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Abstract
In this paper, for mathematical descriptions of electrical phenomena (voltage state) appearing in nervous system 
discrete-time Hopfield neural network is used. The equilibrium states of a discrete-time Hopfield neural network are 
interpreted as equilibriums of the nervous system. An equilibrium state for which the steady state is locally exponentially 
stable is interpreted as robust equilibrium of the nervous system. That is because after a small perturbation of the 
equilibrium steady state the network recover the equilibrium. A path of equilibrium states for which the steady states are 
locally exponentially stable is interpreted as a path of robust equilibriums of the nervous system. This is a way to follow 
in healthcare for transfer gradually the nervous system from a pathologic robust equilibrium into a non-pathologic 
robust equilibrium. For illustration, computed way of transfer is presented. 
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1. Introduction
A semi-discretization of the continuous-time Hopfield neural network has been made for obtain discrete-time neural networks. The result 
is the following discrete semi-dynamical system:
        

                                      

where h > 0 is the uniform discretization step size. It has been established that for any h > 0 the discrete-time neural network (1.1) faith-
fully preserve the characteristics of the continuous-time Hopfield neural network, i.e. the steady states and their stability properties. In 
Balint and..2008 pg.189 more general class of discrete- time Hopfield neural networks (which includes (1.1)) were considered. These 
are defined by the following discrete semi-dynamical system:

         
             

where ,                   denotes the external input,              is the interconnection matrix, gi : R → R, i = 1,2,...n ,represent the neuron in-
put-output activations. The system (1.2) were analyzed in Balint and..2008. It was assumed in general that the activation functions has 
the following properties: gi(0) = 0 for ., i = 1, 2,...n., | gi(s) ≤ 1 | for any                           ,.  and there exist ki > 0 such that 0 < g'i(s) < ki   
for any                            ,.  

The system (1.2) can be written in the matrix form:
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1.Introduction 

 A semi-discretization of the continuous-time Hopfield neural network has been made for obtain 
discrete-time neural networks. The result is the following discrete semi-dynamical system: 

    𝑥𝑥𝑝𝑝+1
𝑖𝑖 = 𝑒𝑒−𝑎𝑎𝑖𝑖×ℎ × 𝑥𝑥𝑝𝑝

𝑖𝑖 +1−𝑒𝑒−𝑎𝑎𝑖𝑖×ℎ

𝑎𝑎𝑖𝑖
× (∑ 𝑇𝑇𝑖𝑖𝑖𝑖

𝑛𝑛
𝑗𝑗=1 × 𝑔𝑔𝑗𝑗(𝑥𝑥𝑝𝑝

𝑖𝑖 ) + 𝐼𝐼𝑖𝑖)      𝑖𝑖 = 1,2, … 𝑛𝑛    𝑝𝑝 ∈ 𝑁𝑁                                          

(1.1)                                                  

where ℎ > 0   is the uniform discretization step size. It has been established that for any ℎ > 0 
the discrete-time neural network (1.1) faithfully preserve the characteristics of the continuous-
time Hopfield neural network, i.e. the steady states and their stability properties. In Balint 
and..2008 pg.189 more general class of discrete- time Hopfield neural networks (which includes 
(1.1)) were considered. These are defined by the following discrete semi-dynamical system: 

        𝑥𝑥𝑝𝑝+1
𝑖𝑖 = 𝑏𝑏𝑖𝑖 × 𝑥𝑥𝑝𝑝

𝑖𝑖 + ∑ 𝑇𝑇𝑖𝑖,𝑗̂𝑗
𝑛𝑛
𝑗𝑗=1 × 𝑔𝑔𝑗𝑗(𝑥𝑥𝑝𝑝

𝑖𝑖 ) + 𝐼𝐼𝑖̂𝑖                    𝑖𝑖 = 1,2, … 𝑛𝑛  ,      𝑝𝑝 ∈ 𝑁𝑁                                              
(1.2) 

where 𝑏𝑏𝑖𝑖 ∈ (0,1), 𝐼𝐼𝑖̂𝑖 denotes the external input, 𝑇̂𝑇= (𝑇𝑇𝑖𝑖,𝑗𝑗 )̂  is the interconnection matrix , 𝑔𝑔𝑖𝑖: 𝑅𝑅 →R 
, 𝑖𝑖 = 1,2, … 𝑛𝑛 ,represent the neuron input-output activations. The system(1.2)  were analyzed in 
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, 𝑖𝑖 = 1,2, … 𝑛𝑛 ,represent the neuron input-output activations. The system(1.2)  were analyzed in Balint and..2008. It was assumed in general that the activation functions has the following 

properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 
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1.Introduction 

 A semi-discretization of the continuous-time Hopfield neural network has been made for obtain 
discrete-time neural networks. The result is the following discrete semi-dynamical system: 

    𝑥𝑥𝑝𝑝+1
𝑖𝑖 = 𝑒𝑒−𝑎𝑎𝑖𝑖×ℎ × 𝑥𝑥𝑝𝑝

𝑖𝑖 +1−𝑒𝑒−𝑎𝑎𝑖𝑖×ℎ

𝑎𝑎𝑖𝑖
× (∑ 𝑇𝑇𝑖𝑖𝑖𝑖

𝑛𝑛
𝑗𝑗=1 × 𝑔𝑔𝑗𝑗(𝑥𝑥𝑝𝑝

𝑖𝑖 ) + 𝐼𝐼𝑖𝑖)      𝑖𝑖 = 1,2, … 𝑛𝑛    𝑝𝑝 ∈ 𝑁𝑁                                          

(1.1)                                                  

where ℎ > 0   is the uniform discretization step size. It has been established that for any ℎ > 0 
the discrete-time neural network (1.1) faithfully preserve the characteristics of the continuous-
time Hopfield neural network, i.e. the steady states and their stability properties. In Balint 
and..2008 pg.189 more general class of discrete- time Hopfield neural networks (which includes 
(1.1)) were considered. These are defined by the following discrete semi-dynamical system: 

        𝑥𝑥𝑝𝑝+1
𝑖𝑖 = 𝑏𝑏𝑖𝑖 × 𝑥𝑥𝑝𝑝

𝑖𝑖 + ∑ 𝑇𝑇𝑖𝑖,𝑗̂𝑗
𝑛𝑛
𝑗𝑗=1 × 𝑔𝑔𝑗𝑗(𝑥𝑥𝑝𝑝

𝑖𝑖 ) + 𝐼𝐼𝑖̂𝑖                    𝑖𝑖 = 1,2, … 𝑛𝑛  ,      𝑝𝑝 ∈ 𝑁𝑁                                              
(1.2) 

where 𝑏𝑏𝑖𝑖 ∈ (0,1), 𝐼𝐼𝑖̂𝑖 denotes the external input, 𝑇̂𝑇= (𝑇𝑇𝑖𝑖,𝑗𝑗 )̂  is the interconnection matrix , 𝑔𝑔𝑖𝑖: 𝑅𝑅 →R 
, 𝑖𝑖 = 1,2, … 𝑛𝑛 ,represent the neuron input-output activations. The system(1.2)  were analyzed in 
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when
,is given by 

Using the function F : Rn × Rn → Rn defined by                                              .             The semi- dynamical system (1.3) can be written in 
the form:
       
                                                                                                                                                                                                    (1.4)

An equilibrium  of the semi-dynamical system (1.4) by definition is a solution of the nonlinear equation
       
                                                                                                                                                                                                    (1.5)

This means that an equilibrium E is a couple                                  which verifies (1.5). If                                 is an equilibri-
um of (1.4) then X is called steady state and  is called external input of (1.4). The name steady state is justified by the fact that: if                                                                                                                                               
                                    is an equilibrium of (1.4) then keeping in (1.4) the initial condition                                            and the external input      
    equal to                                  the formula (1.4) generate  a constant sequence in which each term is equal to     . 
 
According to Balint and..2008 Theorem 5.15. pg.190. for any state             there exists an external input            such that the couple ( X,    
   ) is an equilibrium of the semi-dynamical system (1.4). The input   is given by the formula:

                                                                                                                                                                                                      (1.6)

where                    is the identity matrix?

On the other hand, it can happen that for the same external input    , there exist one, or several different voltage states     such that
                           are equilibriums for (1.4).

2. Neuro-Psychological Interpretation of the Equilibrium
From neuro-psychological point of view the mark of an equilibrium of the nervous system, described by the neural network (1.4), is the 
constancy of the voltage state of the neurons, providing that the external input is maintained constant. Therefore, is natural to interpret an 
equilibrium                 of the neural network as equilibrium of the nervous system. Hence, come the idea that in order to change a patho-
logic equilibrium                                of the nervous system, a new external electrical input      has to be applied. If the steady voltage state 
of the new non- pathologic equilibrium is                                  then it is natural to think that the new external electrical input    ,which 
has to be applied, has to be taken according to the formula (1.6), hoping that, after the external electrical input change                     the 
pathologic steady voltage state                                      ,    of the nervous system, evolve to the non-pathologic steady voltage state
                                      . Mathematically this neuro-psychological though is correct if the solution of the initial value problem   

                                                                                                                                                                                                     

tends to the steady voltage state                                        . 

This kind of reasoning make sense if              . That is because, if               then there is no change in input and the voltage state of the 
neural network will rest in the state      i.e. the voltage state evolution of the neural network is described by (2.1) is constant equal to    .

 Moreover, even if             and the reasoning make sense, it can happen that for the new electrical input     beside the non-pathologic 
voltage state      , there exist a second voltage state       ,and applying  the electrical input      beside the non-pathologic equilibrium                            
                       a second equilibrium                           appear. It can happen that the equilibrium               is pathologic too. Therefore, the 
problem is to find supplementary condition assuring that the solution of the initial value problem (2.1) tends to      a s it was planned. 

In Balint and. 2008 example (5.5) pg.197 provide computational simulation of the above-described phenomena.

Consider the discrete semi-dynamical system, obtained from the continuous-time system analyzed in Balint and..2008 example 5.2 
pg.184, by the semi-discretization technique.             
                         

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 
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properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
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′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   
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𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 
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dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1
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According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
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𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
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On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
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        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1
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term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
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The system (1.2) can be written in the matrix form: 
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where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
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2, … , 𝑥𝑥𝑝𝑝
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𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1
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where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 
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From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
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where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 
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properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
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dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1
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where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
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From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
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Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 
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dynamical system (1.3) can be written in the  form: 
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This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
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where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 
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From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 
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described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
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where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1

0 = (𝑥𝑥0,1
1 , 𝑥𝑥0,1

2 , … , 𝑥𝑥0,1
𝑛𝑛 )𝑇𝑇 and the external 

input 𝐼𝐼  equal to 𝐼𝐼0̂ = (𝐼𝐼1
0,̂ 𝐼𝐼2

0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 

term is equal to 𝑋𝑋1
0.  

According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
𝑘𝑘𝑖𝑖 > 0   such that  0 < 𝑔𝑔𝑖𝑖

′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
1, 𝑥𝑥𝑝𝑝

2, … , 𝑥𝑥𝑝𝑝
𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 

        𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼 )                                                                                             (1.4) 

An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 

        𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋                                                                                                         (1.5). 

This means that an equilibrium 𝐸𝐸 is a couple 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 which verifies (1.5). If 𝐸𝐸 =
(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
equilibrium of (1.4) then keeping in (1.4) the initial value 𝑋𝑋1
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0,̂ … 𝐼𝐼𝑛𝑛
0̂ )𝑇𝑇 the formula (1.4) generate  a constant sequence in which each 
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According to Balint and..2008 Theorem 5.15.pg.190. for any state 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛 there exists an external 
input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 such that the couple (𝑋𝑋, 𝐼𝐼 ) is an equilibrium of the semi-dynamical system (1.4).The 
input 𝐼𝐼 is given by the formula: 

𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

Balint and..2008. It was assumed in general that the activation functions has the following 
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An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
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input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
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where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 
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described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
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From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

pathologic equilibrium  is  𝑋𝑋1 = (𝑥𝑥1
1, 𝑥𝑥1

2 … 𝑥𝑥1
𝑛𝑛)𝑇𝑇 then it is natural to think that the new external 

electrical input  𝐼𝐼1̂  ,which has to be applied, has to be taken according to the formula (1.6), hoping 
that, after the external electrical input change  𝐼𝐼0̂  →   𝐼𝐼1̂  ,the pathologic steady voltage state 𝑋𝑋0 =
(𝑥𝑥0

1, 𝑥𝑥0
2 … 𝑥𝑥0

𝑛𝑛)𝑇𝑇 ,of the nervous system, evolve to the non-pathologic steady voltage state 𝑋𝑋1 =
(𝑥𝑥1

1, 𝑥𝑥1
2 … 𝑥𝑥1

𝑛𝑛)𝑇𝑇. Mathematically this neuro-psychological though is correct if the solution of the 
initial value problem    

𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼1̂ )   ,    𝑋𝑋1 = 𝑋𝑋0 = (𝑥𝑥0
1, 𝑥𝑥0

2, … , 𝑥𝑥0
𝑛𝑛)𝑇𝑇                                                 (2.1) 

tends to the steady voltage state 𝑋𝑋1 = (𝑥𝑥1
1, 𝑥𝑥1

2 … 𝑥𝑥1
𝑛𝑛)𝑇𝑇

.  
This kind of reasoning make sense if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  . That is because, if   𝐼𝐼0̂ = 𝐼𝐼1̂    then there is no  change 
in input and the voltage state of the neural network will rest in the state 𝑋𝑋0 i.e. the voltage state 
evolution of the neural network is described by (2.1) is constant equal to 𝑋𝑋0. 
 Moreover, even if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  and the reasoning make sense, it can happen that for the new electrical 
input 𝐼𝐼1̂   ,beside the non-pathologic voltage state 𝑋𝑋1 , there exist a second voltage state 𝑋𝑋2,and 
applying  the electrical input 𝐼𝐼1̂ beside the non-pathologic equilibrium 𝐸𝐸1 = ( 𝑋𝑋1 , 𝐼𝐼1̂ ) a second 
equilibrium 𝐸𝐸2 = (𝑋𝑋2, 𝐼𝐼1̂)  appear. It can happen that the equilibrium (𝑋𝑋2, 𝐼𝐼1̂) is pathologic too. 
Therefore the problem is to find supplementary condition assuring that the solution of the initial 
value problem (2.1) tends to 1X as it was planned.  
In Balint and.. 2008 example (5.5) pg.197 provide computational simulation of the above-
described phenomena. 
Consider the discrete semi-dynamical system, obtained from the continuous-time system 
analyzed in Balint and..2008 example 5.2 pg.184, by the semi-discretization technique : 

 𝑥𝑥𝑝𝑝+1
1 = 𝑒𝑒−ℎ × 𝑥𝑥𝑝𝑝

1 + (1 − 𝑒𝑒−ℎ) × (17×𝑙𝑙𝑙𝑙4
15 × 𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑥𝑥𝑝𝑝
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1 + 𝐼𝐼2
1̂)           (2.2)                                                                                                                               

For 2.0h , and    𝐼𝐼0̂ = (0,0)𝑇𝑇,  for (2.2) the following steady states were found: 𝑋𝑋0 = (0,0)𝑇𝑇 , 
𝑋𝑋1 = (𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝑋𝑋2 = (−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇. 

If the voltage of the neural network is in the steady state 𝑋𝑋0 = (0,0)𝑇𝑇and the value of the 
external input is maintained 𝐼𝐼0̂ = (0,0)𝑇𝑇 then the voltage rest constant. This phenomenon is 
illustrated on figures 2.1 and 2.2  

Balint and..2008. It was assumed in general that the activation functions has the following 
properties:  𝑔𝑔𝑖𝑖(0) = 0  for 𝑖𝑖 = 1,2, … 𝑛𝑛. ,  |𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ 1 |      for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛. and there exist 
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′(𝑠𝑠) < 𝑘𝑘𝑖𝑖   for any 𝑠𝑠 ∈ 𝑅𝑅  , 𝑖𝑖 = 1,2, … 𝑛𝑛.   

The system (1.2) can be written in the matrix form: 

        𝑋𝑋𝑝𝑝+1 = 𝐵𝐵 × 𝑋𝑋𝑝𝑝 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋𝑝𝑝) + 𝐼𝐼                                                             (1.3) 

where: 𝑋𝑋𝑝𝑝 = (𝑥𝑥𝑝𝑝
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𝑛𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, 𝑏𝑏2, … 𝑏𝑏𝑛𝑛) ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛  ,𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂, … 𝐼𝐼𝑛̂𝑛)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛  and 

𝐺𝐺: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 ,is given by 𝐺𝐺(𝑋𝑋) = ( 𝑔𝑔1(𝑥𝑥1),  𝑔𝑔2(𝑥𝑥2), …  𝑔𝑔𝑛𝑛(𝑥𝑥𝑛𝑛))𝑇𝑇. 

Using the function  𝐹𝐹: 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛   defined by  𝐹𝐹(𝑋𝑋, 𝐼𝐼 ) = 𝐵𝐵 × 𝑋𝑋 + 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋) + 𝐼𝐼 . The semi- 
dynamical system (1.3) can be written in the  form: 
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An equilibrium 𝐸𝐸 of the semi-dynamical system (1.4) by definition is a solution of the nonlinear 
equation 
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(𝑋𝑋, 𝐼𝐼 ) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an equilibrium of (1.4) then 𝑋𝑋 is called steady state and 𝐼𝐼 is called external 
input of (1.4). The name steady state is justified by the fact that: if  (𝑋𝑋0, 𝐼𝐼0̂) ∈ 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑛𝑛 is an 
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𝐼𝐼 = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋 − 𝑇̂𝑇 × 𝐺𝐺(𝑋𝑋)                                                                                                 (1.6) 

where   𝐼𝐼𝑑𝑑 ∈ 𝑀𝑀𝑛𝑛×𝑛𝑛 is the identity matrix. 

On the other hand it can happen that for the same external input  𝐼𝐼0̂  , there exist one, or several 
different voltage states 𝑋𝑋𝑗𝑗  such that     𝐸𝐸𝑗𝑗,𝐼𝐼0̂ = (𝑋𝑋𝑗𝑗, 𝐼𝐼0̂)  are equilibriums for (1.4). 

2.Neuro-psychological interpretation of the equilibrium.  
 

From neuro-psychological point of view the mark of an equilibrium of the nervous system, 
described by the neural network (1.4), is the constancy of the voltage state of the neurons, 
providing that the external input is maintained constant. Therefore is natural to interpret an 
equilibrium 𝐸𝐸 = (𝑋𝑋, 𝐼𝐼 ) of the neural network as equilibrium of the nervous system. Hence, come 
the idea that in order to change a pathologic equilibrium 𝐸𝐸0,𝐼𝐼0̂ = (𝑋𝑋0, 𝐼𝐼0̂) of the nervous system, a 
new external electrical input 𝐼𝐼1̂  has to be applied. If the steady voltage state of the new non- 

pathologic equilibrium  is  𝑋𝑋1 = (𝑥𝑥1
1, 𝑥𝑥1

2 … 𝑥𝑥1
𝑛𝑛)𝑇𝑇 then it is natural to think that the new external 

electrical input  𝐼𝐼1̂  ,which has to be applied, has to be taken according to the formula (1.6), hoping 
that, after the external electrical input change  𝐼𝐼0̂  →   𝐼𝐼1̂  ,the pathologic steady voltage state 𝑋𝑋0 =
(𝑥𝑥0

1, 𝑥𝑥0
2 … 𝑥𝑥0

𝑛𝑛)𝑇𝑇 ,of the nervous system, evolve to the non-pathologic steady voltage state 𝑋𝑋1 =
(𝑥𝑥1

1, 𝑥𝑥1
2 … 𝑥𝑥1

𝑛𝑛)𝑇𝑇. Mathematically this neuro-psychological though is correct if the solution of the 
initial value problem    

𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼1̂ )   ,    𝑋𝑋1 = 𝑋𝑋0 = (𝑥𝑥0
1, 𝑥𝑥0

2, … , 𝑥𝑥0
𝑛𝑛)𝑇𝑇                                                 (2.1) 

tends to the steady voltage state 𝑋𝑋1 = (𝑥𝑥1
1, 𝑥𝑥1

2 … 𝑥𝑥1
𝑛𝑛)𝑇𝑇

.  
This kind of reasoning make sense if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  . That is because, if   𝐼𝐼0̂ = 𝐼𝐼1̂    then there is no  change 
in input and the voltage state of the neural network will rest in the state 𝑋𝑋0 i.e. the voltage state 
evolution of the neural network is described by (2.1) is constant equal to 𝑋𝑋0. 
 Moreover, even if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  and the reasoning make sense, it can happen that for the new electrical 
input 𝐼𝐼1̂   ,beside the non-pathologic voltage state 𝑋𝑋1 , there exist a second voltage state 𝑋𝑋2,and 
applying  the electrical input 𝐼𝐼1̂ beside the non-pathologic equilibrium 𝐸𝐸1 = ( 𝑋𝑋1 , 𝐼𝐼1̂ ) a second 
equilibrium 𝐸𝐸2 = (𝑋𝑋2, 𝐼𝐼1̂)  appear. It can happen that the equilibrium (𝑋𝑋2, 𝐼𝐼1̂) is pathologic too. 
Therefore the problem is to find supplementary condition assuring that the solution of the initial 
value problem (2.1) tends to 1X as it was planned.  
In Balint and.. 2008 example (5.5) pg.197 provide computational simulation of the above-
described phenomena. 
Consider the discrete semi-dynamical system, obtained from the continuous-time system 
analyzed in Balint and..2008 example 5.2 pg.184, by the semi-discretization technique : 

 𝑥𝑥𝑝𝑝+1
1 = 𝑒𝑒−ℎ × 𝑥𝑥𝑝𝑝

1 + (1 − 𝑒𝑒−ℎ) × (17×𝑙𝑙𝑙𝑙4
15 × 𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑥𝑥𝑝𝑝
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1̂)           (2.2)                                                                                                                               

For 2.0h , and    𝐼𝐼0̂ = (0,0)𝑇𝑇,  for (2.2) the following steady states were found: 𝑋𝑋0 = (0,0)𝑇𝑇 , 
𝑋𝑋1 = (𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝑋𝑋2 = (−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇. 

