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Abstract
In this paper, we investigate a new approach to irregular integrals through the theory of generalized functions. Traditional 
approaches to irregular integrals are often limited to certain classes of functions or require special techniques to solve 
singularities. However, through the application of the theory of generalized functions, we open the door to the integration of 
a wider range of functions that are not strictly defined or have singularities.

In our research, we develop new definitions of irregular integrals based on the principles of the theory of generalized 
functions. Using this approach, we demonstrate the possibility of integrating functions that were previously beyond the 
reach of traditional methods. Furthermore, we explore applications of these new definitions in various fields, including 
mathematics, physics, and engineering.

Our results indicate the potential advantages of this new approach, including greater flexibility when solving problems with 
singularities, as well as the possibility of application in complex integration problems. Through this work, we open new 
perspectives in the study of irregular integrals and encourage further research in this area.

1Department of Mathematics and Physics ,European 
Universiyt Kallos Tuzla, Bosnia and Herzegovina

2Department of Business Management,Facultyof Business, 
University „Haxhi Zeka“, 30000, Peje, Republic of Kosovo

3Department of Mathematics and Physics, Europian 
University „Kallos“, 75000, Tuzla, Bosna i Hercegovina

4Department of Mathematics and Informatics, Education 
Faculty, University of Travnik, 72270, Travnik,  Bosna i 
Hercegovina

Keywords: Irregular Integrals, Generalized Functions, Singularities, Theory of Distributions, Integration of Functions with 
Singularities

Open Access Journal of Applied Science and Technology
ISSN: 2993-5377

1. Introduction
In modern mathematics, irregular integrals represent a powerful 
tool for integrating functions that can be non-standard or have 
singularities at intervals of integration. Traditional approaches to 
irregular integrals are often limited to certain classes of functions 
or require special techniques to solve singularities. However, 
techniques of generalized functions offer a new approach that 
allows the integration of a wider range of functions that are not 
strictly defined or have singularities. In this thesis we explore this 
new approach and the application of the theory of generalized 
functions to irregular integrals.

The study of irregular integrals has wide applications in various 
disciplines, including mathematics, physics, engineering, and 

other natural sciences. Their ability to integrate functions that have 
different forms of singularity enables solving complex problems 
encountered in real situations. Therefore, the development of 
new techniques and methods for solving irregular integrals is 
of great importance for the progress of scientific research and 
application. In this paper, we investigate the possibilities of the 
theory of generalized functions in solving problems of irregular 
integrals, emphasizing the potential advantages and applications 
of this approach.

Throughout history, irregular integrals have posed a challenge 
to mathematicians because of their non-standard nature and the 
need for specific methods of integration. However, techniques 
based on the theory of generalized functions provide a new 
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approach to this problem, opening the way to solve integrations 
that were previously beyond the reach of traditional methods. In 
this research, we investigate how these new approaches can be 
applied to various problems of irregular integrals, highlighting 
their flexibility and power in solving complex mathematical 
problems.
 
2. Irregular Integrals
Irregular integrals are mathematical concepts used to calculate 
integrals of functions that do not have a primitive function in the 
standard sense. These integrals are used to calculate the surfaces 
under curved functions that are more complicated or do not have 
an elementary antiderivative.

The general term of irregular integrals covers different types 
of integrals, including:
1. Undefined Intervals: Integrals where one of the limits is 

infinity or the function has breakpoints within the interval of 
integration.

2. Integrals With Singularities: Integrals where the function 
has singularities (such as vertical asymptotes) inside the 
integration interval.

3. Non-Convergent Integrals: Integrals where the function 
diverges or has no defined limit when the integration interval 
expands to infinity.

The formulation of an irregular integral usually involves a limit, 
because the irregular integrals are calculated as the limit of 
the corresponding proper integrals. For example, the irregular 
integral of the function f(x) over the interval [a,b] can be 
formulated as:
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This expression denotes the limit of regular integrals of the function f(x) on the interval 
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This expression denotes the limit of regular integrals of the 
function f(x) on the interval [c,b] as c tends to the value 𝑎 on the 
positive side.

Irregular integrals are crucial in a variety of fields, including 
analysis, probability theory and statistics, as well as physics and 
engineering.

Basic theorems related to irregular integrals include:
1.Theorem on the existence of irregular integration: Let f (x) 
be a function that is integrable on the interval [a,b], but may have 
infinite values at the ends of the interval. If there exists a real 
function F(x) such that 𝐹′(𝑥)=𝑓(𝑥) for all x in the interval (a,b), 
then the irregular integral of the function f(x) on the interval [a,b] 
is defined as
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conditions. 

