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Abstract
Numerical values of masses of elementary particles are one of the most fundamental and oldest unsolved problems (the 
Higgs mechanism does not explain them). In the model presented here for the first time, the theoretical mass of a “heavy 
electron”, muon, is calculated as 206.7 (±2.5) electron masses, which is 100.0% (±1.2%) of the experimental value of 
206.7682827(46). The result is obtained through 100 iterations of the algorithm, which uses random numbers (from 
the π sequence) to represent the uncertainty of the coordinates of interacting muon substructures. Muon is considered 
a structure of interconnected nodes - identical deformable balls - and contains, in contrast to a single node as a 1st-
order structure (and a 1st generation particle, electron) - a layer of 12 nodes surrounding it, thus forming a 2nd-order 
structure, which also looks like a ball but on a smaller scale. The simplest attraction forces are modelled between the 
nodes, inversely proportional to the square of the distance, in equilibrium with repulsion forces arising from a relation 
analogous to the Heisenberg uncertainty formula. The energy-mass of the muon turns out to be equal to the total useful 
energy released during the structure’s formation - the collapse of 13 nodes initially separated at infinity. We finish with 
discussing the tauon’s, u- and d-quarks’ masses in simplified cases, showing the generality of our approach. Some 
implications for future theoretical work are also given.
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1. Introduction
The muon is a “heavier version” of the electron, and is an 
elementary particle discovered back in 1937 [1]. The muon’s 
experimental mass, 206.7682827 (±0.0000046) electron masses, 
is extremely precise [2]. (Note: examples of expressing muon 
mass in units of electron masses are already in the literature) 
[3,4]. This high precision provides a strong opportunity to test 
models designed to explain the masses of elementary particles, 
including muon. Despite the existence of such models: Darling 
model (1950), Nambu formula (1952), Heisenberg model 
(mid-1950s), Horning formula (1960), Mirman equation 
(1961) - modifies that of Nambu, Ivanter topological model 
(1963), Kumar-Muthanna-Sinha model (1972), Goldman and 
Vinciarelli formula (1974), Mohapatra model (1974), Terazawa-
Chikashige-Akama equations (1977), models of Barr and 
Zee (1978), Georgi-Nanopoulos formula (1979), Georgi and 
Jarlskog model (1979), Nambu-Barut equation (1979) - Nambu 
formula modification, model of Barbieri and Nanopoulos 
(1980), Terazawa model (1980), two Koide formulas (1981), 
Barricelli equation (1981), later models (including similar to the 
Nambu formula and Nambu-Barut equation, and that modify 
one of the Koide formulas), and the works offering a physical 
(or mathematical) interpretation of the Nambu, Nambu-Barut, 
Terazawa, Koide, and other formulas, the problem of elementary 

particle mass values remains among the unsolved, and one of the 
key problems of modern physics [3-99]. (Note that listed above 
are only models of elementary particles’ masses, in which the 
problem of a muon’s mass is addressed, either alone or as part 
of the mass spectrum). The masses of fundamental particles (or 
proportional to them - (Yukawa) couplings to the Higgs field), 
including that of muon, are among the free parameters of the 
Standard Model of elementary particle physics [27,100-102]. 
In this paper, we present an entirely new model that is not an 
extension of any existing model.

Note: Not listed, not formally cited, and not discussed in the 
paper are models (if they represent true models) from preprints (if 
they can be termed so) hosted on non-institutional repositories, 
namely, viXra, ResearchGate, and Academia.edu; we, however, 
choose to mention the existence of such: viXra:2303.0111, 
viXra:1702.0332, viXra:1611.0142, viXra:2406.0118; DOI: 
10.13140/RG.2.2.20983.60323; Saltaoglu, 2024. The same for 
“preprints” from personal websites, namely, brannenworks.com: 
Lepton masses as star of David.

Note: Also possible are un-proportional to masses, couplings to 
the Higgs field outside the Standard Model which is falsifiable 
(in particular, branching ratio of Higgs boson decay into muon-
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antimuon pair is predicted to be 25 times higher than that in the 
Standard Model due to enhanced coupling) [98].

The main, new idea in the basis of our approach is the assumption 
that the mechanism of existence of the muon (a 2nd generation 
elementary particle) is related to the possibility of a 2nd-order 
structure in the case of interaction of ball-shaped nodes - a 
structure that, on a smaller scale (from a distance), also looks like 
a ball (and, presumably, behaves like a ball, i.e., is not destroyed 
when interacting (contacting) with other similar structures) - and 
contains a layer of 12 touching one another nodes around the 
central one, to which they adhere. (The view of 2nd-order ball is 
novelty, and its application to muon is new, but there are already 
known examples of 13-ball structures (where the nodes are 
atoms) that indeed, when interact, only contact (and deform) one 
another but do not merge (i.e., stay as distinguishable clusters), 
i.e., behave like 1st-order balls themselves, but on a smaller 
scale; more details can be found in the 4th section). 

The originality of the idea of 2nd-order ball is confirmed by the 
lack of relevant search results for phrases “second-order ball”, 
etc.

The maximum number of equal-sized balls (or spheres) that can 
touch the central ball, is dictated by 3D-space, and as 12, was 
discussed in 1694 by Newton with Gregory, who thought the 
number should be 13 instead; the first correct proof of number 
12 was obtained in 1953 by Shutte and van der Waerden; in our 
treatment, when ball-nodes falling from infinity (to each other) 
touch the central node, but before the central node shrinks (a 
little) to allow shell nodes to touch one another, all ball-nodes 
are also equal-sized; number 12 is justified also for the structure 
with the compressed central node since the nodes of a shell only 
approach each other and get in contact with one another, leaving 
even less free space in the shell for the incretion of the 13th node 
[103,104].

In this system of 1 + 12 = 13 nodes, the nodes, or more precisely 
their centers, are interconnected by 12 + 11 + 10 + ... + 3 + 2 + 
1 = 78 bonds (of 4 different types, due to 4 different distances 
between the centers of different nodes). This formula (for the 
total number of bonds) is justified by bond-by-bond counting 
from geometrical representation of the structure, see below. The 
nodes’ (balls’) centers around the central node in the structure 
with the compressed central node and also when this structure is 
compressed as a whole, are located in the most symmetric way 
geometrically possible - in a way, quite obviously, closest to the 
symmetry of a sphere - in the vertices of a regular icosahedron. 
(The latter is the most spherical Platonic solid, and a sphere 
possesses the maximal symmetry, as is commonly known; a 
comparison of the icosahedron with more relevant (than other 
Platonic solids), non-Platonic polyhedra, is below) [105]. Such 
an arrangement (icosahedral) is assumed to correspond to the 
lowest energy state of 13 interacting nodes, so in the model it 
forms spontaneously. The assumption is grounded by the fact 
that the most symmetric state and the lowest energy state both 
are extreme cases, so it is natural to await for them to coincide; 
the second base of the assumption is the result of simplified 
case’s calculations, where the structure (icosahedral) with the 

compressed central node was compared with arrangements of 
ball-nodes in (sequentially) compressed chunks of close-packed 
lattices, face-centered cubic (FCC) and hexagonal close-packing 
(HCP) - in which the nodes of a shell are at the vertices not of an 
icosahedron but of cuboctahedron and triangular orthobicupola, 
respectively: the icosahedral structure was the lowest in energy; 
for the third base of the assumption, see the 4th section.

The simplification mentioned is the same as simplifications in 
tauon’s mass calculation, which will be discussed later in this 
paper. Compared were the bonding energy maxima between 
the structures; whether these maxima are global was not fully 
evaluated.

The icosahedron is also calculated to be more spherical than a 
cuboctahedron and a triangular orthobicupola: the isoperimetric 
quotient, according to the formula, is 0.83 (icosahedron) and 
0.74 (other two solids) - compare with its value for a sphere: 1 
[105].

The bonds between the nodes, in the form of forces of their 
mutual attraction, are assumed by the model to be the simplest 
possible ones, obeying the law of inverse squares, like gravitation 
and electromagnetism. Thus, the bonding energy of the nodes is 
inversely proportional to the square of the distance between the 
(centers of the) nodes. The mass energy of the 2nd-order structure 
(muon) is assumed in the model to be the sum of the energy 
contained in such bonds (interconnection of the nodes) minus 
the energy spent on the nodes’ compression. (Note: considering 
mass–energy equivalence, the notations “mass-energy” and 
“energy-mass” will be widely used throughout the paper; 
such notations in conjunction with discussing the problem 
of elementary particle masses are used in Kyriakos AG and 
Kumar N, respectively) [11,18]. Consumption of energy with 
nodes’ compression, as will be shown by calculations below, 
cannot prevent the structure made of nodes in touch with one 
another, from contracting to form more tight bonds, but stops the 
contraction at some point.

The difference between the energies of bonds and of compression 
of the nodes is equal to the total useful energy, i.e., the energy 
released to outside of the structure during the bonds’ formation: 
part of the released energy can be treated as going to feed nodes’ 
compression (i.e., is released to inside of the construction). The 
equality of bonds’ energy with the total energy released (to 
the outside and inside) is obvious since the energy needed to 
break the formed bond should be equal to the energy discharged 
during its formation. Only outside part equals muon mass, 
and is termed usable energy; in other words, numerically the 
same as the outside part is the potential energy of bonds minus 
the energy that already contracts bonding - i.e., the energy of 
the nodes’ momenta, that is proportional to the degree of the 
nodes’ compression (see details below), which (energy of 
nodes’ momenta) equals kinetic energy if the nodes are assumed 
massless. Another situation (possibility) - with nodes at rest also 
should be investigated: a compressed node (e.g., the node in the 
centre of the construction of 13 nodes) “wants” to decompress 
(like a spring) - helping one to debond the surrounding nodes 
because energy releases when the node decompresses: releases 
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in the form of movement of the node’s boundary and thus gives 
impulse to the surrounding, bound nodes, which makes it easier 
to take them away from each other; thus, to break the bond, one 
needs to compensate not all the potential energy, but the part left 
after the subtraction of energy of nodes’ (de)compression; so, 
the real bonding energy of the nodes is the potential energy of 
the bonds minus the energy stored in the compressed nodes or 
energetically equivalently in nodes’ momenta.

One can see that both situations include momenta (the nodes 
are initially in movement, or acquire momenta when the 
node(s) decompress). But the situations are physically distinct. 
The difference is that in the second case, the nodes are treated 
identically to macro-objects or in the context of classical 
physics or Einstein’s relativity where objects can have 0 initial 
momentum, while in the first case, the nodes’ momenta are 
inherent so the nodes cannot stop, which may imply that they 
are permeable to each other (to not stop when bouncing from 
each other, because no bouncing at all); inherent momenta is 
an attribute of quantum mechanics (e.g., such momenta of 
electrons create the pressure that prevents white dwarf star from 
(further) collapse and their (momenta) energy cannot be emitted 
or somehow taken away, i.e., is not usable).

Let us illustrate the real bonding energy, containing both 
potential and kinetic energy contributions, also in a macroscopic 
analogy: bonding energy of two gravitating bodies’ system 
depends on their momenta: if the momenta had been zero, 
bonding energy would be equal to the potential energy, i.e., 
of the bodies attraction, which is a function of the distance 
(between the bodies’ centers, according to the Newton’s law); 
the non-zero momenta are subtracted from this (potential) 
energy, because if the momenta are high enough, the system 
can become unbound even when the distance between attracting 
objects is finite. So, it is clear that bonding energy can consists of 
not only potential energy but (subtracted) kinetic energy as well, 
as is known for chemical bonds and obvious for bound systems 
formed by gravitational attraction, perhaps even more clearly—
for the comet–Sun system, where potential and kinetic energies 
reversibly transform into one another, but the bonding energy of 
the system stays the same [106].

The bonding energy of individual bonds in this paper is calculated 
with only distances between the nodes (more specifically, 
between points in the nodes) i.e., potential energy, and only then 

when summing for the whole structure kinetic component (i.e., 
energy of nodes’ momenta) is subtracted. So, in the rest of the 
paper, by bonding energy of individual bonds, energy in zero-
momentum simplification is given (as in the initial, simplistic 
treatment of bonds), or potential energy component, i.e., we do 
not use long term for such bonds: component of bonding energy 
that (component) is potential energy, but use: bonding energy. 
This aids brevity and simplicity.

The bonding energy of a single unbound node, i.e., of a structure 
of order 1, and thus, as assumed by the model, the mass energy 
of a free electron, is (unexpectedly) non-zero: instead, it is 4 
times less than the maximum binding energy of two nodes, i.e., 
the binding of them at the minimum distance equal to 1, i.e., 
the distance when the ball-nodes of radius 0.5 have come into 
contact and are assumed to be incompressible (incompressibility 
is a simplification). (Why this simplification, in conjunction 
with one another (described below), gives the right electron’s 
energy-mass in the sense, that it allows us to compute a muon’s 
mass in units of electron’s mass in a good agreement with the 
experimental value requires further investigation; however, 
simplification, and even more obviously, the sum of all possible 
simplifications, cannot lead to the electron’s mass-energy to 
become a free (adjustable) parameter in the model: there is only 
one way to calculate with the sum of all simplifications.)

Our model does not forbid the possibility of the equality of the 
theoretical electron’s mass with the currently measured one; if 
such equality is assumed, the theoretical muon’s mass in this 
paper should be viewed as expressed in units of theoretical and 
experimental masses of electron simultaneously. A choice in 
favour of the theoretical electron mass can be required in future 
work: if one wants to predict (not retrodict) the muon’s mass, 
i.e., to go to precision beyond experimental (see details later in 
this paper).

The ratio of binding energies (1:4) can be justified by the 
sequence of square numbers 12 = 1;22 = 4;32 = 9, which is non-
arbitrary, and which part (4,9) is reproduced from physical-
geometrical considerations in Figure 1 i.e., one can see that if 
the bond energy of two nodes corresponds to 4 units of energy, 
the cumulative bond energy of three nodes arranged in a most 
simple way 1D (i.e., in a line) is 9; then, in continuation of the 
sequence, the energy attributed to an individual node is 1. 
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Figure 1. Maximal bonding energies of two and three

ball-nodes arranged in a row (nodes are represented

by circles that are their slices or equivalently—

projections); the numbers are the energies of individual

bonds (of pairs of nodes); the maximum bonding

energy of two nodes is 4, not 1; please, sum in

mind 4 + 4 + 1 to obtain the maximal bonding

energy of three nodes; bonds between every two nodes

(inversely proportional to the square of the distance)

are calculated assuming (simplifying) the interaction

of node centers only (e.g., if the entire density is

concentrated in the center of a node) and ball-nodes’

incompressibility.

follows: calculating the bonding energy of two

nodes at distance 1 gives 1/(12) = 1, where

1 in brackets is the distance, and analogously,

the binding energy of three nodes is [1/(12) =

1] + [1/(12) = 1] + [1/(22) = 0.25] = 2.25;

the relation between the two energies, 1:2.25,

can also be expressed as 4:9—from which the

bonding energy of one node is extrapolated

(i.e., of a free node, so the physical meaning

of bonding energy in this case (apart from

it as the energy of an electron) awaits for

interpretation).)

