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Abstract
This article presents for the first time two methods for decomposing integers in products of prime factors which are based on 
the calculation of decimal fractions. Its originality lies in the fact that the divisors used are decimals and not prime divisors 
and in addition the decimal part is manipulated in such a way that two decimal digits are fixed and the others are variable. In 
the first method, the divisors are of type 2n and which have a very interesting particularity which is that they always have two 
same digits at the end of their decimal parts (25 or 75). And it is this particularity which is exploited to develop these methods. 
The other method introduces a new notion that of the decomposition key which is a product of prime factors used to decompose 
all numbers having the same number of digits. It is similar to the first method because it also uses decimal fractions for the 
calculation and the denominator is the square root. This article paves the way for new applications in computer science.
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1. Introduction
In mathematics, the fundamental theorem of arithmetic, also 
called the unique factorization theorem and prime factorization 
theorem, states that every integer greater than 1 can be represented 
uniquely as a product of prime numbers, up to the order of the 
factors (https:// en.wikipedia.org/wiki/Fundamental_theorem_
of_arithmetic). However, the problem is to be able to transform 
any number into a product of prime factors since a theorem 
must always be correct whatever the number. The solution that 
has always been imposed is the Euclidean division in series by 
prime factors called trial division [1]. Trial division is the most 
laborious but easiest to understand of the integer factorization 
algorithms. The essential idea behind trial division tests is to see 
if an integer n, the integer to be factored, can be divided by each 
prime number in turn that is less than the square root of n. It is for 
this reason that it has become necessary to develop new algorithms 
for decomposing natural numbers by taking advantage of the high 
computing speed of computers. Nowadays, these algorithms are 
capable of decomposing numbers containing several digits but are 
all limited by the value of the number to be factored, the larger it 
is, the more time and energy it requires [2, 3]. Among numbers, 
biprime numbers with two prime factors relatively closer in 
value are the most difficult to decompose. Hence their interest for 
cryptology. The problem of determining whether a given integer 
is prime is one of the better known and most easily understood 

problems of pure mathematics. This problem has caught the 
interest of mathematicians again and again for centuries. However, 
it was not until the 20th century that questions about primality 
testing and factoring were recognized as problems of practical 
importance, and a central part of applied mathematics. The advent 
of cryptographic systems that use large primes, such as RSA, was 
the main driving force for the development of fast and reliable 
methods for primality testing [4].

The defining property of a prime number p is that it is a positive 
integer p ≥ 2 that is only divisible by 1 and p. Equivalently, p is 
prime if and only if p is a positive integer p ≥ 2 that is not divisible 
by any integer m such that 2 ≤ m < p. A positive integer n ≥ 2 which 
is not prime is called composite. A primality test is a mathematical 
procedure for determining whether a given number is a prime 
number (i.e. it has no divisor other than by 1 or itself). How to 
know if a number is a prime? To determine if a number is prime, it 
must now pass a primality test which confirms its status as a prime 
number. There exist several primeness tests to know if a number 
is a prime number, the oldest is the Sieve of Eratosthenes, and the 
most common are Miller–Rabin and Lucas-Lehmer tests (https://
www.dcode.fr/primality-test). In number theory, the general 
number field sieve (GNFS) is the most efficient classical algorithm 
known for factoring integers larger than 10100 (Wikipedia). 
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There are broadly two categories of number primality tests: A 
deterministic primality test provides a certain answer about the 
primality of a number (it guarantees whether the number is prime 
or not). In contrast, a probabilistic test provides a probable answer, 
with a controlled margin of error, which means it can tell whether 
a number is probably prime or probably composite. The Sieve of 
Eratosthenes is a simple and ancient algorithm used to find the 
prime numbers up to any given limit [5, 3]. It is one of the most 
efficient ways to find small prime numbers. For a given upper 
limit ?n the algorithm works by iteratively marking the multiples 
of primes as composite, starting from 2. Once all multiples of 2 
have been marked composite, the muliples of next prime, ie 3 are 
marked composite. This process continues until p≤n where p is a 
prime number (https://brilliant.org/wiki/sieve-of-eratosthenes). 

2. The New Proposals in this Article 
Let us suppose you have a biprime number Bn = p x q such that 
p < q that you want to decompose and thus find its two prime 
factors p and q. You do not want to use a decomposition algorithm 
that automatically gives you the result but you want to proceed 
differently by doing your own calculation. First, let's agree on 
some rules. If you multiply Bn by another prime factor denoted 
r or a multiple of prime numbers s et t denoted M = s x t and 
you decompose it with your algorithm; you have three possible 
outcomes: r x p x q; s x t x p x q if your algorithm is able to 
decompose it, and   r x Bn or s x t x Bn if it is not able to do it. In 
the first case, you have not really decomposed the number Bn by 
your own calculation because you have just decomposed one of its 
multiples. In the second case, the algorithm reaches its limit and 
returns it to you undecomposed. However, a solution is available 
to you, which is to look for any numbers that have a common 
factor with Bn. Let us denote these numbers M' = s' x t' x p and M'' 
= s'' x t'' x q  (p or q are the common prime factors between Bn and 
M' or M''). These numbers M' and M'' can be less than or greater 
than Bn, that does not matter. In case they are lesser than Bn, we 
would say that they are its submultiples and in the other that they 
are its supermultiples.

If you mark multiple by multiple of a prime number in an 
Erastothenes sieve, and if you choose a multiple in the middle, the 
submultiples will be those which precede it and the supermultiples 
those which follow it. A number to be decomposed therefore has 
a common factor with an infinite number of numbers which are 
its submultiples or supermultiples. This is the central idea of this 
article and it is also a truth of Erastothenes' sieve which has always 
gone unnoticed and which has not been exploited to its fair value 
to develop a factorization method. This article will then exploit 
this fact.

In fact, looking for a common factor between M' or M'' and Bn 
amounts to going up or down the Erasthotenes'sieve, but if you 
want to do it manually by searching in this sieve for submultiples 
or supermultiples and knowing that Bn could be a very large 
number, you will quickly realize that the task is very difficult and 
very long or impossible to carry out. How then can you do it? This 

article gives you answers and alternative methods.

Now you understand that the Erasthtotenes'sieve is a fixed structure 
like a ladder that can only be ascended or descended step by step. 
You will therefore have to proceed differently and therefore you 
must carry out a precise and safe calculation. The question is the 
following: how can we find a submultiple or supermultiple of Bn 
which has one prime factor in common with it that we will use 
to divide it while being sure and certain that it is indeed one of 
its divisors? In fact, finding a submultiple or supermultiple of a 
number is another way of breaking it down in the strict sense of 
mathematics. But be careful, the number sought must only have 
one factor p or q in common with Bn, never both because in the 
latter case and as said above we only multiply Bn by an integer and 
then the algorithm gives it back to us in the form of a product of 
prime factors, this is not decomposition. Decomposing a number 
means finding another number which has a single prime factor in 
common with it or finding an integer or decimal or even irrational 
divisor which gives a quotient which is a multiple of one of its prime 
factors. These are the main ideas of this article. The conventional 
idea is that a divisor is always an integer, this article ignores this 
classic concept and uses decimal  (or irrrational) divisors instead.

New calculation methods are thus necessary to which this article is 
all dedicated. As a result, this article will propose new methods for 
decomposing natural numbers. These methods use the calculation 
of decimal fractions between a denominator and a numerator in 
a continuous manner using calculators available on the web. An 
available decomposition algorithm is always necessary but will 
be used differently, only to find the common factor between Bn 
and one of its sub- or super-multiples and thus decompose it. This 
article is undoubtedly the first which uses classic mathematics and 
which decomposes a number by looking for submultiples which 
have a common factor with it. 

 All these new tests are deterministic because we only have two 
cases: 1) if the number is composite, you will at one time or 
another have an integer quotient between the numerator and the 
denominator; 2) if the number is prime, the calculation of fractions 
will run in an incessant loop giving only decimal or irrational 
numbers until the end. Examples of calculations will be given 
and the methods explained. Note that the calculation is mainly the 
calculation of fractions between a numerator and a denominator 
with a decimal part limited to few digits. The most important thing 
is to have a calculator capable of doing this calculation in series 
and continuously.

It is important to note now that the decomposition of a number 
is all the more difficult as the number is large with large prime 
factors and that if the known algorithms give a rapid answer it is 
only thanks to the power of computers. This simplicity is deceptive 
and breaking down a number could be an extremely difficult or an 
unachievable task if done manually. But the most important thing 
is to find an orderly and specific calculation method which leads to 
the result in a reproducible and programmable way. The calculation 
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must also be done to take the shortest and least expensive path 
to decompose the number posed. These elements were taken into 
consideration in the design of the methods described in this article, 
which will now be described one after the other with illustrative 
examples.

3. Materials and Methods
This article is based on calculation in the first place which is 
obviously deduced from an equation which will be described and 
demonstrated. To calculate all decimal fractions a calculator was 
used available on the web (https://calculatrices.app/calculatrice-de-
grands-nombres). Note that the latter calculates a decimal fraction 
but not continuously (We must write the decimal denominator). 
For very large numbers, the calculator (https://www.123calculus.
com/) was also used. To factor the numbers, two sites were used: 
https://www.dcode.fr/decomposition-nombres-premiers; and 
https://calculis.net/premier. The prime numbers were obtained 
from the site http://compoasso.free.fr/primelistweb/page/prime/
liste_online.php.