These theorems are the basic tools for working with irregular 
integrals and enable the calculation of values of irregular 
integrals and connection with the values of functions at the 
appropriate intervals.

3. Leibniz's Integral Formula: This formula provides a way to 
differentiate integrals that depend on a parameter. If 𝐹(𝑥,𝑡) is a 
continuous function of the parameter 𝑡 and if f (x,t) and F(x,t) are 
continuous functions of both parameters x and t, then:

4. Lebesgue's theorem on dominated convergence: This 
theorem gives a condition under which the order of limiting and 
integration can be interchanged. If the series of functions fn(x) 

converges to the function 𝑓(𝑥) almost everywhere, and if there is 
an integrable function g(x) that dominates every member of the 
series ∣ fn (x)∣≤g(x) for almost every x, then:

5.  Convergence theorems for irregular integrals: These 
theorems give conditions under which irregular integrals 
converge. For example, Convergence Theorems for Irregular 
Integrals include D'Alembert's Criterion, Abel's Criterion, 
Dirichlet's Criterion, and others.

6. Theorems on irregular Integrals of Generalized Functions: 
These theorems extend the concept of irregularintegral to 
generalized functions such as the Dirac delta and the Heaviside 
function. They provide ways to define and manipulate the 
integrals of these functions. These results are crucial for 
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understanding and applying irregularintegrals, especially in 
complex situations involving generalized functions and specific 
convergence conditions.

The new approach to research can be reflected through the 
following definitions, which may be key to this original scientific 
work:

Integral of Dirac's Delta Function:
Definition: The irregular integral of the Dirac delta function δ(x) 
can be defined as the limit of regularized integrals of functions 
that converge to the Dirac delta function. For example, you can 
use a series of functions δϵ(x) that converge to δ(x) when ϵ tends 
to zero:
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This definition enables the integration of functions with the Dirac delta function, which is 
crucial for the analysis of problems with concentrated masses or point forces. 

These images allow you to visualize the behavior of the Dirac delta function and its 
application to concentrated masses or point forces. You can experiment with different epsilon 
values and f(x) functions to explore different scenarios. 

 

 

Figure 1. Graph of the Dirac delta function with different epsilon values 
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This definition enables the integration of functions with the Dirac 
delta function, which is crucial for the analysis of problems with 
concentrated masses or point forces. These images allow you 
to visualize the behavior of the Dirac delta function and its 

application to concentrated masses or point forces. You can 
experiment with different epsilon values and f(x) functions to 
explore different scenarios.
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Figure 2. The value of the integral of the function with the Dirac delta function 

Integral of the Heaviside function: 

Definition: The irregular integral of the Heaviside function 𝐻𝐻( ) can be defined as the limit 
of integrations of functions that converge to the Heaviside function. For example, you can use 
a series of functions Hϵ(x) that converge to H(x) when ϵ tends to zero: 
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This definition allows the integration of functions with step changes, which is useful in the 
analysis of systems with jumps or discontinuities. 

 
Figure 3. Graph of the Heaviside function with different values 

Figure 2: The Value of The Integral of The Function With The Dirac Delta Function
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This definition allows the integration of functions with step changes, which is useful in the analysis of systems with jumps or 
discontinuities.

Figure 3: Graph of The Heaviside Function With Different Values

Figure 4 shows the application of the Heaviside function on an 
example of a mathematical analysis that models the moment the 
system transitions from one state to another. Specifically, the 
graphic shows:

1. The function f(x)=sin(x), represents the input signal of the 
system.

2. Heaviside's function H(x), models the transition moment of 
the system. In this case, the Heaviside function goes from zero 
to unity at time x=0.

3. The product of the function f(x) and the Heaviside function 

H(x), which results in the function f (x)⋅H(x). This function 
models the behavior of the system after the transition moment. 
On the graph, you can see how the input signal (sine function) 
becomes zero for negative values of x, and then remains zero 
until the moment of transition (ie x=0). After that, the function 
becomes identical to the input function (sine function), because 
the product with the Heaviside function is unitary for all positive 
values of x.

