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Abstract
For the first time, this article introduces the notion of natural equidistant-equiranked prime numbers (NEEP) which are the only 
ones to verify the strong Goldbach conjecture naturally in the set of natural integers. If E is an even ≥ 4 and E = p + q such that 
q > p, NEEP are the equidistant primes which also have the same ranking for p between 0 and E/2 and for q between E and E/2. 
Primes are counted from 0 to E/2 on one hand, and inversely from E to E/2 on the other hand. Therefore, primes having the same 
ranking face each other on a same line and if equidistant relatively to E/2 then their sum = E. From the NEEP, we calculate the 
deducible equidistant prime numbers (DEP) and it is only from NEEP + DEP that we obtain all the possible sums of two prime 
numbers of a given even number. No current algorithm for converting even numbers to the sum of two prime numbers distinguishes 
NEEP from DEP. There are evens like 30 or 90 which don't have NEEP and therefore not satisfying naturally Goldbach's strong 
conjecture (GSC) unless DEP is deduced by calculation. This is a new matter of thinking : should GSC be refuted because there 
are evens not having NEEP ? Is this conjecture only deducible by calculation ? Normally one expects GSC to be true with NEEP 
before getting to DEP.

The natural presence of NEEP has been exploited here to set up for the first time a system of coding and deciphering even numbers 
which allows a calculator to deduce all their possible sums of two prime numbers. This article then has two originalities not 
published before which will certainly be subject to debate.
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Abbreviations 
GSC: Goldbach's Strong Conjecture. 
PN: Prime Number. 

NEEP: Natural Equidistant-Equiranked Primes. 
DEP: Deducible Equidistant Primes.

1. Introduction
For a even E ≥ 8 to be sum of two PN p and q such that q > p 
; E/ 2 – p = q – E/2 so that p and q are said to be equidistant. 
However, there is a subtle difference between equidistance and 
equiranking of two PN p and q. First let us recall that the prime 
number counting function, called π(E), which aims to count prime 
numbers less than or equal to a number E. Calculating π(E) allows 
you to position a prime number in relation to another, by knowing 
its rank in the list of prime numbers. If π(a) < π(b) then a < b. How 
to know if p and q are equiranked ? First determine π(E) by the 
PN counting function, then separate the prime numbers (PN) < 
E/2 and those > E/2. Then draw a table with 3 columns, the first of 
which is used for PN < E/2; the second to note the value of E/2 at 

each line and the third to mark the PN > E/2. The most important 
thing in this process is that the PN < E/2 are in ascending order 
and those > E/2 are in descending order from the top line of the 
table (Figure 1 and Tables 1A-1F) because this is how the PN add 
up to give a value closest to E. The smallest PN which is 3 must be 
opposite the largest prime number > E/2. The equiranked primes 
are those on the same line but they are not always equidistant. 
The postulate of this article is the following "For the GSC to 
be naturally true in the set N, there must be two equidistant and 
equiranked PN". Naturally in mathematics here means a fact 
which appears instantly without recourse to calculation and these 
equidistant and equiranked PNs are designated here NEEP (natural 
equidistant-equiranked primes). While all other equidistant PNs 
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which are not equiranked are called DEP (deducible equidistant 
primes). DEPs require calculation from NEEPs. If not possible, 
from odd numbers not multiples of 2 and 3 whose sum makes E 
(see the next section). This is the first time that these notions are 
published here which distinguishes NEEPs from DEPs.
 
Therefore, there are two types of equidistant primes: those that 
occur naturally and are equiranked and those that are deducible 
by calculation. In fact, only natural equidistant- equiranked PN 
(NEEP) can be used to prove the GSC in the set N just by following 
Figure 1 and Tables 1A-1F without any calculation.