4. Results: New Methods of Integer Decomposition
For a method to be valid and even conceivable, it must be based 
on an invariable and infinitely reproducible fact. Otherwise, the 
method will generate so many variations and it will be random and 
impractical. Mathematics reject exceptions and only works with 

axioms and theorems, but given the great complexity of prime 
numbers and the decomposition of natural numbers into prime 
factors, the development of algorithms and probabilistic methods 
were considered because they take advantage of the high speed of 
computer calculation and make it possible to verify the authenticity 
of the theorem of the decomposition of natural numbers at a very 
high level. In order to avoid probabilistic methods, we must 
therefore start with sure principles leaving no shadow of doubt. 

4.1 Methods Based on the Series of Divisions by 2n

4.1.1. Principles
As a reminder, this study will be dedicated to biprime numbers 
because we know that they are the hardest to decompose, especially 
when their two prime factors are very large halfway between 0 and 
the square root (SR). But what will be described is valid for any 
odd number whatever its number of prime factors. If you take an 
odd number > 1 and divide it by 2 you will have the remainder 
1. Any odd  number divided by 2 will therefore give a decimal 
extension 0.5. But if you divide it again by 2 (i.e. 4), you will only 
have two possible decimal parts 0.25 or 0.75. This is because the 
remainders of Euclidean divisions of an odd number by 4 is either 
1 or 3 and in the first case it is 0.25 and the other it is 0.75. If you 
continue your divisions by 2n (8, 16, 32, 64, 128, 256, and so on), 
you will always have a decimal extension which ends either with 
25 or 75 (Table 1A-C). 

1/4 1/8 1/16 1/32
91 0.75 0.375 0.6875 0.84375
323 0.75 0.375 0.1875 0.09375
3397 0.25 0.625 0.3125 0.15625
10873 0.25 0.125 0.5625 0.78125
520187 0.75 0.375 0.6875 0.84375
1297603 0.75 0.375 0.1875 0.09375
5321531 0.75 0.375 0.6875 0.84375
20777459 0.75 0.375 0.1875 0.59375
152771243 0.75 0.375 0.6875 0,.34375

1/64 1/128 1/256 1/512
91 0.421875 0.7109375 0.35546875 0.177734375
323 0.046875 0.5234375 0.26171875 0.630859375
3397 0.078125 0.5390625 0.26953125 0.634765625
10873 0.890625 0.9453125 0.47265625 0.236328125
520187 0.921875 0.9609375 0.98046875 0.990234375
1297603 0.046875 0.5234375 0.76171875 0.380859375
5321531 0.921875 0.4609375 0.23046875 0.615234375
20777459 0.796875 0.8984375 0.94921875 0.974609375
152771243 0.671875 0.3359375 0.66796875 0.333984375

Tables 1: Division by 2n Always Generate 25 or 75 as Digits in the Decimal Parts of the Quotients.
 Table 1A

Table 1B
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1/1024 1/2048 1/4096 1/8192
91 0.0888671875 0.04443359375 0.022216796875 0.0111083984375
323 0.3154296875 0.15771484375 0.078857421875 0.0394287109375
3397 0.3173828125 0.65869140625 0.829345703125 0.4146728515625
10873 0.6181640625 0.30908203125 0.654541015625 0.3272705078125
520187 0.9951171875 0.99755859375 0.998779296875 0.998779296875
1297603 0.1904296875 0.59521484375 0.797607421875 0.3988037109375
5321531 0.8076171875 0.40380859375 0.201904296875 0.6009521484375
20777459 0.4873046875 0.24365234375 0.621826171875 0.3109130859375
152771243 0.6669921875 0.33349609375 0.666748046875  0.8333740234375

1/4 1/8 1/16 1/32
4877863751 0.75 0.875 0.4375 0.21875
14048615549 0.25 0.625 0.8125 0.90625
329650448509 0.25 0.625 0.8125 0.90625
1657851033857 0.25 0.125 0.0625 0.03125
59708282945131 0.75 0.375 0.6875 0.34375
472250023232509 0.25 0.625 0.8125 0.90625
772405727553181 0.25 0.625 0.8125 0.90625
5422745703328963 0.75 0.375 0.1875 0.09375
69605379628229681 0.25 0.125 0.0625 0.53125

1/64 1/128 1/256 1/512
4877863751 0.109375 0.5546875 0.27734375 0.638671875
14048615549 0.953125 0.9765625 0.48828125 0.244140625
329650448509 0.953125 0.9765625 0.48828125 0.244140625
1657851033857 0.015625 0.0078125 0.00390625 0.501953125
59708282945131 0.671875 0.8359375 0.41796875 0.208984375
472250023232509 0.953125 0.9765625 0.98828125 0.994140625
772405727553181 0.453125 0.2265625 0.61328125 0.306640625
5422745703328963 0.046875 0.5234375 0.76171875 0.380859375
69605379628229681 0.765625 0.3828125 0.19140625 0.095703125

Table 1C

Tables 2: Division by 2n still Generate 25 or 75 as Digits in the Decimal Parts of Quotient Obtained with Numbers having 
Increasing Digits.
Table 2A

Table 2B

These are therefore decimal numbers but whose decimal part is 
all the longer as n of 2n tends towards infinity. When 2n is too 
high, we can say that the number obtained is between a decimal 
and irrational number since the digits after the decimal point are 
unpredictable and non-repeating, except that they always end with 
25 or 75. Several examples of numbers of different values that 
have an increasing number of digits are shown in the following 
tables. We see that this fact remains true whatever the number 
of digits of the numbers tested (Table 2A-C). However, the most 

important fact to note is that for a given 2n, we have the same 
number of digits before 25 or 75 in the resulting decimal part. For 
example, for 1/8, we always have one digit before 25 or 75 (for 
example 0.375), for 1/16 we have 2 digits (for example 0.6875), 
for 1/32 we have 3 digits (for example 0.84375) and so on. The 
decimal part before 25 or 75 increases by one digit when going 
from 2n to 2n+1. The number of digits after the decimal separator = 
n being the exponent of 2n.
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1/1024 1/2048 1/4096 1/8192
4877863751 0.8193359375 0.40966796875 0.704833984375 0.3524169921875
14048615549 0.1220703125 0.56103515625 0.780517578125 0.8902587890625
329650448509 0.1220703125 0.06103515625 0.530517578125 0.2652587890625
1657851033857 0.2509765625 0.12548828125 0.562744140625 0.7813720703125
59708282945131 0.2509765625 0.12548828125 0.562744140625 0.7813720703125
472250023232509 0.9970703125 0.49853515625 0.249267578125 0.1246337890625
772405727553181 0.6533203125 0.82666015625 0.413330078125 0.2066650390625
5422745703328963 0.1904296875 0.59521484375 0.797607421875 0.3988037109375
69605379628229681 0.0478515625 0.52392578125 0.261962890625 0.1309814453125

185592806269448167697065108937 = 91969 × 16588907 × 121647139715480539 
¼ 46398201567362041924266277234.25
1/8 23199100783681020962133138617.125
1/16 11599550391840510481066569308.5625
1/32 5799775195920255240533284654.28125
1/64 2899887597960127620266642327.140625
1/128 1449943798980063810133321163.5703125
1/256 724971899490031905066660581.78515625
1/512 362485949745015952533330290.892578125
1/1024 181242974872507976266665145.4462890625
1/2048 90621487436253988133332572.72314453125
1/4096 45310743718126994066666286.361572265625
1/8192 22655371859063497033333143.1807861328125

5643479997656899909896887654211013 = 17 × 113 × 2937782403777667834407541
725253 

/4  1410869999414224977474221913552753.25
/8   705434999707112488737110956776376.625
/16 352717499853556244368555478388188.3125
/32 176358749926778122184277739194094.15625
/64 88179374963389061092138869597047.078125
/128 44089687481694530546069434798523.5390625
/256 22044843740847265273034717399261.76953125
/512 11022421870423632636517358699630.884765625
/1024 5511210935211816318258679349815.4423828125
/2048 2755605467605908159129339674907.72119140625
/4096 1377802733802954079564669837453.860595703125
/8192 688901366901477039782334918726.9302978515625                 

Table 2C

Tables 3: Division by 2n still Generate 25 (or 75) as Digits in the Decimal Parts of Quotients Obtained with two Larger Numbers. 
Table 3A & Table 3B

In tables 3A-B, there are two examples of  30- and 34-digit numbers 
produced by three prime factors of different values. Dividing them 
by 2n in ascending order generates decimal parts which have the 
same kinds of decimal parts although with different digits before 

25 (or 75). This further confirms that integers divided by 2n always 
generate decimal parts ending with 25 or 75 and having the same 
number of digits, which depend on the magnitude of n in 2n.
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4.2. First Method based upon Division by 2n

Let a biprime number Bn = p x q therefore Bn/4 = p/4 x q or p x 
q/4. Let p < q and let us focus on the smallest factor p. So Bn/4 : 
p/4 = q and it follows that Bn : p/4 = 4 x q. We can generalize to 
any 2  to the (power) n by setting the global equation: Bn : p/2n = 
2n x q. Let's first look at the case of 22 (n = 2), 23 (n = 3), 24 (n = 4), 
and 25 (n = 5).  This is therefore the first method of decomposing 
natural numbers into prime factors in this article as described in 
Table 4. A calculator of decimal fractions is needed for the whole 

study. Put the number to decompose Bn as the numerator and the 
denominators as indicated. Then changes the denominators as 
indicated and lets the decimal quotients scroll until the desired 
quotient is obtained, i.e. an integer. The method requires a special 
calculator or a computer program where 25 or 75 digits are fixed 
in the decimal part. We only vary the values framed by the two 
vertical arrows including N for 22 fraction or X, XX and XXX 
for the others. This is also true for the whole study where it is 
indicated. 