If the voltage of the neural network is in the steady state 𝑋𝑋0 = (0,0)𝑇𝑇and the value of the 
external input is maintained 𝐼𝐼0̂ = (0,0)𝑇𝑇 then the voltage rest constant. This phenomenon is 
illustrated on figures 2.1 and 2.2  
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in input and the voltage state of the neural network will rest in the state 𝑋𝑋0 i.e. the voltage state 
evolution of the neural network is described by (2.1) is constant equal to 𝑋𝑋0. 
 Moreover, even if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  and the reasoning make sense, it can happen that for the new electrical 
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equilibrium 𝐸𝐸2 = (𝑋𝑋2, 𝐼𝐼1̂)  appear. It can happen that the equilibrium (𝑋𝑋2, 𝐼𝐼1̂) is pathologic too. 
Therefore the problem is to find supplementary condition assuring that the solution of the initial 
value problem (2.1) tends to 1X as it was planned.  
In Balint and.. 2008 example (5.5) pg.197 provide computational simulation of the above-
described phenomena. 
Consider the discrete semi-dynamical system, obtained from the continuous-time system 
analyzed in Balint and..2008 example 5.2 pg.184, by the semi-discretization technique : 
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Therefore the problem is to find supplementary condition assuring that the solution of the initial 
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In Balint and.. 2008 example (5.5) pg.197 provide computational simulation of the above-
described phenomena. 
Consider the discrete semi-dynamical system, obtained from the continuous-time system 
analyzed in Balint and..2008 example 5.2 pg.184, by the semi-discretization technique : 

 𝑥𝑥𝑝𝑝+1
1 = 𝑒𝑒−ℎ × 𝑥𝑥𝑝𝑝

1 + (1 − 𝑒𝑒−ℎ) × (17×𝑙𝑙𝑙𝑙4
15 × 𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑥𝑥𝑝𝑝

2 + 𝐼𝐼1
1̂) , 𝑥𝑥𝑝𝑝+1

2 = 𝑒𝑒−ℎ × 𝑥𝑥𝑝𝑝
2 + (1 − 𝑒𝑒−ℎ) × (17×𝑙𝑙𝑙𝑙4

15 ×
𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑥𝑥𝑝𝑝

1 + 𝐼𝐼2
1̂)           (2.2)                                                                                                                               

For 2.0h , and    𝐼𝐼0̂ = (0,0)𝑇𝑇,  for (2.2) the following steady states were found: 𝑋𝑋0 = (0,0)𝑇𝑇 , 
𝑋𝑋1 = (𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝑋𝑋2 = (−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇. 

If the voltage of the neural network is in the steady state 𝑋𝑋0 = (0,0)𝑇𝑇and the value of the 
external input is maintained 𝐼𝐼0̂ = (0,0)𝑇𝑇 then the voltage rest constant. This phenomenon is 
illustrated on figures 2.1 and 2.2  

pathologic equilibrium  is  𝑋𝑋1 = (𝑥𝑥1
1, 𝑥𝑥1

2 … 𝑥𝑥1
𝑛𝑛)𝑇𝑇 then it is natural to think that the new external 

electrical input  𝐼𝐼1̂  ,which has to be applied, has to be taken according to the formula (1.6), hoping 
that, after the external electrical input change  𝐼𝐼0̂  →   𝐼𝐼1̂  ,the pathologic steady voltage state 𝑋𝑋0 =
(𝑥𝑥0

1, 𝑥𝑥0
2 … 𝑥𝑥0

𝑛𝑛)𝑇𝑇 ,of the nervous system, evolve to the non-pathologic steady voltage state 𝑋𝑋1 =
(𝑥𝑥1

1, 𝑥𝑥1
2 … 𝑥𝑥1

𝑛𝑛)𝑇𝑇. Mathematically this neuro-psychological though is correct if the solution of the 
initial value problem    

𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼1̂ )   ,    𝑋𝑋1 = 𝑋𝑋0 = (𝑥𝑥0
1, 𝑥𝑥0

2, … , 𝑥𝑥0
𝑛𝑛)𝑇𝑇                                                 (2.1) 

tends to the steady voltage state 𝑋𝑋1 = (𝑥𝑥1
1, 𝑥𝑥1

2 … 𝑥𝑥1
𝑛𝑛)𝑇𝑇

.  
This kind of reasoning make sense if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  . That is because, if   𝐼𝐼0̂ = 𝐼𝐼1̂    then there is no  change 
in input and the voltage state of the neural network will rest in the state 𝑋𝑋0 i.e. the voltage state 
evolution of the neural network is described by (2.1) is constant equal to 𝑋𝑋0. 
 Moreover, even if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  and the reasoning make sense, it can happen that for the new electrical 
input 𝐼𝐼1̂   ,beside the non-pathologic voltage state 𝑋𝑋1 , there exist a second voltage state 𝑋𝑋2,and 
applying  the electrical input 𝐼𝐼1̂ beside the non-pathologic equilibrium 𝐸𝐸1 = ( 𝑋𝑋1 , 𝐼𝐼1̂ ) a second 
equilibrium 𝐸𝐸2 = (𝑋𝑋2, 𝐼𝐼1̂)  appear. It can happen that the equilibrium (𝑋𝑋2, 𝐼𝐼1̂) is pathologic too. 
Therefore the problem is to find supplementary condition assuring that the solution of the initial 
value problem (2.1) tends to 1X as it was planned.  
In Balint and.. 2008 example (5.5) pg.197 provide computational simulation of the above-
described phenomena. 
Consider the discrete semi-dynamical system, obtained from the continuous-time system 
analyzed in Balint and..2008 example 5.2 pg.184, by the semi-discretization technique : 

 𝑥𝑥𝑝𝑝+1
1 = 𝑒𝑒−ℎ × 𝑥𝑥𝑝𝑝

1 + (1 − 𝑒𝑒−ℎ) × (17×𝑙𝑙𝑙𝑙4
15 × 𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑥𝑥𝑝𝑝

2 + 𝐼𝐼1
1̂) , 𝑥𝑥𝑝𝑝+1

2 = 𝑒𝑒−ℎ × 𝑥𝑥𝑝𝑝
2 + (1 − 𝑒𝑒−ℎ) × (17×𝑙𝑙𝑙𝑙4

15 ×
𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑥𝑥𝑝𝑝

1 + 𝐼𝐼2
1̂)           (2.2)                                                                                                                               

For 2.0h , and    𝐼𝐼0̂ = (0,0)𝑇𝑇,  for (2.2) the following steady states were found: 𝑋𝑋0 = (0,0)𝑇𝑇 , 
𝑋𝑋1 = (𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝑋𝑋2 = (−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇. 

If the voltage of the neural network is in the steady state 𝑋𝑋0 = (0,0)𝑇𝑇and the value of the 
external input is maintained 𝐼𝐼0̂ = (0,0)𝑇𝑇 then the voltage rest constant. This phenomenon is 
illustrated on figures 2.1 and 2.2  

pathologic equilibrium  is  𝑋𝑋1 = (𝑥𝑥1
1, 𝑥𝑥1

2 … 𝑥𝑥1
𝑛𝑛)𝑇𝑇 then it is natural to think that the new external 

electrical input  𝐼𝐼1̂  ,which has to be applied, has to be taken according to the formula (1.6), hoping 
that, after the external electrical input change  𝐼𝐼0̂  →   𝐼𝐼1̂  ,the pathologic steady voltage state 𝑋𝑋0 =
(𝑥𝑥0

1, 𝑥𝑥0
2 … 𝑥𝑥0

𝑛𝑛)𝑇𝑇 ,of the nervous system, evolve to the non-pathologic steady voltage state 𝑋𝑋1 =
(𝑥𝑥1

1, 𝑥𝑥1
2 … 𝑥𝑥1

𝑛𝑛)𝑇𝑇. Mathematically this neuro-psychological though is correct if the solution of the 
initial value problem    

𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼1̂ )   ,    𝑋𝑋1 = 𝑋𝑋0 = (𝑥𝑥0
1, 𝑥𝑥0

2, … , 𝑥𝑥0
𝑛𝑛)𝑇𝑇                                                 (2.1) 

tends to the steady voltage state 𝑋𝑋1 = (𝑥𝑥1
1, 𝑥𝑥1

2 … 𝑥𝑥1
𝑛𝑛)𝑇𝑇

.  
This kind of reasoning make sense if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  . That is because, if   𝐼𝐼0̂ = 𝐼𝐼1̂    then there is no  change 
in input and the voltage state of the neural network will rest in the state 𝑋𝑋0 i.e. the voltage state 
evolution of the neural network is described by (2.1) is constant equal to 𝑋𝑋0. 
 Moreover, even if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  and the reasoning make sense, it can happen that for the new electrical 
input 𝐼𝐼1̂   ,beside the non-pathologic voltage state 𝑋𝑋1 , there exist a second voltage state 𝑋𝑋2,and 
applying  the electrical input 𝐼𝐼1̂ beside the non-pathologic equilibrium 𝐸𝐸1 = ( 𝑋𝑋1 , 𝐼𝐼1̂ ) a second 
equilibrium 𝐸𝐸2 = (𝑋𝑋2, 𝐼𝐼1̂)  appear. It can happen that the equilibrium (𝑋𝑋2, 𝐼𝐼1̂) is pathologic too. 
Therefore the problem is to find supplementary condition assuring that the solution of the initial 
value problem (2.1) tends to 1X as it was planned.  
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If the voltage of the neural network is in the steady state 𝑋𝑋0 = (0,0)𝑇𝑇and the value of the 
external input is maintained 𝐼𝐼0̂ = (0,0)𝑇𝑇 then the voltage rest constant. This phenomenon is 
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                   Fig.2.1.x1 versus p in  𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)                               Fig.2.2.x2 versus p in  𝐸𝐸0 =
(𝑋𝑋0, 𝐼𝐼0̂) 

 
These figures show that maintaining the external input value 𝐼𝐼0̂ = (0,0)𝑇𝑇 , the voltage of the 
neural network is constant equal to  𝑋𝑋0 = (0,0)𝑇𝑇. 

According to the neuro-psychological interpretation, this type of the neural network voltage 
behavior indicates that 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)   is an equilibrium of the corresponding nervous system. 

Assume that the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is non -pathologic and the equilibrium 𝐸𝐸3 = (𝑋𝑋3, 𝐼𝐼3̂) 
,with 𝑋𝑋3 = (0.1,0.1)𝑇𝑇   and 𝐼𝐼3̂ = (−0.1565911736, −0.1565911736)𝑇𝑇, is pathologic and a 
neurological or psychological intervention is needed. The change of the external electrical input 
represents a possible intervention. Assume that the medical decision is to transform the 
pathologic equilibrium 𝐸𝐸3 = (𝑋𝑋3, 𝐼𝐼3̂) into the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) by changing the external 

electrical input 𝐼𝐼3̂ = (−0.1565911736, −0.1565911736)𝑇𝑇 → 𝐼𝐼0̂ = (0,0)𝑇𝑇 at the moment of 
time  𝑝𝑝1 = 0. The effect of the external input change 𝐼𝐼3̂ → 𝐼𝐼0̂ is represented on figures 2.3 and 2.4. 
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electrical input 𝐼𝐼3̂ = (−0.1565911736, −0.1565911736)𝑇𝑇 → 𝐼𝐼0̂ = (0,0)𝑇𝑇 at the moment of 
time  𝑝𝑝1 = 0. The effect of the external input change 𝐼𝐼3̂ → 𝐼𝐼0̂ is represented on figures 2.3 and 2.4. 
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This kind of reasoning make sense if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  . That is because, if   𝐼𝐼0̂ = 𝐼𝐼1̂    then there is no  change 
in input and the voltage state of the neural network will rest in the state 𝑋𝑋0 i.e. the voltage state 
evolution of the neural network is described by (2.1) is constant equal to 𝑋𝑋0. 
 Moreover, even if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  and the reasoning make sense, it can happen that for the new electrical 
input 𝐼𝐼1̂   ,beside the non-pathologic voltage state 𝑋𝑋1 , there exist a second voltage state 𝑋𝑋2,and 
applying  the electrical input 𝐼𝐼1̂ beside the non-pathologic equilibrium 𝐸𝐸1 = ( 𝑋𝑋1 , 𝐼𝐼1̂ ) a second 
equilibrium 𝐸𝐸2 = (𝑋𝑋2, 𝐼𝐼1̂)  appear. It can happen that the equilibrium (𝑋𝑋2, 𝐼𝐼1̂) is pathologic too. 
Therefore the problem is to find supplementary condition assuring that the solution of the initial 
value problem (2.1) tends to 1X as it was planned.  
In Balint and.. 2008 example (5.5) pg.197 provide computational simulation of the above-
described phenomena. 
Consider the discrete semi-dynamical system, obtained from the continuous-time system 
analyzed in Balint and..2008 example 5.2 pg.184, by the semi-discretization technique : 
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For 2.0h , and    𝐼𝐼0̂ = (0,0)𝑇𝑇,  for (2.2) the following steady states were found: 𝑋𝑋0 = (0,0)𝑇𝑇 , 
𝑋𝑋1 = (𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝑋𝑋2 = (−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇. 

If the voltage of the neural network is in the steady state 𝑋𝑋0 = (0,0)𝑇𝑇and the value of the 
external input is maintained 𝐼𝐼0̂ = (0,0)𝑇𝑇 then the voltage rest constant. This phenomenon is 
illustrated on figures 2.1 and 2.2  
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                   Fig.2.1.x1 versus p in  𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)                               Fig.2.2.x2 versus p in  𝐸𝐸0 =
(𝑋𝑋0, 𝐼𝐼0̂) 

 
These figures show that maintaining the external input value 𝐼𝐼0̂ = (0,0)𝑇𝑇 , the voltage of the 
neural network is constant equal to  𝑋𝑋0 = (0,0)𝑇𝑇. 

According to the neuro-psychological interpretation, this type of the neural network voltage 
behavior indicates that 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)   is an equilibrium of the corresponding nervous system. 

Assume that the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is non -pathologic and the equilibrium 𝐸𝐸3 = (𝑋𝑋3, 𝐼𝐼3̂) 
,with 𝑋𝑋3 = (0.1,0.1)𝑇𝑇   and 𝐼𝐼3̂ = (−0.1565911736, −0.1565911736)𝑇𝑇, is pathologic and a 
neurological or psychological intervention is needed. The change of the external electrical input 
represents a possible intervention. Assume that the medical decision is to transform the 
pathologic equilibrium 𝐸𝐸3 = (𝑋𝑋3, 𝐼𝐼3̂) into the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) by changing the external 

electrical input 𝐼𝐼3̂ = (−0.1565911736, −0.1565911736)𝑇𝑇 → 𝐼𝐼0̂ = (0,0)𝑇𝑇 at the moment of 
time  𝑝𝑝1 = 0. The effect of the external input change 𝐼𝐼3̂ → 𝐼𝐼0̂ is represented on figures 2.3 and 2.4. 
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These figures show that after the input change the pathologic voltage state 𝑋𝑋3 = (0.1,0.1)𝑇𝑇 do not 
evolve to the non-pathologic voltage state voltage state 𝑋𝑋0 = (0,0)𝑇𝑇as it was expected. The 
mathematical explanation is:  the steady state 𝑋𝑋1 = (𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇 is locally exponentially stable and 
the steady state 𝑋𝑋3 = (0.1,0.1)𝑇𝑇 belongs to the region of attraction of the steady state  𝑋𝑋1 =
(𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇.  
In the same time, the steady voltage state 𝑋𝑋0 = (0,0)𝑇𝑇is unstable and repulsive.  
The unstable character of steady voltage state 𝑋𝑋0 = (0,0)𝑇𝑇   means that for any small perturbation 
of the initial condition, the solution of the perturbed initial value problem :  
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do not recover the steady state 𝑋𝑋0 = T)0,0( .  
The next figures illustrate the instability and the repulsive character of the equilibrium 𝐸𝐸0 .   
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pathologic equilibrium  is  𝑋𝑋1 = (𝑥𝑥1
1, 𝑥𝑥1

2 … 𝑥𝑥1
𝑛𝑛)𝑇𝑇 then it is natural to think that the new external 

electrical input  𝐼𝐼1̂  ,which has to be applied, has to be taken according to the formula (1.6), hoping 
that, after the external electrical input change  𝐼𝐼0̂  →   𝐼𝐼1̂  ,the pathologic steady voltage state 𝑋𝑋0 =
(𝑥𝑥0

1, 𝑥𝑥0
2 … 𝑥𝑥0

𝑛𝑛)𝑇𝑇 ,of the nervous system, evolve to the non-pathologic steady voltage state 𝑋𝑋1 =
(𝑥𝑥1

1, 𝑥𝑥1
2 … 𝑥𝑥1

𝑛𝑛)𝑇𝑇. Mathematically this neuro-psychological though is correct if the solution of the 
initial value problem    

𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼1̂ )   ,    𝑋𝑋1 = 𝑋𝑋0 = (𝑥𝑥0
1, 𝑥𝑥0

2, … , 𝑥𝑥0
𝑛𝑛)𝑇𝑇                                                 (2.1) 

tends to the steady voltage state 𝑋𝑋1 = (𝑥𝑥1
1, 𝑥𝑥1

2 … 𝑥𝑥1
𝑛𝑛)𝑇𝑇

.  
This kind of reasoning make sense if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  . That is because, if   𝐼𝐼0̂ = 𝐼𝐼1̂    then there is no  change 
in input and the voltage state of the neural network will rest in the state 𝑋𝑋0 i.e. the voltage state 
evolution of the neural network is described by (2.1) is constant equal to 𝑋𝑋0. 
 Moreover, even if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  and the reasoning make sense, it can happen that for the new electrical 
input 𝐼𝐼1̂   ,beside the non-pathologic voltage state 𝑋𝑋1 , there exist a second voltage state 𝑋𝑋2,and 
applying  the electrical input 𝐼𝐼1̂ beside the non-pathologic equilibrium 𝐸𝐸1 = ( 𝑋𝑋1 , 𝐼𝐼1̂ ) a second 
equilibrium 𝐸𝐸2 = (𝑋𝑋2, 𝐼𝐼1̂)  appear. It can happen that the equilibrium (𝑋𝑋2, 𝐼𝐼1̂) is pathologic too. 
Therefore the problem is to find supplementary condition assuring that the solution of the initial 
value problem (2.1) tends to 1X as it was planned.  
In Balint and.. 2008 example (5.5) pg.197 provide computational simulation of the above-
described phenomena. 
Consider the discrete semi-dynamical system, obtained from the continuous-time system 
analyzed in Balint and..2008 example 5.2 pg.184, by the semi-discretization technique : 

 𝑥𝑥𝑝𝑝+1
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1 + 𝐼𝐼2
1̂)           (2.2)                                                                                                                               

For 2.0h , and    𝐼𝐼0̂ = (0,0)𝑇𝑇,  for (2.2) the following steady states were found: 𝑋𝑋0 = (0,0)𝑇𝑇 , 
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If the voltage of the neural network is in the steady state 𝑋𝑋0 = (0,0)𝑇𝑇and the value of the 
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These figures show that after the input change the pathologic voltage state 𝑋𝑋3 = (0.1,0.1)𝑇𝑇 do not 
evolve to the non-pathologic voltage state voltage state 𝑋𝑋0 = (0,0)𝑇𝑇as it was expected. The 
mathematical explanation is:  the steady state 𝑋𝑋1 = (𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇 is locally exponentially stable and 
the steady state 𝑋𝑋3 = (0.1,0.1)𝑇𝑇 belongs to the region of attraction of the steady state  𝑋𝑋1 =
(𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇.  
In the same time, the steady voltage state 𝑋𝑋0 = (0,0)𝑇𝑇is unstable and repulsive.  
The unstable character of steady voltage state 𝑋𝑋0 = (0,0)𝑇𝑇   means that for any small perturbation 
of the initial condition, the solution of the perturbed initial value problem :  
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do not recover the steady state 𝑋𝑋0 = T)0,0( .  
The next figures illustrate the instability and the repulsive character of the equilibrium 𝐸𝐸0 .   
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In the same time, the steady voltage state                         is unstable and repulsive. 

The unstable character of steady voltage state   means that for any small perturbation of the initial condition, the solution of the perturbed 
initial value problem: 

                                               
                                                                                                                                                                                                           (2.3)

do not recover the steady state                        . 

The next figures illustrate the instability and the repulsive character of the equilibrium  . 

pathologic equilibrium  is  𝑋𝑋1 = (𝑥𝑥1
1, 𝑥𝑥1

2 … 𝑥𝑥1
𝑛𝑛)𝑇𝑇 then it is natural to think that the new external 

electrical input  𝐼𝐼1̂  ,which has to be applied, has to be taken according to the formula (1.6), hoping 
that, after the external electrical input change  𝐼𝐼0̂  →   𝐼𝐼1̂  ,the pathologic steady voltage state 𝑋𝑋0 =
(𝑥𝑥0

1, 𝑥𝑥0
2 … 𝑥𝑥0

𝑛𝑛)𝑇𝑇 ,of the nervous system, evolve to the non-pathologic steady voltage state 𝑋𝑋1 =
(𝑥𝑥1

1, 𝑥𝑥1
2 … 𝑥𝑥1

𝑛𝑛)𝑇𝑇. Mathematically this neuro-psychological though is correct if the solution of the 
initial value problem    

𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼1̂ )   ,    𝑋𝑋1 = 𝑋𝑋0 = (𝑥𝑥0
1, 𝑥𝑥0

2, … , 𝑥𝑥0
𝑛𝑛)𝑇𝑇                                                 (2.1) 

tends to the steady voltage state 𝑋𝑋1 = (𝑥𝑥1
1, 𝑥𝑥1

2 … 𝑥𝑥1
𝑛𝑛)𝑇𝑇

.  
This kind of reasoning make sense if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  . That is because, if   𝐼𝐼0̂ = 𝐼𝐼1̂    then there is no  change 
in input and the voltage state of the neural network will rest in the state 𝑋𝑋0 i.e. the voltage state 
evolution of the neural network is described by (2.1) is constant equal to 𝑋𝑋0. 
 Moreover, even if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  and the reasoning make sense, it can happen that for the new electrical 
input 𝐼𝐼1̂   ,beside the non-pathologic voltage state 𝑋𝑋1 , there exist a second voltage state 𝑋𝑋2,and 
applying  the electrical input 𝐼𝐼1̂ beside the non-pathologic equilibrium 𝐸𝐸1 = ( 𝑋𝑋1 , 𝐼𝐼1̂ ) a second 
equilibrium 𝐸𝐸2 = (𝑋𝑋2, 𝐼𝐼1̂)  appear. It can happen that the equilibrium (𝑋𝑋2, 𝐼𝐼1̂) is pathologic too. 
Therefore the problem is to find supplementary condition assuring that the solution of the initial 
value problem (2.1) tends to 1X as it was planned.  
In Balint and.. 2008 example (5.5) pg.197 provide computational simulation of the above-
described phenomena. 
Consider the discrete semi-dynamical system, obtained from the continuous-time system 
analyzed in Balint and..2008 example 5.2 pg.184, by the semi-discretization technique : 

 𝑥𝑥𝑝𝑝+1
1 = 𝑒𝑒−ℎ × 𝑥𝑥𝑝𝑝

1 + (1 − 𝑒𝑒−ℎ) × (17×𝑙𝑙𝑙𝑙4
15 × 𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑥𝑥𝑝𝑝

2 + 𝐼𝐼1
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1̂)           (2.2)                                                                                                                               

For 2.0h , and    𝐼𝐼0̂ = (0,0)𝑇𝑇,  for (2.2) the following steady states were found: 𝑋𝑋0 = (0,0)𝑇𝑇 , 
𝑋𝑋1 = (𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝑋𝑋2 = (−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇. 