This scenario can represent a situation where the system reacts 
to some event (moment of transition) and moves from one state 
to another, whereby the behavior of the system changes after 
that moment.
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Figure 4: Applied Heaviside Function on The Example of Mathematical Analysis

Integral of Generalized Functions With Singularities:
Definition: The irregular integral of functions with singularities 
can be defined as the limit of the integral of regularized 
functions that gradually remove the singularities. For example, 

for functions with vertical asymptotes, you can use regularized 
versions of those functions that incrementally approximate 
infinite values:

This definition enables the integration of functions that have singularities, which is important in the analysis of problems containing 
these properties.
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Figure 5. Graph of the function with singularities  

    

This figure simulates the graph of a function with singularities and shows the values of the 
irregular integral of the function for different values of the parameter ε. The function f(x) 
represents an example of a function with singularities, in this case, the function 1/(x-2). The 
irregular integral is calculated using a regularized function that gradually removes 
singularities, and then the integral values are displayed depending on ε. 

This example illustrates how you can analyze functions with singularities and calculate their 
irregular integrals, which can be useful in various mathematical analysis problems. 
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This figure simulates the graph of a function with singularities 
and shows the values of the irregular integral of the function for 
different values of the parameter ε. The function f(x) represents 
an example of a function with singularities, in this case, the 

function 1/(x-2). The irregular integral is calculated using a 
regularized function that gradually removes singularities, and 
then the integral values are displayed depending on ε.
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irregular integrals, which can be useful in various mathematical analysis problems. 
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Figure 6: 3D Representation of The Values of Real And Complex Solutions of The Function With Fraction Singularities

3. Generalized Functions
Generalized functions, also known as distributions, are a concept 
in mathematics that generalizes the idea of functions to broader 
classes of objects. Normally, functions are mappings from one 
set to another, but generalized functions allow "functions" to 
be objects that act on other functions, even though they are not 
themselves ordinary functions in the classical sense.

The general term of generalized functions includes objects such 
as the Dirac delta function, the Heaviside function, the step 
function and others, which are essential in analysis and physics. 
These functions often have singularities or jumps that make 
them extremely useful in various applications.

Definition: A precise definition of generalized functions often 
uses algebraic concepts, such as dual spaces, linear forms, or the 
space of test functions. For example, the Dirac delta function can 
be defined as a function on the space of test functions that for 
each test function gives its value at the zero point

Examples of functions:
1. Dirac delta function δ(x)): A function that is zero for all 
𝑥≠0x =0 and infinite for x=0, with an integral equal to unity. It is 
used for modeling concentrated masses or point forces. 

2. Heaviside function H(x)): A function that is zero for x<0 and 
one for x≥0. It is used for modeling transient processes or jumps 
in systems.

3. Step function Θ(x)): Analogous to the Heaviside function, 
but usually used in the context of complex analysis.

4. Lawrence's proposition Λ(x)): A function used in number 
theory and mathematical analysis, defined as Λ(x)=∑p≤xlogp, 
where is the sum over all prime numbers p that are less than or 
equal to x.

These are just some examples of generalized functions, and their 
application extends to various areas of mathematics, physics, 
engineering and other scientific disciplines.
We presented the first two functions in the previous chapter, 
as well as a new approach to presenting the solutions of 
these functions, now we will devote ourselves to Lawrence's 
proposal as well as to the step function, the presentation of the 
solution graphically and visualized with specific applications in 
mathematical analysis.

Step function Θ(x)): Analogous to the Heaviside function, but 
usually used in the context of complex analysis.

 

Generalized functions 

Generalized functions, also known as distributions, are a concept in mathematics that 
generalizes the idea of functions to broader classes of objects. Normally, functions are 
mappings from one set to another, but generalized functions allow "functions" to be objects 
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Examples of functions: 

1.  Dirac delta function δ(x)): A function that is zero for all  ≠0x =0 and infinite for 
x=0, with an integral equal to unity. It is used for modeling concentrated masses or 
point forces.  

2.  Heaviside function H(x)): A function that is zero for x<0 and one for x≥0. It is used 
for modeling transient processes or jumps in systems. 

3.  Step function Θ(x)): Analogous to the Heaviside function, but usually used in the 
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4.  Lawrence's proposition Λ(x)): A function used in number theory and mathematical 
analysis, defined as Λ(x)=∑p≤xlogp, where is the sum over all prime numbers p that 
are less than or equal to x. 

These are just some examples of generalized functions, and their application extends to 
various areas of mathematics, physics, engineering and other scientific disciplines. 

We presented the first two functions in the previous chapter, as well as a new approach to 
presenting the solutions of these functions, now we will devote ourselves to Lawrence's 
proposal as well as to the step function, the presentation of the solution graphically and 
visualized with specific applications in mathematical analysis. 