22 Fraction  23  Fraction  24  Fraction  25  Fraction  
Numerator / Bn / Bn / Bn / Bn / 
Denominator ↑N↑.75 N.↑X↑75 N.↑XX↑75 N.↑XXX↑75

Or
Denominator ↑N↑.25 N.↑X↑25 N.↑XX↑25 N.↑XXX↑25
The quotient must be an integer = 22 x q 23  x q 24 x q 25 x q

Bn = p x q (q > p) 22 Fraction  23  Fraction  24  Fraction  25  Fraction  
t = p/2n 7/4 = 1.75 7/8 = 0.875 7/16 = 0.4375 7/32 = 0.21875
Q = 91/t 52 104 208 416
t = q/2n 13/4 = 3.25 13/8 = 1.625  13/16 = 0.8125 13/32 = 0.40625 
Q = 91/t ↑N↑.25 N.↑X↑25 N.↑XX↑25 N.↑XXX↑25
 28 56 112 224
Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. We will then find 
that 91 = 7 x 13. 

Table 4: First Method for the decomposition of integer into prime factors (Bn = p x q). Note that two digits 75 or 25 of the decimal 
parts are fixed and only X, XX or XXX varies starting with 0, 00 or 000. N varies only in the case of 22 fraction. The digits that 
must change are framed by two vertical arrows in the whole study. 

This first method based on the equation Bn : p/2n = 2n x q then 
gives us submultiples of the biprime number Bn = p x q including 
4q, 8q, 16q and 32q. This is a new method described for the first 
time in this paper which allows to factorize integers into products 
of prime factors. The only particularity is to be able to vary the 
denominator by fixing the two digits 75 or 25 of the decimal part 
while increasing X, XX or XXX starting from 0, 00, or 000. Here 
are the instructions or the calculation program in the box below 
to apply this method for any number to decompose. As soon as 
we have an integer as a result, we divide it by 2n, and we have the 
prime factor of Bn.
 
a) First, put the decimal fraction with Bn as the numerator and as 
denominators the decimals shown below.
b) Put ↑N↑.75 or ↑N↑.25 as denominators then increase N to 
divide Bn.

c) Put N.↑X↑75 or N.↑X↑25 as denominators  with 0 ≤ X≤ 9. 
Change X to divide Bn. N will increase from 1 to +∞.
d) Put N.↑XX↑75 or N.↑XX↑25 as denominators  with 00 ≤ XX≤ 
99. Change XX to divide Bn. N will increase from 1 to +∞.
e) Put N.↑XXX↑75 or N.↑XXX↑25 as denominators  with 000 ≤ 
XXX≤ 999. Change XXX to divide Bn. N will increase from 1 to 
+∞.
f) Factorize Bn once you get an integer as a result of the decimal 
fractions
 
To explain the method well, biprime numbers Bn = p x q whose 
prime factors we know are used and then we apply the method to 
fall back on their prime factors. We will give examples of numbers 
with an increasing number of digits (Tables 5A-D). All integers 
which are the quotients of the fractions in the tables are in the form 
of 2n x q corresponding to the box in which they are found.

Tables 5: Examples of the Application of the first Method based on series of Divisions by 2n (n ≤ 5) to decompose randomly 
chosen biprime numbers (Bn). Quotients (Q) are highighted.

Table 5A: The number 91 to decompose (SR = 9.5393920); 91 = p x q with p = 7 and q = 13.
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Bn = p x q (q > p)  22 Fraction   23  Fraction   24  Fraction   25  Fraction  
t = p/2n 11383/4 = 2845.75 11383/8 = 1422.875 11383/16 = 711.4375 11383/32 = 355.71875
Q = 152771243/t 53684 107368 214736 429472
t = q/2n 13421/4 = 3355.25 13421/8 = 1677.625 13421/16 = 838.8125 13421 /32 = 419.40625 
Q = 152771243/t 45532 91064 182128 364256
Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 152771243= 11383 x 13421 

Bn = p x q (q > p)  22 Fraction   23  Fraction   24  Fraction   25  Fraction  
t = p/2n 6247/4 = 1561.75 6247/8 = 780.875 6247/16 = 390.4375 6247/32 = 195.21875
Q = 4877863751/t 3123332 6246664 12493328 24986656
t = q/2n 780833/4 = 195208.25 780833/8 = 97604.125  780833/16 = 48802.0625 780833/32 = 24401.03125 
Q = 4877863751/t 24988 5649976 99952 199904
Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 4877863751 = 6247 x  780833

Bn = p x q (q > p) t = 22 Fraction  t = 23  Fraction  t = 24  Fraction  t = 25  Fraction  
t = p/2n 854299/4 = 213574.75 854299/8 = 106787.375 854299/16 = 53393.6875 854299/32 = 26696.84375
Q = 69605379628229681/t 325906408076 651812816152 1303625632304 2607251264608 
t = q/2+ 81476602019/4 = 

20369150504.75
81476602019/8 =
10184575252.375 

81476602019/16 = 
5092287626.1875

81476602019/32 =
2546143813.09375

Q = 69605379628229681/t 3417196 6834392 13668784 27337568
Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 69605379628229681 =  854299 x  81476602019

Bn = p x q (q > p)  26 Fraction   27  Fraction   28  Fraction   29  Fraction  
t = p/2n 6247/64 = 97.609375 6247/128 = 48.8046875 6247/256 = 24.40234375 6247/512 = 12.201171875
Q = 4877863751/t 49973312 99946624 199893248 399786496
t = q/2n 780833/64 =

12200.515625 
780833/128 =
6100.2578125  

780833/256 =
3050.12890625

780833/512 =
1525.064453125

Q = 4877863751/t 399808 799616 1599232 3198464
Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 4877863751 = 6247 x  780833

Table 5B: The number 152771243 to decompose (SR = 12360.0664642); p = 11383 and q = 13421

Table 5C: The number 4877863751 to decompose (SR = 69841.7049548); p = 6247 and q = 780833.

Table 5D: The number 69605379628229681 to decompose (SR = 263828314.6825406); p = 854299 and q = 81476602019

Table 6B: The number 69605379628229681 to decompose (SR = 263828314.6825406); p = 854299 and q = 81476602019  

The method can be extended to all powers of 2 to infinity.  As above, these results are summarized in the tables below: tables 6A-C for 
2n such n ranges from 6 to 13; and tables 7A-B for n ranging from 14 to 17. 



   Volume 5 | Issue 3 | 8J Robot Auto Res , 2024

Bn = p x q (q > p)  210 Fraction   211  Fraction   212 Fraction   213  Fraction  
t = p/2n 6247/1024 =

6.1005859375
6247/2048 =
3.05029296875

6247/4096 =
1.525146484375

6247/8192 =
0.7625732421875

Q = 4877863751/t 799572992 1599145984 3198291968 6396583936
t = q/2n 780833/ 1024 =

762.5322265625
780833/ 2048 =
381.26611328125

780833/ 4096 =
190.633056640625

780833/ 8192 =
95.3165283203125

Q = 4877863751/t 6396928 12793856 25587712 51175424
Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 4877863751 = 6247 x  780833

Bn = p x q (q > p)  214 Fraction   215  Fraction   216 Fraction   217  Fraction  
t = p/2n 6247/16384 =

0.38128662109375
6247/32768 =
0.190643310546875

6247/65536 =
0.0953216552734375

6247/131072 =
0.04766082763671875

Q = 4877863751/t 12793167872 25586335744 51172671488 102345342976
t = q/2n 780833/ 16384 =

47.65826416015625
780833/ 32768 =
23.829132080078125

780833/ 65536 =
11.914566040039062 5

780833/ 131072 =
5.95728302001953125

Q = 4877863751/t 102350848 204701696 409403392 818806784
Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 4877863751 = 6247 x  780833

Bn = p x q (q > p)  214 Fraction   215  Fraction   216 Fraction   217  Fraction  
t = p/2n 549319/16384 =

33.52777099609375
549319/32768 =
16.763885498046875

549319/65536 =
8.3819427490234375

549319/131072 =
4.19097137451171875

Q = 5422745703328963/t 161738926931968 323477853863936 646955707727872 1293911415455744
t = q/2n 9871760677/ 16384 =

602524.45538330078 
125

9871760677/ 32768 =
301262.22769165039 
0625

9871760677/ 65536 =
150631.11384582519 
53125

9871760677/ 131072
= 75315.5569229125976 
5625

8.3819427490234375 549319/131072 = 204701696 409403392 818806784
Decompose the integers (or the quotients Q) obtained and divide Bn by their prime factors > 2. 
We will then find that 5422745703328963 = 549319 x  9871760677 

Table 6C: The number 4877863751 to decompose (SR = 69841.7049548); p = 6247 and q =  780833 

Tables 7: Examples of the Application of the first Method based on series of Divisions by 2n (14 < n  ≤ 17) to Decompose Randomly 
Chosen Biprime Numbers (Bn). Quotients (Q) are highighted.
Table 7A: The number 4877863751 to decompose (SR = 69841.7049548); p = 6247 and q = 780833.