In addition to positive energy, i.e., bonds’

energy (termed “positive” at least since it

adds up to muon’s mass), negative energy is

introduced into the model since, as mentioned

above, energy is absorbed in the contraction of

individual ball-nodes (this energy is subtracted

from the muon’s mass). (Herewith, note

that the contraction of the entire construction

of 13 nodes, as a result of the contraction

of individual nodes, can proceed both with

the cumulative release or consumption of

energy, i.e., spontaneously or not, respectively,

which depends on the considered scale of the

structure—amount of contraction). During

contraction of the structure with the nodes

already just in contact with one another

(shell nodes with one another and with

the (compressed) central node), which we

take (conditionally) as initial, uncompressed

structure—starting point for calculations, it

is possible both (further) compression of the

central node-ball in three directions (along

three coordinate axes) and flattening of the

nodes of the outer layer along the direction to

the center of the structure (depending on the

degree of this flattening, the central node can

undergo not only compression but (relative)

relaxation). The structure’s compression “at

first steps” results in the cumulative release of

energy, but when the rate of energy release due

to bringing the nodes closer together equals

the rate of energy absorption from compressing

the nodes, or, equivalently, when the forces

of attraction and repulsion reach equilibrium

at some point, the structure will cease to

spontaneously contract. The repulsive force is

thought to be of a quantum-mechanical nature

and is represented by an equation that is

similar to the Heisenberg uncertainty relation:

dd1d2p = 1, (1)

where d, d1, and d2 represent the diameters

of the node in three mutually perpendicular

directions, e.g., along the x, y, and z

coordinate axes, respectively; p denotes the

momentum—equal to the energy absorbed

during compression of the node, in sum with

the energy of the initial momentum taken

as 1 in the model (why this value does

not cause an (unsolvable) problem because

being equal (but with the opposite sign) to

Figure 1: Maximal bonding energies of two and three ball-nodes arranged in a row (nodes are represented by circles that are their 
slices or equivalently projections); the numbers are the energies of individual bonds (of pairs of nodes); the maximum bonding 
energy of two nodes is 4, not 1; please, sum in mind 4 + 4 + 1 to obtain the maximal bonding energy of three nodes; bonds between 
every two nodes (inversely proportional to the square of the distance) are calculated assuming (simplifying) the interaction of node 
centers only (e.g., if the entire density is concentrated in the centre of a node) and ball-nodes’ incompressibility

Relation 4:9, which can be seen in the Figure 1 is derived (in 
details) as follows: calculating the bonding energy of two nodes 
at distance 1 gives 1/(12) = 1, where 1 in brackets is the distance, 
and analogously, the binding energy of three nodes is [1/(12) = 
1] + [1/(12) = 1] + [1/(22) = 0.25] = 2.25; the relation between 
the two energies, 1:2.25, can also be expressed as 4:9 - from 
which the bonding energy of one node is extrapolated (i.e., 
of a free node, so the physical meaning of bonding energy in 
this case (apart from it as the energy of an electron) awaits for 
interpretation).

In addition to positive energy, i.e., bonds’ energy (termed 
“positive” at least since it adds up to muon’s mass), negative 
energy is introduced into the model since, as mentioned above, 
energy is absorbed in the contraction of individual ball-nodes 
(this energy is subtracted from the muon’s mass). (Herewith, 
note that the contraction of the entire construction of 13 nodes, 
as a result of the contraction of individual nodes, can proceed 
both with the cumulative release or consumption of energy, 
i.e., spontaneously or not, respectively, which depends on the 
considered scale of the structure, amount of contraction). During 
contraction of the structure with the nodes already just in contact 
with one another (shell nodes with one another and with the 
(compressed) central node), which we take (conditionally) as 
initial, uncompressed structure, starting point for calculations, 
it is possible both (further) compression of the central node-ball 
in three directions (along three coordinate axes) and flattening 
of the nodes of the outer layer along the direction to the centre 
of the structure (depending on the degree of this flattening, the 
central node can undergo not only compression but (relative) 
relaxation). The structure’s compression “at first steps” results 
in the cumulative release of energy, but when the rate of energy 
release due to bringing the nodes closer together equals the rate of 
energy absorption from compressing the nodes, or, equivalently, 
when the forces of attraction and repulsion reach equilibrium at 
some point, the structure will cease to spontaneously contract. 
The repulsive force is thought to be of a quantum-mechanical 
nature and is represented by an equation that is similar to the 
Heisenberg uncertainty relation:

		  dd1 d2 p=1,	  (1)

where d, d1, and d2 represent the diameters of the node in three 
mutually perpendicular directions, e.g., along the x, y, and z 
coordinate axes, respectively; p denotes the momentum equal 
to the energy absorbed during compression of the node, in 
sum with the energy of the initial momentum taken as 1 in the 
model (why this value does not cause an (unsolvable) problem 
because being equal (but with the opposite sign) to the maximal 
bonding energy, see below); the latter (initial momentum) is 
the momentum when all the aforementioned diameters = 1. 
Momentum here is equal (and equivalent) to energy (absorbed 
in compression of the node) since the well-known relativistic 
energy– momentum relation E= [ (pc)2+ (m0 c

2)2]1⁄2 (where c is 
the speed of light and m0 is the rest mass), if written in natural 
units (c = 1), reduces to E = (p2 + m0

2)1⁄2, which, if the nodes are 
assumed massless, further reduces to E = p.

The energy of the initial momentum (=1), when summed of 
two contacting nodes (1 + 1 = 2), is higher than their maximal 
bonding energy (= 1), so, when subtracted from the latter, gives an 
unbound system, which poses a problem. The possible solution 
comes from interpreting the ball-nodes as solitons (i.e., nonlinear, 
particle-like waves, the first sort of which was observed in 1834 
by Russell, and many other kinds were discovered and studied 
later) [107]. Both solitons and other (linear and nonlinear) waves 
must move to exist, so they have non-zero intrinsic momentum 
[108]. Among them, solitons (as was said) are particle-like and 
can (theoretically) have ball shape, thus making them suitable 
to describe ball-nodes (however, some kinds of solitons, if ball-
shaped, are unstable) [109,110]. Imagine the firstly-observed 
soliton, that of Russell, described by him as a moving, “round, 
smooth and clear water hill”; now imagine two such hills moving 
in the same direction (so they are at rest relative to each other): 
their momenta obviously do not contract their (imaginable) 
mutual attraction, i.e., do not cause any repulsive force (because 
momenta are 0 in the frame of both solitons); analogy can be 
applied to the ball-nodes (two or 13), so their intrinsic momenta, 
or more specifically initial intrinsic momenta, should not be 
counted when computing bonding energy of the whole (13-ball) 
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structure (muon) [107].

The momenta directed in opposite directions (and thus non-zero 
in the frame of two interacting objects) are assumed to emerge 
only when one tries to push solitons to be superposed on each 
other, which instead forces them to deform (flatten) and gives the 
opposite momenta: the higher the push, the higher the momenta. 
The assumption is grounded by the fact that solitons are shown, 
by calculations, to bounce each other (in contrast to linear 
waves (e.g., sound waves) that freely pass through each other 
thus one can hear all instruments in orchestra), which imply 
impermeability and thus may imply flattening during interaction 
(including - collision) [111]. Solitons are also observed and 
calculated to have finite length, so they are not superposed on 
each other when their centers are far enough, which also grounds 
the assumption (however, finite length (computed) may be due 
to limitations of the models applied; the question of justification 
of the finiteness of ball-node in our model is discussed, mostly, 
in the 4th section) [111].

Another to Eq. (1), possibility, is also considered: initial 
momentum is 0 but the rest mass equals 1 (i.e., the nodes are 
assumed not massless); in this case, p in Eq. (1) should be 
replaced with m, which is the relativistic mass also equal E, due 
to mass-energy equivalence: E = mc2 reduced to E = m when c is 
in natural units. Note that the relativistic mass also implies nodes’ 
movement, however, only in the compressed structure’s case 
(not counting the central node, which is already compressed); 
the (possibility of) aforementioned variant where the nodes are 
not moving even when compressed will be discussed later in 
this work. Question of choosing between the two non-stationary 
nodes’ variants above will be treated later in this paper. The 
initial 0 momentum variant is trivial, as was said - if considering 
classical or macroscopic objects or Einstein’s relativity; but the 
non-zero (= 1) value of initial momentum also can be justified 
in addition to the aforementioned arguments by analogy of (1) 
with Heisenberg’s formula (δx δp ≥ constant), in which for every 
component of the formula (i.e., δx (position uncertainty), δp 
(uncertainty in momentum), and the constant), it is forbidden to 
be zero; we then choose the simplest non-zero values, i.e., 1 (or 
it can also be −1) for every variable in (1), thus the built-in non-
zero values of p, d, d1, and d2 are justified in our model as the 
simplest, so they can’t be an adjustments, i.e., free parameters. 

Also in the Heisenberg relation, it is valid (both physically and for 
convenience) to choose units in which the constant is expressed 
as equal 1 (called natural units); if values of both δx and δp also 
equal 1, this comprises one of the valid solutions; in that case, 
the only difference between the two formulas (apart from ≥ 
and = signs) is that in ours, not uncertainty of momentum but 
momentum itself is considered, and not uncertainty of position 
but ranges of positions (on coordinate axes)—diameters are used 
[107]. Furthermore, the minimum uncertainty of momentum 
can be taken as the momentum; the minimum uncertainty in 
momentum is if instead of the ≥ sign, the = sign is placed in 
Heisenberg’s formula as in (1) [112]. (Further justification and 
explanation of the parallel with the Heisenberg formula is out of 
scope of this paper and can be addressed, e.g., to an interested 
reader).

The repulsive force in the model is assumed to be of the same 
nature as the attractive force (i.e., they are different manifestations 
of one force and thus have the same interaction constant). Thus, 
attraction, which is inversely proportional to the square of the 
distance, disappears at distance 1, and at distance < 1 it changes 
to repulsion (described by (1), i.e., at first it is small but grows 
with decreasing ball’s diameter). (Note that the repulsive force 
is not between the points but due to inevitably accompanying the 
distance < 1, ball-node’s compression.) I.e., the repulsive force 
occurs when the node starts to deform (shrink) to a diameter < 1 
at least in one direction, or equivalently the distance between the 
centers of nodes becomes < 1. Thus, considering the attraction 
between nodes’ centers only (that are, e.g., centers of mass), 
two nodes at distance 1 stop (thus avoiding the emergence of 
repulsive force, which requires energy consumption) if they are 
not under pressure from neighbouring nodes (at that distance, 
they both have diameter 1). However, in the construction of 13 
nodes, there are still nodes at distances > 1, which still benefit 
from further approaching each other and, as a consequence, 
put pressure on their neighbours, in particular on the central 
node, and the structure of the contacted balls undergoes further 
spontaneous collapse, as noted, to the equilibrium of forces and, 
at the same time, to the maximum of the released useful energy 
(i.e., to the lowest energy state).

In the positive energy (i.e., energy of bonds) calculation, the 
model further considers the distance between two nodes not 
as a distance between nodes’ centers only (which was a “first 
step”, i.e., simplification) but as the distance between two points 
located with a certain probability at some distance from the 
center of each node. Each node thus turns into a ball filled with 
points, each of which represents one of the possible positions 
of the node as a point (classical) particle (the ball in this case 
can be viewed as no longer representing a node but a boundary 
of point nodes’ distribution; for simplicity, we continue to use 
ball-node notation through the paper) or, alternatively, it is a 
node’s center (which implies uncertainty in the position of the 
whole ball-node); also, there may be many (noninteracting with 
each other) points co-existing in the ball-node (comparing this 
and other possibilities is out of the scope of this work). The 
distribution of points within the ball node is assumed to be 
somewhat analogous to the possible positions of an electron on 
the s-orbital in an atom, i.e., as a concentration of points toward 
the center (along the x, y, and z axes) [113]. 

However, rather than being described in terms of quantum 
mechanics, the delocalization of the node as a point is modelled 
classically in this work: the probability of finding a point 
is inversely proportional to the cube of the distance from the 
node’s center (the view on the origin of such a dependence can 
be found in section 4). The probability is distributed only within 
each ball-node of diameter 1, i.e., the chance of encountering a 
point outside a ball of diameter 1 equals zero (the argument for 
this assumption is that 1 can be considered the size of the soliton; 
further justification is in the 4th section).

2. Method
The computations were performed using the 32-bit Windows 
(Microsoft Corp) standard calculator. The calculation of 
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distances between points within the ball-nodes was carried out 
using random numbers as coordinates of points. The random 
numbers were obtained using the π sequence (i.e., extracted 
from it) in a way that enables the possibility of independent 
verification of the outcomes: The sequence of actions (algorithm) 
is as follows: For the first calculation (first iteration), we discard 
“3.” from the number π and use the first 10 integers to determine 
the coordinate of the point on the x-axis in the first ball by adding 
“0” before these integers, so we have: x = 0.1415926535 [114].

According to the sphere formula for a sphere centred at the 
origin of coordinates,

		  x2 + y2 + z2 = R2,		  (2)

where x, y, and z are the point’s coordinates, and R is the sphere’s 
(or ball’s) radius.

If x is given and R = 0.5, then the value of the left side of equation 
(3) is known.

		  y2 + z2 = R2 − x2.		  (3)

The next random number, obtained by the method described 
above, will denote the fraction (uniformly distributed from 0 to 
1) that y2 has from the left or, numerically, the same, right, part 
of equation (3), i.e., from y2+z2 or R2−x2. Let’s call this number p, 
from “part” (not to be confused with momentum p).

		  y2 = p(R2 − x2);		  (4) 

p = 0.8979323846.

Then z2 represents the remainder:

	 z2 = R2 − x2 − p(R2 − x2).		  (5)

Then we take from the π sequence the coordinate and fraction 
for the neighbouring ball:

x1 = 0.2643383279, 
p1 = 0.5028841971.

Thus, as of now, two points on the surface of two balls are 
defined. Then, these points must be able to exist inside the ball-
nodes, within their volume. For this purpose, each coordinate 
(x, y, z) is multiplied by the same random number from 0 to 1 
(and each coordinate x1, y1, and z1 by the same another number 
also from 0 to 1). Through this action, the scale of the sphere is 
reduced, making it a “spherical slice” of the ball. We obtain these 
numbers in the way noted above from the further sequence of the 
number π for each of the connected ball-nodes, respectively: 

c = 0.6939937510,
c1 = 0.5820974944.

In order for the points (and spherical slices of the ball) to 
concentrate toward the center of the ball-nodes, the numbers 
c and c1 in the calculation process (below), as implied by the 
modelled cubic dependence noted above, are additionally raised 
to the cube. Let us calculate the distance between the random 
point within a shell node and the random point in the central 
node: type 1 distance. The positions of the nodes are shown 
in figure 2. The center of the central node coincides with the 
center of every one of the three golden rectangles located at right 
angles to each other in the icosahedron, see figure 3. The centers 
of shell nodes (including those on figure 2) coincide with the 
corners of such rectangles, so they can be viewed as white points 
on the edges of the rectangles in figure 3.

The distance between random points in the two balls (central and 
that of a shell) along the x-axis is:

						      (6)

where rk, or r itself if k = 1, is the radius of the circumscribed 
sphere around the icosahedron; rk or, when k = 1, r, is equal to 
the distance between the centers of the nodes under consideration 
(from the relation for a (regular) icosahedron, 
where a is the length of the icosahedron’s edge; taking a = 1, 
we have r as a number starting with 0.951, with 32 decimal 
places intended for use in the aforementioned 32-bit Windows 
calculator; the number can be found in Supplement 1); f is the 
affine transformation of the x coordinate, i.e., describes the 
degree of flattening of the shell node (on figure 2, non-dashed) 
along the x-axis (node flattens if f < 1): multiplication of the 
x-coordinate of a random point by f < 1 decreases its position 
along the x-axis toward 0; k is the (calculable) parameter that 
does not equal 1 only in the case of f < 1, and will be discussed 
later in this section; multiplication by 0.5 is due to the fact that 
the radius and, respectively, the scale of the considered ball node 
is 0.5; t and t1 are numbers taking values 1 or −1, given that 
(random) coordinates should be able to have both “+” and “−” 
signs: if the last number in x or x1 = 0, 1, 2, 3, or 4, we choose 
the sign “−” (and thus replace t or t1, respectively, with −1); if 5, 
6, 7, 8, or 9, we choose “+” (and thus delete t or t1, respectively, 
which is equivalent to replacing them with 1); (rk − 0.5f) is the 
radius of the central node of the construction, linked to the radius 
of the shell node along the x-axis (the latter is 0.5f); x1 (of the 
random point in the central node) here has the meaning not of a 
coordinate but of an addition to rk (i.e., to the distance between 
nodes’ centers along the x-axis; depending on the sign of t1, the 
addition can be positive or negative); (x1 would be the meaning 
of a coordinate if the origin were located at the center of the 
central node, which is not the case in figure 2) [115].
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The y-axis distance between random points of the nodes 
in consideration, accounting for (4) and that the affine 
transformation of the x coordinate does not affect the y and z 
coordinates (thus, f is not used in describing y), is:

where by variables t2 and t3 is taken into account that square 
roots can be both positive and negative numbers (or, in other 
words, random y and y1 can be both positive and negative as a 
result of multiplication by t2 or t3); the choice of “+” and “−” is 
made according to the rule noted above, but based on the last 
digits in the numbers p and p1, respectively; “rk−0.5f” is the 
aforementioned radius of the central node.