If the voltage of the neural network is in the steady state 𝑋𝑋0 = (0,0)𝑇𝑇and the value of the 
external input is maintained 𝐼𝐼0̂ = (0,0)𝑇𝑇 then the voltage rest constant. This phenomenon is 
illustrated on figures 2.1 and 2.2  
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In Balint and.. 2008 example (5.5) pg.197 provide computational simulation of the above-
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Figures 2.5 ,2.6  illustrate that instead of  the recovery of 𝑋𝑋0  = (0,0)𝑇𝑇 the components of the 
perturbed steady state  𝑋𝑋0  move away from the steady state 𝑋𝑋0 = (0,0)𝑇𝑇 
Figures 2.5.,2.6 illustrate also the repulsive character of the steady voltage state 𝑋𝑋0 = (0,0)𝑇𝑇.  That 
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2 … 𝑥𝑥1
𝑛𝑛)𝑇𝑇 then it is natural to think that the new external 

electrical input  𝐼𝐼1̂  ,which has to be applied, has to be taken according to the formula (1.6), hoping 
that, after the external electrical input change  𝐼𝐼0̂  →   𝐼𝐼1̂  ,the pathologic steady voltage state 𝑋𝑋0 =
(𝑥𝑥0

1, 𝑥𝑥0
2 … 𝑥𝑥0

𝑛𝑛)𝑇𝑇 ,of the nervous system, evolve to the non-pathologic steady voltage state 𝑋𝑋1 =
(𝑥𝑥1

1, 𝑥𝑥1
2 … 𝑥𝑥1

𝑛𝑛)𝑇𝑇. Mathematically this neuro-psychological though is correct if the solution of the 
initial value problem    

𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼1̂ )   ,    𝑋𝑋1 = 𝑋𝑋0 = (𝑥𝑥0
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2, … , 𝑥𝑥0
𝑛𝑛)𝑇𝑇                                                 (2.1) 

tends to the steady voltage state 𝑋𝑋1 = (𝑥𝑥1
1, 𝑥𝑥1
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𝑛𝑛)𝑇𝑇

.  
This kind of reasoning make sense if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  . That is because, if   𝐼𝐼0̂ = 𝐼𝐼1̂    then there is no  change 
in input and the voltage state of the neural network will rest in the state 𝑋𝑋0 i.e. the voltage state 
evolution of the neural network is described by (2.1) is constant equal to 𝑋𝑋0. 
 Moreover, even if 𝐼𝐼0̂ ≠ 𝐼𝐼1̂  and the reasoning make sense, it can happen that for the new electrical 
input 𝐼𝐼1̂   ,beside the non-pathologic voltage state 𝑋𝑋1 , there exist a second voltage state 𝑋𝑋2,and 
applying  the electrical input 𝐼𝐼1̂ beside the non-pathologic equilibrium 𝐸𝐸1 = ( 𝑋𝑋1 , 𝐼𝐼1̂ ) a second 
equilibrium 𝐸𝐸2 = (𝑋𝑋2, 𝐼𝐼1̂)  appear. It can happen that the equilibrium (𝑋𝑋2, 𝐼𝐼1̂) is pathologic too. 
Therefore the problem is to find supplementary condition assuring that the solution of the initial 
value problem (2.1) tends to 1X as it was planned.  
In Balint and.. 2008 example (5.5) pg.197 provide computational simulation of the above-
described phenomena. 
Consider the discrete semi-dynamical system, obtained from the continuous-time system 
analyzed in Balint and..2008 example 5.2 pg.184, by the semi-discretization technique : 

 𝑥𝑥𝑝𝑝+1
1 = 𝑒𝑒−ℎ × 𝑥𝑥𝑝𝑝

1 + (1 − 𝑒𝑒−ℎ) × (17×𝑙𝑙𝑙𝑙4
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1 + 𝐼𝐼2
1̂)           (2.2)                                                                                                                               

For 2.0h , and    𝐼𝐼0̂ = (0,0)𝑇𝑇,  for (2.2) the following steady states were found: 𝑋𝑋0 = (0,0)𝑇𝑇 , 
𝑋𝑋1 = (𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝑋𝑋2 = (−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇. 

If the voltage of the neural network is in the steady state 𝑋𝑋0 = (0,0)𝑇𝑇and the value of the 
external input is maintained 𝐼𝐼0̂ = (0,0)𝑇𝑇 then the voltage rest constant. This phenomenon is 
illustrated on figures 2.1 and 2.2  
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For 2.0h , and    𝐼𝐼0̂ = (0,0)𝑇𝑇,  for (2.2) the following steady states were found: 𝑋𝑋0 = (0,0)𝑇𝑇 , 
𝑋𝑋1 = (𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝑋𝑋2 = (−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇. 

If the voltage of the neural network is in the steady state 𝑋𝑋0 = (0,0)𝑇𝑇and the value of the 
external input is maintained 𝐼𝐼0̂ = (0,0)𝑇𝑇 then the voltage rest constant. This phenomenon is 
illustrated on figures 2.1 and 2.2  

                                                                              

 
                                               Fig.2.5.x1 versus p                                                        Fig.2.6.x2 versus 
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Figures 2.5 ,2.6  illustrate that instead of  the recovery of 𝑋𝑋0  = (0,0)𝑇𝑇 the components of the 
perturbed steady state  𝑋𝑋0  move away from the steady state 𝑋𝑋0 = (0,0)𝑇𝑇 
Figures 2.5.,2.6 illustrate also the repulsive character of the steady voltage state 𝑋𝑋0 = (0,0)𝑇𝑇.  That 
is because the solution of the initial value problem (2.3) represent also the evolution of the steady 
state 𝑋𝑋𝜀𝜀,𝛿𝛿 = (𝜀𝜀, 𝛿𝛿)𝑇𝑇  of the equilibrium 𝐸𝐸𝜀𝜀,𝛿𝛿 = (  𝑋𝑋𝜀𝜀,𝛿𝛿, 𝐼𝐼𝜀𝜀,𝛿̂𝛿)  in case of the external electrical impulse 
change   𝐼𝐼𝜀𝜀,𝛿̂𝛿 → (0,0)𝑇𝑇 .The  external electrical input 𝐼𝐼𝜀𝜀,𝛿̂𝛿  appearing here is obtained from the 
steady state   𝑋𝑋𝜀𝜀,𝛿𝛿   using formula (1.6). 
 
According to the neuro-psychological interpretation of equilibrium, is important to keep in mind 
that in a nervous system there are three types of equilibriums:  
-Equilibriums of first type for which after a small perturbation of the steady state, the nervous 
system return to the equilibrium. This is the situation if the steady state of the corresponding 
neural network is locally exponentially stable. (as is the equilibrium   𝐸𝐸1 =((𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂ = (0,0)𝑇𝑇 
)).Due to this property  the nervous system return to the equilibrium automatically ,without any 
external input, we will say that this equilibrium of the nervous system is robust. 
-Equilibriums of second type for which after a small perturbation of the steady state the nervous 
system do not return to the equilibrium. This is the situation if the steady state of the 
corresponding neural network is unstable. (as is the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) with 𝑋𝑋0 =
(0,0)𝑇𝑇and  𝐼𝐼0̂ = (0,0)𝑇𝑇) . Due to the property that the nervous system do not return to the 
equilibrium automatically, without applying an external input, we will say that this type of 
equilibrium of the nervous system is fragile.   
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--Equilibriums of third type having the property that there is no equilibrium, which can be 
transferred in such type of equilibrium. Due to this property, we will say that this type of 
equilibrium of the nervous system is repulsive.( (as is the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) with 𝑋𝑋0 =
(0,0)𝑇𝑇and  𝐼𝐼0̂ = (0,0)𝑇𝑇) ).  
 
3. Equilibriums transfer. 
 
A correct neuro psychological interpretation and understanding of the possible equilibriums of 
the neural network permit to neurologist and psychologist to choose appropriate tool in a specific 
case. On this basis people, working in neural and mental healthcare, can choose appropriate tool 
for transfer the pathologic equilibrium of a patient into a non-pathologic equilibrium.  
The choice of the appropriate tool assume : starting from a robust pathologic equilibrium 
𝐸𝐸0=(𝑋𝑋0, 𝐼𝐼0̂) , choose a new non-pathologic steady state 𝑋𝑋1, compute for 𝑋𝑋1, the corresponding 
new external electrical input 𝐼𝐼1̂  using formula (1.6), and build up a new robust non-pathologic 
equilibrium 𝐸𝐸1 = (𝑋𝑋1, 𝐼𝐼1̂). 
After that, several computations has to be made in order to be able to transfer 𝐸𝐸0=(𝑋𝑋0, 𝐼𝐼0̂) → 𝐸𝐸1 =
(𝑋𝑋1, 𝐼𝐼1̂) . 
Step 1.Verify that the equilibriums 𝐸𝐸0, 𝐸𝐸1 are robust and the region of attraction of the steady 
state 𝑋𝑋1 contains the steady  state 𝑋𝑋0. A way to verify the robustness of the equilibriums𝐸𝐸0,   𝐸𝐸1 
is to solve and represent the solutions of the initial value problems: 
                        
                                                 𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋𝑝𝑝, 𝐼𝐼0̂)                      𝑋𝑋1= 𝑋𝑋1

0          (3.1) 
                                                        
 
                                                  𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋, 𝐼𝐼1̂)                       𝑋𝑋1= 𝑋𝑋1

1          (3.2) 
where 𝑋𝑋1

0  ,  𝑋𝑋1
1  are small perturbations of   𝑋𝑋0 and  𝑋𝑋1 respectively. 

Step 2. Solve and represent the solutions of the initial value problems  
   
                                                  𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋, 𝐼𝐼0̂)                        𝑋𝑋1 = 𝑋𝑋1         (3.3)  
 
                                                            
                                                  𝑋𝑋𝑝𝑝+1 = 𝐹𝐹(𝑋𝑋, 𝐼𝐼1̂)                         𝑋𝑋1 = 𝑋𝑋0         (3.4) 
 
 In order to see how this work in practice, consider the neural network (2.2) and the equilibrium 
 𝐸𝐸0=(𝑋𝑋0, 𝐼𝐼0̂)= ((𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, (0,0)𝑇𝑇) = (1.386294361,1.386294361)𝑇𝑇, (0,0)𝑇𝑇). 
Fix the new steady state  𝑋𝑋1= (0.1 + 𝑙𝑙𝑙𝑙4,0.1 + 𝑙𝑙𝑙𝑙4)𝑇𝑇 = (1.486294362,1.486294362)𝑇𝑇 and using 
(1.6) 
compute the corresponding new external electrical input  𝐼𝐼1̂   finding 𝐼𝐼1̂ 
=(0.068125374,0.068125374)𝑇𝑇. 
So the new equilibrium is   𝐸𝐸1 = (𝑋𝑋1, 𝐼𝐼1̂) =
(1.486294362,1.486294362)𝑇𝑇, (0.068125374,0.068125374)𝑇𝑇).  
For test the robustness of 𝐸𝐸0=(𝑋𝑋0𝐼𝐼0̂), solve and represent the initial value problem (3.1). Taking 
for example  𝑋𝑋1

0 = (1.486294362,1.486294362)𝑇𝑇 the solution of the initial value problem (3.1) is 
presented on the next figures:   
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(𝑋𝑋0, 𝐼𝐼0̂) 

 
These figures show that maintaining the external input value 𝐼𝐼0̂ = (0,0)𝑇𝑇 , the voltage of the 
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The robustness of the equilibrium 𝐸𝐸1 and the transfer of 𝐸𝐸0 into 𝐸𝐸1 can be illustrate solving the 
initial value problem (3.2) for 𝐼𝐼1̂ =(0.068125374,0.068125374)𝑇𝑇 and 𝑋𝑋1
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In the following, we present results from Balint and..2008, which can offer an overview about the 
complexity of the possible equilibriums, their location, the steady states character and possible 
transfer. Illustrative computational examples are given. 
In Balint and..2008 theorem 5.17.pg.191 states: If ∆ is a rectangle in 𝑅𝑅𝑛𝑛, (i.e. for 𝑖𝑖 = 1,2, … 𝑛𝑛 there 
exist 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑖𝑖 ∈ 𝑅𝑅 𝛼𝛼𝑖𝑖 < 𝛽𝛽𝑖𝑖, such that ∆= (𝛼𝛼1, 𝛽𝛽1) × (𝛼𝛼2, 𝛽𝛽2) × … (𝛼𝛼𝑛𝑛, 𝛽𝛽𝑛𝑛)) and det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) −
𝑇𝑇 ×̂ 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0  for any 𝑋𝑋 ∈ ∆, then 
i.) the restriction of the function  𝐼𝐼∆̂ (the restriction to ∆ of the external input function) is injective. 
ii.) for any input 𝐼𝐼 ∈ 𝐼𝐼∆̂(∆)the system (1.5) has a unique steady state in ∆ . 

iii.) if 0 < 𝑔𝑔𝑖𝑖
′(𝑠𝑠) ,for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛 ,  and  

𝑇𝑇𝑖𝑖𝑖̂𝑖 − 1−𝑏𝑏𝑖𝑖
𝑔𝑔𝑖𝑖

′(𝑥𝑥𝑖𝑖) +∑ |𝑇𝑇𝑗𝑗𝑗𝑗|̂
𝑗𝑗≠𝑖𝑖 < 0      𝑖𝑖 = 1,2, … 𝑛𝑛     𝑋𝑋 ∈ ∆       ,                                        (3.4)  

then for any 𝐼𝐼 ∈ 𝐼𝐼∆̂(∆)  the neural network (1.5) has a unique steady state in  ∆. Moreover if 𝐼𝐼𝑖̂𝑖 >
0 for any  𝑖𝑖 = 1,2, … 𝑛𝑛 then the coordinates of the steady voltage state are positive. 

This theorem reveal that in a prior given rectangle ∆ (included in 𝑅𝑅𝑛𝑛 ) if  det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) −
𝑇𝑇 ×̂ 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any 𝑋𝑋 ∈ ∆   , then for any 𝑋𝑋0 ∈ ∆  the input  𝐼𝐼 ̂(𝑋𝑋0) = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋0 − 𝑇̂𝑇 ×
𝐺𝐺(𝑋𝑋0) = 𝐼𝐼0̂  is unique. Therefore, the equilibrium   𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  of the nervous system is 
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transfer. Illustrative computational examples are given. 
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ii.) for any input 𝐼𝐼 ∈ 𝐼𝐼∆̂(∆)the system (1.5) has a unique steady state in ∆ . 

iii.) if 0 < 𝑔𝑔𝑖𝑖
′(𝑠𝑠) ,for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛 ,  and  

𝑇𝑇𝑖𝑖𝑖̂𝑖 − 1−𝑏𝑏𝑖𝑖
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then for any 𝐼𝐼 ∈ 𝐼𝐼∆̂(∆)  the neural network (1.5) has a unique steady state in  ∆. Moreover if 𝐼𝐼𝑖̂𝑖 >
0 for any  𝑖𝑖 = 1,2, … 𝑛𝑛 then the coordinates of the steady voltage state are positive. 

This theorem reveal that in a prior given rectangle ∆ (included in 𝑅𝑅𝑛𝑛 ) if  det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) −
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𝐺𝐺(𝑋𝑋0) = 𝐼𝐼0̂  is unique. Therefore, the equilibrium   𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  of the nervous system is 
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In the following, we present results from Balint and..2008, which can offer an overview about the complexity of the possible equilibriums, 
their location, the steady states character and possible transfer. Illustrative computational examples are given.
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0 for any i = 1,2,...n then the coordinates 
of the steady voltage state are positive.

This theorem reveal that in a prior given rectangle ∆ (included in Rn ) if   det                                                                                           , 
then for any              the input                                                                              is unique. Therefore, the equilibrium                      of the 
nervous system is unique. This situation is completely different from that described in case of the neural network (2.2) where in case of 
the rectangle                                                   for the input                    three different equilibriums,                                                        
      and                                                  exists each of them having the steady state in ∆.
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unique. This situation is completely different from that described in case of the neural network 
(2.2) where in case of the rectangle  ∆= (−1.5,1.5) × (−1.5,1.5) for the input 𝐼𝐼0̂ = (0,0)𝑇𝑇 three 
different equilibriums  𝐸𝐸1

0 = ((0,0)𝑇𝑇, 𝐼𝐼0̂) , 𝐸𝐸2
0 = ((𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  and 𝐸𝐸3

0 = ((−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  
exists each of them having the steady state in ∆. 

In Balint and…2008 theorem5.18.pg.191. states; Under the general hypothesis concerning 
activation functions , for any external input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛  the following statements hold : 

i).There exits at least one steady voltage state of the neural network (1.4) (corresponding to 𝐼𝐼  ) in 
the rectangle    ∆= [−𝑀𝑀1, 𝑀𝑀1] × [−𝑀𝑀2, 𝑀𝑀2] × … × [−𝑀𝑀𝑛𝑛, 𝑀𝑀𝑛𝑛] 

where 

                           𝑀𝑀𝑖𝑖 = 1
1−𝑏𝑏𝑖𝑖

× (|𝐼𝐼𝑖̂𝑖| + ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑛𝑛
𝑗𝑗=1 )         for any   𝑖𝑖 = 1,2, … 𝑛𝑛                                          

(3.5) 

ii).Every steady voltage state of the neural network (1.4) corresponding to 𝐼𝐼   , belongs to the 
rectangle ∆ defined above . 

iii). If in addition  

det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any 𝑋𝑋 ∈ ∆                                 (3.6) 

then the neural network (1.4) has a unique steady state ,corresponding to 𝐼𝐼 ,and it belongs to  ∆. 

This theorem clarify several things: 
-First, the theorem assure that applying an arbitrary prior given external electrical input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛  
to the nervous system there exist at least one steady voltage state 𝑋𝑋0   such that 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
an equilibrium of the nervous system. The steady voltage state  𝑋𝑋0 of the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) 
is in the rectangle  ∆  specified above. This is in fact a localization of the steady voltage state. For 
find effective, the steady voltage state 𝑋𝑋0, the nonlinear algebraic equation 𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋 has to be 
solved in ∆ .  
-Second, the theorem assure that applying an arbitrary prior given external electrical input   𝐼𝐼0̂ 
∈ 𝑅𝑅𝑛𝑛  to the nervous system, every steady voltage state 𝑋𝑋0which appear due to that is in the 
rectangle ∆ . 
-Third if det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any  𝑋𝑋 ∈ ∆ , (specified above) then the obtained 
steady voltage state 𝑋𝑋0 is unique. This means that the obtained equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  is 
unique. The supplementary information is that 𝑋𝑋0 is unique and the equilibrium  𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
unique. 
 
In Balint and…2008 theorem 5.20. pg.192 states: Under the general hypothesis concerning 
activation functions 𝑔𝑔𝑖𝑖  if  
                               
                                   𝑔𝑔𝑖𝑖(𝑠𝑠) = 1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1               and                 𝑔𝑔𝑖𝑖(𝑠𝑠) = −1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1                           
(3.7) 
then for any input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛satisfying  

the following statements hold:

•	 There exits at least one steady voltage state of the neural network (1.4) (corresponding to 
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𝑇𝑇 ×̂ 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0  for any 𝑋𝑋 ∈ ∆, then 
i.) the restriction of the function  𝐼𝐼∆̂ (the restriction to ∆ of the external input function) is injective. 
ii.) for any input 𝐼𝐼 ∈ 𝐼𝐼∆̂(∆)the system (1.5) has a unique steady state in ∆ . 

iii.) if 0 < 𝑔𝑔𝑖𝑖
′(𝑠𝑠) ,for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛 ,  and  
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then for any 𝐼𝐼 ∈ 𝐼𝐼∆̂(∆)  the neural network (1.5) has a unique steady state in  ∆. Moreover if 𝐼𝐼𝑖̂𝑖 >
0 for any  𝑖𝑖 = 1,2, … 𝑛𝑛 then the coordinates of the steady voltage state are positive. 

This theorem reveal that in a prior given rectangle ∆ (included in 𝑅𝑅𝑛𝑛 ) if  det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) −
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𝐺𝐺(𝑋𝑋0) = 𝐼𝐼0̂  is unique. Therefore, the equilibrium   𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  of the nervous system is 
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Figures 2.7. and 2.8. suggest that the perturbed steady state 𝑋𝑋0in case of the equilibrium 
𝐸𝐸0=(𝑋𝑋0, 𝐼𝐼0̂) retrieve the steady state. In other words, these figures suggest that the equilibrium 𝐸𝐸0 
is robust. Moreover, these figures illustrate also the transfer of the equilibrium   𝐸𝐸1 into the 
equilibrium  𝐸𝐸0, because they represent solution of the initial value problem (3.3) 
The robustness of the equilibrium 𝐸𝐸1 and the transfer of 𝐸𝐸0 into 𝐸𝐸1 can be illustrate solving the 
initial value problem (3.2) for 𝐼𝐼1̂ =(0.068125374,0.068125374)𝑇𝑇 and 𝑋𝑋1

1= 
(1.386294361,1.386294361)𝑇𝑇.The solution of (3.2) in this case is presented in the next figures. 
 

unique. This situation is completely different from that described in case of the neural network 
(2.2) where in case of the rectangle  ∆= (−1.5,1.5) × (−1.5,1.5) for the input 𝐼𝐼0̂ = (0,0)𝑇𝑇 three 
different equilibriums  𝐸𝐸1

0 = ((0,0)𝑇𝑇, 𝐼𝐼0̂) , 𝐸𝐸2
0 = ((𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  and 𝐸𝐸3

0 = ((−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  
exists each of them having the steady state in ∆. 

In Balint and…2008 theorem5.18.pg.191. states; Under the general hypothesis concerning 
activation functions , for any external input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛  the following statements hold : 

i).There exits at least one steady voltage state of the neural network (1.4) (corresponding to 𝐼𝐼  ) in 
the rectangle    ∆= [−𝑀𝑀1, 𝑀𝑀1] × [−𝑀𝑀2, 𝑀𝑀2] × … × [−𝑀𝑀𝑛𝑛, 𝑀𝑀𝑛𝑛] 

where 

                           𝑀𝑀𝑖𝑖 = 1
1−𝑏𝑏𝑖𝑖

× (|𝐼𝐼𝑖̂𝑖| + ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑛𝑛
𝑗𝑗=1 )         for any   𝑖𝑖 = 1,2, … 𝑛𝑛                                          

(3.5) 

ii).Every steady voltage state of the neural network (1.4) corresponding to 𝐼𝐼   , belongs to the 
rectangle ∆ defined above . 

iii). If in addition  

det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any 𝑋𝑋 ∈ ∆                                 (3.6) 

then the neural network (1.4) has a unique steady state ,corresponding to 𝐼𝐼 ,and it belongs to  ∆. 

This theorem clarify several things: 
-First, the theorem assure that applying an arbitrary prior given external electrical input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛  
to the nervous system there exist at least one steady voltage state 𝑋𝑋0   such that 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
an equilibrium of the nervous system. The steady voltage state  𝑋𝑋0 of the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) 
is in the rectangle  ∆  specified above. This is in fact a localization of the steady voltage state. For 
find effective, the steady voltage state 𝑋𝑋0, the nonlinear algebraic equation 𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋 has to be 
solved in ∆ .  
-Second, the theorem assure that applying an arbitrary prior given external electrical input   𝐼𝐼0̂ 
∈ 𝑅𝑅𝑛𝑛  to the nervous system, every steady voltage state 𝑋𝑋0which appear due to that is in the 
rectangle ∆ . 
-Third if det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any  𝑋𝑋 ∈ ∆ , (specified above) then the obtained 
steady voltage state 𝑋𝑋0 is unique. This means that the obtained equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  is 
unique. The supplementary information is that 𝑋𝑋0 is unique and the equilibrium  𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
unique. 
 