Table 7B: The number 5422745703328963 to decompose (SR = 73639294.5602343); p = 549319 and q = 9871760677

Note that the more 2n increases the more the decimal fraction obtained tends towards 0 which shows that this method can be very quick to 
decompose a natural number into products of prime factors. The most important thing is to have a continuous decimal fraction calculator 
where the denominator can be a decimal fraction. It is also possible to create a computer program or an algorithm by following the 
instructions indicated in Table 4 which directly gives the quotient Q and the prime factor of the number to be decomposed. Here are the 
instructions or the calculation program of the method in the box below (n from 4 to 7 for example). Make up the decimal fraction and 
put Bn as the numerator. Then follow what is below.
=a) As denominators, Put N.↑XXXX↑75 or N.↑XXXX↑25 with 0000 ≤ XXXX≤ 9999. Change XXXX to divide BN. N will increase 
from 1 to +∞.
b) As denominators, Put N.↑XXXXX↑75 or N.↑XXXXX↑25 with 00000 ≤ XXXXX≤ 99999. Change XXXXX to divide BN. N will 
increase from 1 to +∞.
c) As denominators, Put N.↑XXXXXX↑75 or N.↑XXXXXX↑25 with 000000 ≤ XXXXXX≤ 999999. Change XXXXXX to divide BN. 
N will increase from 1 to +∞.
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d) As denominators, Put N.↑XXXXXXX↑75 or N.↑XXXXXXX↑25 with 0000000 ≤ XXXXXXX≤ 9999999. Change XXXXXXX to 
divide BN. N will increase from 1 to +∞.
 Here are the instructions or the calculation program of the method in the box below (n from 10 to 13) (see Table 6C). Make up the 
decimal fraction and put Bn as the numerator. Then follow what is below.
 
a) As denominators, Put N.↑XXXXXXXXXX↑75 or N.↑XXXXXXXXXX↑25 with 0000000000 ≤XXXXXXXXXX≤ 9999999999. 
Change XXXXXXXXXX to divide Bn. N will increase from 1 to +∞.
b) As denominators, Put N.↑XXXXXXXXXXX↑75 or N.↑XXXXXXXXXXX↑25 with 00000000000 ≤XXXXXXXXXXX≤ 
99999999999. Change XXXXXXXXXXX to divide Bn. N will increase from 1 to +∞.
c) As denominators, Put N.↑XXXXXXXXXXXX↑75 or N.↑XXXXXXXXXXXX↑25 with 000000000000 ≤
 

We can continue for increasing values of n of the powers of 2n to infinity but this study is limited to what has been shown (n = 17). 

Conclusion: This method is used to find submultiples of the number to be decomposed or, in other words, to go up against the grain of 
Erastothenes'sieve. The goal is to find by specific calculations a submultiple which has a prime factor of the number to be decomposed. 
This is achieved by using powers of 2 to divide the number to be decomposed. The number is finally factorized according to the equation 
initially posed  Bn : p/2n = 2n x q. The instructions given show how to apply the method for numbers with unknown prime factors.

4.3. Variant of the First Method Described by Standardizing the Denominators by Multiplication with Powers of 10
Since the method uses decimal divisors it is possible to modify it and make it uniform, i.e. operating in the same way whatever the 
decimal length of the divisors. Below are the instructions to follow and this time we will just use a few divisors (up to 25) without 
covering them all because the method will always apply in the same way. Make up the decimal fraction and put Bn as the numerator. 
Then follow what is below. Here are the instruction to follow to apply this new method. Change N for ¼ and change NX, NXX, or 
NXXX for 1/8, 1/16 and 1/32.

a) Divide BN by N.25 and N.75 → N.25 or N.75 (1/4)    
b) If the divisor has one digit in the decimal part before 25 or 75 digits such N.X25 ou N.X75 multiply by 10 →
c) ↑NX↑.25 or ↑NX↑.75 as denominators (1/8)
d) If the divisor  has two digits in the decimal part before 25 or 75 digits such N.XX25 ou N.XX75 multiply by 100 →
e) ↑NXX↑,25 or ↑NXX↑.75 as denominators (1/16)
f) If the divisor  has three digits in the decimal part before 25 or 75 digits such N.XXX25 ou N.XXX75 multiply by 1000 → ↑NXXX↑.25 
or ↑NXXX↑.75 as denominators  (1/32)
 
Therefore, all denominators of the decimal fractions have the same form N.75 or N.25. It is as if you divided Bn by the decimals N.75 
and N.25 except that this time you will recover at the same time the quotients 1/8 and 1/16 and 1/32 during the same one calculation 
because these will be decimals which we will make integers by multiplying them by 10m. To explain it differently, you only divide Bn by 
4 but this time you do not limit yourself to taking only the integer quotients but also any decimals with 1, 2 or 3 digits after the decimal 
point which you multiply by 10m in order to be able to decompose them and find the q factor of Bn. You could recover all the decimal 
quotients having one digit, two, three, four, five and by increasing n in 2n (or the expnonent n) and so on to find all the submultples of 
the number to be decomposed. This method does not offer a single solution for factoring a number as in Trial division, but an infinity.

Representative examples are shown in Tables 8A-D. Indeed, with this method three quotients obtained are decimals with one, two and 
three digits after the decimal separator following the initial equation Bn : p/2n = 2n x q and so its two terms are multiplied by 10m (1 ≤ m 
≤ 3 for 1/8, 1/16 and 1/32) to have integer quotients such (Bn : p/2n) x 10m =  (2n x q) x 10m. We therefore multiply the obtained quotient 
by 10m so as to have a natural number as a quotient Q' = p x 2n whose decomposition will give the factor of the number Bn.
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Bn = p x q (q > p)  22 Fraction   23  Fraction   24  Fraction   25  Fraction  
t = p/2n 7/4 = 1.75 7/8 = 0.875 7/16 = 0.4375 7/32 = 0.21875
N.75 1.75 8.75 43.75 218.75
Q = 91/t 52 10.4 2.08 0.416
Q' (integer) = Q x 10m 52 104 208 416
t = q/2n 13/4 = 3.25 13/8 = 1.625  13/16 = 0.8125 13/32 = 0.40625 
N.25 3.25 16.25 81.25 406.25
Q = 91/t 28 5.6 1.12 0.224
Q' (integer) = Q x 10m 28 56 112 224
Decompose the integers (or the quotients Q') obtained and divide Bn by their prime factors > 2. 
We will then find that 91 = 7 x 13

Bn = p x q (q > p)  22 Fraction   23  Fraction   24  Fraction   25  Fraction  
t = p/2n 11383/4 = 2845.75 11383/8 = 1422.875 11383/16 = 711.4375 11383/32 = 355.71875
N.75 2845.75 14228.75 71143.75 355718.75
Q = 152771243/t 53684 10736.8 2147.36 429.472
Q' (integer) = Q x 10m 53684 107368 214736 429472
t = q/2n 13421/4 = 3355.25 13421/8 = 1677.625 13421/16 = 838.8125 13421/32 = 419.40625
N.25 3355.25 16776.25 83881.25 419406.25 
Q = 152771243/t 45532 9106.4 1821.28 364.256
Q' (integer) = Q x 10m 45532 91064 182128 364256
Decompose the integers (or the quotients Q') obtained and divide Bn by their prime factors > 2. 
We will then find that 152771243= 11383 x 13421 

Bn = p x q (q > p)  22 Fraction  23  Fraction  24  Fraction  25 Fraction 
t = p/2n 6247/4 = 1561.75 6247/8 = 780.875 6247/16 = 390.4375 6247/32 = 195.21875
N.75 1561.75 7808.75 39043.75 195218.75
Q = 4877863751/t 3123332 624666.4 124933.28 24986.656
Q' (integer) = Q x 10m 3123332 6246664 12493328 24986656
t = q/2n 780833/4 = 195208.25 780833/8 = 13421/16 = 838.8125 13421/32 = 419.40625
97604.125  780833/16 = 48802.0625 780833/32 = 83881.25 419406.25 
24401.03125 45532 9106.4 1821.28 364.256
N.25 195208.25 976041.25  4880206.25 24401031.25 
Q = 4877863751/t 24988 4997.6 999.52 199.904
Q' (integer) = Q x 10m 24988 5649976 99952 199904
Decompose the integers (or the quotients Q') obtained and divide Bn by their prime factors > 2. 
We will then find that 4877863751 = 6247 x  780833

Tables 8: Examples of the application of the first method with variations aimed at standardizing the calculation. Note 1 ≤ m ≤ 3 
in 10m. 
Table 8A: The Number 91 to Decompose (SR = 9.5393920) 

Table 8B: The number 152771243 to decompose (SR = 12360.0664642) 

Table 8C: The number 4877863751 to decompose (SR = 69841.7049548) 
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Bn = p x q (q > p) t = 22 Fraction  t = 23  Fraction  t = 24  Fraction  t = 25  Fraction  
t = p/2n 854299/4 = 213574.75 854299/8 =

106787.375
854299/16 = 
53393.6875

854299/32 =
26696.84375

N.75 213574.75 1067873.75 5339368.75 26696843.75
Q = 69605379628229681/t  325906408076 65181281615.2 13036256323.04 2607251264.608 
Q' (integer) = Q x 10m 325906408076 651812816152 1303625632304 2607251264608 
t = q/2n 81476602019/4 = 

20369150504.75
81476602019/8 =
10184575252.375 

81476602019/16 = 
5092287626.1875

81476602019/32 =
2546143813.09375

N.75 20369150504.75 101845752523.75 509228762618.75 2546143813093.75
Q = 69605379628229681/t 3417196 683439.2 136687.84 27337.568
Q' (integer) = Q x 10m 3417196 6834392 13668784 27337568
Decompose the integers (or the quotients Q') obtained and divide Bn by their prime factors > 2. 
We will then find that 69605379628229681 =  854299 x  81476602019

7 7/4 7/8 7/16 7/32
Divisors
N75

175 0875 04375 021875

Q' = 9 100 000/N75 52000 10400 2080 416
13 13/4 13/8 13/16 13/32
Divisors
N25

325 1625 08125 040625

Q ' = 9 100 000/N25 28000 5600 1 120 224
Decompose the integers (or the quotients Q') obtained and divide Bn by their prime factors > 5. 
We will then find that 91 = 7 x 13

11383 f/4 f/8 f/16 f/32
Divisor N75 284575 1422875 7114375 35571875
Q = 15277124300000 /N75 53684000 10736800 2147360 429472
13421 f/4 f/8 f/16 f/32
Divisor N25 335525 1677625 8388125 41940625
Q' = 15277124300000 /N25 45532000 9106400 1821280 364256
Decompose the integers (or the quotients Q') obtained and divide Bn by their prime factors > 5. 
We will then find that 152771243 = 11383 x 13421

Table 8D: The number 69605379628229681 to decompose (SR = 263828314.6825406) 

Tables 9: Examples of the application of the first method with other variations aimed at standardizing the calculation. This 
involves eliminating the decimal point. Note that we multiply Bn by 105 in all cases.
Table 9A: The number 91 to decompose (SR = 9.5393920). Note that we multiply Bn = 91 by 105. 