Distance along the z-axis, given (5):

where the variables t4 and t5 are to be replaced by −1 or 1 
according to the above-mentioned rule, but based on the last 
numbers in c and c1, respectively.

In total, the distance l1, between random points in two balls, the 
central ball and any node of the shell, squared (squaring is a 
preparation step for using the distance in the computation of 
bond energy: as noted above, it is inversely proportional to the 
square of the distance), i.e., type 1 distance squared, is the sum 
of squared (6), (7) and (8), i.e., the sum of squares of distances 
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Figure 2. The central node of the construction (right,

non-dashed), compressed to the size corresponding

to the mutual contact of the shell nodes nearest to

each other—shell nodes here are all dashed circles and

left non-dashed one (more precisely, on the figure are

shown nodes’ projections, or equivalently, slices in the

widest parts of the nodes); also shown is the location of

the nodes in relation to the so-called golden rectangle,

inscribed in the icosahedron (all slices (projections) of

the nodes lie in the plane of this rectangle).

Figure 3. Three orthogonal rectangles are inscribed in

a regular icosahedron (image by Fropuff, Mysid, public

domain, via Wikimedia Commons).

coordinates (thus, f is not used in describing

y), is:

y − y1 = t2(p{[0.5c3]2 − [0.5xc3]2})1/2

− t3(p1{[c31(rk − 0.5f)]2

− [x1c
3
1(rk − 0.5f)]2})1/2, (7)

where by variables t2 and t3 is taken into

account that square roots can be both positive

and negative numbers (or, in other words,

random y and y1 can be both positive and

negative as a result of multiplication by t2
or t3); the choice of “+” and “−” is made

according to the rule noted above, but based

on the last digits in the numbers p and p1,

respectively; “rk−0.5f” is the aforementioned

radius of the central node.

Distance along the z-axis, given (5):

z − z1 = t4({0.5c3}2 − {0.5xc3}2

− p{[0.5c3]2 − [0.5xc3]2})1/2

− t5({c31[rk − 0.5f ]}2 − {x1c
3
1[rk − 0.5f ]}2

− p1{[c31(rk − 0.5f)]2

− [x1c
3
1(rk − 0.5f)]2})1/2, (8)

where the variables t4 and t5 are to be replaced

by −1 or 1 according to the above-mentioned

rule, but based on the last numbers in c and

c1, respectively.

In total, the distance l1, between random

points in two balls—the central ball and any

node of the shell—squared (squaring is a

preparation step for using the distance in the

computation of bond energy—as noted above,

it is inversely proportional to the square of the

distance), i.e., type 1 distance squared, is the

sum of squared (6), (7) and (8), i.e., the sum

of squares of distances along x, y, and z axes.

The formula (of distance l21) can be found in

Supplement 1.

Let us compute the distance between a

random point of a shell node and a point within

the nearest node, also located in the shell—the

distance of type 2:

The arrangement of the nodes is shown in

figure 4.

When calculating the distance, we rotate

counterclockwise around the origin at the cen-

ter of the construction (that is, simultaneously,

the center of the central node—point A on fig-
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Supplement 1.

Let us compute the distance between a

random point of a shell node and a point within

the nearest node, also located in the shell—the

distance of type 2:

The arrangement of the nodes is shown in

figure 4.

When calculating the distance, we rotate

counterclockwise around the origin at the cen-

ter of the construction (that is, simultaneously,

the center of the central node—point A on fig-

Muon mass model. Theoretical masses of tau-lepton, u- and d-quarks. . . 11

y

x
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non-dashed), compressed to the size corresponding
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left non-dashed one (more precisely, on the figure are
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widest parts of the nodes); also shown is the location of

the nodes in relation to the so-called golden rectangle,

inscribed in the icosahedron (all slices (projections) of

the nodes lie in the plane of this rectangle).

Figure 3. Three orthogonal rectangles are inscribed in

a regular icosahedron (image by Fropuff, Mysid, public

domain, via Wikimedia Commons).
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Distance along the x-axis (between two points in two nodes), 
given that, similar to the case x′,

					      	 (15)

is

 						      (16)

Distance along the y-axis: 

						      (17) 

Distance along the z-axis (which is not affected by the rotation 
of the first node):
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along x, y, and z axes. The formula (of distance l1
2) can be found 

in Supplement 1. Let us compute the distance between a random 
point of a shell node and a point within the nearest node, also 
located in the shell - the distance of type 2: The arrangement of 
the nodes is shown in figure 4.

When calculating the distance, we rotate counter-clockwise 
around the origin at the center of the construction (that is, 
simultaneously, the center of the central node, point A on figure 
4), one of the nodes initially (not physically, but during the 
calculation) superimposed on each other; the original x′ and y′ 
coordinates belonging to the node rotated around A will thus 
become the new x′′ and y′′ coordinates:

	 x′′ = x′ cos g − y′ sin g,		  (9)

	 y′′ = y′ cos g + x′ sin g,		  (10)

where g is the rotation angle (here it is positive because the 
direction of rotation is counter-clockwise, the positive sign is 
according to convention); from the relations for an icosahedron, 
g’s rounded off value is 63.435 deg (in computations is used 
this rounded value for the reasons that can be found in the 5th 
section). (Angle derivation: the distance from the center of the 
rectangle (point A on figure 4) to the corner of such a rectangle 
(and thus to the center of the node of the shell), as noted above, 	
		  where a is the length of a small side of such a 

rectangle (and at the same time, of an edge of the icosahedron 
on figure 3); in right triangle formed by the first distance as 
hypotenuse and half of the second distance as cathetus, the angle 
at the vertex at point A is  
31.717474411461005324213903139774 deg; double the value 
of the latter is the sought-for angle before rounding.)

Herewith,
	
		  x′ = rk + 0.5ftxc3,		  (11)

because initially, the rotated node was located at the place of the 
lower node in figure 4, the center of which lies on the x-axis; in 
this calculation, x has the meaning of the value of the addition 
to the x′′′ = rk coordinate, not the value of the x-axis coordinate 
itself (i.e., x′′′ + x(0.5ftc3) = x′, which (x′) after node’s rotation 
will turn to the final x-coordinate of a point: x′′).

	 y′ = t2{p[(0.5c3)2 − (0.5xc3)2]}1/2	  (12) 

Substituting to (9) and (10), respectively: 

x′′ = {rk + 0.5ftxc3} cos g − t2{p[(0.5c3)2 − (0.5xc3)2]}1/2 sin g, 		
						      (13) 

y′′ = t2{p[(0.5c3)2 − (0.5xc3)2]}1/2 cos g + {rk + 0.5ftxc3} sin g.                                    	
						      (14)
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Figure 4. Location of a shell nodes closest to each

other, in relation to the center of the central ball-

node (A)—the node is not shown—and to one of the

(mutually perpendicular) rectangles in the structure.

a point: x′′).

y′ = t2{p[(0.5c3)2 − (0.5xc3)2]}1/2. (12)

Substituting to (9) and (10), respectively:

x′′ = {rk + 0.5ftxc3} cos g
− t2{p[(0.5c3)2 − (0.5xc3)2]}1/2 sin g, (13)
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+ {rk + 0.5ftxc3} sin g. (14)

Distance along the x-axis (between two

points in two nodes), given that, similar to the

case x′,
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1 = rk + 0.5ft1x1c

3
1, (15)

is

x′′ − x′
1 = {rk + 0.5ftxc3} cos g
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3
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3
1)

2]}1/2. (17)
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node (A)—the node is not shown—and to one of the

(mutually perpendicular) rectangles in the structure.

a point: x′′).

y′ = t2{p[(0.5c3)2 − (0.5xc3)2]}1/2. (12)

Substituting to (9) and (10), respectively:

x′′ = {rk + 0.5ftxc3} cos g
− t2{p[(0.5c3)2 − (0.5xc3)2]}1/2 sin g, (13)

y′′ = t2{p[(0.5c3)2 − (0.5xc3)2]}1/2 cos g
+ {rk + 0.5ftxc3} sin g. (14)

Distance along the x-axis (between two

points in two nodes), given that, similar to the

case x′,

x′
1 = rk + 0.5ft1x1c

3
1, (15)

is

x′′ − x′
1 = {rk + 0.5ftxc3} cos g

− t2{p[(0.5c3)2 − (0.5xc3)2]}1/2 sin g
−{rk + 0.5ft1x1c

3
1}. (16)

Distance along the y-axis:

y′′ − y1 = t2{p[(0.5c3)2 − (0.5xc3)2]}1/2 cos g
+ {rk + 0.5ftxc3} sin g
− t3{p1[(0.5c31)2 − (0.5x1c

3
1)

2]}1/2. (17)
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ure 4), one of the nodes initially (not phys-

ically, but during the calculation) superim-

posed on each other; the original x′ and y′ coor-

dinates belonging to the node rotated around

A will thus become the new x′′ and y′′ coordi-

nates:

x′′ = x′ cos g − y′ sin g, (9)

y′′ = y′ cos g + x′ sin g, (10)

where g is the rotation angle (here it is

positive because the direction of rotation is

counterclockwise—the positive sign is accord-

ing to convention); from the relations for an

icosahedron, g’s rounded off value is 63.435 deg

(in computations is used this rounded value—

for the reasons that can be found in the 5th

section). (Angle derivation: the distance from

the center of the rectangle (point A on figure 4)

to the corner of such a rectangle (and thus to

the center of the node of the shell), as noted

above, = a
4
(10+2

√
5)1/2, where a is the length

of a small side of such a rectangle (and at the

same time, of an edge of the icosahedron on

figure 3); in right triangle formed by the first

distance as hypotenuse and half of the second

distance as cathetus, the angle at the vertex

at point A is sin−1[a
4
(10 + 2

√
5)1/2/(0.5a)] =

31.717 474 411 461 005 324 213 903 139 774 deg;

double the value of the latter is the sought-for

angle before rounding.)

Herewith,

x′ = rk + 0.5ftxc3, (11)

because initially, the rotated node was located

at the place of the lower node in figure 4,

the center of which lies on the x-axis; in this

calculation, x has the meaning of the value of

the addition to the x′′′ = rk coordinate, not

the value of the x-axis coordinate itself (i.e.,

x′′′ + x(0.5ftc3) = x′, which (x′) after node’s

rotation will turn to the final x-coordinate of

A

y

x

Figure 4. Location of a shell nodes closest to each

other, in relation to the center of the central ball-

node (A)—the node is not shown—and to one of the

(mutually perpendicular) rectangles in the structure.

a point: x′′).

y′ = t2{p[(0.5c3)2 − (0.5xc3)2]}1/2. (12)

Substituting to (9) and (10), respectively:

x′′ = {rk + 0.5ftxc3} cos g
− t2{p[(0.5c3)2 − (0.5xc3)2]}1/2 sin g, (13)

y′′ = t2{p[(0.5c3)2 − (0.5xc3)2]}1/2 cos g
+ {rk + 0.5ftxc3} sin g. (14)

Distance along the x-axis (between two

points in two nodes), given that, similar to the

case x′,

x′
1 = rk + 0.5ft1x1c

3
1, (15)

is

x′′ − x′
1 = {rk + 0.5ftxc3} cos g

− t2{p[(0.5c3)2 − (0.5xc3)2]}1/2 sin g
−{rk + 0.5ft1x1c

3
1}. (16)

Distance along the y-axis:

y′′ − y1 = t2{p[(0.5c3)2 − (0.5xc3)2]}1/2 cos g
+ {rk + 0.5ftxc3} sin g
− t3{p1[(0.5c31)2 − (0.5x1c

3
1)

2]}1/2. (17)

Figure 4: Location of a shell nodes closest to each other, in relation to the center of the central ball node (A) - the node is not shown, 
and to one of the (mutually perpendicular) rectangles in the structure
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In total, the distance l2, between the points in the two closest 
nodes of the shell, squared (type 2 distance squared), is the sum 
of squares of (16), (17), and (18), and is written in Supplement 
1. Let us calculate the distance l3, between a random point of a 
shell node and a point within the second in proximity, a shell 
node, i.e., the type 3 distance: The arrangement of the nodes is 
shown in figure 5. The centers of the nodes, as seen, are at the 
ends of the larger side of one (it can be any) of the rectangles in 
figure 3. The formula is the same as for the type 2 distance case, 
except that it contains the rotation angle j instead of g, which (j) 

is ≈ 180 − 63.435 = 116.565 deg (this approximation is used in 
calculations and is only due to 63.435 is the rounded number). 
The formula describing the distance l3 squared is in Supplement 
1.

Let us calculate the last type of distance, l4, between a random 
point within a shell node and a random point within the third 
in proximity, i.e., the farthest shell node, the type 4 distance: 
Positions of the nodes are shown in figure 6.

Distance on the x-axis:

	 2rk-0.5ftxc3 + 0.5ft1 x1 c1
3		  (19)

where x and x1 are used as values of additions (which can be 
negative, depending on t and t1) to the distance between nodes’ 
centers.
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Distance along the z-axis (which is not

affected by the rotation of the first node):

z − z1 = t4{[0.5c3]2 − [0.5xc3]2

− p[(0.5c3)2 − (0.5xc3)2]}1/2

− t5{[0.5c31]2 − [0.5x1c
3
1]

2

− p1[(0.5c
3
1)

2 − (0.5x1c
3
1)

2]}1/2. (18)

In total, the distance l2, between the

points in the two closest nodes of the shell,

squared (type 2 distance squared), is the sum

of squares of (16), (17), and (18), and is written

in Supplement 1.

Let us calculate the distance l3, between

a random point of a shell node and a point

within the second in proximity, a shell node,

i.e., the type 3 distance:

The arrangement of the nodes is shown in

figure 5.

The centers of the nodes, as seen, are at

the ends of the larger side of one (it can be

any) of the rectangles in figure 3.

The formula is the same as for the type

2 distance case, except that it contains the

rotation angle j instead of g, which (j)

is ≈ 180 − 63.435 = 116.565 deg (this

approximation is used in calculations and is

only due to 63.435 is the rounded number).

The formula describing the distance l3 squared

is in Supplement 1.

Let us calculate the last type of distance,

l4, between a random point within a shell

node and a random point within the third

in proximity, i.e., the farthest shell node—the

type 4 distance:

Positions of the nodes are shown in

figure 6.

Distance on the x-axis:

2rk − 0.5ftxc3 + 0.5ft1x1c
3
1, (19)

where x and x1 are used as values of additions

(which can be negative, depending on t and t1)

to the distance between nodes’ centers.

A

y

x

Figure 5. Location of two shell nodes, second in

proximity to each other; point A is the center of the

construction; green is one of the golden rectangles in

the latter.

A

y

x

Figure 6. Location of two most distant from one

another, nodes of the shell, relative to one another and

to the center of the central node (A)—the node is not

shown—and to one of the rectangles inscribed in the

icosahedron.

Distance on the y-axis:

y − y1 = t2{p[(0.5c3)2 − (0.5xc3)2]}1/2

− t3{p1[(0.5c31)2 − (0.5x1c
3
1)

2]}1/2. (20)

Distance on the z-axis is the same as for

the nodes on figures 4 and 5, i.e., (18).

