  2t/0  1   #   

for times t1, t2, t3, t4  1,2, 3,4 Gigayears after the recombination time t0  0 that the
following relations then should be fulfilled:

R1/R02  2t1/0  1  2  15/14  1  1.14   #   

R2/R02  2t2/0  1  2  16/14  1  1.28   #   

R3/R02  2t3/0  1  2  17/14  1  1.43   #   

R4/R02  2t4/0  1  2  18/14  1  1.57   #   
yielding the following results for the scale growth during this time:

R1  R0 1.14   #   

R2  R0 1.28   #   

R3  R0 1.43   #   

R4  R0 1.57   #   
According to Figure 3 in Fahr (2021) this scale growth R1  R4, however, has the

effect of increasing under vacuum-induced NLTE conditions the baryonic temperatures
by a factor 1,8. It would be interesting here to compare now this result with what should
happen under pure LTE gas dynamic adiabatic conditions , i.e. under an adiabatic
Poissonìan expansion of the Maxwellian baryonic gas (e.g. see Gerthsen, 1958), leading
via
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effect of increasing under vacuum-induced NLTE conditions the baryonic temperatures
by a factor 1,8. It would be interesting here to compare now this result with what should
happen under pure LTE gas dynamic adiabatic conditions , i.e. under an adiabatic
Poissonìan expansion of the Maxwellian baryonic gas (e.g. see Gerthsen, 1958), leading
via
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expansion of the cosmic gas! This latter phenomenon is due to expansion of the
universe by the action of the vacuum pressure, instead of by the action of the thermal
pressure!

One may want to see this result compared with the normal case, when the thermal
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R4/R02  2t4/0  1  2  18/14  1  1.57   #   
yielding the following results for the scale growth during this time:

R1  R0 1.14   #   

R2  R0 1.28   #   

R3  R0 1.43   #   
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According to Figure 3 in Fahr (2021) this scale growth R1  R4, however, has the

effect of increasing under vacuum-induced NLTE conditions the baryonic temperatures
by a factor 1,8. It would be interesting here to compare now this result with what should
happen under pure LTE gas dynamic adiabatic conditions , i.e. under an adiabatic
Poissonìan expansion of the Maxwellian baryonic gas (e.g. see Gerthsen, 1958), leading
via
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to :
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for times t1, t2, t3, t4 = 1, 2, 3, 4 Gigayears after the recombination time t0 = τ0 that the following relations then should be fulfilled:

yielding the following results for the scale growth during this time:

According to Figure 3 in Fahr this scale growth R1 → R4, 
however, has the effect of increasing under vacuum-induced 
NLTE conditions the baryonic temperatures by a factor 1, 8 
[13]. It would be interesting here to compare now this result 

with what should happen under pure LTE gas dynamic adiabatic 
conditions, i.e. under an adiabatic Poissonìan expansion of the 
Maxwellian baryonic gas, leading via [14]:        

to :

which expresses the following "classical Poissonian" thermodynamic expectations for decreasing temperatures: 

T1  T0 exp41.143/2  1   #   

T2  T0 exp41.283/2  1   #   

T3  T0 exp41.433/2  1   #   

T4  T0 exp41.573/2  1   #   
The above result would mean that instead of T4  1.8T0 one would via classic

thermodynamics expect to find a baryonic temperature of only:
T4  T0  exp4  1,89  5.1  104T0   #   

If in fact one had to agree to these vacuum-induced increased temperatures, then it
would for sure need a thourough further investigation in order to study whether after the
recombination of baryonic matter - with afterwards increasing temperatures - the
collapse of cosmic matter to structured stellar and galactic clusters could have
happened at all. But since it is nowadays well known that even on the basis of classic
Jeans structure formation theories (see e.g. Bonnor, 1957, Fahr and Willerding, 1998) it
turns out , that stars like our Sun with masses of about 1 solar mass on the basis of
these classic theories only can evolve from pre-structured cosmic matter of densities of
H  106 atoms/cm3, while under normal galactic conditions of H  102cm3 only Jeans
masses of M  100 solar masses could have fragmented. This clearly shows that even
structure formation theory under normal, i.e. classic thermodynamic conditions, is not yet
settled to convincing results. Thus the question posed above we, however, shall first be
focused to in a forthcoming paper.