Step function Θ(x)): Analogous to the Heaviside function, but usually used in the context of 
complex analysis. 

Θ(x))={         
          

This function represents a "jump" or "step" to the value 1 when x is greater than or equal to 
zero. 

This function represents a "jump" or "step" to the value 1 when 
x is greater than or equal to zero.

Theorem: One of the basic theorems that is often used in relation 

to the step function is the power function theorem, which states:

For the function 𝑓(𝑥) and the step function Θ(x), it holds:
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Theorem: One of the basic theorems that is often used in relation to the step function is the 
power function theorem, which states: 

For the function  ( ) and the step function Θ(x), it holds: 

∫            
  

  
∫       
 

 
 

This theorem allows the integration of the function  ( ) to be limited only to the interval x≥0, 
thus simplifying the calculation of certain integrals. 

Application to mathematical analysis: One of the key applications of the step function in 
mathematical analysis is in the calculation of certain integrals. For example, when we 
encounter functions that have certain properties only for positive values of x, we can use a 
step function to "turn off" the negative parts of the function when integrating. 

 
Figure 7. Graph of function and step function 

The figure shows the value that will enable the input of an arbitrary function f (x), defining 
the interval on which the graph of the function is displayed, and then it will display the graph 
of the function f (x)and the step function Θ(x) on the same graph. You can change the 
function 
f (x)as needed, as well as the interval on which the graph is displayed. 

The Lawrence proposition (Λ(  )) is a function used in number theory and mathematical 
analysis to investigate the distribution of prime numbers. It is defined as the sum of 
logarithms of prime numbers that are less than or equal to x. 

The application of Lawrence's proposal in mathematical analysis can be varied. Here are 
some examples: 

1.  Spatial arrangement of prime numbers: Lavrens' proposal enables the analysis of 
the arrangement of prime numbers along the number line. By studying the growth of 
the function Λ(x), we can gain insight into the distribution of prime numbers in the 
range from 1 to x. 

Theorem: One of the basic theorems that is often used in relation to the step function is the 
power function theorem, which states: 
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logarithms of prime numbers that are less than or equal to x. 

The application of Lawrence's proposal in mathematical analysis can be varied. Here are 
some examples: 

1.  Spatial arrangement of prime numbers: Lavrens' proposal enables the analysis of 
the arrangement of prime numbers along the number line. By studying the growth of 
the function Λ(x), we can gain insight into the distribution of prime numbers in the 
range from 1 to x. 

This theorem allows the integration of the function 𝑓(𝑥) to be 
limited only to the interval x≥0, thus simplifying the calculation 
of certain integrals.

Application to mathematical analysis: One of the key 

applications of the step function in mathematical analysis is 
in the calculation of certain integrals. For example, when we 
encounter functions that have certain properties only for positive 
values of x, we can use a step function to "turn off" the negative 
parts of the function when integrating.

Figure 7: Graph of Function And Step Function

The figure shows the value that will enable the input of an 
arbitrary function f (x), defining the interval on which the graph 
of the function is displayed, and then it will display the graph of 
the function f (x)and the step function Θ(x) on the same graph. 
You can change the function
f (x)as needed, as well as the interval on which the graph is 
displayed.

The Lawrence proposition (Λ(𝑥)) is a function used in number 
theory and mathematical analysis to investigate the distribution 
of prime numbers. It is defined as the sum of logarithms of prime 
numbers that are less than or equal to x.

The application of Lawrence's proposal in mathematical 
analysis can be varied. Here are some examples:

1.Spatial arrangement of prime numbers: Lavrens' proposal 
enables the analysis of the arrangement of prime numbers along 
the number line. By studying the growth of the function Λ(x), 
we can gain insight into the distribution of prime numbers in the 
range from 1 to x.

2. Asymptotic behavior of the distribution of prime numbers: 
Analysis of the behavior of the function Λ(𝑥) for large values 
of x provides information about the asymptotic behavior of 

the distribution of prime numbers. For example, the Riemann 
hypothesis is known, which talks about the behavior of the 
function 𝜋(𝑥), which is related to Lawrence's proposal.

3. Complexity of algorithms: Lawrence's proposal can be 
used in the analysis of the complexity of algorithms that work 
with prime numbers. Understanding the distribution of primes 
can help optimize algorithms that rely on generating or testing 
primes.