The squares of the distances along the x,

y, and z axes altogether give l24 (type 4 distance

squared), which is placed in Supplement 1.
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of squares of (16), (17), and (18), and is written

in Supplement 1.

Let us calculate the distance l3, between

a random point of a shell node and a point

within the second in proximity, a shell node,

i.e., the type 3 distance:

The arrangement of the nodes is shown in

figure 5.

The centers of the nodes, as seen, are at

the ends of the larger side of one (it can be

any) of the rectangles in figure 3.

The formula is the same as for the type

2 distance case, except that it contains the

rotation angle j instead of g, which (j)

is ≈ 180 − 63.435 = 116.565 deg (this

approximation is used in calculations and is

only due to 63.435 is the rounded number).

The formula describing the distance l3 squared

is in Supplement 1.

Let us calculate the last type of distance,

l4, between a random point within a shell

node and a random point within the third

in proximity, i.e., the farthest shell node—the

type 4 distance:

Positions of the nodes are shown in

figure 6.

Distance on the x-axis:

2rk − 0.5ftxc3 + 0.5ft1x1c
3
1, (19)

where x and x1 are used as values of additions

(which can be negative, depending on t and t1)

to the distance between nodes’ centers.
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proximity to each other; point A is the center of the

construction; green is one of the golden rectangles in

the latter.
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Figure 6. Location of two most distant from one

another, nodes of the shell, relative to one another and

to the center of the central node (A)—the node is not

shown—and to one of the rectangles inscribed in the

icosahedron.

Distance on the y-axis:

y − y1 = t2{p[(0.5c3)2 − (0.5xc3)2]}1/2

− t3{p1[(0.5c31)2 − (0.5x1c
3
1)

2]}1/2. (20)

Distance on the z-axis is the same as for

the nodes on figures 4 and 5, i.e., (18).

The squares of the distances along the x,

y, and z axes altogether give l24 (type 4 distance

squared), which is placed in Supplement 1.
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squared (type 2 distance squared), is the sum

of squares of (16), (17), and (18), and is written

in Supplement 1.

Let us calculate the distance l3, between

a random point of a shell node and a point

within the second in proximity, a shell node,

i.e., the type 3 distance:

The arrangement of the nodes is shown in

figure 5.

The centers of the nodes, as seen, are at

the ends of the larger side of one (it can be

any) of the rectangles in figure 3.

The formula is the same as for the type

2 distance case, except that it contains the

rotation angle j instead of g, which (j)

is ≈ 180 − 63.435 = 116.565 deg (this

approximation is used in calculations and is

only due to 63.435 is the rounded number).

The formula describing the distance l3 squared

is in Supplement 1.

Let us calculate the last type of distance,

l4, between a random point within a shell

node and a random point within the third

in proximity, i.e., the farthest shell node—the

type 4 distance:

Positions of the nodes are shown in

figure 6.

Distance on the x-axis:

2rk − 0.5ftxc3 + 0.5ft1x1c
3
1, (19)

where x and x1 are used as values of additions

(which can be negative, depending on t and t1)

to the distance between nodes’ centers.
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construction; green is one of the golden rectangles in

the latter.
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Figure 6. Location of two most distant from one

another, nodes of the shell, relative to one another and

to the center of the central node (A)—the node is not

shown—and to one of the rectangles inscribed in the

icosahedron.

Distance on the y-axis:

y − y1 = t2{p[(0.5c3)2 − (0.5xc3)2]}1/2

− t3{p1[(0.5c31)2 − (0.5x1c
3
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Distance on the z-axis is the same as for

the nodes on figures 4 and 5, i.e., (18).

The squares of the distances along the x,

y, and z axes altogether give l24 (type 4 distance

squared), which is placed in Supplement 1.

Figure 5: Location of two shell nodes, second in proximity to each other; point A is the center of the construction; green is one of 
the golden rectangles in the latter

Figure 6: Location of two most distant from one another, nodes of the shell, relative to one another and to the center of the central 
node (A) - the node is not shown, and to one of the rectangles inscribed in the icosahedron
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Distance on the y-axis:

Distance on the z-axis is the same as for the nodes on figures 4 
and 5, i.e., (18). The squares of the distances along the x, y, and z 
axes altogether give l4

2 (type 4 distance squared), which is placed 
in Supplement 1. Now let us figure out the bonds’ energies, i.e., 
the positive energy, for each of the 4 cases:

The sum of binding energies for distances of type 1, termed (the 
sum) E1, is

where l1 is the distance of type 1; 12 is the number of distances 
(or bonds) of this type in the structure (that number can be seen 
with the aid of figure 3 as all distances from the center of the 
central node to the centers of the shell nodes), 4 is the coefficient 
of conversion of energy into electron masses justified above (in 
conjunction with figure 1), and 1 in the numerator can be viewed 
as a constant (or further interpreted as the nodes’ or points’ mass 
(in analogy with Newton’s law of gravity, so it actually comes 
from 12), but this mass does not add to muon mass because the 
latter is calculated (or assumed), simply speaking, as bonding 
energy and not the energy (mass) of points (nodes) that are 
bonded; in details mass of muon is computed as real bonding 
energy (i.e., after subtraction of node momentums or equivalently, 
relativistic adding’s to initial node masses) without the initial 
energy (mass) of points/nodes). (Further considerations of why 
the energy-mass of a node (point) does not add to the muon’s 
mass can be found in the 4th section).

The sum of binding energies for type 2 distances (or bonds), E2, 
equals, analogously:

where l2 is the distance of type 2, and 30 is the number of bonds 
of this type in the construction (this number equals the number 
of edges of the icosahedron (figure 3), which are the distances 
between the centers of the closest shell nodes, see figure 4).

The total binding energy for type 3 distances, E3, is

where l3 is the type 3 distance, and 30 is the number of bonds 
of this type in the structure (to obtain that number, choose any 
pentagon on figure 3, which is the base of a pentagonal pyramid; 
in the pentagon, you can see that one of the distances between 
nodes’ centers coincides with the larger side of the rectangle, it 
is l3 (see figure 5); from symmetry considerations, it can be seen 
that there are 4 more equivalent to l3, distances in the pentagon; 
so, in total, there are 5 l3’s in the basis of the pentagonal 
pyramid; on the opposite side of the icosahedron there should be 
an analogous pyramid, which adds 5 more l3’s; next, there are 10 

faces that form a belt between those pyramids, and accounting 
that type 3 distance is between the farthest points of two adjacent 
faces, one can see, using figure 3, 10 more l3’s in the belt; the next 
5 l3’s are the distances between the top point of the pentagonal 
pyramid considered at the beginning and the most distant points 
in faces in the belt, that are adjacent to every face containing the 
top point; the last 5 distances of type 3 are seen in the same way 
but with the pyramid on the opposite side of icosahedron).

For distances of type 4, the bonding energies’ sum, E4, is equal 
to

where l4 is the distance of type 4, and 6 is the number of bonds 
of this type in the construction (these are diagonals of golden 
rectangles; there are 2 such diagonals in every rectangle, so 6 in 
total; from figure 3, one can see that every shell node participates 
in forming one of those diagonals, which can be seen as distances 
between the tops of two pentagonal pyramids on the opposite 
sides of the icosahedron, so every shell node can participate only 
in one of such distances, thus justifying that there are only 6 
bonds of this type).

When changing (decreasing) the scale of the construction and 
calculating (changing due to this) bond energies, the calculated 
distances (l1–l4) are multiplied by the same scale factor s (s < 
1); practically, multiplication takes place after extracting square 
roots from l1

2 - l4
2 (details are below).

The negative energy is calculated as follows: As mentioned 
above, when the node-ball’s diameter (d) equals 1, it is assigned 
a momentum of 1, so when the momentum is multiplied by the 
diameter (or diameters in each of the three directions, along x, y, 
and z axes, i.e., d, d1, and d2, respectively), it equals 1, which is a 
constant (as in the Heisenberg uncertainty relation); substituting 
into (1), we have:

p (= 1) × d (= 1) × d1 (= 1) × d2 (= 1) = 1.		  (25)

In the case of node-ball’s compression, the momentum must 
increase for the outcome to equal 1 (constant). For example, 
p becomes = 4 when the node flattens to the diameter along x 
(from = 1) to = 0.25:

p (= 4) × d (= 0.25) = 1.				    (26)

It can be noticed an analogy with the Lorentz–FitzGerald 
contraction (i.e., length contraction) of an object when its speed 
and accordingly, momentum, increase; obviously, there should 
be at least a connection between (26), describing flattening of 
an object (here the node) if its momentum grows, and the theory 
describing the length contraction (i.e., special relativity); in both 
special relativity and (1), p goes to infinity if length, L, which = 
d if in a ball and measured in the direction of movement, goes 
to zero (so, it is clear that the theories converge to each other at 
least in the limit).
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Distance along the z-axis (which is not

affected by the rotation of the first node):

z − z1 = t4{[0.5c3]2 − [0.5xc3]2

− p[(0.5c3)2 − (0.5xc3)2]}1/2

− t5{[0.5c31]2 − [0.5x1c
3
1]

2

− p1[(0.5c
3
1)

2 − (0.5x1c
3
1)

2]}1/2. (18)

In total, the distance l2, between the

points in the two closest nodes of the shell,

squared (type 2 distance squared), is the sum

of squares of (16), (17), and (18), and is written

in Supplement 1.

Let us calculate the distance l3, between

a random point of a shell node and a point

within the second in proximity, a shell node,

i.e., the type 3 distance:

The arrangement of the nodes is shown in

figure 5.

The centers of the nodes, as seen, are at

the ends of the larger side of one (it can be

any) of the rectangles in figure 3.

The formula is the same as for the type

2 distance case, except that it contains the

rotation angle j instead of g, which (j)

is ≈ 180 − 63.435 = 116.565 deg (this

approximation is used in calculations and is

only due to 63.435 is the rounded number).

The formula describing the distance l3 squared

is in Supplement 1.

Let us calculate the last type of distance,

l4, between a random point within a shell

node and a random point within the third

in proximity, i.e., the farthest shell node—the

type 4 distance:

Positions of the nodes are shown in

figure 6.

Distance on the x-axis:

2rk − 0.5ftxc3 + 0.5ft1x1c
3
1, (19)

where x and x1 are used as values of additions

(which can be negative, depending on t and t1)

to the distance between nodes’ centers.

A

y

x

Figure 5. Location of two shell nodes, second in

proximity to each other; point A is the center of the

construction; green is one of the golden rectangles in

the latter.

A

y

x

Figure 6. Location of two most distant from one

another, nodes of the shell, relative to one another and

to the center of the central node (A)—the node is not

shown—and to one of the rectangles inscribed in the

icosahedron.

Distance on the y-axis:

y − y1 = t2{p[(0.5c3)2 − (0.5xc3)2]}1/2

− t3{p1[(0.5c31)2 − (0.5x1c
3
1)

2]}1/2. (20)

Distance on the z-axis is the same as for

the nodes on figures 4 and 5, i.e., (18).

The squares of the distances along the x,

y, and z axes altogether give l24 (type 4 distance

squared), which is placed in Supplement 1.
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Now let us figure out the bonds’ energies,

i.e., the positive energy, for each of the 4 cases:

The sum of binding energies for distances

of type 1, termed (the sum) E1, is

[1/(l21)]× 12× 4, (21)

where l1 is the distance of type 1, 12 is

the number of distances (or bonds) of this

type in the structure (that number can be

seen with the aid of figure 3 as all distances

from the center of the central node to the

centers of the shell nodes), 4 is the coefficient

of conversion of energy into electron masses

justified above (in conjunction with figure 1),

and 1 in the numerator can be viewed as

a constant (or further interpreted as the

nodes’ or points’ mass (in analogy with

Newton’s law of gravity, so it actually comes

from 12), but this mass does not add to

muon mass because the latter is calculated

(or assumed), simply speaking, as bonding

energy—and not the energy (mass) of points

(nodes) that are bonded; in details—mass of

muon is computed as real bonding energy

(i.e., after subtraction of node momentums or

equivalently, relativistic addings to initial node

masses)—without the initial energy (mass) of

points/nodes). (Further considerations of why

the energy-mass of a node (point) does not add

to the muon’s mass can be found in the 4th

section.)

The sum of binding energies for type 2

distances (or bonds), E2, equals, analogously:

[1/(l22)]× 30× 4, (22)

where l2 is the distance of type 2, and 30

is the number of bonds of this type in the

construction (this number equals the number

of edges of the icosahedron (figure 3), which

are the distances between the centers of the

closest shell nodes—see figure 4).

The total binding energy for type 3

distances, E3, is

[1/(l23)]× 30× 4, (23)

where l3 is the type 3 distance, and 30 is

the number of bonds of this type in the

structure (to obtain that number, choose any

pentagon on figure 3, which is the base of

a pentagonal pyramid; in the pentagon, you

can see that one of the distances between

nodes’ centers coincides with the larger side

of the rectangle—it is l3 (see figure 5); from

symmetry considerations, it can be seen that

there are 4 more equivalent to l3, distances

in the pentagon; so, in total, there are 5

l3’s in the basis of the pentagonal pyramid;

on the opposite side of the icosahedron there

should be an analogous pyramid, which adds 5

more l3’s; next, there are 10 faces that form a

belt between those pyramids, and accounting

that type 3 distance is between the farthest

points of two adjacent faces, one can see, using

figure 3, 10 more l3’s—in the belt; the next 5

l3’s are the distances between the top point

of the pentagonal pyramid considered at the

beginning and the most distant points in faces

in the belt, that are adjacent to every face

containing the top point; the last 5 distances

of type 3 are seen in the same way but with the

pyramid on the opposite side of icosahedron).

For distances of type 4, the bonding

energies’ sum, E4, is equal to

[1/(l24)]× 6× 4, (24)

where l4 is the distance of type 4, and 6

is the number of bonds of this type in the

construction (these are diagonals of golden

rectangles; there are 2 such diagonals in every

rectangle, so 6 in total; from figure 3, one

can see that every shell node participates in

forming one of those diagonals, which can be

seen as distances between the tops of two
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of type 1, termed (the sum) E1, is

[1/(l21)]× 12× 4, (21)

where l1 is the distance of type 1, 12 is

the number of distances (or bonds) of this

type in the structure (that number can be

seen with the aid of figure 3 as all distances

from the center of the central node to the

centers of the shell nodes), 4 is the coefficient

of conversion of energy into electron masses

justified above (in conjunction with figure 1),

and 1 in the numerator can be viewed as

a constant (or further interpreted as the

nodes’ or points’ mass (in analogy with

Newton’s law of gravity, so it actually comes

from 12), but this mass does not add to

muon mass because the latter is calculated

(or assumed), simply speaking, as bonding

energy—and not the energy (mass) of points

(nodes) that are bonded; in details—mass of

muon is computed as real bonding energy

(i.e., after subtraction of node momentums or

equivalently, relativistic addings to initial node

masses)—without the initial energy (mass) of

points/nodes). (Further considerations of why

the energy-mass of a node (point) does not add

to the muon’s mass can be found in the 4th

section.)

The sum of binding energies for type 2

distances (or bonds), E2, equals, analogously:

[1/(l22)]× 30× 4, (22)

where l2 is the distance of type 2, and 30

is the number of bonds of this type in the

construction (this number equals the number

of edges of the icosahedron (figure 3), which

are the distances between the centers of the

closest shell nodes—see figure 4).