In Balint and…2008 theorem 5.20. pg.192 states: Under the general hypothesis concerning 
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-Second, the theorem assure that applying an arbitrary prior given external electrical input   𝐼𝐼0̂ 
∈ 𝑅𝑅𝑛𝑛  to the nervous system, every steady voltage state 𝑋𝑋0which appear due to that is in the 
rectangle ∆ . 
-Third if det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any  𝑋𝑋 ∈ ∆ , (specified above) then the obtained 
steady voltage state 𝑋𝑋0 is unique. This means that the obtained equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  is 
unique. The supplementary information is that 𝑋𝑋0 is unique and the equilibrium  𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
unique. 
 
In Balint and…2008 theorem 5.20. pg.192 states: Under the general hypothesis concerning 
activation functions 𝑔𝑔𝑖𝑖  if  
                               
                                   𝑔𝑔𝑖𝑖(𝑠𝑠) = 1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1               and                 𝑔𝑔𝑖𝑖(𝑠𝑠) = −1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1                           
(3.7) 
then for any input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛satisfying  

unique. This situation is completely different from that described in case of the neural network 
(2.2) where in case of the rectangle  ∆= (−1.5,1.5) × (−1.5,1.5) for the input 𝐼𝐼0̂ = (0,0)𝑇𝑇 three 
different equilibriums  𝐸𝐸1

0 = ((0,0)𝑇𝑇, 𝐼𝐼0̂) , 𝐸𝐸2
0 = ((𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  and 𝐸𝐸3

0 = ((−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  
exists each of them having the steady state in ∆. 

In Balint and…2008 theorem5.18.pg.191. states; Under the general hypothesis concerning 
activation functions , for any external input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛  the following statements hold : 

i).There exits at least one steady voltage state of the neural network (1.4) (corresponding to 𝐼𝐼  ) in 
the rectangle    ∆= [−𝑀𝑀1, 𝑀𝑀1] × [−𝑀𝑀2, 𝑀𝑀2] × … × [−𝑀𝑀𝑛𝑛, 𝑀𝑀𝑛𝑛] 

where 

                           𝑀𝑀𝑖𝑖 = 1
1−𝑏𝑏𝑖𝑖

× (|𝐼𝐼𝑖̂𝑖| + ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑛𝑛
𝑗𝑗=1 )         for any   𝑖𝑖 = 1,2, … 𝑛𝑛                                          

(3.5) 

ii).Every steady voltage state of the neural network (1.4) corresponding to 𝐼𝐼   , belongs to the 
rectangle ∆ defined above . 

iii). If in addition  

det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any 𝑋𝑋 ∈ ∆                                 (3.6) 

then the neural network (1.4) has a unique steady state ,corresponding to 𝐼𝐼 ,and it belongs to  ∆. 

This theorem clarify several things: 
-First, the theorem assure that applying an arbitrary prior given external electrical input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛  
to the nervous system there exist at least one steady voltage state 𝑋𝑋0   such that 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
an equilibrium of the nervous system. The steady voltage state  𝑋𝑋0 of the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) 
is in the rectangle  ∆  specified above. This is in fact a localization of the steady voltage state. For 
find effective, the steady voltage state 𝑋𝑋0, the nonlinear algebraic equation 𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋 has to be 
solved in ∆ .  
-Second, the theorem assure that applying an arbitrary prior given external electrical input   𝐼𝐼0̂ 
∈ 𝑅𝑅𝑛𝑛  to the nervous system, every steady voltage state 𝑋𝑋0which appear due to that is in the 
rectangle ∆ . 
-Third if det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any  𝑋𝑋 ∈ ∆ , (specified above) then the obtained 
steady voltage state 𝑋𝑋0 is unique. This means that the obtained equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  is 
unique. The supplementary information is that 𝑋𝑋0 is unique and the equilibrium  𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
unique. 
 
In Balint and…2008 theorem 5.20. pg.192 states: Under the general hypothesis concerning 
activation functions 𝑔𝑔𝑖𝑖  if  
                               
                                   𝑔𝑔𝑖𝑖(𝑠𝑠) = 1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1               and                 𝑔𝑔𝑖𝑖(𝑠𝑠) = −1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1                           
(3.7) 
then for any input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛satisfying  

•	 Every steady voltage state of the neural network (1.4) corresponding to 

                                                                                   

 
                             Fig.2.9.x1 versus p                                                                                        Fig.2.10.x2 
versus p 
 
    
In the following, we present results from Balint and..2008, which can offer an overview about the 
complexity of the possible equilibriums, their location, the steady states character and possible 
transfer. Illustrative computational examples are given. 
In Balint and..2008 theorem 5.17.pg.191 states: If ∆ is a rectangle in 𝑅𝑅𝑛𝑛, (i.e. for 𝑖𝑖 = 1,2, … 𝑛𝑛 there 
exist 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑖𝑖 ∈ 𝑅𝑅 𝛼𝛼𝑖𝑖 < 𝛽𝛽𝑖𝑖, such that ∆= (𝛼𝛼1, 𝛽𝛽1) × (𝛼𝛼2, 𝛽𝛽2) × … (𝛼𝛼𝑛𝑛, 𝛽𝛽𝑛𝑛)) and det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) −
𝑇𝑇 ×̂ 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0  for any 𝑋𝑋 ∈ ∆, then 
i.) the restriction of the function  𝐼𝐼∆̂ (the restriction to ∆ of the external input function) is injective. 
ii.) for any input 𝐼𝐼 ∈ 𝐼𝐼∆̂(∆)the system (1.5) has a unique steady state in ∆ . 

iii.) if 0 < 𝑔𝑔𝑖𝑖
′(𝑠𝑠) ,for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛 ,  and  

𝑇𝑇𝑖𝑖𝑖̂𝑖 − 1−𝑏𝑏𝑖𝑖
𝑔𝑔𝑖𝑖

′(𝑥𝑥𝑖𝑖) +∑ |𝑇𝑇𝑗𝑗𝑗𝑗|̂
𝑗𝑗≠𝑖𝑖 < 0      𝑖𝑖 = 1,2, … 𝑛𝑛     𝑋𝑋 ∈ ∆       ,                                        (3.4)  

then for any 𝐼𝐼 ∈ 𝐼𝐼∆̂(∆)  the neural network (1.5) has a unique steady state in  ∆. Moreover if 𝐼𝐼𝑖̂𝑖 >
0 for any  𝑖𝑖 = 1,2, … 𝑛𝑛 then the coordinates of the steady voltage state are positive. 

This theorem reveal that in a prior given rectangle ∆ (included in 𝑅𝑅𝑛𝑛 ) if  det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) −
𝑇𝑇 ×̂ 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any 𝑋𝑋 ∈ ∆   , then for any 𝑋𝑋0 ∈ ∆  the input  𝐼𝐼 ̂(𝑋𝑋0) = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋0 − 𝑇̂𝑇 ×
𝐺𝐺(𝑋𝑋0) = 𝐼𝐼0̂  is unique. Therefore, the equilibrium   𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  of the nervous system is 

, belongs to the rectangle ∆ defined above.
•	 If in addition if
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unique. This situation is completely different from that described in case of the neural network 
(2.2) where in case of the rectangle  ∆= (−1.5,1.5) × (−1.5,1.5) for the input 𝐼𝐼0̂ = (0,0)𝑇𝑇 three 
different equilibriums  𝐸𝐸1

0 = ((0,0)𝑇𝑇, 𝐼𝐼0̂) , 𝐸𝐸2
0 = ((𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  and 𝐸𝐸3

0 = ((−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  
exists each of them having the steady state in ∆. 

In Balint and…2008 theorem5.18.pg.191. states; Under the general hypothesis concerning 
activation functions , for any external input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛  the following statements hold : 

i).There exits at least one steady voltage state of the neural network (1.4) (corresponding to 𝐼𝐼  ) in 
the rectangle    ∆= [−𝑀𝑀1, 𝑀𝑀1] × [−𝑀𝑀2, 𝑀𝑀2] × … × [−𝑀𝑀𝑛𝑛, 𝑀𝑀𝑛𝑛] 

where 

                           𝑀𝑀𝑖𝑖 = 1
1−𝑏𝑏𝑖𝑖

× (|𝐼𝐼𝑖̂𝑖| + ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑛𝑛
𝑗𝑗=1 )         for any   𝑖𝑖 = 1,2, … 𝑛𝑛                                          

(3.5) 

ii).Every steady voltage state of the neural network (1.4) corresponding to 𝐼𝐼   , belongs to the 
rectangle ∆ defined above . 

iii). If in addition  

det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any 𝑋𝑋 ∈ ∆                                 (3.6) 

then the neural network (1.4) has a unique steady state ,corresponding to 𝐼𝐼 ,and it belongs to  ∆. 

This theorem clarify several things: 
-First, the theorem assure that applying an arbitrary prior given external electrical input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛  
to the nervous system there exist at least one steady voltage state 𝑋𝑋0   such that 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
an equilibrium of the nervous system. The steady voltage state  𝑋𝑋0 of the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) 
is in the rectangle  ∆  specified above. This is in fact a localization of the steady voltage state. For 
find effective, the steady voltage state 𝑋𝑋0, the nonlinear algebraic equation 𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋 has to be 
solved in ∆ .  
-Second, the theorem assure that applying an arbitrary prior given external electrical input   𝐼𝐼0̂ 
∈ 𝑅𝑅𝑛𝑛  to the nervous system, every steady voltage state 𝑋𝑋0which appear due to that is in the 
rectangle ∆ . 
-Third if det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any  𝑋𝑋 ∈ ∆ , (specified above) then the obtained 
steady voltage state 𝑋𝑋0 is unique. This means that the obtained equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  is 
unique. The supplementary information is that 𝑋𝑋0 is unique and the equilibrium  𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
unique. 
 
In Balint and…2008 theorem 5.20. pg.192 states: Under the general hypothesis concerning 
activation functions 𝑔𝑔𝑖𝑖  if  
                               
                                   𝑔𝑔𝑖𝑖(𝑠𝑠) = 1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1               and                 𝑔𝑔𝑖𝑖(𝑠𝑠) = −1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1                           
(3.7) 
then for any input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛satisfying  

unique. This situation is completely different from that described in case of the neural network 
(2.2) where in case of the rectangle  ∆= (−1.5,1.5) × (−1.5,1.5) for the input 𝐼𝐼0̂ = (0,0)𝑇𝑇 three 
different equilibriums  𝐸𝐸1

0 = ((0,0)𝑇𝑇, 𝐼𝐼0̂) , 𝐸𝐸2
0 = ((𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  and 𝐸𝐸3

0 = ((−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  
exists each of them having the steady state in ∆. 

In Balint and…2008 theorem5.18.pg.191. states; Under the general hypothesis concerning 
activation functions , for any external input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛  the following statements hold : 

i).There exits at least one steady voltage state of the neural network (1.4) (corresponding to 𝐼𝐼  ) in 
the rectangle    ∆= [−𝑀𝑀1, 𝑀𝑀1] × [−𝑀𝑀2, 𝑀𝑀2] × … × [−𝑀𝑀𝑛𝑛, 𝑀𝑀𝑛𝑛] 

where 

                           𝑀𝑀𝑖𝑖 = 1
1−𝑏𝑏𝑖𝑖

× (|𝐼𝐼𝑖̂𝑖| + ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑛𝑛
𝑗𝑗=1 )         for any   𝑖𝑖 = 1,2, … 𝑛𝑛                                          

(3.5) 

ii).Every steady voltage state of the neural network (1.4) corresponding to 𝐼𝐼   , belongs to the 
rectangle ∆ defined above . 

iii). If in addition  

det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any 𝑋𝑋 ∈ ∆                                 (3.6) 

then the neural network (1.4) has a unique steady state ,corresponding to 𝐼𝐼 ,and it belongs to  ∆. 

This theorem clarify several things: 
-First, the theorem assure that applying an arbitrary prior given external electrical input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛  
to the nervous system there exist at least one steady voltage state 𝑋𝑋0   such that 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
an equilibrium of the nervous system. The steady voltage state  𝑋𝑋0 of the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) 
is in the rectangle  ∆  specified above. This is in fact a localization of the steady voltage state. For 
find effective, the steady voltage state 𝑋𝑋0, the nonlinear algebraic equation 𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋 has to be 
solved in ∆ .  
-Second, the theorem assure that applying an arbitrary prior given external electrical input   𝐼𝐼0̂ 
∈ 𝑅𝑅𝑛𝑛  to the nervous system, every steady voltage state 𝑋𝑋0which appear due to that is in the 
rectangle ∆ . 
-Third if det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any  𝑋𝑋 ∈ ∆ , (specified above) then the obtained 
steady voltage state 𝑋𝑋0 is unique. This means that the obtained equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  is 
unique. The supplementary information is that 𝑋𝑋0 is unique and the equilibrium  𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
unique. 
 
In Balint and…2008 theorem 5.20. pg.192 states: Under the general hypothesis concerning 
activation functions 𝑔𝑔𝑖𝑖  if  
                               
                                   𝑔𝑔𝑖𝑖(𝑠𝑠) = 1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1               and                 𝑔𝑔𝑖𝑖(𝑠𝑠) = −1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1                           
(3.7) 
then for any input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛satisfying  

then the neural network (1.4) has a unique steady state, corresponding to 

                                                                                   

 
                             Fig.2.9.x1 versus p                                                                                        Fig.2.10.x2 
versus p 
 
    
In the following, we present results from Balint and..2008, which can offer an overview about the 
complexity of the possible equilibriums, their location, the steady states character and possible 
transfer. Illustrative computational examples are given. 
In Balint and..2008 theorem 5.17.pg.191 states: If ∆ is a rectangle in 𝑅𝑅𝑛𝑛, (i.e. for 𝑖𝑖 = 1,2, … 𝑛𝑛 there 
exist 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑖𝑖 ∈ 𝑅𝑅 𝛼𝛼𝑖𝑖 < 𝛽𝛽𝑖𝑖, such that ∆= (𝛼𝛼1, 𝛽𝛽1) × (𝛼𝛼2, 𝛽𝛽2) × … (𝛼𝛼𝑛𝑛, 𝛽𝛽𝑛𝑛)) and det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) −
𝑇𝑇 ×̂ 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0  for any 𝑋𝑋 ∈ ∆, then 
i.) the restriction of the function  𝐼𝐼∆̂ (the restriction to ∆ of the external input function) is injective. 
ii.) for any input 𝐼𝐼 ∈ 𝐼𝐼∆̂(∆)the system (1.5) has a unique steady state in ∆ . 

iii.) if 0 < 𝑔𝑔𝑖𝑖
′(𝑠𝑠) ,for any 𝑠𝑠 ∈ 𝑅𝑅, 𝑖𝑖 = 1,2, … 𝑛𝑛 ,  and  

𝑇𝑇𝑖𝑖𝑖̂𝑖 − 1−𝑏𝑏𝑖𝑖
𝑔𝑔𝑖𝑖

′(𝑥𝑥𝑖𝑖) +∑ |𝑇𝑇𝑗𝑗𝑗𝑗|̂
𝑗𝑗≠𝑖𝑖 < 0      𝑖𝑖 = 1,2, … 𝑛𝑛     𝑋𝑋 ∈ ∆       ,                                        (3.4)  

then for any 𝐼𝐼 ∈ 𝐼𝐼∆̂(∆)  the neural network (1.5) has a unique steady state in  ∆. Moreover if 𝐼𝐼𝑖̂𝑖 >
0 for any  𝑖𝑖 = 1,2, … 𝑛𝑛 then the coordinates of the steady voltage state are positive. 

This theorem reveal that in a prior given rectangle ∆ (included in 𝑅𝑅𝑛𝑛 ) if  det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) −
𝑇𝑇 ×̂ 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any 𝑋𝑋 ∈ ∆   , then for any 𝑋𝑋0 ∈ ∆  the input  𝐼𝐼 ̂(𝑋𝑋0) = (𝐼𝐼𝑑𝑑 − 𝐵𝐵) × 𝑋𝑋0 − 𝑇̂𝑇 ×
𝐺𝐺(𝑋𝑋0) = 𝐼𝐼0̂  is unique. Therefore, the equilibrium   𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  of the nervous system is 

, and it belongs to ∆.
This theorem clarifies several things:
•	 First, the theorem assures that applying an arbitrary prior given external electrical input                to the nervous system there exist 

at least one steady voltage state X0 such that                       is an equilibrium of the nervous system. The steady voltage state X0 of 
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an equilibrium of the nervous system. The steady voltage state  𝑋𝑋0 of the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) 
is in the rectangle  ∆  specified above. This is in fact a localization of the steady voltage state. For 
find effective, the steady voltage state 𝑋𝑋0, the nonlinear algebraic equation 𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋 has to be 
solved in ∆ .  
-Second, the theorem assure that applying an arbitrary prior given external electrical input   𝐼𝐼0̂ 
∈ 𝑅𝑅𝑛𝑛  to the nervous system, every steady voltage state 𝑋𝑋0which appear due to that is in the 
rectangle ∆ . 
-Third if det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any  𝑋𝑋 ∈ ∆ , (specified above) then the obtained 
steady voltage state 𝑋𝑋0 is unique. This means that the obtained equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  is 
unique. The supplementary information is that 𝑋𝑋0 is unique and the equilibrium  𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
unique. 
 
In Balint and…2008 theorem 5.20. pg.192 states: Under the general hypothesis concerning 
activation functions 𝑔𝑔𝑖𝑖  if  
                               
                                   𝑔𝑔𝑖𝑖(𝑠𝑠) = 1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1               and                 𝑔𝑔𝑖𝑖(𝑠𝑠) = −1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1                           
(3.7) 
then for any input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛satisfying  

unique. This situation is completely different from that described in case of the neural network 
(2.2) where in case of the rectangle  ∆= (−1.5,1.5) × (−1.5,1.5) for the input 𝐼𝐼0̂ = (0,0)𝑇𝑇 three 
different equilibriums  𝐸𝐸1

0 = ((0,0)𝑇𝑇, 𝐼𝐼0̂) , 𝐸𝐸2
0 = ((𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  and 𝐸𝐸3

0 = ((−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  
exists each of them having the steady state in ∆. 

In Balint and…2008 theorem5.18.pg.191. states; Under the general hypothesis concerning 
activation functions , for any external input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛  the following statements hold : 

i).There exits at least one steady voltage state of the neural network (1.4) (corresponding to 𝐼𝐼  ) in 
the rectangle    ∆= [−𝑀𝑀1, 𝑀𝑀1] × [−𝑀𝑀2, 𝑀𝑀2] × … × [−𝑀𝑀𝑛𝑛, 𝑀𝑀𝑛𝑛] 

where 

                           𝑀𝑀𝑖𝑖 = 1
1−𝑏𝑏𝑖𝑖

× (|𝐼𝐼𝑖̂𝑖| + ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑛𝑛
𝑗𝑗=1 )         for any   𝑖𝑖 = 1,2, … 𝑛𝑛                                          

(3.5) 

ii).Every steady voltage state of the neural network (1.4) corresponding to 𝐼𝐼   , belongs to the 
rectangle ∆ defined above . 

iii). If in addition  

det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any 𝑋𝑋 ∈ ∆                                 (3.6) 

then the neural network (1.4) has a unique steady state ,corresponding to 𝐼𝐼 ,and it belongs to  ∆. 

This theorem clarify several things: 
-First, the theorem assure that applying an arbitrary prior given external electrical input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛  
to the nervous system there exist at least one steady voltage state 𝑋𝑋0   such that 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
an equilibrium of the nervous system. The steady voltage state  𝑋𝑋0 of the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) 
is in the rectangle  ∆  specified above. This is in fact a localization of the steady voltage state. For 
find effective, the steady voltage state 𝑋𝑋0, the nonlinear algebraic equation 𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋 has to be 
solved in ∆ .  
-Second, the theorem assure that applying an arbitrary prior given external electrical input   𝐼𝐼0̂ 
∈ 𝑅𝑅𝑛𝑛  to the nervous system, every steady voltage state 𝑋𝑋0which appear due to that is in the 
rectangle ∆ . 
-Third if det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any  𝑋𝑋 ∈ ∆ , (specified above) then the obtained 
steady voltage state 𝑋𝑋0 is unique. This means that the obtained equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  is 
unique. The supplementary information is that 𝑋𝑋0 is unique and the equilibrium  𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
unique. 
 
In Balint and…2008 theorem 5.20. pg.192 states: Under the general hypothesis concerning 
activation functions 𝑔𝑔𝑖𝑖  if  
                               
                                   𝑔𝑔𝑖𝑖(𝑠𝑠) = 1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1               and                 𝑔𝑔𝑖𝑖(𝑠𝑠) = −1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1                           
(3.7) 
then for any input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛satisfying  

unique. This situation is completely different from that described in case of the neural network 
(2.2) where in case of the rectangle  ∆= (−1.5,1.5) × (−1.5,1.5) for the input 𝐼𝐼0̂ = (0,0)𝑇𝑇 three 
different equilibriums  𝐸𝐸1

0 = ((0,0)𝑇𝑇, 𝐼𝐼0̂) , 𝐸𝐸2
0 = ((𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  and 𝐸𝐸3

0 = ((−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  
exists each of them having the steady state in ∆. 

In Balint and…2008 theorem5.18.pg.191. states; Under the general hypothesis concerning 
activation functions , for any external input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛  the following statements hold : 

i).There exits at least one steady voltage state of the neural network (1.4) (corresponding to 𝐼𝐼  ) in 
the rectangle    ∆= [−𝑀𝑀1, 𝑀𝑀1] × [−𝑀𝑀2, 𝑀𝑀2] × … × [−𝑀𝑀𝑛𝑛, 𝑀𝑀𝑛𝑛] 

where 

                           𝑀𝑀𝑖𝑖 = 1
1−𝑏𝑏𝑖𝑖

× (|𝐼𝐼𝑖̂𝑖| + ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑛𝑛
𝑗𝑗=1 )         for any   𝑖𝑖 = 1,2, … 𝑛𝑛                                          

(3.5) 

ii).Every steady voltage state of the neural network (1.4) corresponding to 𝐼𝐼   , belongs to the 
rectangle ∆ defined above . 

iii). If in addition  

det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any 𝑋𝑋 ∈ ∆                                 (3.6) 

then the neural network (1.4) has a unique steady state ,corresponding to 𝐼𝐼 ,and it belongs to  ∆. 

This theorem clarify several things: 
-First, the theorem assure that applying an arbitrary prior given external electrical input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛  
to the nervous system there exist at least one steady voltage state 𝑋𝑋0   such that 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
an equilibrium of the nervous system. The steady voltage state  𝑋𝑋0 of the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) 
is in the rectangle  ∆  specified above. This is in fact a localization of the steady voltage state. For 
find effective, the steady voltage state 𝑋𝑋0, the nonlinear algebraic equation 𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋 has to be 
solved in ∆ .  
-Second, the theorem assure that applying an arbitrary prior given external electrical input   𝐼𝐼0̂ 
∈ 𝑅𝑅𝑛𝑛  to the nervous system, every steady voltage state 𝑋𝑋0which appear due to that is in the 
rectangle ∆ . 
-Third if det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any  𝑋𝑋 ∈ ∆ , (specified above) then the obtained 
steady voltage state 𝑋𝑋0 is unique. This means that the obtained equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  is 
unique. The supplementary information is that 𝑋𝑋0 is unique and the equilibrium  𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
unique. 
 