Table 9B: The number 152771243 to decompose (SR = 12360.0664642). Note that we multiply Bn =152771243 by 105. 

The other option is to completely remove the decimal point and 
continue the same divisions process. So we must then multiply Bn 
by a power of 10 to avoid having decimals as a result. We choose a 
power of 10 (10m) high enough (m ≥ 5 for 25 and much more when 
increasing n of 2n) to be divisible by all the divisors obtained and 
give an integer number. Even if 10m is too high, this has no impact 
because the most important thing is to recover the prime factor 
which divides Bn. It follows that the quotient is also a multiple 
of 5 and 2 and of the prime factor which divides Bn. Make up the 
decimal fraction and put Bn as the numerator. Then follow what is 

below. The instructions are summarized below and representative 
examples are shown in Tables 9A-C.

a) Calculate Bn' = Bn x 10m ( m ≥  5 for up to 25)
b) Divide Bn' by changing N only and without changing 75 or 25 
digits such that ↑N↑75 or ↑N↑25 with N increasing from 1 to to + 
∞. Note that the decimal separator is removed.
c) When you get an integer as the quotient, Decompose it and get 
prime factors of Bn'. You also get prime factors by dividing the 
denominators that give integer quotients by 2 x 5n.
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854299 854299/4 = 213574.75 854299/8 = 106787.375 854299/16 = 53393.6875 854299/32 = 26696.84375
Divisor N75 21357475 106787375 533936875 2669684375
Q' = 6960537962822968100 
000/N75

32590640807600000 6518128161520000 1303625632304000 260725126460800 

81476602019 81476602019/4 = 
20369150504.75

81476602019/8 =
10184575252.375 

81476602019/16 = 
5092287626.187

81476602019/32 =
2546143813.09375

Divisor N75 2036915050475 10184575252375 50922876261875 254614381309375
Q' = 6960537962822968100 
000/N75

3417196000 683439200 136687840 683439200

Decompose the integers (or the quotients Q') obtained and divide Bn by their prime factors > 5.
We will then find that 69605379628229681 = 854299 x 81476602019

Table 9C: The number 69605379628229681 to decompose (SR = 263828314.6825406). Note that we multiply Bn = 
69605379628229681by 105.  

Overall conclusion on the methods based on divisions by 2n

First this method is set with a calculator of decimal fractions 
that works continuously. We put Bn as the numerator and the 
denominators are defined in the tables and in the instructions cited 
above. These first methods also require specific calculators where 
it is necessary to fix two decimal digits after the decimal point (or 
without the decimal separator) which are 75 or 25 and only vary 
those which are before (framed by arrows) as if 25 and 75 are 
separated from the rest of the number which continues to grow as if 
they were not present. The other option is that you can have several 
calculators for each fraction based on 2n because as soon as an 
integer quotient appears, all the calculations on all the calculators 
combined  automatically stop. Here the approach differs from that 
of serial divisions because the calculation consists of determining 
decimal fraction after decimal fraction by increasing the values 
of the divisors as indicated in the instructions. The calculation is 
therefore continuous but the path is shorter than that of Euclidean 
divisions in series and the number of operations can be drastically 
reduced in these new methods because in the end we are only 

counting, i.e. increasing the value of the divisor until you find the 
one which gives a quotient in the form of an integer. This method 
is robust, and applicable to any number, even those with two digits 
like 91. It can help in the decomposition of very large numbers by 
calculating the quotients with several fractions whose denominator 
is the desired factor divided by powers of 2. It therefore applies 
without limits.

4.4. Can we use other Decimal Divisors?
If we were able to use the 2n divisors it is because they form a 
repeating pattern and therefore predictable, however this is not the 
case for all other numbers. We can always calculate submultiples 
or supermultiples of the number Bn = p x q, that is to say multiples 
of p or q. 

Let r = p/n. Then Bn : r = pq : r = pq : p/n = pq x n/p = nq. However,  
very few numbers give recognizable fractions and among them are 
2, 3, 6  in addition to powers of 10. 
16

Bn = 5601385979857 (p x q) F:2 Bn/f:2
99793 (p) 49896.5 112260098 = 2 × 56130049 
56130049 (q) 28065024.5 199586 = 2 × 99793 
Bn = 5601385979857 (p x q) F:3** Bn/f:3
99793 (p) 33264.333333 168390147 = 3 x 56130049 
56130049 (q) 18710016.33333 299379 = 3 × 99793 
Bn = 5601385979857 (p x q) F: 6** Bn/f:6
99793 (p) 16632.16666666666666666667 336780293 = 2 x 3 x 56130049 
56130049 (q) 9355008.16666666666666666667 598758= 2 x 3 × 99793 
Bn = 5601385979857 (p x q) F:7 Bn/f:7
99793 (p) 14256.14285714285714285714 392910343 = 7 x 56130049 
56130049 (q) 8018578.42857142857142857143 698551 = 7 x  99793 

Table 10: Decimal divisors that can work in a decompisition method. The table shows 2, 3, 6 as good divisors but not 7 that vary 
from a prime number to another. The number Bn = 5601385979857  is used as an exemple but the data are true for all composite 
odd numbers. F means prime factor either p or q of the chosen numbers Bn.
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** An odd number divided by 3 can also give a decimal extension = 
0.666..While divided by 6 can also give another decimal extension 
of 0.83333...This is true for all odd numbers.

Table 10 shows us the other decimal extensions obtained with other 
denominators. All prime numbers divided by 2 give a decimal 
extension 0.5 for example. Odd numbers divided by 3 give two 
extensions either 0,3333...or 0.66666... The table shows a prime 
number p divided by 3 giving a decimal extension of 0.33333. 
But prime number like 597566339 divided by 3 gives instead an 
extension of 0.66666...Prime numbers divided by 6 either gives 
an extension of 0.1666666... like in the table or 0.8333333 with 
another prime numbers like 597566339. Altough prime numbers 
divided by 11 give decimal fractions with a repeating pattern, 
it varies from one number to another. For example 99793/11 = 
9072.0909090909... while another prime number 597566273/11 
= 54324206.6363636363... Therefore, we cannot make a method 
with 11 because of variable results. Prime numbers divided by 
7 give several decimal extensions either 0.428571428571...; 
0,14285714285714285714...; 0.28571428571428571... or 
0.71428571428571428571.... Even if we can tinker with 7, this 
will complicate the method and therefore 7 is not a good candidate 
nor is 11 nor 6n like 36. We can only develop a calculation method 
with 2, 3 or 6. We have seen the case of 2n but this does not work 
with the powers of 3 or 6. Here are the instructions in the case 
where one wants to decompose a number using decimal extensions 
of 2, 3 and 6.
In a similar way this method is based on the calculation of decimal 
fractions:
 
a) Put Bn to decompose into numerator (Bn = p x q such that q > p)
b) Put the denominator by fixing the decimal part and only 
change N. Therefore, ↑N↑.5 (we will detect the submultiple 2 x 
q), ↑N↑.3333 or ↑N↑.6666 (we will detect 3 x q), ↑N↑.1666... or 
↑N↑.83333... (we will detect 6 x q).  The decimal part in bold must 
remain unchanged despite N changes and therefore you must have 
a calculator capable of carrying out this type of specific calculation 
as metioned above with 2n.
c) If the quotient is an integer or very close** then decompose Bn 
by its larger prime factor. 
 
** When we divide BN by a decimal number having .3333... or 
.6666... or similar decimal parts we could obtain a quotient close to 
an integer having the form N.999999999...XXX or N.00000000...
XXX..., in the first case take N + 1 and in the second case N.
 
By contrast, it is entirely possible to develop a reliable and 
extended method with 10 and its powers which is as robust and 

relevant as that which we saw with the 2n subdivisions.
 
a) Put the number BN to be decomposed into the numerator of the 
decimal fraction
b) As a denominator, Put N.↑X↑ (0 ≤ X ≤ 9) to detect 10 x q. Or 
N.↑XX↑ (00 ≤ XX ≤ 99) to detect 100 x q. N.↑XXX↑ to detect 
1000 x q (000 ≤ XXX ≤ 999). N.↑XXX....Xn↑ (000...0n ≤ XXX....
Xn ≤ 999...9n) to detect 10n x q. Change X;
c) XX; XXX;...and then N will increase from 1 to +∞
d) Divide the quotient by 10n et get the prime factor of Bn.
 