The total binding energy for type 3

distances, E3, is

[1/(l23)]× 30× 4, (23)

where l3 is the type 3 distance, and 30 is

the number of bonds of this type in the

structure (to obtain that number, choose any

pentagon on figure 3, which is the base of

a pentagonal pyramid; in the pentagon, you

can see that one of the distances between

nodes’ centers coincides with the larger side

of the rectangle—it is l3 (see figure 5); from

symmetry considerations, it can be seen that

there are 4 more equivalent to l3, distances

in the pentagon; so, in total, there are 5

l3’s in the basis of the pentagonal pyramid;

on the opposite side of the icosahedron there

should be an analogous pyramid, which adds 5

more l3’s; next, there are 10 faces that form a

belt between those pyramids, and accounting

that type 3 distance is between the farthest

points of two adjacent faces, one can see, using

figure 3, 10 more l3’s—in the belt; the next 5

l3’s are the distances between the top point

of the pentagonal pyramid considered at the

beginning and the most distant points in faces

in the belt, that are adjacent to every face

containing the top point; the last 5 distances

of type 3 are seen in the same way but with the

pyramid on the opposite side of icosahedron).

For distances of type 4, the bonding

energies’ sum, E4, is equal to

[1/(l24)]× 6× 4, (24)

where l4 is the distance of type 4, and 6

is the number of bonds of this type in the

construction (these are diagonals of golden

rectangles; there are 2 such diagonals in every

rectangle, so 6 in total; from figure 3, one

can see that every shell node participates in

forming one of those diagonals, which can be

seen as distances between the tops of two
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Note: In doubly special relativity (DSR) theories (which extend 
special relativity), both p and L are postulated to have their limits 
(analogous to c is a limit of speed); if DSR is true, our statement 
should incorporate instead: p goes to its upper limit (equal to 
Planck energy, EP), while L, = d, goes to its lower limit (the 
minimum possible length, Planck length (LP), linked with EP as 
LP = 1/EP); the DSR idea is falsifiable, [116].

In other cases, values of p calculated from special relativity and 
(1) diverge at least since initial p is 0 and 1, respectively. But as 
was explained in the 1st section, (1) is only one (the first) of (at 
least) two possibilities assumed by our model; another is:

		  dd1 d2 m=1,		  (27)

where m is the relativistic mass. We claim that the length–
mass dependence in special relativity and according to (27) are 
equivalent to each other (i.e., converge to each other not only in 
the limit case but everywhere). 

Proof: It is shown, from combining formulas of special relativity 
(m = m0/(1 − v2/c2)1/2 and L = L0(1 − v2/c2)1/2), that mL = m0L0 = 
constant, where m and m0 are mass of a moving object and its rest 
mass, respectively; L and L0 are length of that moving object and 
its initial length (i.e., at rest), respectively; so one of the possible 
solutions is [117]: m (= 4) × L (= 0.25) = m0(= 1) × L0(= 1) = 
constant (= 1) (in natural units). Values 4 and 0.25 are one of the 
possible, dictated by m0 and L0, e.g., they cannot be, in pair, 3 
and 0.1, respectively; all valid solutions (i.e., pairs of numbers, 
which, multiplied on each other, give 1) form a half of an upper 
half of a hyperbola (xy = 1) i.e., the half, that is restricted to 
positive numbers (coordinates) and further restricted to be the 
half that depicts x decreasing from 1 to 0 (as L or d do), and y 
growing from 1 to ∞ (as m do), and not the opposite (i.e., e.g., 
not L growth); visualizations of the hyperbola for xy = 1 case can 
be easily found on the Internet. A relationship of the same form 
can be obtained from (27): 

m (= 4) × d (= 0.25) = m′(= 1) × d′(= 1) = constant(= 1),      (28)
	                              
where m′ and d′ are initial relativistic mass and initial diameter 
(i.e., both-before compression of the node). 

All possible solutions to (27), part of which (i.e., solutions) is 
depicted in (28), form the same quarter of the hyperbola. So 
(accounting L = d), the claim is proven (for 1D-case (object’s 
contraction only in length), which special relativity describes). 
Although maybe redundant, it can be further verified by 
calculation through the velocity of an object: using the length 
contraction calculator on the Hyper Physics website (hosted by 
Georgia State University, Atlanta, GA 30302), one can quickly 
obtain an object’s velocity (v) that corresponds to 0.5 contraction 
of its initial length (v = 0.866c, where c is the speed of light); 
substituting this velocity to the well-known and noted above 
formula for relativistic mass (m), one can compute that such a 
velocity and thus 0.5 length contraction, correspond to ×2 growth 
of mass (up to rounding error). Analogously, one can check 
that the velocity giving a 0.25 length contraction corresponds 
to ×4 rise. All these numbers are in line with calculated from 

(27), including in (28); (note: two of the three diameters of an 
object do not represent length and stay = 1, thus not entering the 
calculation).

So (27) is now the variant (in negative energy calculation), 
justified (for 1D case) by established physical theory (special 
relativity). Another variant, (1), is also justified (as was previously 
shown), by analogy with quantum uncertainty formula (which 
is, by the way, also 1D) plus through p = E (where p is for 
massless object in special relativity, such p can be termed also 
pmassless) and m = E, which leads to pmassless = E = m and thus m 
can always be substituted by p of massless object (i.e., there is 
a correspondence); thus, special relativity also justifies (1). In 
sum, variant (1) has advantage of being in line with both special 
relativity and quantum mechanics (QM); from perspective of 
QM (more specifically analogy with Heisenberg’s formula), (1) 
seems applicable to quantum objects, to which the nodes are at 
least close (can be interpreted as sub-quantum or sub-elementary 
level); but the variant (27) has advantage of justifying the value 
of numerator in bonds’ potential energies’ calculation, see (21) 
and the description of the latter; however, this numerator (= 1) 
can be also justified as the simplest whole number which allows 
(in contrast to 0) to compute bonding energy. In summary, we 
cannot choose between (1) and (27) but the choice, if will be 
possible in the future, will not affect numerical results since both 
variants are numerically the same (for E), and can be viewed 
as different interpretations of a more general, “length-energy” 
expression:

 	 d d1 d2 E=1. 			   (29)

The difference is only that the energy (E) if using (1), is interpreted 
(as was mentioned) as purely kinetic, while in (27) it is the sum 
of kinetic and potential energies, where potential is the energy 
stored in the non-zero m0; for consistency, third possibility (or 
interpretation) can be added: no kinetic energy, the energy is 
only potential: in such a case the nodes are deformed (including, 
flattened) not by means of movement (implied by momentum 
or relativistic mass) but by action of a force (field) that links the 
nodes; the nodes assumed not able to freely move through one 
another (which is true (were observed) for elementary particles, 
and solitons); this, third interpretation of (29), is the easiest way 
to visualize (in mind) our construction as a whole, while the 
first two variants imply dynamics: many constantly changing to 
one another configurations equal in bonding energy (in (visual) 
analogy with many possible states of Sun–comet system or of a 
globular star cluster). Not moving (termed stationary) objects, 
not depending on their composition, can indeed, according to 
established physics, or more precisely general relativity, deform 
(length contract) if placed in fields [118]. Such effects, however, 
are likely not yet checked observationally (except for photons in 
the context of gravitational redshift) and are not to be confused 
with observables like the flattening of a ball filled with water 
on the Earth surface, which is through another mechanism: 
molecules’ rearrangement; (visual) similarity and identical cause 
(field), however, deserves to be explained or investigated, and all 
theoretical cases where the stationary nodes flatten in a field not 
due to the length contraction, or in sum with length contraction, 
even can be considered; however, details on the latter cases are 
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out of our scope in this paper [119,120]. Overall, obtaining the 
justification of the third interpretation by finding that the variant 
is possible with established physical theories seems to involve 
classical physics or it plus general relativity (for the cases out of 
the scope) or general relativity (of Einstein).

To be more concrete in our assumption of general relativity 
involvement, we report here that the theoretical tauon’s mass in 
simplified model (that will be discussed in more details in the 
4th section), i.e., the minimum energy state, is obtained when all 
(20 types of) distances between the nodes’ centers become 0.5 
of the initial ones (i.e., the factor s = 0.5, with uncompressed (s 
= 1) structure taken as when the minimal initial distance equals 
1, not 0.951 as in the muon’s case: so, the inner layer’s nodes 
(d = 1) in tau initially do not touch one another, but the central 
node (d = 1), while in muon, respective nodes (d = 1) touch 
one another, which require the central node to be (slightly, to 
d = 0.90) compressed; so s’s in muon’s and tauon’s models 
are not precisely comparable); one possible (and, presumably, 
simplified) interpretation of this (s = 0.5) final state is that all the 
nodes shrink to 0.5 (exact number) in all their (three orthogonal) 
diameters; one of the diameters can be viewed as length, so 
the 0.5 length contraction is included; such a value of length 
contraction of an object is achieved also in the vicinity of a black 
hole, at a distance of    RS where RS is the Schwarzschild radius 
(these values: of 0.5 length contraction and   RS (the latter in 
the form of 1.33RS, which is approximate) are computed in the 
frame of general relativity); assuming analogy, one can estimate 
how strong the field that links the nodes in tau-lepton is (or 
should be) i.e., comparable to strong gravity near a black hole 
and conclude (preliminary) that general relativity is applicable 
to describe and/or explain stationary nodes’ shrinkage (and thus 
the value of negative energy) in tau-lepton and so also in muon 
(accounting that length contraction in gravitational field takes 
place in the radial direction, i.e., like in flattening of the nodes) 
[118,121].

From symmetry considerations, an object fallen to the center 
of gravity cannot be flattened (i.e., only length contracted) but 
instead should be equally contracted in all dimensions (that is 
true for the central node in a muon). Is it possible in gravitational 
field, with general relativity? If a gravitating object, e.g., the 
Sun, is simplified to have a uniform density, its interior can be 
(mathematically) divided without remainder into smaller and 
smaller balls that are placed in free space between bigger and 
bigger ones; the biggest can be, e.g., 6 balls in pairs along x, 
y, and z axes, around the center; each such ball (either a small 
or big one) has a corresponding RS less than 2.9 km (i.e., less 
than that of the whole Sun), and can be simplistically treated as 
a point source of gravity; now imagine a probe object, placed 
into the center of the Sun, between all the balls: it gets length-
contracted in the direction of the ball (one of the biggest) that 
lies on the x-axis, to the extent described by the factor obtained 
with general relativity: [1 − (RS/R)]1/2, where R is the distance 
to the center of that ball (in units of RS; equivalently, RS and R 
can be in km); but at the same time, the probe object gets length 
contracted in a direction to the analogous ball on the y-axis, 
i.e., in the perpendicular direction, and to the same extent; 
the same is true for the z-axis [118,122]. So, in total, a probe 

object is length-contracted (if it can be said so) in three mutually 
perpendicular directions, which gives the resulting scaled-down 
ball, i.e., the same phenomenon as the contracted central ball-
node in the muon. So, general relativity is applicable to describe 
(explain) not only the shell nodes flattening (including the 
direction of this flattening correctly) but also the central node’s 
3D-contraction. Further justification of the third variant through 
general relativity framework is deemed for future research; let 
us return to directly the negative energy calculation.

The negative (expended) energy, Eneg (on compression of a 
node) is equal to the difference between (energy of) the final 
and the initial momentum (e.g., for (26), it is 4 − 1 = 3, and in 
the masses of the electron, Eneg = 3 × 4 = 12). Thus, the formula 
for computing the total negative energy (i.e., for the whole 
construction) is as follows:

     Eneg = − [4n (1/d/d1/d2 − 1) + 4n1(1/d3/d4/d5 − 1)],	    (30)

where d, d1, and d2 are the diameters of the central node, along 
the x, y, and z coordinate axes, respectively; analogously, d3, d4, 
and d5 are the diameters of the shell node, also along the x, y, 
and z coordinate axes, respectively (herewith, if flattening of a 
node is accounted, we choose the node whose center is on the 
x-axis e.g., the non-dashed node in figure 2, so flattening can be 
described by multiplying f only on (initial) d3; negative energy 
for every shell node is obviously the same, so our choice of that 
node is eligible); 4 is the coefficient of conversion of energy into 
units of electron masses; n and n1 are the number of nodes of a 
given type (n = 1, since it means the central node; n1 = 12, i.e., 
12 nodes of the shell); “−1” corresponds to subtracting of the 
initial inherent momentum or if (27) is considered instead of (1), 
“−1” is interpreted as subtracting of the initial mass; 1 in the 
numerator is the constant from (1).

It is noteworthy that the momentum can take values of < 1 if 
the diameter of a node is allowed to be > 1, but the momentum 
is 0 only if the diameter of the node reaches ∞ or if the second 
variant noted above is considered.

When the shell nodes are flattening, i.e., f < 1, if they stay in 
their place (i.e., their centers), they (nodes) cease to be in 
contact (unlike the original balls). Bringing them into contact 
again can be done by making it possible for the nodes to fall 
toward the center of the construction and thus approach each 
other until contact; at the same time, the scale of the rectangle 
in figure 4, in the corners of which the centers of the shell nodes 
are located, is reduced. The coefficient, k, in percent divided by 
100%, by which the scale of this rectangle is multiplied (and 
accordingly multiplied the distance r (that is initial distance) 
from the center of the central node to the center of (any) node 
of the shell), was obtained (raw: in percent) using the vector 
graphic editor Inkscape (version 0.92.3), up to the third decimal 
place (the maximum that is allowed by this program), using also 
the maximum magnification available in the editor (25 600%) 
up to the visually determined contact of (borders of) ellipses 
(representing the projections of the flattened nodes of the shell), 
with the minimum possible thickness of the ellipse border = 
0.001 mm (the dimensions of the figures were also set in mm, 
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only potential: in such a case the nodes are de-

formed (including, flattened) not by means of

movement (implied by momentum or relativis-

tic mass) but by action of a force (field)—that

links the nodes; the nodes assumed not able to

freely move through one another (which is true

(were observed) for elementary particles, and

solitons); this, third interpretation of (29), is

the easiest way to visualize (in mind) our con-

struction as a whole, while the first two vari-

ants imply dynamics—many constantly chang-

ing to one another configurations equal in

bonding energy (in (visual) analogy with many

possible states of Sun–comet system—or of a

globular star cluster). Not moving (termed

stationary) objects, not depending on their

composition, can indeed, according to estab-

lished physics, or more precisely—general rel-

ativity, deform (length contract) if placed in

fields [120]. Such effects, however, are likely

not yet checked observationally [121] (except

for photons—in the context of gravitational

redshift [122]) and are not to be confused

with observables like the flattening of a ball

filled with water on the Earth surface, which

is through another mechanism—molecules’ re-

arrangement; (visual) similarity and identical

cause (field), however, deserves to be explained

or investigated, and all theoretical cases where

the stationary nodes flatten in a field not due

to the length contraction, or in sum with

length contraction, even can be considered;

however, details on the latter cases are out

of our scope in this paper. Overall, obtaining

the justification of the third interpretation by

finding that the variant is possible with estab-

lished physical theories seems to involve classi-

cal physics or it plus general relativity (for the

cases out of the scope) or general relativity (of

Einstein).

To be more concrete in our assumption of

general relativity involvement, we report here

that the theoretical tauon’s mass in simplified

model (that will be discussed in more details

in the 4th section), i.e., the minimum energy

state, is obtained when all (20 types of)

distances between the nodes’ centers become

0.5 of the initial ones (i.e., the factor s = 0.5,

with uncompressed (s = 1) structure taken

as when the minimal initial distance equals 1,

not 0.951 as in the muon’s case: so, the inner

layer’s nodes (d = 1) in tau initially do not

touch one another, but the central node (d =

1), while in muon, respective nodes (d = 1)

touch one another, which require the central

node to be (slightly, to d = 0.90) compressed;

so s’s in muon’s and tauon’s models are

not precisely comparable); one possible (and,

presumably, simplified) interpretation of this

(s = 0.5) final state is that all the nodes

shrink to 0.5 (exact number) in all their (three

orthogonal) diameters; one of the diameters

can be viewed as length, so the 0.5 length

contraction is included; such a value of length

contraction of an object is achieved also in

the vicinity of a black hole—at a distance of
4
3
RS, where RS is the Schwarzschild radius

(these values: of 0.5 length contraction and
4
3
RS (the latter—in the form of 1.33RS, which

is approximate) are computed in [120] in the

frame of general relativity); assuming analogy,

one can estimate how strong the field that links

the nodes in tau-lepton is (or should be)—

i.e., comparable to strong gravity near a black

hole—and conclude (preliminary) that general

relativity is applicable to describe and/or

explain stationary nodes’ shrinkage (and thus

the value of negative energy) in tau-lepton—

and so also in muon (accounting that length

contraction in gravitational field takes place in

the radial direction [123], i.e., like in flattening

of the nodes).