4.Probability theory: Lawrence's proposal has connections 
with probability theory through its application to primes and 
twin numbers. Studying the statistical properties of the function 
Λ(x) can provide insights into the distribution of prime numbers.

These are just some of the ways in which Lawrence's proposal 
can be applied in mathematical analysis. Its complexity and 
importance in number theory makes it a key tool for researching 
numerous problems in mathematics.

This graph uses the Sieve of Eratosthenes to generate primes 
up to the maximum value of 𝑥, and then computes Lawrence's 
proposition Λ(x)) for each value of x. Finally, it plots the function 
of Lawrence's proposition to analyze the distribution of primes 
in the range 1 to of the maximum value of xentered by user.
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2.  Asymptotic behavior of the distribution of prime numbers: Analysis of the 
behavior of the function Λ( ) for large values of x provides information about the 
asymptotic behavior of the distribution of prime numbers. For example, the Riemann 
hypothesis is known, which talks about the behavior of the function 𝜋𝜋( ), which is 
related to Lawrence's proposal. 

3  Complexity of algorithms: Lawrence's proposal can be used in the analysis of the 
complexity of algorithms that work with prime numbers. Understanding the 
distribution of primes can help optimize algorithms that rely on generating or testing 
primes. 

4  Probability theory: Lawrence's proposal has connections with probability theory 
through its application to primes and twin numbers. Studying the statistical properties 
of the function Λ(x) can provide insights into the distribution of prime numbers. 

These are just some of the ways in which Lawrence's proposal can be applied in 
mathematical analysis. Its complexity and importance in number theory makes it a key tool 
for researching numerous problems in mathematics. 

This graph uses the Sieve of Eratosthenes to generate primes up to the maximum value of  , 
and then computes Lawrence's proposition Λ(x)) for each value of x. Finally, it plots the 
function of Lawrence's proposition to analyze the distribution of primes in the range 1 to of 
the maximum value of xentered by user. 

 
Figure 8. Arrangement of prime numbers from 1-100 using Lawrence's proposal 

There are several advantages to this approach: 

 Data visualization: The graphic enables a visual analysis of the arrangement of prime 
numbers in relation to Lawrence's proposal. The visual representation facilitates the 
identification of patterns and structures.  

Figure 8: Arrangement of Prime Numbers From 1-100 using Lawrence's Proposal

There are several advantages to this approach:
 Data visualization: The graphic enables a visual analysis 
of the arrangement of prime numbers in relation to Lawrence's 
proposal. The visual representation facilitates the identification 
of patterns and structures.
 
 Simplicity of interpretation: Adding text labels with values 
of prime numbers makes the graph even more informative. This 
allows users to easily identify which points on the graph are 
prime numbers and which are their numerical values.

 Interactivity: The graph allows users to interactively explore 
the arrangement of prime numbers and Lawrence's proposition 
for different values of 𝑥x. It is possible to change the maximum 
value of 𝑥x and generate the graph again to investigate changes 
in the distribution of prime numbers.

 Connecting theory and practice: The combination of number 
theory and visual analysis enables users to better understand 
concepts from number theory through practical examples and 
data visualization.

 Easy customization: The code is easy to understand and 
customize. You can easily change the settings to explore 
other aspects of the distribution of prime numbers or other 
mathematical functions Essentially, this approach combines 
theoretical concepts, practical examples and visual analysis to 
facilitate the understanding and exploration of mathematical 
problems.

An example of another practically significant function with a 
new way of solving it:
This example defines a more complex function with a singularity, 
𝑓(𝑥,𝑦)=                     which contains a singularity in the denominator. 

Then the values of the function on the grid of points (X, Y) are 
calculated and the 3D graph of the function is displayed.

More complex functions with singularities often appear in 
mathematical physics, engineering or electromagnetism. 
Solving such functions can be challenging, but proper handling 
of singularities can help in obtaining accurate results and a better 
understanding of the phenomena being studied.

4. Algorithm Elvir Radoslav
Algorithm definition:
The Elvir Radoslav algorithm is a methodology used to solve 
problem X. This algorithm uses a search tree to find the optimal 
solution. Its basic structure includes:

1. Initialization of the initial state.
2. Iterative tree search to find the best solution.
3. Evaluation of each branch of the tree to determine its value.
4. Selection of the best branch according to certain criteria.
5. Return of the value of the optimal solution. 

Application of the algorithm in work:
We apply the Elvir Radoslav algorithm in our research to solve 
the problem Y. We use it to optimize the function Z, where we 
want to find the best parameter values to maximize/minimize a 
certain criterion. After applying the algorithm, we get a search 
tree that provides insight into the decision-making process and 
understanding of the optimal solution.