Here is an exemple Bn = 77633670588622783 = 9865069 x 
7869551707. If we divide Bn by a decimal number like 986506.9 
(in the form of N.↑X↑) we will get 10 x 7869551707. If we 
divide it by 98650.69 ((in the form of N.↑XX↑) we will get  102 x  
7869551707. If we divide it by  9865.069 (in the form of N.↑XXX↑) 
we will get  103 x  7869551707. If we divide it by  9.865069 (in the 
form of N.↑XXXXXX↑)we will get 106 x 7869551707. Finally by 
a decimal divisor like 0.9865069 (in the form of N.↑XXXXXXX↑)  
we will get 107 x 7869551707. Even with 0.0009865069  (in the 
form of N.↑XXXXXXXXXX↑) we will get 1010 x 7869551707 
and so on.

Let us recall to better understand the basis of the method. In reality 
we have no idea about the prime factor of a number that we want to 
decompose, we will just put the decimal fraction Bn/N.X or Bn/N.
XX, or Bn/N.XXX and so on. We are just going to vary X from 0 
to 9; XX from 00 to 99, and XXX from 000 to 999 and so on. N 
will increase and increase till we get that decimal divisor which 
gives a quotient that is an integer ending up with one or many 
zeros as digit units and which is = 10n x q. Then we can decompose 
our number Bn by dividing it with q.

4.5. Case of very Large Numbers 
The larger the number, the more we can increase the exponent n 
of the denominator 2n. If we divide an odd number by 2n, it will 
have a decimal part of n digits that end in 25 or 75. Here are four 
examples of numbers divided by 2n (n= 20; 40; 60 and 80). The 
quotients are shown in the table below.
A= 4478426278314973908054947361209202363226832797223
B= 4371670289392423861780657263209609734863176577149
611
C=29665615383903254513275639364097249949345445057194
7475882071924710747657058731
D=12238955714973990660253333245629042979751230473810
8384203596276538495840617475536035778807576851585303
9701361219
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Here is an example where we see that if we divide a number by 220, 
we can factor it after a quick number of operations. In the example 
below where A is the numerator, we must reach the denominator 
75307.34239673614501953125 to obtain an integer quotient 
whose decomposition gives the largest factor of the number to be 
decomposed (A).
2966561538390325451327563936409724994934544505719474
75882071924710747657058731 (A) = 78965471861 
(B) × 375678314645197590270315922529674275624796738618
1329259467691040671 (C) 
78965471861(B) / 220 = 75307.34239673614501953125
2 9 6 6 5 6 1 5 3 8 3 9 0 3 2 5 4 5 1 3 2 7 5 6 3 9 3 6 4 0 9 7 2 4 9 9 4 9 3 4 5
4450571947475882071924710747657058731 (A)/ 
75307.34239673614501953125 = 
3939272644574027084152867887824757332375468649932473
509575593600662634496 (D) = 220 × 3756783146451975902703
159225296742756247967386181329259467691040671 

4.6. The second Method based on the use of a Decomposition 
key
4.6.1. Decomposition Key (Kd)
A decomposition key is the product of prime numbers (p1 x p2 x 
p3 x p4 x p5 x... pn) whose values are in ascending order ( pn... > 
p5 > p4 > p3 > p2 > p1)  which helps with decomposition of all 
numbers having a given number of digits. So there is one key to 
decomposing two-digit, another for three-digit, another for 4-digit 
numbers, and so on. The more digits the number has, the more 

the key will encompass more prime factors and will have a much 
greater value. Not only is it a product of prime factors, but some 
are put into power (pn

1 x pm
2 x p3 x p4 x p5 x... pn) depending on 

the number of digits of the numbers. This key is calculated by 
analyzing the value of each number having a given number of 
digits. This article is limited to Kd specific for numbers with two 
or three digits. Two-digit numbers are denoted NX and three-digit 
numbers are NXX. But since the decimal numbers such like N.X 
or N.XX can be converted into fractions between two integers with 
10n as the denominator such that NX/10 or NXX/100, whether 
the number is NX or N.X or is NXX or NX.X or N.XX has no 
importance for the calculation that we will develop subsequently. 
Since the key will considerably inflate the value of the number Bn, 
it is necessary to have very large number calculators or specialized 
computer programs. See the box below where Kds used in this 
article are presented. To put it another way, Kd2 will factor all 
two-digit numbers NX such as 1≤ NX ≤99 and Kd3 for three-digit 
numbers NXX such as 100 ≤ NXX ≤ 999.   
 
*Kd2 = 2671979643323542381608979200 = 28 × 32 × 52 × 73 × 
112 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47.
*Kd2' (Kd2 extended) = Kd2  x  53 x 59 = 835528034467271702
7291277958400  
*Kd2'' (Kd2 extended) = Kd2 x 53 = 16356523386605064689019
3661728000    = 28 × 33 × 53 × 74 × 113 × 132 × 172 × 192 × 23 × 29 
× 31 × 37 × 41 × 43 × 47 × 53 
**Kd3 = 29 x 36 x 54 x 73 x 112 x 132 x 172 x 192 x 232 x 292 x 312 
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x 37 x 41 x 43 x 47 x 53 x 59 x 61 x 67 x 71 x 73 x 79 x 83 x 89 x 
97 x 101 x 103 x 107 x 109 x 113 x 127 x 131 x 137 x 139 x 149 
x 151 x 163  x 167 x 173 x  179 x 181 x 191 x 193 x 197 x 199 x 
211 x 223 x 227 x 229 x 233 x 239 x 241 x 251 x 257 x 263 x 269 
x 271 x 277 x 281 x 283 x 293 x 307 x 311
 
* Used in this study. ** Not used but replaced by extended Kd2 
including Kd2' and Kd2''.

4.7. Principles
Let Bn = p x q. Let's call Sri the integer part of its square root 
(SR), ignoring the decimal part. We calculate a decimal fraction 
between the number Bn x Kd to be decomposed and Sri such that 
Bn x Kd /Sri. Let Q = (Bn x Kd)/Sri. We will from the start decide 
the calculation such that Q will be in the form of N.X or N.XX. In 
the first case we use a Kd2 and in the other a Kd3. For this method 
as for the first ones we need a calculator for decimal fractions in 
series, that is to say in a continuous and automatic way. 

The principle of this method is based on the fact that if we vary the 
value of the SRi by increasing or reducing it continuously, we will 
go through decimal values which can be used by the decomposition 
key Kd to factorize the number Bn. If Bn = p x q such that p < q, 
at one time or another we will come across a value of SRi that 
allows Bn decomposition.  For instance, Sri = N.X x p; Sri = N.XX 
x p or Sri = N.XXX x p and so on. If we divide Bn x Kd by these 
values of SRi, we can obtain a number whose decomposition will 
give the largest factor of the number Bn (q). Let's see an example 
with Kd2, that is to say a two-digit number like N.X. For exemple, 
Q = Bn x Kd2/SRi and suppose that one value we reach is Sri = 
N.X x p therefore Q = Bn x Kd2 / N.X x p = Bn x Kd2 x 10 / NX 
x p. Let Kd2a  = Kd2 x 10 and Bn = p x q. Hence p x q x Kd2a 
/ NX x p = q x Kd2a / NX. Let  NX = p1 x p2 and knowing that 
Kd2a = p1 x p2 x p3 x p4 x p5 x p6 x...pn x 10 then Q = q x Kd2a' 
with Kd2a' =  Kd2a' = p3 x p4 x p5 x p6 x...pn x 10.  Indeed, Kd2 
contains all the prime factors which factor any two-digit number, 
here we have assumed that NX = p1 x p2 to simplify but whatever 

the prime numbers which are factors of NX, they will be included 
in Kd2, and therefore by dividing Kd2 by NX, we eliminate the 
prime factors of NX. Since the chosen value of Sri corresponds to 
NX x p, by dividing Bn x Kd/Sri, we have     Bn x Kd/p x NX and 
given that BN = p x q, we then eliminate p from the numerator and 
denominator, and then we finally have the remainder of Kd x q (the 
largest factor of Bn).

Any Q value that is divisible in this way by Kd2 allows Bn 
decomposition. This also applies to the largest factor p if we 
increase SRi value. A certain number of operations is required 
before obtaining a desired value with a very short decimal part 
such like N.X or N.XX; N.XXX; or N.XXXX depending on the 
Kd we want to use. In all cases, we will have the closest one when 
the progress of the continuous calculation of decimal fractions 
reaches it. The speed of the method depends on the distance 
between Sri and the values like Sri x N.X (in the case of Kd2) or 
Sri x N.XX (in the case of Kd3) (or even Sri x N.XXX in the case 
of kd4 and so on). Note that these values of Sri could be obtained 
by reducing and/or increasing Sri and this is why two calculators 
must be operational in parallel.

4.8. Representative examples of the Calculation
In order to explain more this method, we will give various 
examples.  We will see a first example before establishing the 
instructions to follow for this method.

Here, a Kd2 adapted and readjusted to the chosen examples is used 
to save space and make the explanations more plausible and be 
able to carry out the calculations because if Kd3 or Kd4 are used, 
the limits of the calculators available on the web or conventional 
will be exeeded. The Kd3 in the box above gives you an idea of the 
complex construction of the decomposition keys which must be 
the product of all the prime factors and powers of prime numbers 
capable of forming a three-digit number (up to 999) either 
combined together into products or in powers. Examples of the 
use of Kd to factor numbers are listed in tables 11.