From symmetry considerations, an object

fallen to the center of gravity cannot be
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ing to one another configurations equal in

bonding energy (in (visual) analogy with many

possible states of Sun–comet system—or of a

globular star cluster). Not moving (termed

stationary) objects, not depending on their

composition, can indeed, according to estab-

lished physics, or more precisely—general rel-

ativity, deform (length contract) if placed in

fields [120]. Such effects, however, are likely

not yet checked observationally [121] (except

for photons—in the context of gravitational

redshift [122]) and are not to be confused

with observables like the flattening of a ball

filled with water on the Earth surface, which

is through another mechanism—molecules’ re-

arrangement; (visual) similarity and identical

cause (field), however, deserves to be explained

or investigated, and all theoretical cases where

the stationary nodes flatten in a field not due

to the length contraction, or in sum with

length contraction, even can be considered;

however, details on the latter cases are out

of our scope in this paper. Overall, obtaining

the justification of the third interpretation by

finding that the variant is possible with estab-

lished physical theories seems to involve classi-

cal physics or it plus general relativity (for the

cases out of the scope) or general relativity (of

Einstein).

To be more concrete in our assumption of

general relativity involvement, we report here

that the theoretical tauon’s mass in simplified

model (that will be discussed in more details

in the 4th section), i.e., the minimum energy

state, is obtained when all (20 types of)

distances between the nodes’ centers become

0.5 of the initial ones (i.e., the factor s = 0.5,

with uncompressed (s = 1) structure taken

as when the minimal initial distance equals 1,

not 0.951 as in the muon’s case: so, the inner

layer’s nodes (d = 1) in tau initially do not

touch one another, but the central node (d =

1), while in muon, respective nodes (d = 1)

touch one another, which require the central

node to be (slightly, to d = 0.90) compressed;

so s’s in muon’s and tauon’s models are

not precisely comparable); one possible (and,

presumably, simplified) interpretation of this

(s = 0.5) final state is that all the nodes

shrink to 0.5 (exact number) in all their (three

orthogonal) diameters; one of the diameters

can be viewed as length, so the 0.5 length

contraction is included; such a value of length

contraction of an object is achieved also in

the vicinity of a black hole—at a distance of
4
3
RS, where RS is the Schwarzschild radius

(these values: of 0.5 length contraction and
4
3
RS (the latter—in the form of 1.33RS, which

is approximate) are computed in [120] in the

frame of general relativity); assuming analogy,

one can estimate how strong the field that links

the nodes in tau-lepton is (or should be)—

i.e., comparable to strong gravity near a black

hole—and conclude (preliminary) that general

relativity is applicable to describe and/or

explain stationary nodes’ shrinkage (and thus

the value of negative energy) in tau-lepton—

and so also in muon (accounting that length

contraction in gravitational field takes place in

the radial direction [123], i.e., like in flattening

of the nodes).

From symmetry considerations, an object

fallen to the center of gravity cannot be
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with the maximum available precision up to three decimal 
places, i.e., (here) with 6 significant digits).

The obtained coefficients k for the values of f considered in 
this paper are as follows: see table 1. The geometric coefficient 
k is considered not only in the calculation of positive energy 
i.e., when computing components              see., (6), but                                   
also in calculating negative energy since the diameter (d = d2 = 
d3) of the (shrinking) central ball-node is linked to the shell node 
center’s final position; this diameter is as follows:

                  d = 2(rk − 0.5f),	                 (31)
  
where rk is the distance from the center of the central node to 
the center of the flattened node of a shell after the latter comes 
into contact with other flattened nodes (i.e., after they fell toward 
the center); f is the deformation parameter of the shell node (of 
compression along the direction to the center of the structure).

To obtain Eneg when the scale of the whole construction decreases 
(s <1), each diameter in (30) should be multiplied by s. A 
(mathematical) stencil summarizing the formulas for all 4 types 
of distances squared and for the accompanying sums of energies 
of bonds (E1, E2, E3, and E4) was used to start calculations at 
each iteration. You can find the stencil in (or as) Supplement 1. 
The stencil also contains fields to be filled with the sum of E1–
E4: Epositive(of the construction) and Etotal(the sum of positive and 
negative energy), i.e., the mass of a muon whose value varies 
from iteration to iteration; these masses can then be analysed in 
a statistical program, while obtained distances squared (saved, 
e.g., by putting in their values in place of calculated appropriate 
formulas, as in Supplement 3, which contains 100 filled stencils) 
are additionally useful for computing cases with s <1: in this 
type of calculation, a square root is first applied to extract 
distances l1–l4, each of which (as mentioned earlier) should be 
multiplied by s and then returned to squared form, needed for 
further computations.

Supplement 2 contains the list of random numbers (i.e., the 
sequence of π, broken on separate numbers) that were utilized for 
each of the 100 iterations. The “replace all” option in the Notepad 
application (Windows, Microsoft Corp.) was used to manually, 
repeatedly, substitute intermediate results of calculations into 
the stencil. The raw results of calculations (of 100 iterations; 
see Supplement 3 for the (raw) data) were further prepared to 
form input for a statistical program and processed in the program 
Statistica (Stat Soft, Ink.; version 10) for the determination of 
the mean mass and the standard error of the mean (SEM). As 
14% of scientific articles do not provide information about 
what measure of variability they use, i.e., whether it is standard 
deviation (SD), SEM, or other, the question of justifying the use 

of SEM (instead of, e.g., SD) may be considered non-important 
[123]. Let us, however, briefly state why SEM is used in this 
article: SEM is a measure of how far the population mean (i.e., 
here the final theoretical mass of a particle with infinite number 
of iterations) probably can be from our sample mean (i.e., 
of 100 iterations); i.e., SEM is able to show how precise our 
computation of theoretical muon mass is. (Precision is not to be 
confused with accuracy, which can be seen from comparing the 
mean with the experimental mass). 

Another reason to use SEM is that, in contrast to SD, it tends to 
decrease with increase of sample size, i.e., it gains more zeros 
before significant digit(s); since the number of decimal places in 
error dictates how many of them should be expressed in the mean 
(for consistency and according to convention), and accounting 
for rounding to two significant digits (see details below), SEM 
allows to report more accurate value of the mean, if the mean 
actually converges (with growth of sample size) to the observed 
value (mass). (The sample grown to 100 already allows SEM to 
give one more digit after the point when reporting value of the 
mean in conjunction with SEM.) Other considerations why SD is 
irrelevant to provide (compared to SEM): values of muon’s mass 
obtained in each iteration, the variability of which is reflected by 
SD, clearly (see the value of SEM in the 3rd section, and account 
that SD always ≥ SEM) do not correspond to masses that can be 
observed in experimental settings since muon is known to be an 
extremely narrow particle (in contrast to, e.g., resonances, Higgs 
boson); particle width, Γ, of muon, computed from its lifetime, 
τ, by well-known relation Γ = ℏ/τ, where ℏ is the reduced Planck 
constant in eV × s (with value from the literature), is ≈ 3 × 
10−10 eV, which, divided by electron mass in eV, gives muon’s 
width as just ≈ 0.6 × 10−15 electron masses [2,124]. (Physical 
interpretation of muon masses obtained in separate iterations is 
generally beyond our scope).

The SEM is reported rounded to two significant digits, which is 
consistent with the way error is given in the experimental mass; 
the mean is rounded to the number of decimal places that match 
that in the error [2]. For a degree of rounding, we chose between 
rules used by two sources dealing with the representation of 
particle masses: The Particle Data Group, PDG (2022), which 
rounds error with the highest order digits 355–949 to one 
significant digit, and the Committee on Data of the International 
Science Council, CODATA (2022), which rounds to two, 
i.e., with less information loss but producing less convenient 
(bulkier) value [2,124]. In summary, the first source offers only 
a more convenient view of a result, compared to the consistency 
with error in the observed mass, and less information loss offered 
by the second, so we chose the second. Exception: in tables 2-4, 
rounding of the mean was performed in accordance with the 
error rounded to 4 significant digits, i.e., to the 3rd decimal place, 
which, in table 2, is the very minimum required to capture the 
position of the mass-energy maximum when varying s (and in 
the other tables is for consistency).

3. Results
Tables 2, 3, and 4 represent the mass-energy calculations with 
three different values of the compression of the outer nodes 
along the direction to the center of the construction (f = 0.98, 
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it possible for the nodes to fall toward the

center of the construction and thus approach

each other until contact; at the same time,

the scale of the rectangle in figure 4, in

the corners of which the centers of the shell

nodes are located, is reduced. The coefficient,

k, in percent divided by 100%, by which

the scale of this rectangle is multiplied (and

accordingly—multiplied the distance r (that is

initial distance) from the center of the central

node to the center of (any) node of the shell),

was obtained (raw: in percent) using the vector

graphic editor Inkscape (version 0.92.3), up to

the third decimal place (the maximum that

is allowed by this program), using also the

maximum magnification available in the editor

(25 600 %)—up to the visually determined

contact of (borders of) ellipses (representing

the projections of the flattened nodes of the

shell), with the minimum possible thickness of

the ellipse border = 0.001 mm (the dimensions

of the figures were also set in mm, with

the maximum available precision—up to three

decimal places, i.e., (here) with 6 significant

digits).

The obtained coefficients k for the values

of f considered in this paper are as follows: see

table 1.

The geometric coefficient k is taken into

account not only in the calculation of positive

energy—i.e., when computing components of

l21–l
2
4, see, e.g., (6), but also in calculating

negative energy since the diameter (d = d2 =

d3) of the (shrinking) central ball-node is

linked to the shell node center’s final position;

this diameter is as follows:

d = 2(rk − 0.5f), (31)

where rk is the distance from the center

of the central node to the center of the

flattened node of a shell after the latter comes

into contact with other flattened nodes (i.e.,

Table 1. Dependence of the geometric coefficient k on

the flattening parameter of the shell nodes, f .

f k

0.98 0.99451

0.97 0.99178

0.96 0.98909

after they fell toward the center); f is the

deformation parameter of the shell node (of

compression along the direction to the center

of the structure).

To obtain Eneg when the scale of the whole

constructon decreases (s < 1), each diameter

in (30) should be multiplied by s.

A (mathematical) stencil summarizing the

formulas for all 4 types of distances squared

and for the accompanying sums of energies

of bonds (E1, E2, E3, and E4) was used

to start calculations at each iteration. You

can find the stencil in (or as) Supplement

1. The stencil also contains fields to be

filled with the sum of E1–E4: Epositive (of the

construction) and Etotal (the sum of positive

and negative energy), i.e., the mass of a

muon whose value varies from iteration to

iteration; these masses can then be analyzed in

a statistical program, while obtained distances

squared (saved, e.g., by putting in their values

in place of calculated appropriate formulas,

as in Supplement 3, which contains 100 filled

stencils) are additionally useful for computing

cases with s < 1: in this type of calculation,

a square root is first applied to extract

distances l1–l4, each of which (as mentioned

earlier) should be multiplied by s and then

returned to squared form, needed for further

computations.

Supplement 2 contains the list of random

numbers (i.e., the sequence of π, broken on

separate numbers) that were utilized for each

f k
0.98 0.99451
0.97 0.99178
0.96 0.98909

Table 1: Dependence of the Geometric Coefficient k on 
the Flattening Parameter of the Shell Nodes, f
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0.97, and 0.96), each under the set of values of the scaling down 
(compression) parameter of the whole structure, in steps 0.01 (s 
<1), in comparison with the uncompressed construction (s = 1). 
(These steps are of 1% of the uncompressed structure; the steps 
in f are also of 1% but of the (uncompressed, more preciselyun-
flattened) node (f = 1); in other respects, the choice of the value 
of the steps is arbitrary).

As can be seen from the tables, it is possible to determine the 
position of the maximum of the mean of the total energymass 
(corresponds to f = 0.97, s = 0.94). (More precisely, the identified 
maximum is a lower bound on the real maximum; refining the 
position and magnitude of the latter requires calculations with 
(progressively) smaller steps in f and s). The observed maximum 
(its lower limit) replicates the muon mass to the first decimal 
place: 206.7 (±2.5) electron masses compared to the experimental 
mass of 206.7682827(46), and is 100.0% (±1.2%) of the latter. 
Let us, additionally, estimate the value of the real maximum (and 
thus the (non)importance of the limitation in the steps’ value): in 
the simplest way, it can be done using the numbers from table 
2,which (represented with a smaller number of significant digits) 
are 206.70, again 206.70, and 206.60; the peak (extrapolated), 
obviously, lies (in the middle) between the two 206.70 values: 
206.75 masses of electron; on the graph, this peak will be 
sharp (imagine, e.g., the right angle), which is not realistic for 
quadratic and cubic functions, so the real peak should be (in 
the simplest treatment) <206.75, yet >206.70; in other tables, 
the mass values are not symmetric (in contrast to 206.70’s), 
so these cases are omitted from our estimation, for simplicity 
(but we account that all values in these tables are <206.75); in 
summary, the real maximum’s estimate (206.70 < x <206.75, 
i.e., = 206.7) coincides with the maximum (of the mean) given 
above (i.e., the maximum from comparing the masses in all the 
three tables, which (maximum) at the same time was the lower 
limit of the real maximum), thus justifying the reported central 
value of muon’s theoretical mass (however, not concisely, which 
is one of the limitations of our work). (Note: the estimate should 
not be confused with the real maximum with ∞ iterations, the 
estimation of closeness to which, through closeness to 206.7, is 
depicted by SEM.)

Even though we were able to obtain a coincidence between the 
theoretical and experimental masses up to the first decimal place, 
considering the high degree of uncertainty, we do not yet claim 
that the muon mass is explained theoretically to this decimal 
place. The calculations have shown that our model provides at 
least a good approximation to the observed muon mass after 
accounting for uncertainties. The justification for using the term 

good is that all possible masses (in range ±1 SEM) deviate from 
the experimental mass (EM)if accounting for one significant 
digitno more than 1%: EM (±1.2%), which approximately 
(due to EM does not precisely coincide with the theoretical 
mean) can be seen from the aforementioned 100.0% (±1.2%); 
in both representations, values are in percent of EM (the latter 
has value 100% (exact number, because EM is the reference), 
while theoretical mass 100.0% has implied uncertainty of half 
of the least significant digit, i.e., (uncertainty) 0.05%, not to be 
confused with SEM); note: the coincidence of the value of error 
around EM (derived (error) from SEM and the difference of EM 
and the mean) with the value of SEM is due to the closeness 
of EM and the theoreticalmass; if it were not such closeness, 
the error around EM would be asymmetric or EM would lie 
outside its whole range [39]. And the phrase “at least” is due 
to the possibility of making more than 100 iterations (in future 
work using the model) and thus decreasing error (due to SEM 
(as was said) shrinks with increasing statistics), which may shift 
the mean (i.e., theoretical mass), including toward (to be even 
closer to) the observable mass.The measured muon mass with 
its error is within 1 standard error of the calculated (and partially 
estimated) mass.