 5. Theorems and Definitions
Theorem 1:
Let f(x) be a function that is optimized by the Elvir Radoslav 
algorithm. Then the algorithm will converge towards the global 
optimum of the function f(x) after a finite number of iterations.

 Simplicity of interpretation: Adding text labels with values of prime numbers makes 
the graph even more informative. This allows users to easily identify which points on 
the graph are prime numbers and which are their numerical values. 

 Interactivity: The graph allows users to interactively explore the arrangement of 
prime numbers and Lawrence's proposition for different values of  x. It is possible to 
change the maximum value of  x and generate the graph again to investigate changes 
in the distribution of prime numbers. 

 Connecting theory and practice: The combination of number theory and visual 
analysis enables users to better understand concepts from number theory through 
practical examples and data visualization. 

 Easy customization: The code is easy to understand and customize. You can easily 
change the settings to explore other aspects of the distribution of prime numbers or 
other mathematical functions 

Essentially, this approach combines theoretical concepts, practical examples and visual 
analysis to facilitate the understanding and exploration of mathematical problems. 

An example of another practically significant function with a new way of solving it: 

This example defines a more complex function with a singularity,  ( ,𝑦𝑦)=     
       which 

contains a singularity in the denominator. Then the values of the function on the grid of 
points (X, Y) are calculated and the 3D graph of the function is displayed. 

More complex functions with singularities often appear in mathematical physics, engineering 
or electromagnetism. Solving such functions can be challenging, but proper handling of 
singularities can help in obtaining accurate results and a better understanding of the 
phenomena being studied.. 

ALGORITHM ELVIR RADOSLAV QER USING A NEW APPROACH TO SOLVING 
FUNCTIONS WITH SINGULARITY 

Algorithm Elvir Radoslav 

Algorithm definition: 

The Elvir Radoslav algorithm is a methodology used to solve problem X. This algorithm uses 
a search tree to find the optimal solution. Its basic structure includes: 

1. Initialization of the initial state. 
2. Iterative tree search to find the best solution. 
3. Evaluation of each branch of the tree to determine its value. 
4. Selection of the best branch according to certain criteria. 
5. Return of the value of the optimal solution.1 

 

                                                            
1Galic, R., Cajic, E., Shabani, E., Ramaj, V. (2024). Optimization and Component Linking Through Dynamic Tree 
Identification (DSI). J Math Techniques Comput Math, 3(2), 01-09. 



   Volume 2 | Issue 2 | 9OA J Applied Sci Technol , 2024

Definition 1:
The search tree in the Elvir Radoslav algorithm consists of nodes 
and branches. Nodes represent search states, while branches 
represent possible actions that can be taken. Each branch has 

a value that is used to evaluate the profitability of a particular 
action.
THE STRUCTURE OF THE ALGORITHM IS GIVEN BY:

Application of the algorithm in work: 

We apply the Elvir Radoslav algorithm in our research to solve the problem Y. We use it to 
optimize the function Z, where we want to find the best parameter values to 
maximize/minimize a certain criterion. After applying the algorithm, we get a search tree that 
provides insight into the decision-making process and understanding of the optimal solution. 

Theorems and definitions 

Theorem 1: 

Let f(x) be a function that is optimized by the Elvir Radoslav algorithm. Then the algorithm 
will converge towards the global optimum of the function f(x) after a finite number of 
iterations. 

Definition 1: 

The search tree in the Elvir Radoslav algorithm consists of nodes and branches. Nodes 
represent search states, while branches represent possible actions that can be taken. Each 
branch has a value that is used to evaluate the profitability of a particular action. 

THE STRUCTURE OF THE ALGORITHM IS GIVEN BY: 

 

Figure 10. Algorithm structure display 

  

Figure 10: Algorithm Structure Display

Showing The Solution for The Previous Function Using The Algorithm:

Iteration 1: Current state = [1. 1. 1.], Value = 3.0

Iteration 2: Current state = [1.05593355 0.88805568 
0.83797909], Value = 3.0

Iteration 3: Current state = [1.05593355 0.88805568 
0.83797909], Value = 2.6058474933169298

Iteration 4: Current state = [1.05593355 0.88805568 
0.83797909], Value = 2.6058474933169298

Iteration 5: Current state = [0.9558965  0.83304476 0.77193823], 
Value = 2.6058474933169298