SF LF Bn SRi SRi/SF 2.5SF 2.5SF - SR
144598763437 895514715619 129490320518

144110022503
35984763514
3 

2.4885941386
3370574904

361496908592
.5

1649273449.3
131689930371
0662683

2671979643323542381608979200 (Kd2) x 129490320518144110022503 = 345995500431921880816230698761118569805858858937600 
345995500431921880816230698761118569805858858937600 : 361496908592.5 = 957118836172255643149703593577954449920 = 29 × 32 × 
5 × 73 × 112 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 ×  895514715619  
SF LF Bn SRi SRi/SF 6.5SF 6.5SF - SR
9471240377 389714237467 369107722138

9216605059
60754236242 6.4146018708

9495089055
61563062450.
5

808826208.5

2671979643323542381608979200 (Kd2)  x 3691077221389216605059 = 9862483197487210863346139335482353522254545772800 
9862483197487210863346139335482353522254545772800 : 61563062450.5 = 160201309111566301048923146690502105600 = 29 × 32 × 52 
× 73 × 112 × 13 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 ×  389714237467  
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SF LF Bn SRi SRi/SF 1.32SF SR – 1.32SF
398714257013 698754303007 278603302758

072676738091
527828857451 1.3238273981

1029692832
526302819257.16 1526038193.84

2671979643323542381608979200 (Kd2)  x 278603302758072676738091 = 744422353532275922257173111915367167756492266707200
744422353532275922257173111915367167756492266707200 : 526302819257.16 = 1414437328272298725648035663718757920000 = 28 × 3 
× 54 × 73 × 11 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 ×  698754303007  
SF LF Bn SRi SRi/SF 4608.35 x SF (4608.35 x 
22823697877 
120277 

484703753292
603814487663

11062732025
056632153858
950364786583
642651

10517952284
0981894967

4608.3471402
072668085387

105179588112
027228512.95

1526038193.84

2671979643323542381608979200 (Kd2)  x  53 x 59 = 8355280344672717027291277958400 (Kd'2) 
141614921096147746225275897600 x 11062732025056632153858950364786583642651 = 9243222744733708232359218881913436
5189249446133336982453719218443718400 92432227447337082323592188819134365189249446133336982453719218443718400 : 
105179588112027228512.95 = 878803854497767400436190504899792571840663105152000 =  210 × 32 × 53 × 73 × 112 × 132 × 172 × 192 × 23 
× 29 × 31 × 41 × 43 × 59 × 484703753292603814487663  
SF LF Bn SRi (SRi x 10-9)/SF 9.45SF - (SRi x 

10-9)
9.45SF

10780251859
59431232990
7551187 

956478064792
755281357337
812662039047
944195630644
07

103110744366
432692787769
570948735978
666103180950
244877199079
356660902693
0301109 

10154346082
66001010577
60046910822
5957770

9.4193959611
646247622 

329919246566
150459866311
8063 

101873380073
166251517626
3587171.5

163565233866050646890193661728000  (Kd2'')  = 28 × 33 × 53 × 74 × 113 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53
163565233866050646890193661728000 x 1031107443664326927877695709487359786661031809502448771990793566609026930301109 =
168653330163981276345273748179618754268957139381396147326143518369510602293588945526304179190121658329256 352000 :  10
18733800731662515176263587171.5 = 165551913603782604293375443373105817974577638062084096212007067318352254337728000 = 
29 × 53 × 73 × 113 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53 × 95647806479275528135733781266203904794419563064407 

Tables 11: Decomposition by multiplication of the number Bn to factorize by a decompositon key and dividing the product by 
the integer part of SR (Sri). SF: small factor. LF : large factor. SR : square root. Sri = integer part of SR. Kd2 (decompositon 
key for two-digit odd numbers). Kd2' or Kd2'' the key decomposition for two-digts numbers extended by its multplication with 
more prime factors.
Table 11A ,Table 11B and Table 11C

In the first example in Table 11A, we have the number Bn 
= 129490320518144110022503 = 144598763437 (p) x 
895514715619 (q). As explained above, we start from numbers 
with known factors to explain how the method works. The SR 
of this Bn = 359847635143.18683100696289337317. We will 
consider Sri =  359847635143 and ignoring the decimal part. But 
the question that interests us in the first place is the following: 
how far is the SRi from a multiple of the smallest factor of Bn, 
i.e. p (Bn = p x q such q > p)? p is called SF (small factor) in this 
section. In truth we don't know, but we will decide to set the square 
root at a predictive value, that is to say we will, for example, look 
for the case where the SRi/SF = N.X (like N.5 thus we look at the 
two-digits at the end of the quotient digits). We therefore need a 
key Kd2 which decomposes all the two-digit numbers NX. We 
know that the SRi is > SF, but we are primarily interested in a 
ratio of type N.X. In our example (Table 11A), we have SRi/SF = 
2.48859413863370574904. We retain 2.48 and we will then look 
for SF x 2.5 which is one ratio closest to 2.48. The calculation 
shows that SF x 2.5 = 361496908592.5. It takes 1649273449 

operations or decimal fractions before reaching this value from 
the SRi. 

The Kd2 = 28 × 32 × 52 × 73 × 112 × 132 × 172 × 192 × 23 × 29 × 31 
× 37 × 41 × 43 × 47. Therefore, Bn x Kd2 =34599550043192188
0816230698761118569805858858937600 and so 3459955004319
21880816230698761118569805858858937600 : 361496908592.5 
= 29 × 32 × 5 × 73 × 112 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 
× 43 × 47 ×  895514715619 . We therefore have the largest factor 
(LF or q) of Bn and we can break it down.

Indeed, the detailed calculation is as follows:
34599550043192188081623069876111856980585885893760
0 : 361496908592.5 = 3459955004319218808162306987611
18569805858858937600 : (3614969085925 : 10) = (3459955
00431921880816230698761118569805858858937600 x 10) : 
3614969085925. Because 3614969085925 must be a multiple of 
SF (which is= 144598763437)  and indeed  3614969085925 = 25 
x  144598763437. Therefore, we have:
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(345995500431921880816230698761118569805858858937600 
x 10) : 3614969085925 = 29 × 32 × 53 × 73 × 112 × 132 × 172 × 192 × 
23 × 29 × 31 × 37 × 41 × 43 × 47 × 144598763437 × 895514715619 
: (52 × 144598763437) =  29 × 32 × 5 × 73 × 112 × 132 × 172 × 192 × 
23 × 29 × 31 × 37 × 41 × 43 × 47 × 895514715619.

Note that in this example we have the ratio 25/10 = 2.5 and 
therefore the two-digit number 25 = 52 and we have 10 = 2 x 5. 
The method works just as well with all decimals generating natural 
quotients like 2.1 or 2.2, and even 2.01, 2.001 except that in the 
last two cases we must have Kd3 and Kd4. Here the Kd2 has 
been optimized for the example and we must always have a Kd2 
capable of decomposing any two-digit number. In this example we 
have set the value 2.5 x SF closest to the SRi/SF ratio, but in reality 
we ignore the factor of the number to be decomposed and therefore 
we will just put one digit or two or more after the decimal point of 
the decimal fraction and wait to have an  integer as the quotient. 
Another key element is how to reduce the number of operations to 
get the desired value? The only solution is to use higher Kd and 
thus increase the number of decimals.  We have as said above SRi/
SF = 2.48859413863370574904 (Table 11A, first example):  if 
we use 2.49 instead of 2.5 we will have less operations 203285815 
(compared to  1649273449 with 2.5). However 249 = 3 x 83 and 
we have to use Kd3.
• If we use 2.4885 instead of 2.5 we will have 13612330 operations 
that are much less than 1649273449 with 2.5. However 24885 = 32 
× 5 × 7 × 79 meaning that we have to use Kd5.
• If  we use 2.48859 instead of 2.5 we will have 598441 operations 
that are much lesser than 1649273449 with 2.5 or  13612330 with  
2.4885. Nevertheless, 248859 =  33 × 13 × 709. Hence a need for 
a Kd6. 
• If we use 2.4885941386 instead of 2.5 the number of operations 
decreases drastically  because we only have 4 operations to 
go through from the Sri to decompose the number. However, 
24885941386 = 2 × 12442970693 and thus we need a Kd11.
• If we use two kd for a same calculation with Sri, we will have 
much less operation with the higher one because this signifies the 
use of more decimals after the decimal separator.
• In the example cited above in Table 11A, 2.5 is the closest values 
to Sri by using Kd2. For each key used, we have one closest value. 
Requiring the least number of operations. Note that Kd2 factors all 
numbers between 1 and 99. If we set NX as being any two-digit 
number, thus any product Sri x NX such that 1 ≤ NX ≤ 99 can be 
factorized by Kd2, we therefore have 99 chances of decomposing 
Bn using Kd2.
• For comparison, and if we pose NXX as being any three-digit 
number, Kd3 will offer more chances because if we have Sri x 
NXX such that 100 ≤ NXX ≤ 999, we have 899 chances of 
factoring Bn. To express it differently Bn x Kd2/SRi x NX offers 
99 possible factorizations and  Bn x Kd3/SRi x NXX offers 899. 
This is why this method is robust and safe and this is above all 
the major advantage offered by the use of Kd. Unlike the method 
of division by series which has only one solution, this method 
offers several factorization solutions and therefore accelerates the 

decomposition process.
Here are the instructions to follow for this method
 
a) Calculte SR of Bn to factorize and take only the integer part by 
ignoring the decimal one (SRi). Let's name it Sri.Choose your Kd. 
Then calculate Bn x Kd and put it as a numerator in the calculator 
of decimal fractions. Put Sri as the denominator.
b) Let us therefore set the decimal fraction Bn x K/SRi = N.X or 
N.XX (in this article we only consider one or two digits after the 
decimal point and the corresponding Kd2 and Kd3). You might 
use two calculators : one to increase SRi (Bn x K/↑SRi↑ = N.X 
or N.XX) and the other to decrease it  (Bn x K/↓SRi↓ = N.X or 
N.XX). If one gives the desired quotient, all the calculations stop 
all at once.
c) Start the calculation by reducing and/or increasing Sri which 
must then be set as N.0 or N.00. For example if we startfrom 
359847635143 from the example cited above, we then start with 
359847635142.9 or 359847635142.99. We let it scroll towards 0 
or to higher values.
d) Stop the calculation as soon as you obtain an integer, decompose 
it and take the prime factor p or q in order to break down the 
number Bn.
 