4. Discussion
In the Mohapatra model, Terazawa-Chikashige-Akama formulas, 
Georgi and Nanopoulos equation, Barbieri-Nanopoulos model, 
Terazawa model, Koide formulaand its modification and in other 
models,the mass of the muon can be calculated from the known ex-
perimental masses of other elementary particles (or such with the 
addition of bounds on (neutrino) mass(es)(a muon’s mass can be 
computed with the “≈” sign)differences of squares of mass eigen-
states (of neutrino)not absolute massesare also available; orfrom 
the upper bound on (neutrino) mass; or from the masses in higher 
(not reached yet) energiesin the Georgi and Jarlskog model, Bar-
bieri-Nanopoulos modeland note that models(results) in high (not 
reached) energies can be extrapolated (renormalized) to laborato-

s m
1 204.898
— —
0.94 206.700
0.93 206.703
0.92 206.597

Table 2: The mass (mean), m, of the structure (in electron 
masses) with the deformation parameter (value of flattening 
of the shell nodes) f = 0.98 and varying the scale factor s

s m
1 205.058
— —
0.95 206.664
0.94 206.716
0.93 206.692

Table 3: The mass (mean), m, of the construction (in electron 
masses) is calculated using the value of flatteningof the shell 
nodes f= 0.97 and the variable scale factor s

s m
1 205.200
— —
0.95 206.681
0.94 206.714
0.93 206.660

Table 4: Mass (mean), m, of the construction (in electron 
masses) with deformation (value of flattening of the shell 
nodes) f = 0.96, and varying s (the scaling factor)
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ry energies [6,7,13,14,16,17, 19-21,25-28,36,38,43,44,47-52,54-
57,59,61,62,73-77,83,86,88,89]. In the Nambu formula, and other 
models, the calculation of the muon mass (in the form of Yukawa 
constant for interaction with the Higgs field for muon) also includes 
a parameter measured experimentally: the fine structure constant 
(in the Horning formula, Mirman formula, Ivanter’s model, Barr 
and Zee models, Nambu-Barut equation, model of Barbieri and 
Nanopoulos, Barricelli’s model, and other models, in addition to 
other theoretically unexplained constants of nature including parti-
cles’ masses) [4,5,7,9,10,15,18,19,24,29,33,35,37,48,63,64,66,68-
72,78,79,84,91]. A number of modelsutilize other experimen-
tally measured constants of nature (or combination of such (or 
bounds on them) with the masses: the Heisenberg formula, Ivant-
er model, Kumar–Muthanna–Sinha formula, one of the Koide’s 
equations, or use (also deemed as experimental) constants, cal-
culatedor likely calculatedfrom particles’ massesincluding that 
of muon, so theoretical mass of muon in allthree cited sources 
(describing 4 models) is computed (see below) not independent-
ly of its experimental mass) [6,7,10,11,14,21,23,31,34,40,42,45-
47,49,56,65,67,77,81,84,90]. Many of the models are empir-
ical(somesemi-empiricalor at least contain empirical partsnot 
counting the use of the constants, the (upper) bound on neutrino 
mass, etc)[5,14,20,21,26,31,37,43,45,48,50,52,60,61,64,75,86,12
5]. In contrast to all of these models, our model does not use any 
experimental quantities in the calculation of mass, i.e., if it can 
be said, mass is calculated from the first principles: geometrical 
relations and potentials of the simplest form describing the forces 
of attraction and repulsion.

As a result, the precision of the calculation of mass of the 
elementary particle using our model is limited not by experimental 
data but only by the number of iterations performed. Thus, with 
an increasing number of such, one can expect not only the 
possibility to reproduce completely the known experimental 
mass but also to give experimentally verifiable predictions (e.g., 
about further decimal places in the muon massnot reached by the 
available value from experiments).

In Koide’s report, and other sources, the experimental mass 
of the muon (together with the mass of the electron and other 
particlesproton and neutron, quarks in one case and W boson 
in another, and (constraints on) neutrino (masses)) is used 
to calculate the mass (or its lower bound) of the heavier 
analog of the electron, the tauon, rather than the opposite 
[22,26,28,59,76]. Similarly, in the Goldman–Vinciarelli, Georgi 
and Nanopoulos, Barbieri–Nanopoulos, Terazawa, Koide’s 
and in many other aforementioned worksonly presented 
formulas (models) in the framework of which the muon mass 
can be deduced (based on observed other particles’ masses 
or masses that may be observed in not yet reached energies 
or based on other fundamental natural constants, including 
hypothetical ones), but the actual calculation of such mass was 
not carried out [12,14,16,19,20,23,25,27,38,41,43,44,47-51,53-
57,61,62,69,70,77,80-83,89]. The muon mass in the literature, 
up to now, has been theoretically calculated as matching with 
the experimental value to at most 1 decimal before (not after) 
the decimal point (if not taking into account the exceptions 
criticized below), and the obtained values (in electron masses) 
are 218.76 (Darling model), 206 (Nambu formula, in original 

(1952) letter; the same is the modern value in similar model 
[78]) [5], 200 (Heisenberg formula) [6,7], ∼ 202 (Horning 
solution) [4], 207.0595 (Mirman formula) [9], ≈ 208.5 (Ivanter 
(topological) model) [10], 180 (Kumar–Muthanna–Sinha 
model) [11], 206.5539987 (13) Nambu-Barut formula [84], 
208 (in two different cases)Barricelli model [24], 206.69 [71], 
206.56 [126] or 206.554 [126] or 207 (twice) [91], 206.55 [66], 
207 [64], 207.05385 [29], 206.356610 [60] or 206.34 [58], 208 
(twice) or 205 or 206 [39], 205.56 [35],208(10) [14], 205.5 
[87] or 204.6564531 [73], 205 [34], 204 [52], ≈ 203.9 [21], 
210 (three significant figures) [6], 210 [63], ≈ 210 [49], 202 
[33], 198.8 [30], 220 [18], 220.08 [42], 220.2 [72], 185.2 [74]. 
In [74], the value (of 0.169) used in the calculation of mass is 
the value rounded non-conventionally; if, even not applying 
convention but not rounding the original value (0.16969...) 
since it is an intermediate result (and also applying the proper 
count of significant digits to the final result: hereone digit, due 
to “0.16969...” is an average from numbers having one–two of 
such), the mass would be 200 instead of 185.2. We have checked 
the value 205, according to the formula [34]. 

Other cited masses were not checked. In-depth analysis of 
existing models is generally outside the topic of the present 
work. Note: Many of the masses were converted from MeV or 
MeV/c2 (by dividing by the experimental mass of an electron 
in MeV or MeV/c2); the number of significant figures in these 
cases is the same as it was in one of the values with the fewest 
significant figures; (the MeV or MeV/c2 mass of an electron was 
taken from the same cited source, and only if the latter mass 
was not listed or the authors of the source are not the authors 
of the model under consideration, the value was used from the 
review of the PDG) [124]. MeV and MeV/c2 notations are used 
in the literature interchangeably, for mass of muon, and MeV 
notation also for equivalent (to muon’s mass) energy [2,34,125]. 
(Whether MeV is mass or energy? Since (aforementioned) 
massenergy equivalence, all uses can be viewed valid.) Note 
also that in natural units, MeV equals MeV/c2. Note: results, 
one arithmetic operation away from the mass, not counting 
conversion to electron masses, were considered calculated and, 
finalized, included in the list. (Not listed are masses calculated 
at the MZ scale, etc.; these are treated as not calculated) [41,82]. 
Note: all masses, both experimental and theoretical, and their 
errors, cited from the literature, are expressed in the paper without 
rounding. (Note: all cited masses are in units of experimental 
electron mass: in many cases this was the only variant, and in 
others is for consistency (better comparability); in the abstract 
case, where both theoretical electron and muon masses (in some 
model) are precisely wrong, the representation of the muon mass 
in units of theoretical electron masses can be more correct if 
both masses are affected by systematic error (their relation can 
stay accurate); so, at least from this, it is not ungrounded to use 
theoretical electron masses also, but such a task is left for the 
future, e.g., for a(comprehensive) review article).

Although in the model [84] a result of 206.768282(12) is 
reported, it is calculated with a formula that already contains 
the ratio of experimental muon to electron masses, so the result 
can be regarded as adjusted; the same may be true for model 
[37], in which the method of derivation of the equation is not 
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disclosed and the calculated mass is very similar: 206.7682822; 
in [31], the result is 206.7693, also based on a formula with 
empirical value as an input (as a constant, a mass of 313.85773 
MeV is given); also, other empirical formulas can be criticized 
from the same position, albeit they contain round numbers (or 
their relations) close to mass relations and not mass relations 
directly (one Koide formula) [26,84]. Also, all other empirical 
models can be criticized as adjusted (to an experiment) as they 
are (likely) developed not from theoretical reasoning but from 
the coincidence of calculation with experiment, which is the 
meaning of empirical; in one of such, the calculated mass is 
206.7703, and in yet another one, it is 206.78852 [45,46,127].

In [32], the computed value of 206.7607796 is also very close 
to experimental, however, it has been chosen from a (dense) 
spectrum of values (which imply “more than a thousand light 
particles between the electron and muon”). Muon theoretical 
mass is 206.761078 in [40] and is explained as a combination of 
6 = 3+3 fundamental masses of two types, but the numbers in the 
mass formula are not explained and thus can be free parameters. 
The same is true for [68], where the computed mass is 206.7. 
Also unexplained are the values of indexes in the formula that 
give muon mass as 206.75 in [67]. In the same way one may see 
the masses 206.766457 or 206.7671818, obtained in [79], and 
≈ 206.764 in [86]. The result 206.84(38) is referred to a paper 
in preparation in [85] (notes: “8” (at first decimal place) also 
coincides with value in the experimental mass but if the latter 
(mass) given rounded to that (one) decimal place; 206.84(38) 
is further from (not rounded) observed mass than any of (actual 
and numerically possible) masses with “7” in the first decimal 
placeif not accounting for the uncertainties).

Within the 1σ range of the experimental mass are theoretical 
masses 206.7682786 in [65] and 206.7682830 in [36]; however, 
in the first source, at least some parameters in the mass formula 
are free, i.e., not justified by theory (if not counting that their 
choice is restricted to integral numbers and that some logic in 
their values was found postfactum), and in the second model, 
the bonding energies of sub-particles that constitute muon, and 
therefore the energy that they contribute to the particle’s mass, 
are obtained from experimental masses of elementary particles, 
including muon, so the calculated mass is clearly adjusted. Note 
that the contribution of bonding energies to mass here is positive, 
as in our model (but note that our model is not built upon any 
existing models; however, (2023) has priority in introducing the 
positive contribution—of binding energies of constituents or 
sub-particles of muon) [36].

In contrast to these models, our model contains neither (as was 
previously mentioned) experimentally determined nor adjustable 
parameters, unless one considers the choice of cubic dependence 
instead of quadratic (the latter is the simplest among non-linear) 
for modelling the delocalization of a point in the node; choice is 
not justified by theory if not counting one insight on the physical 
origin of this dependence (see below). All possible dependencies 
of density distribution are contained between 0th-power law (i.e., 
when all density is on the surface of a ball-node) and power 
+∞ (i.e., when all density is concentrated in the center); the 
third extreme case is uniform densitysomewhere in between 

these (0 and +∞) powers. It is assumed that all possible power 
dependencies of density distribution (excluding the 3rd power) 
give at least an approximation to the mass of muon (while the 
3rd power gives an exact mass). If this assumption is correct 
(which requires calculations for proof), the theory is valid not 
depending on the power value, so the latter cannot be a free 
parameter of the theory even when “if” (mentioned above and 
to be discussed later) is not considered. The laws that govern 
attractive and repulsive forces between the nodes in our model 
are justified as being the simplest and having physical analogs 
(i.e., the force of gravity (and electromagnetism) for attraction 
and the Heisenberg uncertainty principle for repulsionalso 
shown described by special relativity).

It is worth mentioning that in conditions where the nodes are 
connected by nondirectional and thus spherically symmetric 
and non-saturable forces, i.e., similar to those presented in our 
model, which is true for metals and noble gases, the formation of 
densest packings of spheres (or balls, hereatoms) is advantageous, 
including, in the case of a small number of atoms (up to several 
hundreds to thousands, including the case of n =13 atoms), as 
shown in calculations and experiments, clusters with icosahedral 
symmetry, i.e., similar to the construction in our model. These 
further grounds (from analogy) the icosahedral arrangement 
of nodes as the lowest energy state (among other imaginable 
arrangements) and also adds to the explanation of n = 13 for the 
nodes (not 12 or 14, etc.) in the structure of muon; it also helps 
to explain the jump in the charged lepton spectrum (including in 
mass) from electron to muon, i.e., the non-existence of leptons 
intermediate between electron and muon [128-138].

Icosahedral, with n = 13 atoms, clusters are shown to be able to 
unite or interpenetrate to form poly-icosahedral structures [135]. 
(Interpenetration may be expected to occur through atom-by-
atom growth, i.e., not as a result of the interaction of already-
formed clusters (at least they seem not to move with high enough 
speed to interact non-elastically); two clusters may have one 
or more common atoms (it is geometrically possible)in some 
analogy with common electrons in molecules). Anyway, from 
observation of the poly-icosahedral structures, n = 13 icosahedral 
clusters of atoms can be viewed not only as repeating ball shape 
on a larger scale but also as behaving as balls: they do not merge 
with one another (at least completely), which is in line with our 
concept of the existence of 2nd-order balls.It is noteworthy that 
our model calculations show that the case when both the center 
node and the shell nodes deform, albeit to different degrees, is 
energetically advantageous. The negative energy (i.e., the energy 
due to deformation) in electron masses per node is 0.96 for a 
shell node and 2.26 for the central particle, which is equivalent 
to a higher momentum of the central particle compared to the 
shell particle and allows to draw some analogy with a number 
of natural objects: neutron stars, white dwarfs, ordinary stars, 
and planets, in which the pressure and momenta of particles 
also grow towards the center. Thus, the object considered in the 
model has physical analogs in this respect.

The idea of a finite-sized ball, used in the model as a node of 
the construction, if compared with an object close in scale: the 
s-orbital of an electron, can be just an approximation to reality 
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(simplification), because the s-orbital has no boundary (electron 
density is distributed throughout the universe), although the 
overwhelming part of it is contained within a limited volume 
(for example, 95% of possible positions of an electron are inside 
a sphere of radius 1.7 angstroms) [139,140]. By analogy, the 
finite-sized ball considered in our model may also contain the 
vast majority of the point’s positions, and thus its use in the 
model is, in this case, justified (in addition to the arguments in 
the 1st section).The fact that we consider, as realized in the ball-
nodes, a non-uniform distribution obeying specifically the law of 
inverse cubes, (somewhere) intermediate between two extreme 
cases: uniform distribution (along the axes) and singularity 
(point), requires an explanation (mechanism). Interestingly, the 
stress created by a point defect in a crystalline lattice decays as 
1/r3 with the distance r to the point defect [141]. This may be 
relevant in the search for a cubic dependence mechanism, the 
discussion of which is beyond the present scope.

Until the mechanism is found, the proof of the correctness 
(physical significance) of the dependence chosen in our model 
should not be only the reproduction of the muon mass but also 
the simultaneous (i.e., with the same law of density distribution 
in the nodes) obtaining of the mass of an even heavier electron, 
the tau-lepton; tauon mass is now calculable (see below). The 
question about the (quantitative and qualitative) relationship 
of the cubic dependence of the density distribution in the 
construction’s node with the laws of the distribution of density of 
constituents in known natural objects with spherical symmetry, 
especially in atomic s-orbital and astrophysical objects, has not 
been studied: how much the density distribution law in these 
things resembles the cubic dependence (i.e., how common and 
natural this dependence is).

An example of a structure where the massenergy of the elements 
is small relative to the energy-mass of the forming system is 
baryons (objects formed by strong interaction), described 
simplistically as a bound system of three elements (three quarks) 
[1,124,142]. For instance, in the case of a proton, the masses of 
three quarks contribute only 1% of its mass [1,124,142], and thus 
are almost negligible. The massless nature of the bound elements 
(nodes) considered in the first variant in our modeli.e., in (1)is a 
limit case and may be an acceptable simplification. Also, nodes, 
as new objects whose nature remains to be understood, may 
represent states that do not interact with the Higgs field and thus 
do not receive mass in the first place. (Priority in introducing 
massless sub-particles in muon and charged leptons is of [65] 
(2012); however, note that in our model, the concept was 
introduced independently; note also that the muon mass models 
(our and [65]) are not similar).