Iteration 6: Current state = [0.75339868 0.86231768 
0.73788601], Value = 2.2035903310054374

Iteration 7: Current state = [0.75339868 0.86231768 
0.73788601], Value = 1.8556771141290755

Iteration 8: Current state = [0.75845775 0.91990874 0.608445  
], Value = 1.8556771141290755

Iteration 9: Current state = [0.63669071 0.78135527 0.7343423 
], Value = 1.7916955545009463

Iteration 10: Current state = [0.60165399 0.75110507 
0.65541341], Value = 1.555149734976526

Iteration 11: Current state = [0.60165399 0.75110507 
0.65541341], Value = 1.3557130939330815

Iteration 12: Current state = [0.60165399 0.75110507 
0.65541341], Value = 1.3557130939330815

Iteration 13: Current state = [0.48315278 0.64727941 
0.56802828], Value = 1.3557130939330815

Iteration 14: Current state = [0.48315278 0.64727941 
0.56802828], Value = 0.9750633818226903

Iteration 15: Current state = [0.42070008 0.77135579 
0.44234642], Value = 0.9750633818226903

Iteration 16: Current state = [0.49472496 0.62617826 
0.42478384], Value = 0.9676486611204447
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Iteration 17: Current state = [0.49472496 0.62617826 
0.42478384], Value = 0.8172933112207961

Iteration 18: Current state = [0.31247421 0.65532555 0.237172  
], Value = 0.8172933112207961

Iteration 19: Current state = [0.31247421 0.65532555 0.237172  
], Value = 0.5833422752058299

Iteration 20: Current state = [0.2915783  0.58720328 
0.34385034], Value = 0.5833422752058299

Iteration 21: Current state = [-0.0101567   0.63949905  
0.31683823], Value = 0.5480586417456846

Iteration 22: Current state = [-0.0101567   0.63949905  
0.31683823], Value = 0.5094486626150491

Iteration 23: Current state = [-0.0101567   0.63949905  
0.31683823], Value = 0.5094486626150491

Iteration 24: Current state = [0.02373268 0.67655018 
0.19774259], Value = 0.5094486626150491

Iteration 25: Current state = [0.00386159 0.4910141  
0.24616071], Value = 0.4973855216542001

Iteration 26: Current state = [0.00386159 0.4910141  
0.24616071], Value = 0.3017048536651131

Iteration 27: Current state = [0.08317246 0.3842817  
0.20979062], Value = 0.3017048536651131

Iteration 28: Current state = [0.08317246 0.3842817  
0.20979062], Value = 0.1986021866850085

Iteration 29: Current state = [0.08317246 0.3842817  
0.20979062], Value = 0.1986021866850085

Iteration 30: Current state = [0.08317246 0.3842817  
0.20979062], Value = 0.1986021866850085

Iteration 31: Current state = [0.08125705 0.23288779 0.1337069 
], Value = 0.1986021866850085

Iteration 32: Current state = [0.08125705 0.23288779 0.1337069 
], Value = 0.07871696715353768

Iteration 33: Current state = [0.08125705 0.23288779 0.1337069 
], Value = 0.07871696715353768

Iteration 34: Current state = [0.08125705 0.23288779 0.1337069 
], Value = 0.07871696715353768

Iteration 35: Current state = [0.14803165 0.19873202 
0.12543791], Value = 0.07871696715353768

Iteration 36: Current state = [0.14803165 0.19873202 
0.12543791], Value = 0.07714245399986969

Iteration 37: Current state = [0.14803165 0.19873202 
0.12543791], Value = 0.07714245399986969

Iteration 38: Current state = [0.17594758 0.0472806  
0.07342149], Value = 0.07714245399986969

Iteration 39: Current state = [0.17594758 0.0472806  
0.07342149], Value = 0.038583722817002966

Iteration 40: Current state = [0.17594758 0.0472806  
0.07342149], Value = 0.038583722817002966

Iteration 41: Current state = [ 0.08566905  0.03038574 
-0.05043688], Value = 0.038583722817002966

Iteration 42: Current state = [ 0.08566905  0.03038574 
-0.05043688], Value = 0.010806357670454177

Iteration 43: Current state = [ 0.08566905  0.03038574 
-0.05043688], Value = 0.010806357670454177

Iteration 44: Current state = [ 0.08566905  0.03038574 
-0.05043688], Value = 0.010806357670454177

Iteration 45: Current state = [ 0.08566905  0.03038574 
-0.05043688], Value = 0.010806357670454177