2. Results
2.1 The Natural Equidistant-Equiranked Primes (NEEP) and 
the Deducible Equidistant Primes (DEP)
The NEEP are colored gray (Tables 1A-F). The two NEEP p and 
q appear naturally, so that p + q = E. The line corresponding to the 
smallest odd PN which is 3 is coloured yellow. As is well known, 
every even number has a number of possible sums p + q, but we 
don't see all of them naturally because the density of PN between 
0 and E/2 is > that between E/2 and E, which always results in a 
mismatch between all possible equidistant primes when using the 
prime counting function. That's why Goldbach's verification must 
occur naturally with NEEP, since they're the only ones we can see 
in the set of integers. However, by calculation, they will give all the 
other PED (by deduction). We can see that the number of possible 
sums p + q is not all natural, but mostly a result of calculation that 
we deduce. But how are we going to deduce the DEP? I explained 
this method in a more recent article [1-2]. Interested readers can 
consult it for more details, but very briefly, there are two categories 
of PN: 6x - 1 or 6x + 5 and those that are 6x + 1. Between two PN 
6x - 1 and between two PN 6x + 1 there is a difference of 6n (n ≥ 
1). But between PN 6x - 1 and 6x + 1 there are variable gaps of 
2n (n ≥ 1).

There are also three categories of even numbers 6x; 6x + 2 and 
6x + 4. The 6x are obtained by adding an PN 6x + 1 and another 
6x - 1, or vice versa. The 6x + 2 require two 6x + 1 PN. Whereas 
6x + 4 are also 6x - 2 and require two 6x - 1 PN. In all cases, the 
GSC always follows the 6x ± 1 equations, and the sum of the PN 
is based on the category of the even.

Example of deduction of DEP from NEEP. Let's take the example of 
the even number E = 44 and so E/2 = 22 (Table 1B) has practically 
three possible sums 3 + 41; 7 + 37 and 13 + 31.

However, there is only one pair of NEEP visible in Table 1B and 
it's 7 + 37 from which we deduce the other two. So (7 - 4) + (37 + 
4) = 3 + 41. And (7 + 6) + (37 - 6) = 13 + 31. The deduction always 
follows the same calculation: if an even number E = p + q , the 
deduction is made according to E = (p - 6n) + (q + 6n) or E = (p 
+ 6n) + (q - 6n). Globally, the deduction is made according to E = 
(p - 2n) + (q + 2n) or E = (p + 2n) + (q - 2n). In case there are no 
NEEP, then we follow the same equation with C being a composite 
number not multiple of 2 and 3 such that E = C + C'. Hence E = 
(C - 6n) + (C' + 6n) or E = (C + 6n) + (C' – 6n) on one hand. On the 

other hand, E = (C - 2n) + (C' + 2n) or E = (C + 2n) + (C' – 2n) ↔ 
E = p + q. Using this process, we get all DEP and all possible sums 
of two primes for a given number E.

There is also another method using the smallest PN < E/2 which 
is 3 and the largest PN > E/2. Note in passing that an even number 
multiple of 3 denoted 3n will have E/2 which is also 3n and E - 
3 will not be prime. On the other hand, a non-3n number could 
also give a prime or composite E – 3 number. Now let's take the 
example of E = 44 and E/2 = 22 ( Table 1B). We see that 3 + 43 = 
46 and therefore we have 46 - 44 = 2. We can then remove 2 from 
the other PNs for example we have 3 + (43 - 2) = 3 + 41. Or add 
2 for example 13 + 29 becomes 13 + (29 + 2) = 13 + 31 = 44. We 
can easily deduce all the possible sums by following the equations 
above.

For example, 44 = 9 + 35 = (9 – 6) + (35 + 6)= 3 + 41. Or 44 = 9 + 
35 = (9 + 4) + (35 – 4) = 13+ 31.

Use the gaps 6n in E = (C - 6n) + (C' + 6n) or E = (C + 6n) + (C' – 
6n) when C and C' are non-3n. Another example E = 74 et E/2 = 37 
(Table 1D) which has practically 4 possibles p + q sums including 
3 + 71 ; 7 + 67 ; 13 + 61 ; 31 + 43 ; 37 + 37 (in this paper we only 
focus on two NEEP p and q such that q > p so the latter sum is 
excluded). The single NEEP is 13 + 61 = 74 visible in Table 1D. 
The DEP can all be deduced from the NEEP like for exampe 13 + 
61 = (13 – 10) + (61 + 10) = 3 + 71 or 13 + 61 = (13 + 18) + (61 - 
18) = 31 + 43. This is true for all evens E ≥4. The table 1A-F show 
6 examples used for illusttration.