As for the systems formed due to three fundamental interactions 
other than the strong (as well as due to non-fundamental 
forces, for example, the strong nuclear interaction), the binding 
energy makes a relatively small, relative to the masses of the 
bound elements, and negative contribution to the mass of the 
system (the so-called mass defect). In our model (and [36]), the 
contribution of bonds is positive, the reasons for which are not 
speculated in this work.To justify the lack of contribution of the 
possible mass of nodes to the mass of the construction, one can 

also speculate that instead of moving the considered structure 
in space, only the bonds and deformation of the nodes move (or 
the packet of useful energy released during the formation of the 
structure), so the nodes do not move, i.e., as in a wave: that the 
muon is a (nonlinear, particle-like) wavesoliton, in accordance 
with the way elementary particles are considered in solitonic 
models; the specification of this idea may be a topic for future 
research [143-145].

As was partially treated before, beside the direct verification of 
the model, an indirect verification is possible: by calculating, on 
the basis of the same idea and assumptions used in the model 
(i.e., using the same (general) approach or method), the mass of 
the 3rd-generation particlethe tau lepton, represented as a similar 
structure, but with two layers of nodes around the central one (in 
total, 55 nodes and 1485 bonds between them, versus 13 nodes 
in the muon and 78 bonds between them). Note: objectively, the 
general approach (mentioned above) is the approach for muon, 
but after deleting specifics of muon: number of nodes (i.e., 
13): models for other fundamental particles are produced (not 
in details but overall) by considering other number of nodes; 
these numbers are not arbitrary, as seen for the tauon and as 
you can find for u- and d-quarks (and other particles)below. The 
general approach, initially, is the general theory (for many or all 
elementary particles); evaluation of its generality also according 
to experiment (i.e., check of correctness (generality) in practice) 
is below.

In continuation of the question of indirect verification of the 
mass model for muon, and as a (solution of a) problem that has a 
value on its own, and to start evaluating the (practical) generality 
of our approach, we report here the results of calculations of 
tauon mass for the doubly simplified case, namely, where 
attraction is computed only between the centers of nodes (i.e., no 
delocalization of a point is calculated), and in the computation of 
negative energy (or repulsion), the 1D-case is considered, namely, 
the distances between the nodes’ centers instead of (shrinking 
of) the node’s dimensions (i.e., the formula Σ{[(1/la)−1]na} is 
applied, where la is the distance (of different types, a) between 
the centers of nodes (only la’s<1 are eligible for the formula); 
na is number of such distances in the construction): in such a 
case, spontaneous collapse of the 55-ball structure gives (a lower 
bound on) the maximum of the energy-mass as 3408.17 electron 
masses, which should be compared with the experimental 
value of 3477.23(23) [2]; i.e., the theoretical mass of tau is (at 
least) 98% of the observed. The second simplification (above, 
i.e., in the negative energy calculation) can be viewed also as 
another method to calculate Enegsince 1D is applied not to the 
node’s dimensions. If viewed so, the question of incomparability 
between the models arises. It poses a task for the future to calculate 
tauon’s mass with treating Enegas in muon’s case. (Note: the mass 
in percent here is rounded to whole numbers, for convenience; if 
not rounded, it is 98.0140%). So, it is shown (at least partially) 
that our general approach is applicable to other particles than 
muon: at least it (possibly modified if considering the probable 
incomparability nuance) gives a close approximation to the tau-
lepton mass (from the lower bound), which indirectly verifies 
the muon mass model. (Furthermore, the lower bound here, 
of the real maximum, as was(indirectly) mentioned before, is 
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attained when all the distances in the tauon shrink to the half of 
initial ones, so all the distances that start from = 2 (78 distances 
are of this type) are now = 1; accounting that the rate of energy 
release approaches maximum when the points approach distance 
= 1, and that all probed energy-masses for s < and >0.5 were 
lower than 3408.17, it is assumed (grounded) that 3408.17 is the 
real maximum; the latter not to be confused with global and real-
maximum-in-general (i.e., outside the simplified case); globality 
of the present maximum was assessed partially).

Further details of the model for tauon are omitted in this paper 
(i.e., the model is reviewed only partially, which complies with 
the title, which emphasizes the mass, not the model, in the 
tauon’s case). We also (for similar reasons) do not give details of 
derivation of 3408.17 as mass-energy maximum (i.e., like with 
tables 2–4); this do not prevent the model and results from being 
verifiable and falsifiable.Interestingly, the diameter of the whole 
structure of tauon, D, compressed to the lowest energy state, is 
0.5 × 5 = 2.5 (where 0.5 is the diameter of equal-sized balls 
(ball-shape is one of the possible interpretation of the distances 
between nodes’ centers) and 5 is the number of ball-nodes in 
the 1D slice of the structure in the widest part, which equals 
the diameter of a circumscribed sphere that touches the surfaces 
of the nodes), while for muon, D ≈ s[f + 2(rk− 0.5f) + f] (for 
f = 0.97, s = 0.94, and corresponding k from table 1; r from 
Supplement 1) = 2.7. So, the more massive, with more nodes, 
structure has dimensions smaller than the structure less massive, 
with fewer nodes. White dwarfs and neutron stars also shrink 
with more mass and matter (i.e., a more massive white dwarf 
has a lower volume than a less massive one; so [107] (but still 
discussion able [146]) for neutron stars); from this analogy, our 
models get additional grounding: analogy with known natural 
objects (white dwarfs and neutron stars) is more than in the rise 
of momenta with depth.

When adding an electron, D = 1, to muon–tauon sequence, one 
can see that initially, dimensions grow with mass and matter (to 
D ≈ 2.7 in muon), in analogy with, e.g., in planets (more and 
more massive), and only then start to shrink, so, repeating the 
natural law, seen in the sequence (of growing mass of) planets–
post stellar objects (white dwarfs, neutron stars). So, in our 
models (of electron, muon, and tauon), this law is repeated and 
adds to the justification of our theoretical constructions. (One 
can see that the volume–mass dependence is reproduced not 
only in muon–tauon sector, but for the whole sequence.) Note: 
post stellar objects also include black holes—for which, sizes, 
with current physics, are zero, i.e., singularity (in a limit—non-
rotating, non-collapsing case); these objects lie along the upper 
part of the volume–mass dependence; the corresponding (i.e., 
the upper) part for charged leptons’ sequence is linked to the 
mystery of the non-existence (non-observational status [124]) of 
4th-generation charged leptons (and that of higher generations). 
Is this somehow connected to a black hole, or does it have 
another mechanism? The question is out of the scope of the 
present work, as it is not directly related to the topic (see the 
title)and can be addressed, e.g., to an interested reader. We, 
however, announce the hypothesis of the mechanism for the 4th- 
and higher generations’ charged leptons’ non-existence; also, 
there are mechanisms proposed in the already cited literature in 

this paper [75,76,92].

To better comply with the plural “applicable to other particles” 
(said above, about our general approach, in the sense of: in 
practice), we also report here the masses of the elementary 
particles from another group than charged leptons (electron, 
muon, tau): of a quarks. First, we consider the simplest case, i.e., 
the lightest quark: u-quark. The simplest possible construction 
after an electron (one node) is two interacting, contacting nodes 
(in comparison with charged leptons, such a construct is non-
spherical and not close to a sphere by symmetry). Adding to 
the first simplification described for the tauon mass calculation, 
the secondbeing non-compressibility, we obtain a trivial result, 
already shown in figure 1: 4 electron masses (exact number). The 
observed u-quark mass is 4.23 (+0.96/−0.51) masses of electron 
[124]. So, the mass of the up quark, in a doubly-simplified case’ 
calculation, is well within 1 SD of experimental. This further, 
indirectly, justifies the physical significance of the application 
of the general method to muon’s case (i.e., the model of muon 
mass).

The simplified mass of the second lightest quark, d-quark, 
can also already be seen from figure 1, and equals 9 masses of 
electron i.e., the energy-mass of three interconnected nodes, 
which is the next simplest number of nodes after being used to 
describe u-quark (so, one can see that the number of nodes is 
not arbitrary). A model for the down quark, according to figure 
1, contains three simplifications, two of which are the same 
as for the up quark, and the third is due to the arrangement of 
nodes being considered only as 1D, while for the down quark 
also possible are 2D arrangements (i.e., triangles). Observable 
d-quark mass is 9.14 (+0.94/−0.33) [124]. So, the theoretical 
mass of down quark is also well within the 1σ experimental 
range.

The experimental masses of electron, u- and d-quarks resemble 
a sequence 1,4,9 [30]; now we have a theoretical explanation of 
this phenomenon, in addition to other theories that can be found 
in the literature. Theoretical masses of u- and d-quarks as 4 and 
9 electron masses are already given in [147] (2020), with an 
alternative (to our approach) explanation of this matter.Existence 
of heavier quarks can be understood in analogy with u2/3 and 
d1/3 quarks: charm, c2/3, and bottom, b1/3, quarks are constructed 
of also two and three but 2nd-order balls, respectively; top, t2/3 

quark—of two 3rd-order balls, which non-trivially predicts the 
existence of an even heavier quark (made of three 3rd-order 
balls), with the 1/3 charge (one “if” can prevent the existence of 
this, 4thgeneration, quark; whether this “if” works is checkable by 
calculation). Omitted to this point was the strange, s1/3 quark: its 
hypothetical mechanism of existence (not to be discussed here) 
is slightly not in line with the simple scheme for other quarks (but 
is (of course) still within our general approach); this theoretical 
“not in line” explains why this quark’s observable charge and 
mass disrupt the simplicity of the experimental sequence of 
quarks if it had been without s-quark: one can expect that after 
d1/3, a quark with charge 2/3 should follow, but s1/3 is intervened; 
also, one should expect masses of 2ndgeneration quarks to be 
close to each other (as is known for the 1st-generation quarks, 
with experimental mass ratio 2.11 (+0.25/−0.33) [124]), but 
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the s-quark is much lighter than the c-quark (mass ratio from 
experiments: 11.76 (+0.05/−0.10) [124]); nonetheless, both 
of these quarks are termed 2nd-generation quarksand this can 
be reasonable accounting for the values of elements in the 
Cabibbo–Kobayashi–Maskawa (CKM) matrix [124]. One can 
see that in the 2nd generation, quark with charge 1/3 (s-quark) 
turns out to be lighter than that with charge 2/3 (c-quark), while 
in the 1st generation it is the opposite (u2/3 is lighter than d1/3), 
so the (enigmatic) inversion is seen. Everything falls into place 
when one considers the mechanisms mentioned above, which 
show uniqueness of s1/3 along with the closeness of c2/3 to b1/3 

(analogous to u2/3 to d1/3)which can explain, at least qualitatively, 
(small) experimental b- to c-quark mass ratio of 4.58 (±0.01) 
[124]; the samefor t2/3 quark: while its observed mass ratio to 
another 3rd-generation quark, b1/3, is 41.3 (calculated from the 
central values [124])compare with 2.11 and 4.58, ratio to the 
predicted 4thgeneration quark should be relatively small: from 
linear extrapolation (continuation of the sequence: 2.11, 4.58, 
x) it is 7.05, which gives (with t-quark mass of 172.69 GeV 
[148]) the mass of the new (awaited) quark as 1.22 TeV; this 
mass should be compared with the lower bound (experimental) 
in searches of a possible 4th-generation quark, b’, with charge 
1/3: >1.57 TeV [124]; so, the simplest (linear) extrapolation 
excludes our predicted quark. However, there is a sign of non-
unitarity of the CKM matrix (in the first raw) with 2.2 sigma 
significance [124], which, if it will rise to at least 5 sigma’s (with 
future experiments), will certainly imply the existence of the b’-
quark or other physics beyond the Standard Model [149]. (The 
statistical significance actually dropped from >4σ as it was in 
2020) [149].

5. Conclusions
A new model is presented to explain the value of the muon mass 
(or muon–electron mass ratio)a model, which allows for the 
theoretical calculation of at least a good approximation to the 
mass of this elementary particle. A muon mass is computed as 
206.7 (±2.5) electron masses versus the experimental value of 
206.7682827(46), i.e., is 100.0% (±1.2%) of the measured mass. 
The mass is identified with the maximum of the released useful 
energy during the formation of a structure composed of 13 
(deformed) ballnodes that (structure) possess the approximate 
symmetry of a sphere and can be viewed as a structure of the 
2nd-order (also ball) in comparison with one node (the 1st-order 
structure, identified with an electron). This maximum (of mass-
energy) in the paper was looked for by considering various 
possible values of flattening of the outer nodes and compression 
of the whole structure of already contacting ball-nodes. The 
maximum was obtained, i.e., the theoretical mass noted above. 
(The presence of possible additional (local or global) maxima 
was not tested in this work). The energy release in formation 
of the structure is limited by the establishing equilibrium of the 
modelled simplest forces of attraction and repulsion between the 
nodes.

The results are obtained based on 100 iterations of the algorithm, 
with substitution at each iteration of random numbers generated 
using the π number sequence. Going beyond 100 iterationsto 
250, 500, 1000, etc., may be time-consuming (100 iterations 
took about a one-and-a-half month of calculations) but it will 

allow one to determine how many decimal places in the muon 
mass the presented model can reproduce (stable within 1 sigma) 
and to find out whether it is an approximation or an accurate 
description of the muon mass. Continuation of the calculations 
will also reduce standard error in the mass representation.The 
computations performed are limited by the accuracy of the 
coefficient k, determined in a graphical way (with the graphic 
editor Inkscape): there is a limitation of three decimal places in 
its displayed value and also in the process of obtaining this value 
by specifying the dimensions of ellipses (projections of flattened 
outer nodes). Instead of a graphical determination of k, the task 
of obtaining it in a mathematical (geometric) way, which may be 
more accurate, can be set.

Also, when working in the graphic editor and in calculations, 
the rounded value of the angle g was used (the accuracy of the 
rotation of geometric figures in the editor, in degrees, is limited 
to three decimal places). (The use of the rounded value also in 
the calculations ensures consistency). The calculations’ precision 
can be increased by utilizing a more precise angle, which may be 
required for replicating the muon mass to the nth decimal place.
The model’s calculations were largely performed manually, 
so their speed could have been greatly improved by the use of 
Keisan online calculator technology (Casio Computer Co., Ltd.), 
with functions to automatically substitute variables and solve 
long formulas, which is now discontinued, but it is possible that 
this technology could be repurchased or reproduced. (Our first 
algorithm was intended for this calculator; discontinuation of the 
latter in 2023 forced us to recreate an algorithm “from zero” 
for manual calculations (with use of only Windows calculator), 
described in this paper). The task of automating the calculation 
by means of a computer algorithm may also be posed.Thanks 
to the use of input data from the π sequence, known to 62.8 
trillion decimal places, the computations of our model are well 
suited for collective (or distributed) calculations, where different 
authors consider different parts of this sequence [150].

The challenge of creating a three-dimensional representation of 
what can be viewed as muon’s internal structure, presented in this 
paper only in the form of slices of individual pairs of nodes (the 
uncompressed structure’s case) and a mathematical description, 
is also posed.The physical interpretations of the model, including 
the nature of the cubic dependence of the density distribution in 
the structure’s node, have generally remained outside the scope 
of the present work.The task of calculation, with the general 
approach shown in the paper, of other particle masses, which 
will indirectly aid our muon case model, is set for the future, 
except for the masses of tauon, u- and d-quarks, reported in this 
work, obtained in the simplified cases. Particularly interesting 
is whether the masses of tau and quarks will (better) converge 
to the observed ones when moving from simplified models to 
concise computations [151].
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