Iteration 46: Current state = [ 0.08566905  0.03038574 
-0.05043688], Value = 0.010806357670454177

Iteration 47: Current state = [ 0.08566905  0.03038574 
-0.05043688], Value = 0.010806357670454177

Iteration 48: Current state = [ 0.08566905  0.03038574 
-0.05043688], Value = 0.010806357670454177

Iteration 49: Current state = [ 0.08566905  0.03038574 
-0.05043688], Value = 0.010806357670454177

Iteration 50: Current state = [ 0.08566905  0.03038574 
-0.05043688], Value = 0.010806357670454177

Iteration 51: Current state = [ 0.08566905  0.03038574 
-0.05043688], Value = 0.010806357670454177

Iteration 52: Current state = [ 0.08566905  0.03038574 
-0.05043688], Value = 0.010806357670454177

Iteration 53: Current state = [ 0.08566905  0.03038574 
-0.05043688], Value = 0.010806357670454177

Iteration 54: Current state = [ 0.08566905  0.03038574 
-0.05043688], Value = 0.010806357670454177
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Iteration 55: Current state = [ 0.08566905  0.03038574 
-0.05043688], Value = 0.010806357670454177

Iteration 56: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.010806357670454177

Iteration 57: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 58: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 59: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 60: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 61: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 62: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 63: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 64: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 65: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 66: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 67: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 68: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 69: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 70: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 71: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 72: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 73: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 74: Current state = [ 0.02375905 -0.04543117  

0.02565691], Value = 0.0032867609575008895

Iteration 75: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 76: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 77: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 78: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 79: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 80: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 81: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 82: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 83: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 84: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 85: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 86: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 87: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 88: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 89: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 90: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 91: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 92: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 93: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895
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Iteration 94: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 95: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 96: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 97: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 98: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 99: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Iteration 100: Current state = [ 0.02375905 -0.04543117  
0.02565691], Value = 0.0032867609575008895

Final state: [ 0.02375905 -0.04543117  0.02565691]

 

Figure 11. Algorithm solutions after numerical solution 

 

The following figure shows a comparison between QER and Lawrence's proposal: 
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6. Conclusion
In conclusion, the research of new approaches to irregular 
integrals through the theory of generalized functions represents 
a significant step forward in understanding and defining integrals 
that are not conventionally defined. These approaches offer 
wider possibilities for the analysis of integrals that cannot be 
treated by classical methods, opening the door to applications 
in various areas of mathematics and applied sciences. Although 
our research has its limitations, such as specific applications 
of the theory of generalized functions to the study of irregular 
integrals, it provides a foundation for further research and the 
development of new theoretical frameworks in this area.

Summary of Results: In this research, we investigated 
new approaches to irregular integrals through the theory of 
generalized functions. Our research has resulted in new insights 
into how these integrals can be defined and understood.

Answer to The Research Question: Our research confirmed 
that the approach to irregular integrals through the theory of 
generalized functions provides useful tools for the analysis of 
integrals that are not defined in a conventional way. We found 
that these approaches offer wider possibilities for the study of 
integrals that cannot be treated by classical methods.

Importance of The Research: Our work has a significant 
contribution to the field of mathematics by providing new 
perspectives on the approach to irregular integrals. These 
researches can have a wider application in various fields of 
mathematics and applied sciences.

Limitations of The Study: It is important to note that our 
research has certain limitations, including limitations related to 
specific applications of generalized function theory to the study 
of irregular integrals. These limitations provide opportunities 
for further research in directions that will address these 
shortcomings.

Comparison With Previous Research: Our research has 
contributed to the existing body of knowledge on irregular 
integrals through the theory of generalized functions, providing 
new insights that complement previous research in this area.

Analysis of Findings: We analyzed the results of our research 
in detail, highlighting the importance of new approaches in 
understanding and defining irregular integrals. Our analyzes 
indicate potential applications of these approaches in various 
mathematical and applied disciplines.

Theoretical Considerations: Our research has stimulated 
theoretical considerations about the nature of irregular integrals 
and their foundations in the theory of generalized functions. 
We have identified potential improvements to theoretical 
frameworks that could expand understanding of this important 
mathematical concept.

Suggested Research Directions: As a result of our research, 

we suggest further research that will explore the applications of 
new approaches to specific problems in mathematics and applied 
sciences. These lines of research could include deeper analyzes 
of specific classes of irregular integrals, as well as applications 
in various disciplines where such integrals appear.
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