In Balint and…2008 theorem 5.20. pg.192 states: Under the general hypothesis concerning 
activation functions 𝑔𝑔𝑖𝑖  if  
                               
                                   𝑔𝑔𝑖𝑖(𝑠𝑠) = 1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1               and                 𝑔𝑔𝑖𝑖(𝑠𝑠) = −1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1                           
(3.7) 
then for any input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛satisfying  

then for any input 

unique. This situation is completely different from that described in case of the neural network 
(2.2) where in case of the rectangle  ∆= (−1.5,1.5) × (−1.5,1.5) for the input 𝐼𝐼0̂ = (0,0)𝑇𝑇 three 
different equilibriums  𝐸𝐸1

0 = ((0,0)𝑇𝑇, 𝐼𝐼0̂) , 𝐸𝐸2
0 = ((𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  and 𝐸𝐸3

0 = ((−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  
exists each of them having the steady state in ∆. 

In Balint and…2008 theorem5.18.pg.191. states; Under the general hypothesis concerning 
activation functions , for any external input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛  the following statements hold : 

i).There exits at least one steady voltage state of the neural network (1.4) (corresponding to 𝐼𝐼  ) in 
the rectangle    ∆= [−𝑀𝑀1, 𝑀𝑀1] × [−𝑀𝑀2, 𝑀𝑀2] × … × [−𝑀𝑀𝑛𝑛, 𝑀𝑀𝑛𝑛] 

where 

                           𝑀𝑀𝑖𝑖 = 1
1−𝑏𝑏𝑖𝑖

× (|𝐼𝐼𝑖̂𝑖| + ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑛𝑛
𝑗𝑗=1 )         for any   𝑖𝑖 = 1,2, … 𝑛𝑛                                          

(3.5) 

ii).Every steady voltage state of the neural network (1.4) corresponding to 𝐼𝐼   , belongs to the 
rectangle ∆ defined above . 

iii). If in addition  

det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any 𝑋𝑋 ∈ ∆                                 (3.6) 

then the neural network (1.4) has a unique steady state ,corresponding to 𝐼𝐼 ,and it belongs to  ∆. 

This theorem clarify several things: 
-First, the theorem assure that applying an arbitrary prior given external electrical input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛  
to the nervous system there exist at least one steady voltage state 𝑋𝑋0   such that 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
an equilibrium of the nervous system. The steady voltage state  𝑋𝑋0 of the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) 
is in the rectangle  ∆  specified above. This is in fact a localization of the steady voltage state. For 
find effective, the steady voltage state 𝑋𝑋0, the nonlinear algebraic equation 𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋 has to be 
solved in ∆ .  
-Second, the theorem assure that applying an arbitrary prior given external electrical input   𝐼𝐼0̂ 
∈ 𝑅𝑅𝑛𝑛  to the nervous system, every steady voltage state 𝑋𝑋0which appear due to that is in the 
rectangle ∆ . 
-Third if det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any  𝑋𝑋 ∈ ∆ , (specified above) then the obtained 
steady voltage state 𝑋𝑋0 is unique. This means that the obtained equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  is 
unique. The supplementary information is that 𝑋𝑋0 is unique and the equilibrium  𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
unique. 
 
In Balint and…2008 theorem 5.20. pg.192 states: Under the general hypothesis concerning 
activation functions 𝑔𝑔𝑖𝑖  if  
                               
                                   𝑔𝑔𝑖𝑖(𝑠𝑠) = 1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1               and                 𝑔𝑔𝑖𝑖(𝑠𝑠) = −1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1                           
(3.7) 
then for any input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛satisfying   satisfying 

                                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗    for any 𝑖𝑖 = 1,2, … 𝑛𝑛                                                
(3.8) 

the following statements hold: 

i). in every rectangle  ∆𝜀𝜀, 𝜀𝜀 ∈ {±1}, there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼 ; here ∆𝜀𝜀= 𝐽𝐽(𝜀𝜀1) × 𝐽𝐽(𝜀𝜀2) … 𝐽𝐽(𝜀𝜀𝑛𝑛) , 𝐽𝐽(−1) = (−∞, −1),  , 𝐽𝐽(1) =
(1, ∞). 
 ii). every ∆𝜀𝜀̅̅ ̅  , 𝜀𝜀 ∈ {±1},  is invariant to the map  𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼). 

The mathematical condition (3.8) concerns the magnitude of the external input (left hand side) 
and the coefficients of the neural network (right hand side). If an input   𝐼𝐼0 which verifies (3.8) is 
applied to the nervous system then, due to that in the nervous system, 2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0 =
(𝑋𝑋𝜀𝜀,𝐼𝐼0, 𝐼𝐼0)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state  𝑋𝑋𝜀𝜀,𝐼𝐼0  is unique and located in a rectangle  ∆𝜀𝜀. This is an 
extremely complex configuration of steady voltage states of the nervous system which can appear 
after applying an external electrical input  𝐼𝐼0.  

A modified variant of the above theorem is Theorem (5.21) pg.193  Balint and..2008. 

In Balint and…2008  theorem5.21.pg.193. states; Under the general hypothesis concerning 
activation functions if there exists 𝛼𝛼 ∈ (0,1)  such that the activation functions verify: 

                                  𝑔𝑔𝑖𝑖(𝑠𝑠) ≥ 𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1   and    𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ −𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1    for any    𝑖𝑖 = 1,2, … 𝑛𝑛                         
(3.9)    

then for any input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 satisfying  

                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 × 𝛼𝛼 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗       for any    𝑖𝑖 = 1,2, … 𝑛𝑛                                            
(3.10) 

 the following statements hold: 

i). in every rectangle   ∆𝜀𝜀, ∈ {±1} , there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼. 

ii). every ∆𝜀𝜀,̅̅ ̅̅  𝜀𝜀 ∈ {±1}, , is invariant to the map 𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼) . 

This theorem reveal that if the  neuron input-output activations verify (3.9) and one input  𝐼𝐼0̂  
,which verifies (3.10), is applied to the nervous system then due to that in the nervous system 
2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0̂ = (𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state 𝑋𝑋𝜀𝜀,𝐼𝐼0̂   is unique and located in a 
rectangle  ∆𝜀𝜀. This configuration of steady states, is similar which appear in theorem 5.20 and is 
an extremely complex configuration of steady voltage states of the nervous system which can 
appear after applying an external electrical input  𝐼𝐼0̂.  

Finally in Balint and…2008  theorem5.25.pg.195  conditions of local exponential stability of the 
above steady voltage states are presented. 

In Balint and…2008  theorem5.25.pg.195. states; suppose that the conditions of Balint and…2008 
theorem 5.21 pg.193 are fulfilled. Let be an input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛 satisfying (3.10) and 𝜀𝜀 ∈ {±1},.If 

                                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗    for any 𝑖𝑖 = 1,2, … 𝑛𝑛                                                
(3.8) 

the following statements hold: 

i). in every rectangle  ∆𝜀𝜀, 𝜀𝜀 ∈ {±1}, there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼 ; here ∆𝜀𝜀= 𝐽𝐽(𝜀𝜀1) × 𝐽𝐽(𝜀𝜀2) … 𝐽𝐽(𝜀𝜀𝑛𝑛) , 𝐽𝐽(−1) = (−∞, −1),  , 𝐽𝐽(1) =
(1, ∞). 
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(1, ∞). 
 ii). every ∆𝜀𝜀̅̅ ̅  , 𝜀𝜀 ∈ {±1},  is invariant to the map  𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼). 

The mathematical condition (3.8) concerns the magnitude of the external input (left hand side) 
and the coefficients of the neural network (right hand side). If an input   𝐼𝐼0 which verifies (3.8) is 
applied to the nervous system then, due to that in the nervous system, 2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0 =
(𝑋𝑋𝜀𝜀,𝐼𝐼0, 𝐼𝐼0)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state  𝑋𝑋𝜀𝜀,𝐼𝐼0  is unique and located in a rectangle  ∆𝜀𝜀. This is an 
extremely complex configuration of steady voltage states of the nervous system which can appear 
after applying an external electrical input  𝐼𝐼0.  

A modified variant of the above theorem is Theorem (5.21) pg.193  Balint and..2008. 

In Balint and…2008  theorem5.21.pg.193. states; Under the general hypothesis concerning 
activation functions if there exists 𝛼𝛼 ∈ (0,1)  such that the activation functions verify: 

                                  𝑔𝑔𝑖𝑖(𝑠𝑠) ≥ 𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1   and    𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ −𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1    for any    𝑖𝑖 = 1,2, … 𝑛𝑛                         
(3.9)    

then for any input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 satisfying  

                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 × 𝛼𝛼 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗       for any    𝑖𝑖 = 1,2, … 𝑛𝑛                                            
(3.10) 

 the following statements hold: 

i). in every rectangle   ∆𝜀𝜀, ∈ {±1} , there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼. 

ii). every ∆𝜀𝜀,̅̅ ̅̅  𝜀𝜀 ∈ {±1}, , is invariant to the map 𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼) . 

This theorem reveal that if the  neuron input-output activations verify (3.9) and one input  𝐼𝐼0̂  
,which verifies (3.10), is applied to the nervous system then due to that in the nervous system 
2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0̂ = (𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state 𝑋𝑋𝜀𝜀,𝐼𝐼0̂   is unique and located in a 
rectangle  ∆𝜀𝜀. This configuration of steady states, is similar which appear in theorem 5.20 and is 
an extremely complex configuration of steady voltage states of the nervous system which can 
appear after applying an external electrical input  𝐼𝐼0̂.  

Finally in Balint and…2008  theorem5.25.pg.195  conditions of local exponential stability of the 
above steady voltage states are presented. 

In Balint and…2008  theorem5.25.pg.195. states; suppose that the conditions of Balint and…2008 
theorem 5.21 pg.193 are fulfilled. Let be an input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛 satisfying (3.10) and 𝜀𝜀 ∈ {±1},.If 

then for any input 

unique. This situation is completely different from that described in case of the neural network 
(2.2) where in case of the rectangle  ∆= (−1.5,1.5) × (−1.5,1.5) for the input 𝐼𝐼0̂ = (0,0)𝑇𝑇 three 
different equilibriums  𝐸𝐸1

0 = ((0,0)𝑇𝑇, 𝐼𝐼0̂) , 𝐸𝐸2
0 = ((𝑙𝑙𝑙𝑙4, 𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  and 𝐸𝐸3

0 = ((−𝑙𝑙𝑙𝑙4, −𝑙𝑙𝑙𝑙4)𝑇𝑇, 𝐼𝐼0̂)  
exists each of them having the steady state in ∆. 

In Balint and…2008 theorem5.18.pg.191. states; Under the general hypothesis concerning 
activation functions , for any external input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛  the following statements hold : 

i).There exits at least one steady voltage state of the neural network (1.4) (corresponding to 𝐼𝐼  ) in 
the rectangle    ∆= [−𝑀𝑀1, 𝑀𝑀1] × [−𝑀𝑀2, 𝑀𝑀2] × … × [−𝑀𝑀𝑛𝑛, 𝑀𝑀𝑛𝑛] 

where 

                           𝑀𝑀𝑖𝑖 = 1
1−𝑏𝑏𝑖𝑖

× (|𝐼𝐼𝑖̂𝑖| + ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑛𝑛
𝑗𝑗=1 )         for any   𝑖𝑖 = 1,2, … 𝑛𝑛                                          

(3.5) 

ii).Every steady voltage state of the neural network (1.4) corresponding to 𝐼𝐼   , belongs to the 
rectangle ∆ defined above . 

iii). If in addition  

det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any 𝑋𝑋 ∈ ∆                                 (3.6) 

then the neural network (1.4) has a unique steady state ,corresponding to 𝐼𝐼 ,and it belongs to  ∆. 

This theorem clarify several things: 
-First, the theorem assure that applying an arbitrary prior given external electrical input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛  
to the nervous system there exist at least one steady voltage state 𝑋𝑋0   such that 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
an equilibrium of the nervous system. The steady voltage state  𝑋𝑋0 of the equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) 
is in the rectangle  ∆  specified above. This is in fact a localization of the steady voltage state. For 
find effective, the steady voltage state 𝑋𝑋0, the nonlinear algebraic equation 𝐹𝐹(𝑋𝑋, 𝐼𝐼 )=𝑋𝑋 has to be 
solved in ∆ .  
-Second, the theorem assure that applying an arbitrary prior given external electrical input   𝐼𝐼0̂ 
∈ 𝑅𝑅𝑛𝑛  to the nervous system, every steady voltage state 𝑋𝑋0which appear due to that is in the 
rectangle ∆ . 
-Third if det ((𝐼𝐼𝑑𝑑 − 𝐵𝐵) − 𝑇̂𝑇 × 𝐷𝐷𝑋𝑋(𝑋𝑋))) ≠ 0 for any  𝑋𝑋 ∈ ∆ , (specified above) then the obtained 
steady voltage state 𝑋𝑋0 is unique. This means that the obtained equilibrium 𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂)  is 
unique. The supplementary information is that 𝑋𝑋0 is unique and the equilibrium  𝐸𝐸0 = (𝑋𝑋0, 𝐼𝐼0̂) is 
unique. 
 
In Balint and…2008 theorem 5.20. pg.192 states: Under the general hypothesis concerning 
activation functions 𝑔𝑔𝑖𝑖  if  
                               
                                   𝑔𝑔𝑖𝑖(𝑠𝑠) = 1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1               and                 𝑔𝑔𝑖𝑖(𝑠𝑠) = −1 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1                           
(3.7) 
then for any input 𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛satisfying   satisfying 

                                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗    for any 𝑖𝑖 = 1,2, … 𝑛𝑛                                                
(3.8) 

the following statements hold: 

i). in every rectangle  ∆𝜀𝜀, 𝜀𝜀 ∈ {±1}, there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼 ; here ∆𝜀𝜀= 𝐽𝐽(𝜀𝜀1) × 𝐽𝐽(𝜀𝜀2) … 𝐽𝐽(𝜀𝜀𝑛𝑛) , 𝐽𝐽(−1) = (−∞, −1),  , 𝐽𝐽(1) =
(1, ∞). 
 ii). every ∆𝜀𝜀̅̅ ̅  , 𝜀𝜀 ∈ {±1},  is invariant to the map  𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼). 

The mathematical condition (3.8) concerns the magnitude of the external input (left hand side) 
and the coefficients of the neural network (right hand side). If an input   𝐼𝐼0 which verifies (3.8) is 
applied to the nervous system then, due to that in the nervous system, 2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0 =
(𝑋𝑋𝜀𝜀,𝐼𝐼0, 𝐼𝐼0)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state  𝑋𝑋𝜀𝜀,𝐼𝐼0  is unique and located in a rectangle  ∆𝜀𝜀. This is an 
extremely complex configuration of steady voltage states of the nervous system which can appear 
after applying an external electrical input  𝐼𝐼0.  

A modified variant of the above theorem is Theorem (5.21) pg.193  Balint and..2008. 

In Balint and…2008  theorem5.21.pg.193. states; Under the general hypothesis concerning 
activation functions if there exists 𝛼𝛼 ∈ (0,1)  such that the activation functions verify: 

                                  𝑔𝑔𝑖𝑖(𝑠𝑠) ≥ 𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1   and    𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ −𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1    for any    𝑖𝑖 = 1,2, … 𝑛𝑛                         
(3.9)    

then for any input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 satisfying  

                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 × 𝛼𝛼 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗       for any    𝑖𝑖 = 1,2, … 𝑛𝑛                                            
(3.10) 

 the following statements hold: 

i). in every rectangle   ∆𝜀𝜀, ∈ {±1} , there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼. 

ii). every ∆𝜀𝜀,̅̅ ̅̅  𝜀𝜀 ∈ {±1}, , is invariant to the map 𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼) . 

This theorem reveal that if the  neuron input-output activations verify (3.9) and one input  𝐼𝐼0̂  
,which verifies (3.10), is applied to the nervous system then due to that in the nervous system 
2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0̂ = (𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state 𝑋𝑋𝜀𝜀,𝐼𝐼0̂   is unique and located in a 
rectangle  ∆𝜀𝜀. This configuration of steady states, is similar which appear in theorem 5.20 and is 
an extremely complex configuration of steady voltage states of the nervous system which can 
appear after applying an external electrical input  𝐼𝐼0̂.  

Finally in Balint and…2008  theorem5.25.pg.195  conditions of local exponential stability of the 
above steady voltage states are presented. 

In Balint and…2008  theorem5.25.pg.195. states; suppose that the conditions of Balint and…2008 
theorem 5.21 pg.193 are fulfilled. Let be an input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛 satisfying (3.10) and 𝜀𝜀 ∈ {±1},.If 

                                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗    for any 𝑖𝑖 = 1,2, … 𝑛𝑛                                                
(3.8) 

the following statements hold: 

i). in every rectangle  ∆𝜀𝜀, 𝜀𝜀 ∈ {±1}, there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼 ; here ∆𝜀𝜀= 𝐽𝐽(𝜀𝜀1) × 𝐽𝐽(𝜀𝜀2) … 𝐽𝐽(𝜀𝜀𝑛𝑛) , 𝐽𝐽(−1) = (−∞, −1),  , 𝐽𝐽(1) =
(1, ∞). 
 ii). every ∆𝜀𝜀̅̅ ̅  , 𝜀𝜀 ∈ {±1},  is invariant to the map  𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼). 

The mathematical condition (3.8) concerns the magnitude of the external input (left hand side) 
and the coefficients of the neural network (right hand side). If an input   𝐼𝐼0 which verifies (3.8) is 
applied to the nervous system then, due to that in the nervous system, 2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0 =
(𝑋𝑋𝜀𝜀,𝐼𝐼0, 𝐼𝐼0)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state  𝑋𝑋𝜀𝜀,𝐼𝐼0  is unique and located in a rectangle  ∆𝜀𝜀. This is an 
extremely complex configuration of steady voltage states of the nervous system which can appear 
after applying an external electrical input  𝐼𝐼0.  

A modified variant of the above theorem is Theorem (5.21) pg.193  Balint and..2008. 

In Balint and…2008  theorem5.21.pg.193. states; Under the general hypothesis concerning 
activation functions if there exists 𝛼𝛼 ∈ (0,1)  such that the activation functions verify: 

                                  𝑔𝑔𝑖𝑖(𝑠𝑠) ≥ 𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1   and    𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ −𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1    for any    𝑖𝑖 = 1,2, … 𝑛𝑛                         
(3.9)    

then for any input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 satisfying  

                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 × 𝛼𝛼 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗       for any    𝑖𝑖 = 1,2, … 𝑛𝑛                                            
(3.10) 

 the following statements hold: 

i). in every rectangle   ∆𝜀𝜀, ∈ {±1} , there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼. 

ii). every ∆𝜀𝜀,̅̅ ̅̅  𝜀𝜀 ∈ {±1}, , is invariant to the map 𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼) . 

This theorem reveal that if the  neuron input-output activations verify (3.9) and one input  𝐼𝐼0̂  
,which verifies (3.10), is applied to the nervous system then due to that in the nervous system 
2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0̂ = (𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state 𝑋𝑋𝜀𝜀,𝐼𝐼0̂   is unique and located in a 
rectangle  ∆𝜀𝜀. This configuration of steady states, is similar which appear in theorem 5.20 and is 
an extremely complex configuration of steady voltage states of the nervous system which can 
appear after applying an external electrical input  𝐼𝐼0̂.  

Finally in Balint and…2008  theorem5.25.pg.195  conditions of local exponential stability of the 
above steady voltage states are presented. 

In Balint and…2008  theorem5.25.pg.195. states; suppose that the conditions of Balint and…2008 
theorem 5.21 pg.193 are fulfilled. Let be an input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛 satisfying (3.10) and 𝜀𝜀 ∈ {±1},.If 

 the following statements hold:
•	 In every rectangle                     , there exists a unique steady voltage state of the neural network (1.4) corresponding to   .
	 every                      , is invariant to the map                        .    
•	 This theorem reveal that if the  neuron input-output activations verify (3.9) and one input    ,which verifies (3.10), is applied to the 

nervous system then due to that in the nervous system                                                               .Each steady state         is unique and 
located in a rectangle     . This configuration of steady states, is similar which appear in theorem 5.20 and is an extremely complex 
configuration of steady voltage states of the nervous system which can appear after applying an external electrical input   . 

                                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗    for any 𝑖𝑖 = 1,2, … 𝑛𝑛                                                
(3.8) 

the following statements hold: 

i). in every rectangle  ∆𝜀𝜀, 𝜀𝜀 ∈ {±1}, there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼 ; here ∆𝜀𝜀= 𝐽𝐽(𝜀𝜀1) × 𝐽𝐽(𝜀𝜀2) … 𝐽𝐽(𝜀𝜀𝑛𝑛) , 𝐽𝐽(−1) = (−∞, −1),  , 𝐽𝐽(1) =
(1, ∞). 
 ii). every ∆𝜀𝜀̅̅ ̅  , 𝜀𝜀 ∈ {±1},  is invariant to the map  𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼). 

The mathematical condition (3.8) concerns the magnitude of the external input (left hand side) 
and the coefficients of the neural network (right hand side). If an input   𝐼𝐼0 which verifies (3.8) is 
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after applying an external electrical input  𝐼𝐼0.  

A modified variant of the above theorem is Theorem (5.21) pg.193  Balint and..2008. 

In Balint and…2008  theorem5.21.pg.193. states; Under the general hypothesis concerning 
activation functions if there exists 𝛼𝛼 ∈ (0,1)  such that the activation functions verify: 

                                  𝑔𝑔𝑖𝑖(𝑠𝑠) ≥ 𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1   and    𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ −𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1    for any    𝑖𝑖 = 1,2, … 𝑛𝑛                         
(3.9)    

then for any input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 satisfying  

                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 × 𝛼𝛼 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗       for any    𝑖𝑖 = 1,2, … 𝑛𝑛                                            
(3.10) 

 the following statements hold: 

i). in every rectangle   ∆𝜀𝜀, ∈ {±1} , there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼. 

ii). every ∆𝜀𝜀,̅̅ ̅̅  𝜀𝜀 ∈ {±1}, , is invariant to the map 𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼) . 

This theorem reveal that if the  neuron input-output activations verify (3.9) and one input  𝐼𝐼0̂  
,which verifies (3.10), is applied to the nervous system then due to that in the nervous system 
2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0̂ = (𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state 𝑋𝑋𝜀𝜀,𝐼𝐼0̂   is unique and located in a 
rectangle  ∆𝜀𝜀. This configuration of steady states, is similar which appear in theorem 5.20 and is 
an extremely complex configuration of steady voltage states of the nervous system which can 
appear after applying an external electrical input  𝐼𝐼0̂.  

Finally in Balint and…2008  theorem5.25.pg.195  conditions of local exponential stability of the 
above steady voltage states are presented. 

In Balint and…2008  theorem5.25.pg.195. states; suppose that the conditions of Balint and…2008 
theorem 5.21 pg.193 are fulfilled. Let be an input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛 satisfying (3.10) and 𝜀𝜀 ∈ {±1},.If 

                                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗    for any 𝑖𝑖 = 1,2, … 𝑛𝑛                                                
(3.8) 

the following statements hold: 

i). in every rectangle  ∆𝜀𝜀, 𝜀𝜀 ∈ {±1}, there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼 ; here ∆𝜀𝜀= 𝐽𝐽(𝜀𝜀1) × 𝐽𝐽(𝜀𝜀2) … 𝐽𝐽(𝜀𝜀𝑛𝑛) , 𝐽𝐽(−1) = (−∞, −1),  , 𝐽𝐽(1) =
(1, ∞). 
 ii). every ∆𝜀𝜀̅̅ ̅  , 𝜀𝜀 ∈ {±1},  is invariant to the map  𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼). 