2.2 New Cryptological Coding of GSC
The NEEP can also be used to encode even numbers, allowing us 
to deduce DEP and therefore all possible p + q sums. It seems that 
every even number E ≥4 in the set N has a unique configuration of 
NEEP (Figures 2A-F), and even if we find two even numbers E with 
the same configuration, the NEEP and DEP will not be the same. 
This is a good material for cryptology and all those interested in it, 
as each number is associated with a specific configuration of its PN 
and NEEP. Mathematically, this coding will enable you to deduce 
all possible sums p + q by calculation or by using a program that 
performs E = (p - 6n) + (q + 6n) or E = (p + 6n) + (q - 6n) or E = 
(p - 2n) + (q + 2n) or E = (p + 2n) + (q - 2n).
 
How does this coding work? Let's take two examples from Figure 
2. First, the figure is read from the top ; and the NEEP line is marked 
with 0, above which the total number of preceding lines is marked, 
and so on. For example, E = 24 (Figure 2A) is associated with the 
number 1000 because there are three NEEP lines preceded by one 
PN line devoid of NEEP . The NEEP and PN of the even numbers 
E can be used to encode the even number E by associating it with a 
line and number configuration. Afterwards, a number is associated 
with it, which, when deciphered, makes it possible to deduce all 
possible sums p + q = E. Example E = 44 et E/2 = 22 (Figure 2B) 
is coded 203Ø which means that it has a pair of NEEPs marked 
with 0 preceded by two lines of PN and followed by 3 lines of PN 
devoid of NEEP. The Ø sign means that there is a PN < E/2 which 
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has no PN > E/2 in front of it. Let's not forget that first of all we 
must put the number as explained in Figure 1.

The examples given in the figure will help one to understand this 
encoding and decryption system. The Ø sign always corresponds 
to single PN close to E/2 on both sides.

For example, let's decipher the code 12080706øø (Figure 2F) 
which means that this number has 12 pairs of PNs (which are not 
NEEPs) followed by a pair of NEEPs; then 8 pairs of PN ; a NEEP 
line marked by zero; then 7 pairs of PN; a third NEEP line; and 
finally 6 lines of pairs of PNs, two of which do not have a PN > 
E/2 opposite marked with the Ø sign. The reader could practice 
encoding and deciphering numbers. This encoding and decryption 
system described for the first time in this paper shows its potential 
usefulness in a cryptological application. Mathematically, it allows 
you to encode an even number in such a way as to be able to deduce 
all possible sums p + q.

3. Evens without NEEP Might Signify Mathematical Rejection 
of GSC.
Tables 2A-C show one number with one NEEP line (3A) and two 
examples without NEEP (Tables 2B + 2C). The number 40 and 
E/2 = 20 (3A) has one NEEP line 3 + 37 = 40 from which we can 
deduce all DEP like for example 3 + 37 = (3 + 8) + (37 – 8) = 11 
+ 29 = (11 + 12) + (29 – 12) = 23 + 17 and so on. In contrast the 
numbers with no NEEP require first putting E = C + C' such that 
C + C' are odds composite and non-3n. Let us take the number 30 
(2B). 