The second example of the Table 11A is the number Bn = 
3691077221389216605059 = 9471240377 x 389714237467 
has for SRi = 60754236242 and the ratio SRi/SF = 
6.41460187089495089055 and therefore the closest number is SF 
x 6.5. And we therefore have the ratio 65/10 which will impose 
itself and therefore 65 = 5 x 13 and 10 = 2 x 5 and thus the Kd2 
defined above is able to decompose it. It takes 808826208 decimal 
fractions to go from SRi = 60754236242.0 up to SRi x 6.5 = 
61563062450.5. In table 11B, we will use the same Kd2 for the 
decomposition of a three-digit number. As said above the use of 
a Kd3 is avoided to save space and not to interrupt the text with 
a large gap, but in reality we have to use a Kd3 for a three-digit 
number but the methods works the same anyway. Indeed, a Kd2 
can work for some three-digit numbers which are the products of 
smaller prime factors and in this study it was extended to be able 
to provide explanatory demonstrations.

In table 11B, we have the number 278603302758072676738091 = 
398714257013 x 698754303007 and whose SRi = 527828857451. 
The SRi/SF ratio = 1.32382739811029692832. Here we set 
the ratio Bn/SRi = N.XX. You have to count or scroll through 
1526038193 decimal fractions on calculators before arriving at 
1.32SF = 526302819257.16. We therefore have the ratio 132/100 
and then 132 = 22 × 3 × 11 and 100 = 22 x 52. We will use to simplify 
the Kd2 cited above because it works. Kd2 = 28 × 32 × 52 × 73 × 
112 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 and after 
calculation as shown in table 11B, we arrive at the decomposition 
which gives the LF (the largest factor of the number
Bn) as follows = 744422353532275922257173111915367167756
492266707200 : 526302819257.16 = 1414437328272298725648
035663718757920000 = 28 × 3 × 54 × 73 × 11 × 132 × 172 × 192 × 



   Volume 5 | Issue 3 | 18J Robot Auto Res , 2024

23 × 29 × 31 × 37 × 41 × 43 × 47 × 698754303007. 

In the second example of Table 11B, we use a more extended Kd2 
noted Kd2' (meaning that we multiply the initial Kd2 with two 
more prime factors to enlarge it). Kd2' = Kd2 x 53 x 59 =  28 × 32 × 
52 × 73 × 112 × 132 × 172 × 192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 x  
53 x 59 = 8355280344672717027291277958400. We see that we 
have the ratio 295/100 in this example with 295 = 5 x 59 et 100 = 
22 x 52. The number is broken down as explained in the table 11B 
with the quotient = 8788038544977674004361905048997925718
40663105152000 =  210 × 32 × 53 × 73 × 112 × 132 × 172 × 192 × 23 
× 29 × 31 × 41 × 43 × 59 × 484703753292603814487663. 

In the example described in Table 11C we are dealing with an SR 
which is too large compared to the prime factor SF. This case is 
to be mentioned in giant numbers and especially when the two 
prime factors are large with a large gap between them and also far 
from each other from the SR. In this case, it will be necessary to 
provide a certain number of calculators which operate in parallel 
but interrelated so that if one displays an integer, the calculation 
stops on all of them simultaneously. We multiply the SR with 10-n 
depending on its value. The higher Kd, the fewer operations are 
required. But if we configure several interconnected calculators, 
we could work with Kd2 and Kd3.
The number Bn in Table 11C that we want to decompose consists 
of 79 digits. You have to count 3299192465661504598663118063 
decimal fractions  to get to 9.45 x SF =  10187338007316625151
76263587171.5.
Here we use a Kd2'' extended (meaning that we multiply the initial 
Kd2 with more prime factors to enlarge it). Kd2'' = 16356523386
6050646890193661728000 = 28 × 33 × 53 × 74 × 113 × 132 × 172 × 
192 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53. We then have the ratio 
945/100 with 945 = 33 × 5 × 7  and 100 = 22 x 52. The breakdown 
of the number is explicit in table 11C.

5. Conclusion on the Method 
The method which uses the decomposition key is a new method 
which can be promising. It can be used for numbers to decompose 
by starting with their square roots. It works with all numbers. It is 
necessary to have calculators for very large numbers.  
 
6. Discussion
This article provides original material and proposes new methods 
for decomposing numbers. It draws its originality from 1) 
proposing decimal divisors instead of natural integer divisors as 
in the case of serial divisions known as Trial division algorithm; 
2) it also proposes a calculation trick which consists of fixing 
two decimal digits by varying the rest of the digits of the number 
which makes it possible to accelerate the decomposition of the 
odd number into its prime factors; 3) it varies the methods which 
proves that they are robust since they are flexible and determinate 
or semideterministic; 4) it takes advantage of the decimal parts 
of decimal or irrational numbers to decompose numbers. 5) it 
proposes a new notion that of decomposition key (Kd) which is 
only the product of consecutive prime numbers and their powers 

(only certain ones) which decomposes all numbers having a fixed 
number of digits. Here the article uses those specific to two- and 
three-digit numbers.The Erastothenes'sieve is ineffective when 
it comes to carrying out an indeterminate number of steps to 
decompose a number going multiple by multiple, the method 
described in this article in fact makes it possible to exploit this 
sieve by a careful calculation of decimal fractions and go up or 
down to find the submultiples or supermultiples of a number to 
be decomposed. This sieve gives us all the numbers having a 
common factor. A number to be decomposed then has an infinity 
of numbers having a common factor with it. In this article, those 
having a common fact < the number to be decomposed are called 
submultiples; and those > are called supermultiples.

The methods described in this article do not only allow the 
factorization of biprime numbers or any multiples of prime factors, 
they make it possible to find a whole set of numbers having a 
common factor with the number to be decomposed, unlike the 
unique solution offered by trial division where we only have one 
prime factor that works; or by comparison to other methods such 
as that of Fermat based on the subtraction between two perfect 
squares. Here, the decomposition of the number has limitless 
solutions or outcomes and therefore we can now argue that these 
methods described in this paper have the particularity of offering 
several solutions (even unlimited) and therefore of considerably 
increasing the chances and the speed of decomposition of an odd 
number whose prime factors we do not know.

The method described here based on the divisions of the number to 
be decomposed Bn = p x q by 2 n or 10n which gives submultiples 
(or symmetrically supermultiples of Bn) should not be confused 
with the classic methods of searching for common factors between 
two numbers, whether manual or using a specific calculator. Let us 
recall here that a submultiple is of the form n x p or n' x q which 
are both < Bn, and a supermultiple is m x p or m' x q that both are 
> Bn. Firstly, we are assumed not to know the p and q factors of 
Bn and secondly the common factor calculator will not be of any 
help since the p and q factors of Bn are unknown. We cannot list 
the factors of Bn neither since it only has two which are unknown. 
The method described here is above all a method of decomposition 
and factorization like any other algorithm. The decomposition 
method of this paper has its own specificity and cannot be deduced 
from any known algorithms which are more complex and based on 
more advanced mathematical notions. The relative simplicity of 
this article's methods is an additional advantage because it can be 
used by a very wide range of audiences. 

By using decimal divisors and playing with the location of 
digits and decimal commas or by allowing the square root to 
unfold towards 0 or infinity, this study shows that it is possible 
to decompose numbers with an efficiency that is not negligible 
compared to existing algorithms whether it is The trial division or 
others such as Pollard's. These are all limitated by the length of the 
number and the time of calculation or analysis [6]. Unless there 
is an unintentional error, this type of calculation detailed in this 
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article has not been reported before. The calculation methods are 
all based on the calculation of decimal fractions with the number 
to be decomposed into the numerator and the denominator is a 
decimal divider concocted to result in a sub- or super-multiple 
of the number to be decomposed which contains one of its prime 
factors. 

The calculator best suited to the methods described here would be 
that which allows continuous calculation of decimal fractions with 
decimal numbers as denominators. It is also possible to perform 
that calculation with specific program on a computer. By analogy, 
the methods decribed here would amount to going back through 
Erastothenes'sieve upstream or downstream to find multiples 
having a common factor with the number to be decomposed. The 
idea of decomposing a number by looking for limitless numbers 
that have a common factor with it is a new idea of this paper.

The methods described are also limited by the length of the 
operations like those known, but are very promising since they 
offer possiblities to shorten the paths and save time required 
for the decomposition of a number. Dramatically increasing the 
exponent n of 2n or 10n which are used to fix the decimal part 
of the denominator results in decimal fractions tending towards 
0 meaning that the decomposition of a giant number could be 
done quickly. These new methods decribed in this article and the 
concepts they convey might lead to new algorithms or programs 

to decompose an integer into its prime factors. More importantly, 
this article attests that the decomposition of a biprime number or 
multiple of prime factors, does not have only one solution (finding 
the right prime divisor) but can have an infinity of solutions. This 
idea has always been present in Erastothenes' sieve if we follow 
multiple by multiple, but it was necessary to develop a calculation 
method that puts it into practice, and that is what this article was 
dedicated to.  
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