The mathematical condition (3.8) concerns the magnitude of the external input (left hand side) 
and the coefficients of the neural network (right hand side). If an input   𝐼𝐼0 which verifies (3.8) is 
applied to the nervous system then, due to that in the nervous system, 2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0 =
(𝑋𝑋𝜀𝜀,𝐼𝐼0, 𝐼𝐼0)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state  𝑋𝑋𝜀𝜀,𝐼𝐼0  is unique and located in a rectangle  ∆𝜀𝜀. This is an 
extremely complex configuration of steady voltage states of the nervous system which can appear 
after applying an external electrical input  𝐼𝐼0.  

A modified variant of the above theorem is Theorem (5.21) pg.193  Balint and..2008. 

In Balint and…2008  theorem5.21.pg.193. states; Under the general hypothesis concerning 
activation functions if there exists 𝛼𝛼 ∈ (0,1)  such that the activation functions verify: 

                                  𝑔𝑔𝑖𝑖(𝑠𝑠) ≥ 𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1   and    𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ −𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1    for any    𝑖𝑖 = 1,2, … 𝑛𝑛                         
(3.9)    

then for any input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 satisfying  

                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 × 𝛼𝛼 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗       for any    𝑖𝑖 = 1,2, … 𝑛𝑛                                            
(3.10) 

 the following statements hold: 

i). in every rectangle   ∆𝜀𝜀, ∈ {±1} , there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼. 

ii). every ∆𝜀𝜀,̅̅ ̅̅  𝜀𝜀 ∈ {±1}, , is invariant to the map 𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼) . 

This theorem reveal that if the  neuron input-output activations verify (3.9) and one input  𝐼𝐼0̂  
,which verifies (3.10), is applied to the nervous system then due to that in the nervous system 
2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0̂ = (𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state 𝑋𝑋𝜀𝜀,𝐼𝐼0̂   is unique and located in a 
rectangle  ∆𝜀𝜀. This configuration of steady states, is similar which appear in theorem 5.20 and is 
an extremely complex configuration of steady voltage states of the nervous system which can 
appear after applying an external electrical input  𝐼𝐼0̂.  

Finally in Balint and…2008  theorem5.25.pg.195  conditions of local exponential stability of the 
above steady voltage states are presented. 

In Balint and…2008  theorem5.25.pg.195. states; suppose that the conditions of Balint and…2008 
theorem 5.21 pg.193 are fulfilled. Let be an input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛 satisfying (3.10) and 𝜀𝜀 ∈ {±1},.If 

                                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗    for any 𝑖𝑖 = 1,2, … 𝑛𝑛                                                
(3.8) 

the following statements hold: 

i). in every rectangle  ∆𝜀𝜀, 𝜀𝜀 ∈ {±1}, there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼 ; here ∆𝜀𝜀= 𝐽𝐽(𝜀𝜀1) × 𝐽𝐽(𝜀𝜀2) … 𝐽𝐽(𝜀𝜀𝑛𝑛) , 𝐽𝐽(−1) = (−∞, −1),  , 𝐽𝐽(1) =
(1, ∞). 
 ii). every ∆𝜀𝜀̅̅ ̅  , 𝜀𝜀 ∈ {±1},  is invariant to the map  𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼). 

The mathematical condition (3.8) concerns the magnitude of the external input (left hand side) 
and the coefficients of the neural network (right hand side). If an input   𝐼𝐼0 which verifies (3.8) is 
applied to the nervous system then, due to that in the nervous system, 2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0 =
(𝑋𝑋𝜀𝜀,𝐼𝐼0, 𝐼𝐼0)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state  𝑋𝑋𝜀𝜀,𝐼𝐼0  is unique and located in a rectangle  ∆𝜀𝜀. This is an 
extremely complex configuration of steady voltage states of the nervous system which can appear 
after applying an external electrical input  𝐼𝐼0.  

A modified variant of the above theorem is Theorem (5.21) pg.193  Balint and..2008. 

In Balint and…2008  theorem5.21.pg.193. states; Under the general hypothesis concerning 
activation functions if there exists 𝛼𝛼 ∈ (0,1)  such that the activation functions verify: 

                                  𝑔𝑔𝑖𝑖(𝑠𝑠) ≥ 𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1   and    𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ −𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1    for any    𝑖𝑖 = 1,2, … 𝑛𝑛                         
(3.9)    

then for any input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 satisfying  

                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 × 𝛼𝛼 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗       for any    𝑖𝑖 = 1,2, … 𝑛𝑛                                            
(3.10) 

 the following statements hold: 

i). in every rectangle   ∆𝜀𝜀, ∈ {±1} , there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼. 

ii). every ∆𝜀𝜀,̅̅ ̅̅  𝜀𝜀 ∈ {±1}, , is invariant to the map 𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼) . 

This theorem reveal that if the  neuron input-output activations verify (3.9) and one input  𝐼𝐼0̂  
,which verifies (3.10), is applied to the nervous system then due to that in the nervous system 
2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0̂ = (𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state 𝑋𝑋𝜀𝜀,𝐼𝐼0̂   is unique and located in a 
rectangle  ∆𝜀𝜀. This configuration of steady states, is similar which appear in theorem 5.20 and is 
an extremely complex configuration of steady voltage states of the nervous system which can 
appear after applying an external electrical input  𝐼𝐼0̂.  

Finally in Balint and…2008  theorem5.25.pg.195  conditions of local exponential stability of the 
above steady voltage states are presented. 

In Balint and…2008  theorem5.25.pg.195. states; suppose that the conditions of Balint and…2008 
theorem 5.21 pg.193 are fulfilled. Let be an input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛 satisfying (3.10) and 𝜀𝜀 ∈ {±1},.If 
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|𝑔𝑔𝑖𝑖
′(𝑠𝑠)| < 1−𝑏𝑏𝑖𝑖

∑ |𝑇𝑇𝑗𝑗𝑗̂𝑗|𝑛𝑛
𝑗𝑗=1

      for any 1s and 𝑖𝑖 = 1,2, … 𝑛𝑛  then the steady voltage state  𝑋𝑋𝜀𝜀,𝐼𝐼0̂  of the 

neural network (1.4) corresponding to 𝐼𝐼0̂ , which lies in the rectangle ∆𝜀𝜀 , is unique it is locally 
exponentially stable and its region of attraction includes ∆𝜀𝜀,̅̅ ̅̅   . 

 This theorem present conditions, concerning the neuron input-output activations, assuring the 
robustness of the  2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝐸𝐸𝜀𝜀,𝐼𝐼0̂ =
(𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂) 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼0̂ to the nervous system. 
The importance of this theorem consists in the fact that permit the construction of path of robust 
equilibriums which can be used in healthcare as secured way to transfer gradually a pathologic 
equilibrium into a non-pathologic equilibrium. 

A numerical illustration of the phenomena described in Theorem 5.25.pg.195. Balint and..(2008) 
is given in Example (5.6) pg.197 Balint and..(2008).In this example the following Hopfield neural 
network is considered: 

           𝑥𝑥𝑝𝑝+1
1 = 0.5𝑥𝑥𝑝𝑝

1 + 20𝑓𝑓(𝑥𝑥𝑝𝑝
1) − 𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼1̂    ,  𝑥𝑥𝑝𝑝+1
2 = 0.5𝑥𝑥𝑝𝑝

2 − 𝑓𝑓(𝑥𝑥𝑝𝑝
1) + 20𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼2̂                 
(3.11) 

With the non-monotone activation function 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) tanh (10𝑥𝑥2 − 1).It has been shown 
that in some cases, the absolute capacity of an associative neural network can be improved by 
using non-monotone activation functions instead of the usual sigmoid ones. The conditions of 
theorems Balint and…2008 theorem5.21.pg.193  and theorem5.25.pg.195  are verified(𝛼𝛼 = 𝑓𝑓(1) ∈
(0,1)).Therefore ,for any input 𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂)𝑇𝑇 such that ⌊𝐼𝐼𝑖̂𝑖⌋ < 18.4982  there exists unique locally 
exponentially stable steady state 𝑋𝑋𝜀𝜀,𝐼𝐼 =  (𝑥𝑥1;𝜀𝜀,𝐼𝐼, 𝑥𝑥2;𝜀𝜀,𝐼𝐼)𝑇𝑇   in each rectangle ∆𝜀𝜀. 

In the next figure the rectangles represent the sets 𝑆𝑆𝜀𝜀 = {𝑥𝑥𝑖𝑖;𝜀𝜀,𝐼𝐼𝑖̂𝑖

|𝐼𝐼𝑖̂𝑖|  < 18.4982, 𝑖𝑖 = 1,2}.  

 
Sets 𝑆𝑆𝜀𝜀 

|𝑔𝑔𝑖𝑖
′(𝑠𝑠)| < 1−𝑏𝑏𝑖𝑖

∑ |𝑇𝑇𝑗𝑗𝑗̂𝑗|𝑛𝑛
𝑗𝑗=1

      for any 1s and 𝑖𝑖 = 1,2, … 𝑛𝑛  then the steady voltage state  𝑋𝑋𝜀𝜀,𝐼𝐼0̂  of the 

neural network (1.4) corresponding to 𝐼𝐼0̂ , which lies in the rectangle ∆𝜀𝜀 , is unique it is locally 
exponentially stable and its region of attraction includes ∆𝜀𝜀,̅̅ ̅̅   . 

 This theorem present conditions, concerning the neuron input-output activations, assuring the 
robustness of the  2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝐸𝐸𝜀𝜀,𝐼𝐼0̂ =
(𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂) 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼0̂ to the nervous system. 
The importance of this theorem consists in the fact that permit the construction of path of robust 
equilibriums which can be used in healthcare as secured way to transfer gradually a pathologic 
equilibrium into a non-pathologic equilibrium. 

A numerical illustration of the phenomena described in Theorem 5.25.pg.195. Balint and..(2008) 
is given in Example (5.6) pg.197 Balint and..(2008).In this example the following Hopfield neural 
network is considered: 

           𝑥𝑥𝑝𝑝+1
1 = 0.5𝑥𝑥𝑝𝑝

1 + 20𝑓𝑓(𝑥𝑥𝑝𝑝
1) − 𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼1̂    ,  𝑥𝑥𝑝𝑝+1
2 = 0.5𝑥𝑥𝑝𝑝

2 − 𝑓𝑓(𝑥𝑥𝑝𝑝
1) + 20𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼2̂                 
(3.11) 

With the non-monotone activation function 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) tanh (10𝑥𝑥2 − 1).It has been shown 
that in some cases, the absolute capacity of an associative neural network can be improved by 
using non-monotone activation functions instead of the usual sigmoid ones. The conditions of 
theorems Balint and…2008 theorem5.21.pg.193  and theorem5.25.pg.195  are verified(𝛼𝛼 = 𝑓𝑓(1) ∈
(0,1)).Therefore ,for any input 𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂)𝑇𝑇 such that ⌊𝐼𝐼𝑖̂𝑖⌋ < 18.4982  there exists unique locally 
exponentially stable steady state 𝑋𝑋𝜀𝜀,𝐼𝐼 =  (𝑥𝑥1;𝜀𝜀,𝐼𝐼, 𝑥𝑥2;𝜀𝜀,𝐼𝐼)𝑇𝑇   in each rectangle ∆𝜀𝜀. 

In the next figure the rectangles represent the sets 𝑆𝑆𝜀𝜀 = {𝑥𝑥𝑖𝑖;𝜀𝜀,𝐼𝐼𝑖̂𝑖

|𝐼𝐼𝑖̂𝑖|  < 18.4982, 𝑖𝑖 = 1,2}.  

 
Sets 𝑆𝑆𝜀𝜀 

Finally, in Balint and…2008 theorem5.25.pg.195 conditions of local exponential stability of the above steady voltage states are presented.

In Balint and…2008 theorem5.25.pg.195. states; suppose that the conditions of Balint and…2008 theorem 5.21 pg.193 are fulfilled. Let 
be an input 

                                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗    for any 𝑖𝑖 = 1,2, … 𝑛𝑛                                                
(3.8) 

the following statements hold: 

i). in every rectangle  ∆𝜀𝜀, 𝜀𝜀 ∈ {±1}, there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼 ; here ∆𝜀𝜀= 𝐽𝐽(𝜀𝜀1) × 𝐽𝐽(𝜀𝜀2) … 𝐽𝐽(𝜀𝜀𝑛𝑛) , 𝐽𝐽(−1) = (−∞, −1),  , 𝐽𝐽(1) =
(1, ∞). 
 ii). every ∆𝜀𝜀̅̅ ̅  , 𝜀𝜀 ∈ {±1},  is invariant to the map  𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼). 

The mathematical condition (3.8) concerns the magnitude of the external input (left hand side) 
and the coefficients of the neural network (right hand side). If an input   𝐼𝐼0 which verifies (3.8) is 
applied to the nervous system then, due to that in the nervous system, 2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0 =
(𝑋𝑋𝜀𝜀,𝐼𝐼0, 𝐼𝐼0)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state  𝑋𝑋𝜀𝜀,𝐼𝐼0  is unique and located in a rectangle  ∆𝜀𝜀. This is an 
extremely complex configuration of steady voltage states of the nervous system which can appear 
after applying an external electrical input  𝐼𝐼0.  

A modified variant of the above theorem is Theorem (5.21) pg.193  Balint and..2008. 

In Balint and…2008  theorem5.21.pg.193. states; Under the general hypothesis concerning 
activation functions if there exists 𝛼𝛼 ∈ (0,1)  such that the activation functions verify: 

                                  𝑔𝑔𝑖𝑖(𝑠𝑠) ≥ 𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1   and    𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ −𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1    for any    𝑖𝑖 = 1,2, … 𝑛𝑛                         
(3.9)    

then for any input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 satisfying  

                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 × 𝛼𝛼 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗       for any    𝑖𝑖 = 1,2, … 𝑛𝑛                                            
(3.10) 

 the following statements hold: 

i). in every rectangle   ∆𝜀𝜀, ∈ {±1} , there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼. 

ii). every ∆𝜀𝜀,̅̅ ̅̅  𝜀𝜀 ∈ {±1}, , is invariant to the map 𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼) . 

This theorem reveal that if the  neuron input-output activations verify (3.9) and one input  𝐼𝐼0̂  
,which verifies (3.10), is applied to the nervous system then due to that in the nervous system 
2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0̂ = (𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state 𝑋𝑋𝜀𝜀,𝐼𝐼0̂   is unique and located in a 
rectangle  ∆𝜀𝜀. This configuration of steady states, is similar which appear in theorem 5.20 and is 
an extremely complex configuration of steady voltage states of the nervous system which can 
appear after applying an external electrical input  𝐼𝐼0̂.  

Finally in Balint and…2008  theorem5.25.pg.195  conditions of local exponential stability of the 
above steady voltage states are presented. 

In Balint and…2008  theorem5.25.pg.195. states; suppose that the conditions of Balint and…2008 
theorem 5.21 pg.193 are fulfilled. Let be an input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛 satisfying (3.10) and 𝜀𝜀 ∈ {±1},.If  satisfying (3.10) and 

                                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗    for any 𝑖𝑖 = 1,2, … 𝑛𝑛                                                
(3.8) 

the following statements hold: 

i). in every rectangle  ∆𝜀𝜀, 𝜀𝜀 ∈ {±1}, there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼 ; here ∆𝜀𝜀= 𝐽𝐽(𝜀𝜀1) × 𝐽𝐽(𝜀𝜀2) … 𝐽𝐽(𝜀𝜀𝑛𝑛) , 𝐽𝐽(−1) = (−∞, −1),  , 𝐽𝐽(1) =
(1, ∞). 
 ii). every ∆𝜀𝜀̅̅ ̅  , 𝜀𝜀 ∈ {±1},  is invariant to the map  𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼). 

The mathematical condition (3.8) concerns the magnitude of the external input (left hand side) 
and the coefficients of the neural network (right hand side). If an input   𝐼𝐼0 which verifies (3.8) is 
applied to the nervous system then, due to that in the nervous system, 2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0 =
(𝑋𝑋𝜀𝜀,𝐼𝐼0, 𝐼𝐼0)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state  𝑋𝑋𝜀𝜀,𝐼𝐼0  is unique and located in a rectangle  ∆𝜀𝜀. This is an 
extremely complex configuration of steady voltage states of the nervous system which can appear 
after applying an external electrical input  𝐼𝐼0.  

A modified variant of the above theorem is Theorem (5.21) pg.193  Balint and..2008. 

In Balint and…2008  theorem5.21.pg.193. states; Under the general hypothesis concerning 
activation functions if there exists 𝛼𝛼 ∈ (0,1)  such that the activation functions verify: 

                                  𝑔𝑔𝑖𝑖(𝑠𝑠) ≥ 𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1   and    𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ −𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1    for any    𝑖𝑖 = 1,2, … 𝑛𝑛                         
(3.9)    

then for any input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 satisfying  

                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 × 𝛼𝛼 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗       for any    𝑖𝑖 = 1,2, … 𝑛𝑛                                            
(3.10) 

 the following statements hold: 

i). in every rectangle   ∆𝜀𝜀, ∈ {±1} , there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼. 

ii). every ∆𝜀𝜀,̅̅ ̅̅  𝜀𝜀 ∈ {±1}, , is invariant to the map 𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼) . 

This theorem reveal that if the  neuron input-output activations verify (3.9) and one input  𝐼𝐼0̂  
,which verifies (3.10), is applied to the nervous system then due to that in the nervous system 
2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0̂ = (𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state 𝑋𝑋𝜀𝜀,𝐼𝐼0̂   is unique and located in a 
rectangle  ∆𝜀𝜀. This configuration of steady states, is similar which appear in theorem 5.20 and is 
an extremely complex configuration of steady voltage states of the nervous system which can 
appear after applying an external electrical input  𝐼𝐼0̂.  

Finally in Balint and…2008  theorem5.25.pg.195  conditions of local exponential stability of the 
above steady voltage states are presented. 

In Balint and…2008  theorem5.25.pg.195. states; suppose that the conditions of Balint and…2008 
theorem 5.21 pg.193 are fulfilled. Let be an input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛 satisfying (3.10) and 𝜀𝜀 ∈ {±1},.If ,. If |𝑔𝑔𝑖𝑖

′(𝑠𝑠)| < 1−𝑏𝑏𝑖𝑖
∑ |𝑇𝑇𝑗𝑗𝑗̂𝑗|𝑛𝑛

𝑗𝑗=1
      for any 1s and 𝑖𝑖 = 1,2, … 𝑛𝑛  then the steady voltage state  𝑋𝑋𝜀𝜀,𝐼𝐼0̂  of the 

neural network (1.4) corresponding to 𝐼𝐼0̂ , which lies in the rectangle ∆𝜀𝜀 , is unique it is locally 
exponentially stable and its region of attraction includes ∆𝜀𝜀,̅̅ ̅̅   . 

 This theorem present conditions, concerning the neuron input-output activations, assuring the 
robustness of the  2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝐸𝐸𝜀𝜀,𝐼𝐼0̂ =
(𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂) 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼0̂ to the nervous system. 
The importance of this theorem consists in the fact that permit the construction of path of robust 
equilibriums which can be used in healthcare as secured way to transfer gradually a pathologic 
equilibrium into a non-pathologic equilibrium. 

A numerical illustration of the phenomena described in Theorem 5.25.pg.195. Balint and..(2008) 
is given in Example (5.6) pg.197 Balint and..(2008).In this example the following Hopfield neural 
network is considered: 

           𝑥𝑥𝑝𝑝+1
1 = 0.5𝑥𝑥𝑝𝑝

1 + 20𝑓𝑓(𝑥𝑥𝑝𝑝
1) − 𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼1̂    ,  𝑥𝑥𝑝𝑝+1
2 = 0.5𝑥𝑥𝑝𝑝

2 − 𝑓𝑓(𝑥𝑥𝑝𝑝
1) + 20𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼2̂                 
(3.11) 

With the non-monotone activation function 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) tanh (10𝑥𝑥2 − 1).It has been shown 
that in some cases, the absolute capacity of an associative neural network can be improved by 
using non-monotone activation functions instead of the usual sigmoid ones. The conditions of 
theorems Balint and…2008 theorem5.21.pg.193  and theorem5.25.pg.195  are verified(𝛼𝛼 = 𝑓𝑓(1) ∈
(0,1)).Therefore ,for any input 𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂)𝑇𝑇 such that ⌊𝐼𝐼𝑖̂𝑖⌋ < 18.4982  there exists unique locally 
exponentially stable steady state 𝑋𝑋𝜀𝜀,𝐼𝐼 =  (𝑥𝑥1;𝜀𝜀,𝐼𝐼, 𝑥𝑥2;𝜀𝜀,𝐼𝐼)𝑇𝑇   in each rectangle ∆𝜀𝜀. 

In the next figure the rectangles represent the sets 𝑆𝑆𝜀𝜀 = {𝑥𝑥𝑖𝑖;𝜀𝜀,𝐼𝐼𝑖̂𝑖

|𝐼𝐼𝑖̂𝑖|  < 18.4982, 𝑖𝑖 = 1,2}.  

 
Sets 𝑆𝑆𝜀𝜀 

 for any and |𝑔𝑔𝑖𝑖
′(𝑠𝑠)| < 1−𝑏𝑏𝑖𝑖

∑ |𝑇𝑇𝑗𝑗𝑗̂𝑗|𝑛𝑛
𝑗𝑗=1

      for any 1s and 𝑖𝑖 = 1,2, … 𝑛𝑛  then the steady voltage state  𝑋𝑋𝜀𝜀,𝐼𝐼0̂  of the 

neural network (1.4) corresponding to 𝐼𝐼0̂ , which lies in the rectangle ∆𝜀𝜀 , is unique it is locally 
exponentially stable and its region of attraction includes ∆𝜀𝜀,̅̅ ̅̅   . 

 This theorem present conditions, concerning the neuron input-output activations, assuring the 
robustness of the  2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝐸𝐸𝜀𝜀,𝐼𝐼0̂ =
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The importance of this theorem consists in the fact that permit the construction of path of robust 
equilibriums which can be used in healthcare as secured way to transfer gradually a pathologic 
equilibrium into a non-pathologic equilibrium. 

A numerical illustration of the phenomena described in Theorem 5.25.pg.195. Balint and..(2008) 
is given in Example (5.6) pg.197 Balint and..(2008).In this example the following Hopfield neural 
network is considered: 

           𝑥𝑥𝑝𝑝+1
1 = 0.5𝑥𝑥𝑝𝑝

1 + 20𝑓𝑓(𝑥𝑥𝑝𝑝
1) − 𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼1̂    ,  𝑥𝑥𝑝𝑝+1
2 = 0.5𝑥𝑥𝑝𝑝

2 − 𝑓𝑓(𝑥𝑥𝑝𝑝
1) + 20𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼2̂                 
(3.11) 

With the non-monotone activation function 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) tanh (10𝑥𝑥2 − 1).It has been shown 
that in some cases, the absolute capacity of an associative neural network can be improved by 
using non-monotone activation functions instead of the usual sigmoid ones. The conditions of 
theorems Balint and…2008 theorem5.21.pg.193  and theorem5.25.pg.195  are verified(𝛼𝛼 = 𝑓𝑓(1) ∈
(0,1)).Therefore ,for any input 𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂)𝑇𝑇 such that ⌊𝐼𝐼𝑖̂𝑖⌋ < 18.4982  there exists unique locally 
exponentially stable steady state 𝑋𝑋𝜀𝜀,𝐼𝐼 =  (𝑥𝑥1;𝜀𝜀,𝐼𝐼, 𝑥𝑥2;𝜀𝜀,𝐼𝐼)𝑇𝑇   in each rectangle ∆𝜀𝜀. 