For example, 30 = 5 + 25 = (5 + 6) + (25 – 6) = 11 + 19 = (11 + 
6) + (19 – 6) = 17 + 13 ad so one. The same applies to E = 90 and 
E/2 = 45 in Table 2C. For their encoding, we can use the first line 
corresponding to PN = 3 and denote it by a capital letter followed 
by the total of PN line like for example for 30 we have A4Ø 
meaning the line of PN 3 is followed by four lines one which has 
only one prime > E/2 (the last one). By contrast, if we take two of 
these numbers (E = 24, E/2 = 12 ; E = 30 ; E/2 = 15) in addition to 
a new one (E = 60 ; E/2 = 30) ; and we take all the natural integers 
from (E/2 - 1) to 1 (decreasing order) and from (E/2 + 1) to E - 1 
(ascending order), we see the equidistant PNs reappear, the sum 
of which is equal to E (Tables 3A-C). But all these equidistant 
additive PN are not equiranked at E/2 and are not true NEEP 
but DEP (because integers are placed in a specific order before 
and after E/2 and this is this positioning that helps recovering 
equidistant primes. Hence they are DEP), and this is the most 
important point that this article rises. By taking only PN in their 
natural ranks before and after E/2, GSC is merely deducible by 
calculation and depends upon gaps that separate the PNs. But if 
we take the whole integers, we no longer have equiranked primes 
NEEP, but the equidistant ones at E/2 reapper on the same lines and 
increase the numbers of p + q sums. This result deserves further 
research for the moment. However, the great advantage is that 
cryptographic encoding of GSC is much more easier as we have 
many equidistant PN lines and no single PN (the sign Ø is thus 
useless here). Numbers are enough to encode all the information 

about equidistant primes and non-equidistant ones.

This shows that Goldbach' strong conjecture (GSC) is not naturally 
true in the set N. The GSC would not be natural in all cases of even 
numbers, but would be deducible by the calculation as seen above. 
The absence of NEEP in numbers like 30 or 90 and probably an 
infinity of others raises the question: Is the GSC naturally true? 
Does it have a meaning since it disappears in some numbers when 
we use the counting function of the PNs and their natural orders. If 
the GSC is absolutely deducible this means that it could be solved 
by algorithms and calculation programs looking for a calculation 
equation like those seen above. This article is the first to raise this 
question because if the GSC is not naturally verified, it is because 
the equidistant and equiranked PNs are not always present, and 
therefore the GSC loses its mathematical meaning at this level.
 
4. Discussion
Some and likely an infinity of even numbers E ≥4 do not have 
NEEP, and therefore Goldbach's strong conjecture (GSC) is not 
naturally true. An even E that doesn't have a NEEP doesn't check 
GSC naturally. Current algorithms that provide us with all possible 
p + q sums in one click confuse NEEP and DEP, and this article 
raises this point for the first time.

But in fact, if an even number does not have a NEEP, this means 
that it does not naturally verify the GSC. Does GSC need to be 
demonstrated with NEEP or NEEP+DEP or with one of the two?

In fact, if no NEEP, no natural GSC, and in this case, the GSC 
would be deduced by the calculation by looking for the DEPs. But 
deduction by the calculation will never be proof of its veracity 
which explains why GSC remains unsolved for centuries. Now the 
central question that needs to be addressed further is to determine 
why some evens do not have NEEP while others do. Very likely 
there are some hidden rules that lead to NEEP or not. Another 
important idea is the fact that GSC is absolutely a function of 
gaps between PN or between PN and composite odds that are not 
multiple of 3. This is this function that allows us to convert an even 
lacking or having NEEP in all possible sums of two primes p + q.

In addition, this article presents for the first time a coding of even 
numbers having NEEP which makes it possible to deduce all 
possible sums either by a calculation or by a computer program. 
Another encoding is suggested for evens without NEEPs. This 
encoding is suggested here for the first time and might very likely 
be improved with time.

If we do not use the PN counting function and their natural ordrer, 
we lose the NEEP but we increase the possibilities of p + q sums 
of the evens denoted E because we recover equidistant primes (that 
are not equiranked). This result needs more investigation in future.

For numbers having too much NEEPs, we might simply add 0s 
near the lines of NEEPs which allows a calculator to know their 
total number.
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This debate deserves close attention in the future.