Conclusions

We have shown in this paper above that the initial explosion of the universe cannot be
caused by a singularity of overdense, hot cosmic matter, because the overdense matter
would have to be extremely hot and highly relativistic. This would, however, just
strengthen the centripetal gravity field such that an expansion of the universe this way
would be impeded which is also clearly reflected in the two Friedmann differential
equations (e.g. see Fahr and Heyl, 2023). As we show here, an initial centrifugal,
explosive event of the universe can only cosmically and physically be caused by a
pressurized cosmic vacuum with properties that we derived above as function of the
scale R and time t of the universe. However, for that to become true, one first had to
clarify how the structure formation in the universe in the post-recombination period can
be caused under increasing NLTE matter temperatures. We can show that a conversion
process converting vacuum energy into quantized massive matter can be discussed
which explains why at present times we find a partially materialized universe, however,
why this universe contains stars, galaxies and clusters of galaxies and the final
consequence of the ongoing vacuum energy decay at the ongoing expansion of the
universe must be clarified at first.
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happened at all. But since it is nowadays well known that even on the basis of classic
Jeans structure formation theories (see e.g. Bonnor, 1957, Fahr and Willerding, 1998) it
turns out , that stars like our Sun with masses of about 1 solar mass on the basis of
these classic theories only can evolve from pre-structured cosmic matter of densities of
H  106 atoms/cm3, while under normal galactic conditions of H  102cm3 only Jeans
masses of M  100 solar masses could have fragmented. This clearly shows that even
structure formation theory under normal, i.e. classic thermodynamic conditions, is not yet
settled to convincing results. Thus the question posed above we, however, shall first be
focused to in a forthcoming paper.

Conclusions

We have shown in this paper above that the initial explosion of the universe cannot be
caused by a singularity of overdense, hot cosmic matter, because the overdense matter
would have to be extremely hot and highly relativistic. This would, however, just
strengthen the centripetal gravity field such that an expansion of the universe this way
would be impeded which is also clearly reflected in the two Friedmann differential
equations (e.g. see Fahr and Heyl, 2023). As we show here, an initial centrifugal,
explosive event of the universe can only cosmically and physically be caused by a
pressurized cosmic vacuum with properties that we derived above as function of the
scale R and time t of the universe. However, for that to become true, one first had to
clarify how the structure formation in the universe in the post-recombination period can
be caused under increasing NLTE matter temperatures. We can show that a conversion
process converting vacuum energy into quantized massive matter can be discussed
which explains why at present times we find a partially materialized universe, however,
why this universe contains stars, galaxies and clusters of galaxies and the final
consequence of the ongoing vacuum energy decay at the ongoing expansion of the
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The above result would mean that instead of T4 = 1.8T0 one would via classic thermodynamics expect to find a baryonic temperature 
of only:

If in fact one had to agree to these vacuum-induced increased 
temperatures, then it would for sure need a thourough further 
investigation in order to study whether after the recombination 
of baryonic matter - with afterwards increasing temperatures – 
the collapse of cosmic matter to structured stellar and galactic 
clusters could have happened at all. But since it is nowadays well 
known that even on the basis of classic Jeans structure formation 
theories it turns out, that stars like our Sun with masses of about 
1 solar mass on the basis of these classic theories only can evolve 
from pre-structured cosmic matter of densities of ρH ≥ 106 atoms/
cm3, while under normal galactic conditions of ρH ≈ 102cm-3 only 
Jeans masses of M ˃ 100 solar masses could have fragmented 
[15,16]. This clearly shows that even structure formation theory 

under normal, i.e. classic thermodynamic conditions, is not yet 
settled to convincing results. Thus, the question posed above we, 
however, shall first be focused to in a forthcoming paper.           

4. Conclusions
We have shown in this paper above that the initial explosion of 
the universe cannot be caused by a singularity of overdense, hot 
cosmic matter, because the overdense matter would have to be 
extremely hot and highly relativistic. This would, however, just 
strengthen the centripetal gravity field such that an expansion of 
the universe this way would be impeded which is also clearly 
reflected in the two Friedmann differential equations [1]. As we 
show here, an initial centrifugal, explosive event of the universe 
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can only cosmically and physically be caused by a pressurized 
cosmic vacuum with properties that we derived above as function 
of the scale R and time t of the universe. However, for that to 
become true, one first had to clarify how the structure formation 
in the universe in the post-recombination period can be caused 
under increasing NLTE matter temperatures. We can show that 
a conversion process converting vacuum energy into quantized 
massive matter can be discussed which explains why at present 
times we find a partially materialized universe, however, why 
this universe contains stars, galaxies and clusters of galaxies and 
the final consequence of the ongoing vacuum energy decay at 
the ongoing expansion of the universe must be clarified at first.    
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