In the next figure the rectangles represent the sets 𝑆𝑆𝜀𝜀 = {𝑥𝑥𝑖𝑖;𝜀𝜀,𝐼𝐼𝑖̂𝑖

|𝐼𝐼𝑖̂𝑖|  < 18.4982, 𝑖𝑖 = 1,2}.  

 
Sets 𝑆𝑆𝜀𝜀 

 then the steady voltage state 

                                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗    for any 𝑖𝑖 = 1,2, … 𝑛𝑛                                                
(3.8) 

the following statements hold: 

i). in every rectangle  ∆𝜀𝜀, 𝜀𝜀 ∈ {±1}, there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼 ; here ∆𝜀𝜀= 𝐽𝐽(𝜀𝜀1) × 𝐽𝐽(𝜀𝜀2) … 𝐽𝐽(𝜀𝜀𝑛𝑛) , 𝐽𝐽(−1) = (−∞, −1),  , 𝐽𝐽(1) =
(1, ∞). 
 ii). every ∆𝜀𝜀̅̅ ̅  , 𝜀𝜀 ∈ {±1},  is invariant to the map  𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼). 

The mathematical condition (3.8) concerns the magnitude of the external input (left hand side) 
and the coefficients of the neural network (right hand side). If an input   𝐼𝐼0 which verifies (3.8) is 
applied to the nervous system then, due to that in the nervous system, 2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0 =
(𝑋𝑋𝜀𝜀,𝐼𝐼0, 𝐼𝐼0)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state  𝑋𝑋𝜀𝜀,𝐼𝐼0  is unique and located in a rectangle  ∆𝜀𝜀. This is an 
extremely complex configuration of steady voltage states of the nervous system which can appear 
after applying an external electrical input  𝐼𝐼0.  

A modified variant of the above theorem is Theorem (5.21) pg.193  Balint and..2008. 

In Balint and…2008  theorem5.21.pg.193. states; Under the general hypothesis concerning 
activation functions if there exists 𝛼𝛼 ∈ (0,1)  such that the activation functions verify: 

                                  𝑔𝑔𝑖𝑖(𝑠𝑠) ≥ 𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1   and    𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ −𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1    for any    𝑖𝑖 = 1,2, … 𝑛𝑛                         
(3.9)    

then for any input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 satisfying  

                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 × 𝛼𝛼 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗       for any    𝑖𝑖 = 1,2, … 𝑛𝑛                                            
(3.10) 

 the following statements hold: 

i). in every rectangle   ∆𝜀𝜀, ∈ {±1} , there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼. 

ii). every ∆𝜀𝜀,̅̅ ̅̅  𝜀𝜀 ∈ {±1}, , is invariant to the map 𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼) . 

This theorem reveal that if the  neuron input-output activations verify (3.9) and one input  𝐼𝐼0̂  
,which verifies (3.10), is applied to the nervous system then due to that in the nervous system 
2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0̂ = (𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state 𝑋𝑋𝜀𝜀,𝐼𝐼0̂   is unique and located in a 
rectangle  ∆𝜀𝜀. This configuration of steady states, is similar which appear in theorem 5.20 and is 
an extremely complex configuration of steady voltage states of the nervous system which can 
appear after applying an external electrical input  𝐼𝐼0̂.  

Finally in Balint and…2008  theorem5.25.pg.195  conditions of local exponential stability of the 
above steady voltage states are presented. 

In Balint and…2008  theorem5.25.pg.195. states; suppose that the conditions of Balint and…2008 
theorem 5.21 pg.193 are fulfilled. Let be an input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛 satisfying (3.10) and 𝜀𝜀 ∈ {±1},.If 
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extremely complex configuration of steady voltage states of the nervous system which can appear 
after applying an external electrical input  𝐼𝐼0.  
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then for any input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 satisfying  
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(3.10) 

 the following statements hold: 

i). in every rectangle   ∆𝜀𝜀, ∈ {±1} , there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼. 

ii). every ∆𝜀𝜀,̅̅ ̅̅  𝜀𝜀 ∈ {±1}, , is invariant to the map 𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼) . 

This theorem reveal that if the  neuron input-output activations verify (3.9) and one input  𝐼𝐼0̂  
,which verifies (3.10), is applied to the nervous system then due to that in the nervous system 
2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0̂ = (𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state 𝑋𝑋𝜀𝜀,𝐼𝐼0̂   is unique and located in a 
rectangle  ∆𝜀𝜀. This configuration of steady states, is similar which appear in theorem 5.20 and is 
an extremely complex configuration of steady voltage states of the nervous system which can 
appear after applying an external electrical input  𝐼𝐼0̂.  

Finally in Balint and…2008  theorem5.25.pg.195  conditions of local exponential stability of the 
above steady voltage states are presented. 

In Balint and…2008  theorem5.25.pg.195. states; suppose that the conditions of Balint and…2008 
theorem 5.21 pg.193 are fulfilled. Let be an input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛 satisfying (3.10) and 𝜀𝜀 ∈ {±1},.If 

, which lies in the rectangle ∆ε, is unique it is locally exponentially stable and its region 
of attraction includes 

                                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗    for any 𝑖𝑖 = 1,2, … 𝑛𝑛                                                
(3.8) 

the following statements hold: 

i). in every rectangle  ∆𝜀𝜀, 𝜀𝜀 ∈ {±1}, there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼 ; here ∆𝜀𝜀= 𝐽𝐽(𝜀𝜀1) × 𝐽𝐽(𝜀𝜀2) … 𝐽𝐽(𝜀𝜀𝑛𝑛) , 𝐽𝐽(−1) = (−∞, −1),  , 𝐽𝐽(1) =
(1, ∞). 
 ii). every ∆𝜀𝜀̅̅ ̅  , 𝜀𝜀 ∈ {±1},  is invariant to the map  𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼). 

The mathematical condition (3.8) concerns the magnitude of the external input (left hand side) 
and the coefficients of the neural network (right hand side). If an input   𝐼𝐼0 which verifies (3.8) is 
applied to the nervous system then, due to that in the nervous system, 2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0 =
(𝑋𝑋𝜀𝜀,𝐼𝐼0, 𝐼𝐼0)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state  𝑋𝑋𝜀𝜀,𝐼𝐼0  is unique and located in a rectangle  ∆𝜀𝜀. This is an 
extremely complex configuration of steady voltage states of the nervous system which can appear 
after applying an external electrical input  𝐼𝐼0.  

A modified variant of the above theorem is Theorem (5.21) pg.193  Balint and..2008. 
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activation functions if there exists 𝛼𝛼 ∈ (0,1)  such that the activation functions verify: 

                                  𝑔𝑔𝑖𝑖(𝑠𝑠) ≥ 𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1   and    𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ −𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1    for any    𝑖𝑖 = 1,2, … 𝑛𝑛                         
(3.9)    

then for any input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 satisfying  
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 the following statements hold: 

i). in every rectangle   ∆𝜀𝜀, ∈ {±1} , there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼. 

ii). every ∆𝜀𝜀,̅̅ ̅̅  𝜀𝜀 ∈ {±1}, , is invariant to the map 𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼) . 

This theorem reveal that if the  neuron input-output activations verify (3.9) and one input  𝐼𝐼0̂  
,which verifies (3.10), is applied to the nervous system then due to that in the nervous system 
2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0̂ = (𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state 𝑋𝑋𝜀𝜀,𝐼𝐼0̂   is unique and located in a 
rectangle  ∆𝜀𝜀. This configuration of steady states, is similar which appear in theorem 5.20 and is 
an extremely complex configuration of steady voltage states of the nervous system which can 
appear after applying an external electrical input  𝐼𝐼0̂.  

Finally in Balint and…2008  theorem5.25.pg.195  conditions of local exponential stability of the 
above steady voltage states are presented. 

In Balint and…2008  theorem5.25.pg.195. states; suppose that the conditions of Balint and…2008 
theorem 5.21 pg.193 are fulfilled. Let be an input 𝐼𝐼0̂ ∈ 𝑅𝑅𝑛𝑛 satisfying (3.10) and 𝜀𝜀 ∈ {±1},.If 

.

This theorem present conditions, concerning the neuron input-output activations, assuring the robustness of the 

|𝑔𝑔𝑖𝑖
′(𝑠𝑠)| < 1−𝑏𝑏𝑖𝑖

∑ |𝑇𝑇𝑗𝑗𝑗̂𝑗|𝑛𝑛
𝑗𝑗=1

      for any 1s and 𝑖𝑖 = 1,2, … 𝑛𝑛  then the steady voltage state  𝑋𝑋𝜀𝜀,𝐼𝐼0̂  of the 

neural network (1.4) corresponding to 𝐼𝐼0̂ , which lies in the rectangle ∆𝜀𝜀 , is unique it is locally 
exponentially stable and its region of attraction includes ∆𝜀𝜀,̅̅ ̅̅   . 

 This theorem present conditions, concerning the neuron input-output activations, assuring the 
robustness of the  2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝐸𝐸𝜀𝜀,𝐼𝐼0̂ =
(𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂) 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼0̂ to the nervous system. 
The importance of this theorem consists in the fact that permit the construction of path of robust 
equilibriums which can be used in healthcare as secured way to transfer gradually a pathologic 
equilibrium into a non-pathologic equilibrium. 

A numerical illustration of the phenomena described in Theorem 5.25.pg.195. Balint and..(2008) 
is given in Example (5.6) pg.197 Balint and..(2008).In this example the following Hopfield neural 
network is considered: 

           𝑥𝑥𝑝𝑝+1
1 = 0.5𝑥𝑥𝑝𝑝

1 + 20𝑓𝑓(𝑥𝑥𝑝𝑝
1) − 𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼1̂    ,  𝑥𝑥𝑝𝑝+1
2 = 0.5𝑥𝑥𝑝𝑝

2 − 𝑓𝑓(𝑥𝑥𝑝𝑝
1) + 20𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼2̂                 
(3.11) 

With the non-monotone activation function 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) tanh (10𝑥𝑥2 − 1).It has been shown 
that in some cases, the absolute capacity of an associative neural network can be improved by 
using non-monotone activation functions instead of the usual sigmoid ones. The conditions of 
theorems Balint and…2008 theorem5.21.pg.193  and theorem5.25.pg.195  are verified(𝛼𝛼 = 𝑓𝑓(1) ∈
(0,1)).Therefore ,for any input 𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂)𝑇𝑇 such that ⌊𝐼𝐼𝑖̂𝑖⌋ < 18.4982  there exists unique locally 
exponentially stable steady state 𝑋𝑋𝜀𝜀,𝐼𝐼 =  (𝑥𝑥1;𝜀𝜀,𝐼𝐼, 𝑥𝑥2;𝜀𝜀,𝐼𝐼)𝑇𝑇   in each rectangle ∆𝜀𝜀. 

In the next figure the rectangles represent the sets 𝑆𝑆𝜀𝜀 = {𝑥𝑥𝑖𝑖;𝜀𝜀,𝐼𝐼𝑖̂𝑖

|𝐼𝐼𝑖̂𝑖|  < 18.4982, 𝑖𝑖 = 1,2}.  

 
Sets 𝑆𝑆𝜀𝜀 

|𝑔𝑔𝑖𝑖
′(𝑠𝑠)| < 1−𝑏𝑏𝑖𝑖

∑ |𝑇𝑇𝑗𝑗𝑗̂𝑗|𝑛𝑛
𝑗𝑗=1

      for any 1s and 𝑖𝑖 = 1,2, … 𝑛𝑛  then the steady voltage state  𝑋𝑋𝜀𝜀,𝐼𝐼0̂  of the 

neural network (1.4) corresponding to 𝐼𝐼0̂ , which lies in the rectangle ∆𝜀𝜀 , is unique it is locally 
exponentially stable and its region of attraction includes ∆𝜀𝜀,̅̅ ̅̅   . 

 This theorem present conditions, concerning the neuron input-output activations, assuring the 
robustness of the  2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝐸𝐸𝜀𝜀,𝐼𝐼0̂ =
(𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂) 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼0̂ to the nervous system. 
The importance of this theorem consists in the fact that permit the construction of path of robust 
equilibriums which can be used in healthcare as secured way to transfer gradually a pathologic 
equilibrium into a non-pathologic equilibrium. 

A numerical illustration of the phenomena described in Theorem 5.25.pg.195. Balint and..(2008) 
is given in Example (5.6) pg.197 Balint and..(2008).In this example the following Hopfield neural 
network is considered: 

           𝑥𝑥𝑝𝑝+1
1 = 0.5𝑥𝑥𝑝𝑝

1 + 20𝑓𝑓(𝑥𝑥𝑝𝑝
1) − 𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼1̂    ,  𝑥𝑥𝑝𝑝+1
2 = 0.5𝑥𝑥𝑝𝑝

2 − 𝑓𝑓(𝑥𝑥𝑝𝑝
1) + 20𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼2̂                 
(3.11) 

With the non-monotone activation function 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) tanh (10𝑥𝑥2 − 1).It has been shown 
that in some cases, the absolute capacity of an associative neural network can be improved by 
using non-monotone activation functions instead of the usual sigmoid ones. The conditions of 
theorems Balint and…2008 theorem5.21.pg.193  and theorem5.25.pg.195  are verified(𝛼𝛼 = 𝑓𝑓(1) ∈
(0,1)).Therefore ,for any input 𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂)𝑇𝑇 such that ⌊𝐼𝐼𝑖̂𝑖⌋ < 18.4982  there exists unique locally 
exponentially stable steady state 𝑋𝑋𝜀𝜀,𝐼𝐼 =  (𝑥𝑥1;𝜀𝜀,𝐼𝐼, 𝑥𝑥2;𝜀𝜀,𝐼𝐼)𝑇𝑇   in each rectangle ∆𝜀𝜀. 

In the next figure the rectangles represent the sets 𝑆𝑆𝜀𝜀 = {𝑥𝑥𝑖𝑖;𝜀𝜀,𝐼𝐼𝑖̂𝑖

|𝐼𝐼𝑖̂𝑖|  < 18.4982, 𝑖𝑖 = 1,2}.  

 
Sets 𝑆𝑆𝜀𝜀 

 to the nervous system. 

The importance of this theorem consists in the fact that permit the construction of path of robust equilibriums which can be used in 
healthcare as secured way to transfer gradually a pathologic equilibrium into a non-pathologic equilibrium.

A numerical illustration of the phenomena described in Theorem 5.25. pg.195. Balint and (2008) is given in Example (5.6) pg.197 Balint 
and (2008). In this example the following Hopfield neural network is considered:                                                              

With the non-monotone activation function 

|𝑔𝑔𝑖𝑖
′(𝑠𝑠)| < 1−𝑏𝑏𝑖𝑖

∑ |𝑇𝑇𝑗𝑗𝑗̂𝑗|𝑛𝑛
𝑗𝑗=1

      for any 1s and 𝑖𝑖 = 1,2, … 𝑛𝑛  then the steady voltage state  𝑋𝑋𝜀𝜀,𝐼𝐼0̂  of the 

neural network (1.4) corresponding to 𝐼𝐼0̂ , which lies in the rectangle ∆𝜀𝜀 , is unique it is locally 
exponentially stable and its region of attraction includes ∆𝜀𝜀,̅̅ ̅̅   . 

 This theorem present conditions, concerning the neuron input-output activations, assuring the 
robustness of the  2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝐸𝐸𝜀𝜀,𝐼𝐼0̂ =
(𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂) 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼0̂ to the nervous system. 
The importance of this theorem consists in the fact that permit the construction of path of robust 
equilibriums which can be used in healthcare as secured way to transfer gradually a pathologic 
equilibrium into a non-pathologic equilibrium. 

A numerical illustration of the phenomena described in Theorem 5.25.pg.195. Balint and..(2008) 
is given in Example (5.6) pg.197 Balint and..(2008).In this example the following Hopfield neural 
network is considered: 

           𝑥𝑥𝑝𝑝+1
1 = 0.5𝑥𝑥𝑝𝑝

1 + 20𝑓𝑓(𝑥𝑥𝑝𝑝
1) − 𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼1̂    ,  𝑥𝑥𝑝𝑝+1
2 = 0.5𝑥𝑥𝑝𝑝

2 − 𝑓𝑓(𝑥𝑥𝑝𝑝
1) + 20𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼2̂                 
(3.11) 

With the non-monotone activation function 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) tanh (10𝑥𝑥2 − 1).It has been shown 
that in some cases, the absolute capacity of an associative neural network can be improved by 
using non-monotone activation functions instead of the usual sigmoid ones. The conditions of 
theorems Balint and…2008 theorem5.21.pg.193  and theorem5.25.pg.195  are verified(𝛼𝛼 = 𝑓𝑓(1) ∈
(0,1)).Therefore ,for any input 𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂)𝑇𝑇 such that ⌊𝐼𝐼𝑖̂𝑖⌋ < 18.4982  there exists unique locally 
exponentially stable steady state 𝑋𝑋𝜀𝜀,𝐼𝐼 =  (𝑥𝑥1;𝜀𝜀,𝐼𝐼, 𝑥𝑥2;𝜀𝜀,𝐼𝐼)𝑇𝑇   in each rectangle ∆𝜀𝜀. 

In the next figure the rectangles represent the sets 𝑆𝑆𝜀𝜀 = {𝑥𝑥𝑖𝑖;𝜀𝜀,𝐼𝐼𝑖̂𝑖

|𝐼𝐼𝑖̂𝑖|  < 18.4982, 𝑖𝑖 = 1,2}.  

 
Sets 𝑆𝑆𝜀𝜀 

. It has been shown that in some cases, the absolute capacity 
of an associative neural network can be improved by using non-monotone activation functions instead of the usual sigmoid ones. The 
conditions of theorems Balint and…2008 theorem5.21.pg.193  and theorem5.25.pg.195  are verified 

|𝑔𝑔𝑖𝑖
′(𝑠𝑠)| < 1−𝑏𝑏𝑖𝑖

∑ |𝑇𝑇𝑗𝑗𝑗̂𝑗|𝑛𝑛
𝑗𝑗=1

      for any 1s and 𝑖𝑖 = 1,2, … 𝑛𝑛  then the steady voltage state  𝑋𝑋𝜀𝜀,𝐼𝐼0̂  of the 

neural network (1.4) corresponding to 𝐼𝐼0̂ , which lies in the rectangle ∆𝜀𝜀 , is unique it is locally 
exponentially stable and its region of attraction includes ∆𝜀𝜀,̅̅ ̅̅   . 

 This theorem present conditions, concerning the neuron input-output activations, assuring the 
robustness of the  2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝐸𝐸𝜀𝜀,𝐼𝐼0̂ =
(𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂) 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼0̂ to the nervous system. 
The importance of this theorem consists in the fact that permit the construction of path of robust 
equilibriums which can be used in healthcare as secured way to transfer gradually a pathologic 
equilibrium into a non-pathologic equilibrium. 

A numerical illustration of the phenomena described in Theorem 5.25.pg.195. Balint and..(2008) 
is given in Example (5.6) pg.197 Balint and..(2008).In this example the following Hopfield neural 
network is considered: 

           𝑥𝑥𝑝𝑝+1
1 = 0.5𝑥𝑥𝑝𝑝

1 + 20𝑓𝑓(𝑥𝑥𝑝𝑝
1) − 𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼1̂    ,  𝑥𝑥𝑝𝑝+1
2 = 0.5𝑥𝑥𝑝𝑝

2 − 𝑓𝑓(𝑥𝑥𝑝𝑝
1) + 20𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼2̂                 
(3.11) 

With the non-monotone activation function 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) tanh (10𝑥𝑥2 − 1).It has been shown 
that in some cases, the absolute capacity of an associative neural network can be improved by 
using non-monotone activation functions instead of the usual sigmoid ones. The conditions of 
theorems Balint and…2008 theorem5.21.pg.193  and theorem5.25.pg.195  are verified(𝛼𝛼 = 𝑓𝑓(1) ∈
(0,1)).Therefore ,for any input 𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂)𝑇𝑇 such that ⌊𝐼𝐼𝑖̂𝑖⌋ < 18.4982  there exists unique locally 
exponentially stable steady state 𝑋𝑋𝜀𝜀,𝐼𝐼 =  (𝑥𝑥1;𝜀𝜀,𝐼𝐼, 𝑥𝑥2;𝜀𝜀,𝐼𝐼)𝑇𝑇   in each rectangle ∆𝜀𝜀. 

In the next figure the rectangles represent the sets 𝑆𝑆𝜀𝜀 = {𝑥𝑥𝑖𝑖;𝜀𝜀,𝐼𝐼𝑖̂𝑖

|𝐼𝐼𝑖̂𝑖|  < 18.4982, 𝑖𝑖 = 1,2}.  

 
Sets 𝑆𝑆𝜀𝜀 

|𝑔𝑔𝑖𝑖
′(𝑠𝑠)| < 1−𝑏𝑏𝑖𝑖

∑ |𝑇𝑇𝑗𝑗𝑗̂𝑗|𝑛𝑛
𝑗𝑗=1

      for any 1s and 𝑖𝑖 = 1,2, … 𝑛𝑛  then the steady voltage state  𝑋𝑋𝜀𝜀,𝐼𝐼0̂  of the 

neural network (1.4) corresponding to 𝐼𝐼0̂ , which lies in the rectangle ∆𝜀𝜀 , is unique it is locally 
exponentially stable and its region of attraction includes ∆𝜀𝜀,̅̅ ̅̅   . 

 This theorem present conditions, concerning the neuron input-output activations, assuring the 
robustness of the  2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝐸𝐸𝜀𝜀,𝐼𝐼0̂ =
(𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂) 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼0̂ to the nervous system. 
The importance of this theorem consists in the fact that permit the construction of path of robust 
equilibriums which can be used in healthcare as secured way to transfer gradually a pathologic 
equilibrium into a non-pathologic equilibrium. 

A numerical illustration of the phenomena described in Theorem 5.25.pg.195. Balint and..(2008) 
is given in Example (5.6) pg.197 Balint and..(2008).In this example the following Hopfield neural 
network is considered: 

           𝑥𝑥𝑝𝑝+1
1 = 0.5𝑥𝑥𝑝𝑝

1 + 20𝑓𝑓(𝑥𝑥𝑝𝑝
1) − 𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼1̂    ,  𝑥𝑥𝑝𝑝+1
2 = 0.5𝑥𝑥𝑝𝑝

2 − 𝑓𝑓(𝑥𝑥𝑝𝑝
1) + 20𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼2̂                 
(3.11) 

With the non-monotone activation function 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) tanh (10𝑥𝑥2 − 1).It has been shown 
that in some cases, the absolute capacity of an associative neural network can be improved by 
using non-monotone activation functions instead of the usual sigmoid ones. The conditions of 
theorems Balint and…2008 theorem5.21.pg.193  and theorem5.25.pg.195  are verified(𝛼𝛼 = 𝑓𝑓(1) ∈
(0,1)).Therefore ,for any input 𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂)𝑇𝑇 such that ⌊𝐼𝐼𝑖̂𝑖⌋ < 18.4982  there exists unique locally 
exponentially stable steady state 𝑋𝑋𝜀𝜀,𝐼𝐼 =  (𝑥𝑥1;𝜀𝜀,𝐼𝐼, 𝑥𝑥2;𝜀𝜀,𝐼𝐼)𝑇𝑇   in each rectangle ∆𝜀𝜀. 