 

E E/2 0 

Figure 1: Primes numbers (PN) < E/2 are in ascending order while those > E/2 are in a descending order from the closest PN to E to E/2. 
The results obtained with this system are shown in tables 1A-F.

p E/2 q
3 12 23
5 12 19
7 12 17
11 12 13

Table 1A

Table 1B

Table 1C

p E/2 q
3 22 43
5 22 41
7 22 37
11 22 31
13 22 29
17 22 23
19 22

p E/2 q
3 24 47
5 24 43
7 24 41
11 24 37
13 24 31
17 24 29
19 24 ø
23 24 ø

p E/2 q
3 37 79
5 37 73
7 37 71
11 37 67
13 37 61
17 37 59
19 37 53
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23 37 47
29 37 43
31 37 41
37 37 37

Table 1D

Table 1E

p E/2 q
3 80 179
5 80 173
7 80 167
11 80 163
13 80 157
17 80 151
19 80 149
23 80 139
29 80 137
31 80 131
37 80 127
41 80 113
43 80 109
47 80 107
53 80 103
59 80 101
61 80 97
67 80 89
71 80 Ø
73 80 Ø
79 80 Ø

p E/2 q
3 180 397
5 180 389
7 180 383
11 180 379
13 180 373
17 180 367
19 180 359
23 180 353
29 180 349
31 180 347
37 180 337
41 180 331
43 180 317
47 180 313
53 180 311
59 180 307
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61 180 293
67 180 283
71 180 281
73 180 277
79 180 271
89 180 269
97 180 263
101 180 257
103 180 251
107 180 241
109 180 239
113 180 233
127 180 229
131 180 227
137 180 223
139 180 211
149 180 199
151 180 197
157 180 193
163 180 191
167 180 181
173 180 Ø
179 180 Ø

Table 1F

Figure 2 : Coding and deciphering of even numbers based on GSC.

3

Tables 1A-F : Positions of natural equidistant primes (grey) which form the basis of the calculation to find the other equidistant 
primes deducible by the equations 6x ± 1 by gaps of 6 or by variable gaps of 2n (n ≥ 1).
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The figures correspond in order to Tables 1A-F. It is read from top 
to bottom.
Each line marked with 0 corresponds to a NEEP pair. The number 
at the bottom or top of the line gives the number of PN pairs that 
precede or follow the NEEP pair. The sign means that there is no 
PN on the right, i.e. > E/2. The coded number at the bottom brings 

together all the information about the even number. We speak of 
coding because with the coded number an independent calculator 
can deduce all the possible sums p + q satisfying the GSC. The 
encoding number is obtained by reading the figure from top to 
bottom.

p E/2 q
3 20 37
5 20 31
7 20 29
11 20 23
13 20 ɸ
17 20 ɸ
19 20 ɸ

p E/2 q
3 15 29
5 15 23
7 15 19
11 15 17
13 15 ɸ

p E/2 q
3 45 89
5 45 83
7 45 79
11 45 73
13 45 71
17 45 67
19 45 61
23 45 59
29 45 53
31 45 47
37 45 ɸ
41 45 ɸ
43 45 ɸ

Table A

Table B

Table C

Tables 2A-C. Two evens that do not have NEEPs (B and C). For comparison, an even having a pair of NEEPs (A). This shows that
Goldbach's strong conjecture is not naturally true for all evens if we use prime counting function and their natural ranks [1,2].
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11 → 1 E/2 13 → 23
11 12 13
10 12 14
9 12 15
8 12 16
7 12 17
6 12 18
5 12 19
4 12 20
3 12 21
2 12 22
1 12 23

Table A

Table B

29 → 1 E/2 31 → 60
29 30 31
28 30 32
27 30 33
26 30 34
25 30 35
24 30 36
23 30 37
22 30 38
21 30 39
20 30 40
19 30 41
18 30 42
17 30 43
16 30 44
15 30 45
14 30 46
13 30 47
12 30 48
11 30 49
10 30 50
9 30 51
8 30 52
7 30 53
6 30 54
5 30 55
4 30 56
3 30 57
2 30 58
1 30 59
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14 → 1 E/2 16 → 29
14 15 16
13 15 17
12 15 18
11 15 19
10 15 20
9 15 21
8 15 22
7 15 23
6 15 24
5 15 25
4 15 26
3 15 27
2 15 28
1 15 29

Table C
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