In the next figure the rectangles represent the sets 𝑆𝑆𝜀𝜀 = {𝑥𝑥𝑖𝑖;𝜀𝜀,𝐼𝐼𝑖̂𝑖

|𝐼𝐼𝑖̂𝑖|  < 18.4982, 𝑖𝑖 = 1,2}.  

 
Sets 𝑆𝑆𝜀𝜀 

. Therefore , for 
any input 

|𝑔𝑔𝑖𝑖
′(𝑠𝑠)| < 1−𝑏𝑏𝑖𝑖

∑ |𝑇𝑇𝑗𝑗𝑗̂𝑗|𝑛𝑛
𝑗𝑗=1

      for any 1s and 𝑖𝑖 = 1,2, … 𝑛𝑛  then the steady voltage state  𝑋𝑋𝜀𝜀,𝐼𝐼0̂  of the 

neural network (1.4) corresponding to 𝐼𝐼0̂ , which lies in the rectangle ∆𝜀𝜀 , is unique it is locally 
exponentially stable and its region of attraction includes ∆𝜀𝜀,̅̅ ̅̅   . 

 This theorem present conditions, concerning the neuron input-output activations, assuring the 
robustness of the  2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝐸𝐸𝜀𝜀,𝐼𝐼0̂ =
(𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂) 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼0̂ to the nervous system. 
The importance of this theorem consists in the fact that permit the construction of path of robust 
equilibriums which can be used in healthcare as secured way to transfer gradually a pathologic 
equilibrium into a non-pathologic equilibrium. 

A numerical illustration of the phenomena described in Theorem 5.25.pg.195. Balint and..(2008) 
is given in Example (5.6) pg.197 Balint and..(2008).In this example the following Hopfield neural 
network is considered: 

           𝑥𝑥𝑝𝑝+1
1 = 0.5𝑥𝑥𝑝𝑝

1 + 20𝑓𝑓(𝑥𝑥𝑝𝑝
1) − 𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼1̂    ,  𝑥𝑥𝑝𝑝+1
2 = 0.5𝑥𝑥𝑝𝑝

2 − 𝑓𝑓(𝑥𝑥𝑝𝑝
1) + 20𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼2̂                 
(3.11) 

With the non-monotone activation function 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) tanh (10𝑥𝑥2 − 1).It has been shown 
that in some cases, the absolute capacity of an associative neural network can be improved by 
using non-monotone activation functions instead of the usual sigmoid ones. The conditions of 
theorems Balint and…2008 theorem5.21.pg.193  and theorem5.25.pg.195  are verified(𝛼𝛼 = 𝑓𝑓(1) ∈
(0,1)).Therefore ,for any input 𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂)𝑇𝑇 such that ⌊𝐼𝐼𝑖̂𝑖⌋ < 18.4982  there exists unique locally 
exponentially stable steady state 𝑋𝑋𝜀𝜀,𝐼𝐼 =  (𝑥𝑥1;𝜀𝜀,𝐼𝐼, 𝑥𝑥2;𝜀𝜀,𝐼𝐼)𝑇𝑇   in each rectangle ∆𝜀𝜀. 

In the next figure the rectangles represent the sets 𝑆𝑆𝜀𝜀 = {𝑥𝑥𝑖𝑖;𝜀𝜀,𝐼𝐼𝑖̂𝑖

|𝐼𝐼𝑖̂𝑖|  < 18.4982, 𝑖𝑖 = 1,2}.  

 
Sets 𝑆𝑆𝜀𝜀 

 such that 

|𝑔𝑔𝑖𝑖
′(𝑠𝑠)| < 1−𝑏𝑏𝑖𝑖

∑ |𝑇𝑇𝑗𝑗𝑗̂𝑗|𝑛𝑛
𝑗𝑗=1

      for any 1s and 𝑖𝑖 = 1,2, … 𝑛𝑛  then the steady voltage state  𝑋𝑋𝜀𝜀,𝐼𝐼0̂  of the 

neural network (1.4) corresponding to 𝐼𝐼0̂ , which lies in the rectangle ∆𝜀𝜀 , is unique it is locally 
exponentially stable and its region of attraction includes ∆𝜀𝜀,̅̅ ̅̅   . 

 This theorem present conditions, concerning the neuron input-output activations, assuring the 
robustness of the  2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝐸𝐸𝜀𝜀,𝐼𝐼0̂ =
(𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂) 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼0̂ to the nervous system. 
The importance of this theorem consists in the fact that permit the construction of path of robust 
equilibriums which can be used in healthcare as secured way to transfer gradually a pathologic 
equilibrium into a non-pathologic equilibrium. 

A numerical illustration of the phenomena described in Theorem 5.25.pg.195. Balint and..(2008) 
is given in Example (5.6) pg.197 Balint and..(2008).In this example the following Hopfield neural 
network is considered: 

           𝑥𝑥𝑝𝑝+1
1 = 0.5𝑥𝑥𝑝𝑝

1 + 20𝑓𝑓(𝑥𝑥𝑝𝑝
1) − 𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼1̂    ,  𝑥𝑥𝑝𝑝+1
2 = 0.5𝑥𝑥𝑝𝑝

2 − 𝑓𝑓(𝑥𝑥𝑝𝑝
1) + 20𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼2̂                 
(3.11) 

With the non-monotone activation function 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) tanh (10𝑥𝑥2 − 1).It has been shown 
that in some cases, the absolute capacity of an associative neural network can be improved by 
using non-monotone activation functions instead of the usual sigmoid ones. The conditions of 
theorems Balint and…2008 theorem5.21.pg.193  and theorem5.25.pg.195  are verified(𝛼𝛼 = 𝑓𝑓(1) ∈
(0,1)).Therefore ,for any input 𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂)𝑇𝑇 such that ⌊𝐼𝐼𝑖̂𝑖⌋ < 18.4982  there exists unique locally 
exponentially stable steady state 𝑋𝑋𝜀𝜀,𝐼𝐼 =  (𝑥𝑥1;𝜀𝜀,𝐼𝐼, 𝑥𝑥2;𝜀𝜀,𝐼𝐼)𝑇𝑇   in each rectangle ∆𝜀𝜀. 

In the next figure the rectangles represent the sets 𝑆𝑆𝜀𝜀 = {𝑥𝑥𝑖𝑖;𝜀𝜀,𝐼𝐼𝑖̂𝑖

|𝐼𝐼𝑖̂𝑖|  < 18.4982, 𝑖𝑖 = 1,2}.  

 
Sets 𝑆𝑆𝜀𝜀 

there exists unique locally exponentially stable steady state 

|𝑔𝑔𝑖𝑖
′(𝑠𝑠)| < 1−𝑏𝑏𝑖𝑖

∑ |𝑇𝑇𝑗𝑗𝑗̂𝑗|𝑛𝑛
𝑗𝑗=1

      for any 1s and 𝑖𝑖 = 1,2, … 𝑛𝑛  then the steady voltage state  𝑋𝑋𝜀𝜀,𝐼𝐼0̂  of the 

neural network (1.4) corresponding to 𝐼𝐼0̂ , which lies in the rectangle ∆𝜀𝜀 , is unique it is locally 
exponentially stable and its region of attraction includes ∆𝜀𝜀,̅̅ ̅̅   . 

 This theorem present conditions, concerning the neuron input-output activations, assuring the 
robustness of the  2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝐸𝐸𝜀𝜀,𝐼𝐼0̂ =
(𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂) 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼0̂ to the nervous system. 
The importance of this theorem consists in the fact that permit the construction of path of robust 
equilibriums which can be used in healthcare as secured way to transfer gradually a pathologic 
equilibrium into a non-pathologic equilibrium. 

A numerical illustration of the phenomena described in Theorem 5.25.pg.195. Balint and..(2008) 
is given in Example (5.6) pg.197 Balint and..(2008).In this example the following Hopfield neural 
network is considered: 

           𝑥𝑥𝑝𝑝+1
1 = 0.5𝑥𝑥𝑝𝑝

1 + 20𝑓𝑓(𝑥𝑥𝑝𝑝
1) − 𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼1̂    ,  𝑥𝑥𝑝𝑝+1
2 = 0.5𝑥𝑥𝑝𝑝

2 − 𝑓𝑓(𝑥𝑥𝑝𝑝
1) + 20𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼2̂                 
(3.11) 

With the non-monotone activation function 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) tanh (10𝑥𝑥2 − 1).It has been shown 
that in some cases, the absolute capacity of an associative neural network can be improved by 
using non-monotone activation functions instead of the usual sigmoid ones. The conditions of 
theorems Balint and…2008 theorem5.21.pg.193  and theorem5.25.pg.195  are verified(𝛼𝛼 = 𝑓𝑓(1) ∈
(0,1)).Therefore ,for any input 𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂)𝑇𝑇 such that ⌊𝐼𝐼𝑖̂𝑖⌋ < 18.4982  there exists unique locally 
exponentially stable steady state 𝑋𝑋𝜀𝜀,𝐼𝐼 =  (𝑥𝑥1;𝜀𝜀,𝐼𝐼, 𝑥𝑥2;𝜀𝜀,𝐼𝐼)𝑇𝑇   in each rectangle ∆𝜀𝜀. 

In the next figure the rectangles represent the sets 𝑆𝑆𝜀𝜀 = {𝑥𝑥𝑖𝑖;𝜀𝜀,𝐼𝐼𝑖̂𝑖

|𝐼𝐼𝑖̂𝑖|  < 18.4982, 𝑖𝑖 = 1,2}.  

 
Sets 𝑆𝑆𝜀𝜀 

in 
each rectangle ∆ε.

In the next figure the rectangles represent the sets 

|𝑔𝑔𝑖𝑖
′(𝑠𝑠)| < 1−𝑏𝑏𝑖𝑖

∑ |𝑇𝑇𝑗𝑗𝑗̂𝑗|𝑛𝑛
𝑗𝑗=1

      for any 1s and 𝑖𝑖 = 1,2, … 𝑛𝑛  then the steady voltage state  𝑋𝑋𝜀𝜀,𝐼𝐼0̂  of the 

neural network (1.4) corresponding to 𝐼𝐼0̂ , which lies in the rectangle ∆𝜀𝜀 , is unique it is locally 
exponentially stable and its region of attraction includes ∆𝜀𝜀,̅̅ ̅̅   . 

 This theorem present conditions, concerning the neuron input-output activations, assuring the 
robustness of the  2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝐸𝐸𝜀𝜀,𝐼𝐼0̂ =
(𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂) 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼0̂ to the nervous system. 
The importance of this theorem consists in the fact that permit the construction of path of robust 
equilibriums which can be used in healthcare as secured way to transfer gradually a pathologic 
equilibrium into a non-pathologic equilibrium. 

A numerical illustration of the phenomena described in Theorem 5.25.pg.195. Balint and..(2008) 
is given in Example (5.6) pg.197 Balint and..(2008).In this example the following Hopfield neural 
network is considered: 

           𝑥𝑥𝑝𝑝+1
1 = 0.5𝑥𝑥𝑝𝑝

1 + 20𝑓𝑓(𝑥𝑥𝑝𝑝
1) − 𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼1̂    ,  𝑥𝑥𝑝𝑝+1
2 = 0.5𝑥𝑥𝑝𝑝

2 − 𝑓𝑓(𝑥𝑥𝑝𝑝
1) + 20𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼2̂                 
(3.11) 

With the non-monotone activation function 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) tanh (10𝑥𝑥2 − 1).It has been shown 
that in some cases, the absolute capacity of an associative neural network can be improved by 
using non-monotone activation functions instead of the usual sigmoid ones. The conditions of 
theorems Balint and…2008 theorem5.21.pg.193  and theorem5.25.pg.195  are verified(𝛼𝛼 = 𝑓𝑓(1) ∈
(0,1)).Therefore ,for any input 𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂)𝑇𝑇 such that ⌊𝐼𝐼𝑖̂𝑖⌋ < 18.4982  there exists unique locally 
exponentially stable steady state 𝑋𝑋𝜀𝜀,𝐼𝐼 =  (𝑥𝑥1;𝜀𝜀,𝐼𝐼, 𝑥𝑥2;𝜀𝜀,𝐼𝐼)𝑇𝑇   in each rectangle ∆𝜀𝜀. 

In the next figure the rectangles represent the sets 𝑆𝑆𝜀𝜀 = {𝑥𝑥𝑖𝑖;𝜀𝜀,𝐼𝐼𝑖̂𝑖

|𝐼𝐼𝑖̂𝑖|  < 18.4982, 𝑖𝑖 = 1,2}.  

 
Sets 𝑆𝑆𝜀𝜀 

 

|𝑔𝑔𝑖𝑖
′(𝑠𝑠)| < 1−𝑏𝑏𝑖𝑖

∑ |𝑇𝑇𝑗𝑗𝑗̂𝑗|𝑛𝑛
𝑗𝑗=1

      for any 1s and 𝑖𝑖 = 1,2, … 𝑛𝑛  then the steady voltage state  𝑋𝑋𝜀𝜀,𝐼𝐼0̂  of the 

neural network (1.4) corresponding to 𝐼𝐼0̂ , which lies in the rectangle ∆𝜀𝜀 , is unique it is locally 
exponentially stable and its region of attraction includes ∆𝜀𝜀,̅̅ ̅̅   . 

 This theorem present conditions, concerning the neuron input-output activations, assuring the 
robustness of the  2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝐸𝐸𝜀𝜀,𝐼𝐼0̂ =
(𝑋𝑋𝜀𝜀,𝐼𝐼0̂ , 𝐼𝐼0̂) 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼0̂ to the nervous system. 
The importance of this theorem consists in the fact that permit the construction of path of robust 
equilibriums which can be used in healthcare as secured way to transfer gradually a pathologic 
equilibrium into a non-pathologic equilibrium. 

A numerical illustration of the phenomena described in Theorem 5.25.pg.195. Balint and..(2008) 
is given in Example (5.6) pg.197 Balint and..(2008).In this example the following Hopfield neural 
network is considered: 

           𝑥𝑥𝑝𝑝+1
1 = 0.5𝑥𝑥𝑝𝑝

1 + 20𝑓𝑓(𝑥𝑥𝑝𝑝
1) − 𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼1̂    ,  𝑥𝑥𝑝𝑝+1
2 = 0.5𝑥𝑥𝑝𝑝

2 − 𝑓𝑓(𝑥𝑥𝑝𝑝
1) + 20𝑓𝑓(𝑥𝑥𝑝𝑝

2) + 𝐼𝐼2̂                 
(3.11) 

With the non-monotone activation function 𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) tanh (10𝑥𝑥2 − 1).It has been shown 
that in some cases, the absolute capacity of an associative neural network can be improved by 
using non-monotone activation functions instead of the usual sigmoid ones. The conditions of 
theorems Balint and…2008 theorem5.21.pg.193  and theorem5.25.pg.195  are verified(𝛼𝛼 = 𝑓𝑓(1) ∈
(0,1)).Therefore ,for any input 𝐼𝐼 = (𝐼𝐼1̂, 𝐼𝐼2̂)𝑇𝑇 such that ⌊𝐼𝐼𝑖̂𝑖⌋ < 18.4982  there exists unique locally 
exponentially stable steady state 𝑋𝑋𝜀𝜀,𝐼𝐼 =  (𝑥𝑥1;𝜀𝜀,𝐼𝐼, 𝑥𝑥2;𝜀𝜀,𝐼𝐼)𝑇𝑇   in each rectangle ∆𝜀𝜀. 

In the next figure the rectangles represent the sets 𝑆𝑆𝜀𝜀 = {𝑥𝑥𝑖𝑖;𝜀𝜀,𝐼𝐼𝑖̂𝑖

|𝐼𝐼𝑖̂𝑖|  < 18.4982, 𝑖𝑖 = 1,2}.  

 
Sets 𝑆𝑆𝜀𝜀 
Sets 𝑆𝜀

                                                |𝐼𝐼𝑖̂𝑖| < 𝑇𝑇𝑖𝑖𝑖̂𝑖 + 𝑏𝑏𝑖𝑖 − 1 − ∑ |𝑇𝑇𝑖𝑖𝑖̂𝑖|𝑖𝑖≠𝑗𝑗    for any 𝑖𝑖 = 1,2, … 𝑛𝑛                                                
(3.8) 

the following statements hold: 

i). in every rectangle  ∆𝜀𝜀, 𝜀𝜀 ∈ {±1}, there exists a unique steady voltage state of  the neural 
network (1.4) corresponding to 𝐼𝐼 ; here ∆𝜀𝜀= 𝐽𝐽(𝜀𝜀1) × 𝐽𝐽(𝜀𝜀2) … 𝐽𝐽(𝜀𝜀𝑛𝑛) , 𝐽𝐽(−1) = (−∞, −1),  , 𝐽𝐽(1) =
(1, ∞). 
 ii). every ∆𝜀𝜀̅̅ ̅  , 𝜀𝜀 ∈ {±1},  is invariant to the map  𝑋𝑋 → 𝐹𝐹(𝑋𝑋, 𝐼𝐼). 

The mathematical condition (3.8) concerns the magnitude of the external input (left hand side) 
and the coefficients of the neural network (right hand side). If an input   𝐼𝐼0 which verifies (3.8) is 
applied to the nervous system then, due to that in the nervous system, 2𝑛𝑛  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝜀𝜀,𝐼𝐼0 =
(𝑋𝑋𝜀𝜀,𝐼𝐼0, 𝐼𝐼0)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .Each steady state  𝑋𝑋𝜀𝜀,𝐼𝐼0  is unique and located in a rectangle  ∆𝜀𝜀. This is an 
extremely complex configuration of steady voltage states of the nervous system which can appear 
after applying an external electrical input  𝐼𝐼0.  

A modified variant of the above theorem is Theorem (5.21) pg.193  Balint and..2008. 

In Balint and…2008  theorem5.21.pg.193. states; Under the general hypothesis concerning 
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                                  𝑔𝑔𝑖𝑖(𝑠𝑠) ≥ 𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≥ 1   and    𝑔𝑔𝑖𝑖(𝑠𝑠) ≤ −𝛼𝛼 𝑖𝑖𝑖𝑖  𝑠𝑠 ≤ −1    for any    𝑖𝑖 = 1,2, … 𝑛𝑛                         
(3.9)    

then for any input  𝐼𝐼 ∈ 𝑅𝑅𝑛𝑛 satisfying  
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rectangle  ∆𝜀𝜀. This configuration of steady states, is similar which appear in theorem 5.20 and is 
an extremely complex configuration of steady voltage states of the nervous system which can 
appear after applying an external electrical input  𝐼𝐼0̂.  
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 The four steady states corresponding to the input                    are: (38,38)T, (-42,42)T, (42,-42)T, (-38,-38)T

The four steady states corresponding to the input                          are: (58,58)T, (-42,42)T, (-22,62)T, (62,22)T, (-18,18)T

The external electrical input change (0,0)T → (10,10)T transfer the configuration of steady states { (38,38)T, (-42,42)T, (42,-42)T, (-38,-38)
T} into the configuration of steady states { (58,58)T, (-42,42)T, (-22,62)T, (62,22)T, (-18,18)T }

The transfer of the steady state voltage (38,38)T into the steady state voltage (58,58)T due to the external electrical input change (0,0)T → 
(10,10)T is presented in the next figures.
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(62, −22)𝑇𝑇  , (−18, −18)𝑇𝑇 

The external electrical input change (0,0)𝑇𝑇  →  (10,10)𝑇𝑇    transfer the configuration of steady 
states { (38,38)𝑇𝑇 , (−42,42)𝑇𝑇 ,  (42, −42)𝑇𝑇, (−38, −38)𝑇𝑇} 

 into the configuration of steady states { (58,58)𝑇𝑇 , (−22,62)𝑇𝑇  ,  (62, −22)𝑇𝑇  , (−18, −18)𝑇𝑇}. 

The transfer of the steady state voltage  (38,38)𝑇𝑇  into the  steady state voltage (58,58)𝑇𝑇 due to 
the external electrical input change (0,0)𝑇𝑇  →  (10,10)𝑇𝑇 is presented in the next figures. 

                                                                                   

 
                              Fig.2.11.x1 versus p                                                                             Fig.2.12.x2 
versus p 

This example intends to illustrate the nervous system equilibriums configuration complexity, the 
existence of robust equilibrium paths and the equilibrium steady voltage states transfer along the 
equilibrium pats. The strategy in computational neurology has to be the buildup path of locally 
exponentially stable steady states along which by small successive changes, the neural network 
voltage can be conducted, through the regions of attraction of intermediary locally exponentially 
stable steady voltage states from a pathologic steady voltage state to a final non pathologic steady 
voltage state. This kind of interpretation of the mathematical results, obtained in  the discrete-
time Hopfield neural network model ,can be useful in healthcare for establish safe neuro-
psychological treatment procedures.  
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This example intends to illustrate the nervous system equilibriums configuration complexity, the 
existence of robust equilibrium paths and the equilibrium steady voltage states transfer along the 
equilibrium pats. The strategy in computational neurology has to be the buildup path of locally 
exponentially stable steady states along which by small successive changes, the neural network 
voltage can be conducted, through the regions of attraction of intermediary locally exponentially 
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voltage state. This kind of interpretation of the mathematical results, obtained in  the discrete-
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               Figure: 3.5.x1 versus p                                                                           Figure: 3.6.x2 versus p

This example intends to illustrate the nervous system equilibriums configuration complexity, the existence of robust equilibrium paths 
and the equilibrium steady voltage states transfer along the equilibrium pats. The strategy in computational neurology has to be the 
buildup path of locally exponentially stable steady states along which by small successive changes, the neural network voltage can be 
conducted, through the regions of attraction of intermediary locally exponentially stable steady voltage states from a pathologic steady 
voltage state to a final non-pathologic steady voltage state. This kind of interpretation of the mathematical results, obtained in the 
discrete-time Hopfield neural network model, can be useful in healthcare for establish safe neuro-psychological treatment procedures. 

4. Conclusion
The mathematical theory of discrete-time Hopfield neural networks, presented in this paper exhibit the same scale of scenarios as the 
continuous-time Hopfield neural networks having similar neuro psychological interpretation. Robust, fragile, and repulsive equilibriums 
appear. In equilibrium, the voltage state of the neural network is constant and does not change if the external electrical input value is 
maintained constant. Equilibrium transfer analysis show that the strategy in computational neurology has to be the buildup of path of 
robust equilibrium states along which by small successive changes, the neural network voltage can be conducted from a pathologic 
equilibrium, through the regions of attraction of intermediary robust equilibriums to the final non-pathologic equilibrium. In healthcare 
a treatment procedure usually follows a path of robust equilibriums, which “connect” the present pathologic equilibrium with a future 
non-pathologic equilibrium of the patient.
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