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Abstract 
This paper presents a Millimeter wave Microstrip Patch antenna(MPA) with a metaplate which consists of Split Ring 
resonators(SRR) design. The gain and bandwidth of MPA are improved by using 4×3 array unit cells printed on both the sides 
of the metaplate. Simulation results show that the Gain of the antenna was increased by 4.82 dBi and 4.53 dBi, bandwidth 
was increased by 2.25% and 6.21% in CST and HFSS softwares respectively using the Metaplate along with the MPA. The 
center frequency of the proposed antenna is 28.5 GHz. Thus the proposed antenna has a very small size of 18×22 mm2 and is 
suitable for Millimeter wave applications.
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1. Introduction
In the current scenario where the internet is the medium that 
helps millions to continue their work online, billions to continue 
their education and a lot of people to connect with each other, 
Fourth generation(4G) services helped us a lot. But with 
increasing requirement in the field of science and technology Fifth 
generation(5G) can perform the work more easily when compared 
to other generations. There are two sets of frequency bands for 5G 
networks. From 450 MHz to 6 GHz is the sub-6 GHz region and the 
Millimeter wave(mm wave) spectrum ranges between 30 and 300 
GHz. For 4G and prior generations, we have used radio waves for 
transmission which have a low bandwidth and are widely utilized 
by mobile operators, resulting in slower service and more failed 
connections [1]. So, having the future in mind, we’ll need a medium 
that can handle a lot of data. The millimeter wave area, which has 
never been used before, is a great answer for this. It eliminates the 
spectrum crowding problem and permits communication at very 
high data speeds thanks to its extremely wide bandwidth. High-
directivity antennas can be constructed with a tiny footprint due to 
the short wavelength. Antennas for higher frequency (mm wave) 
applications (such as 5G) must be extremely stable, with high 
radiation efficiency, high gain, and great temperature stability [2].In 
the last decade, the microstrip patch antenna has become one of the 
most popular and commonly used antenna types. The introduction 

of low-cost microstrip antenna production processes has improved 
the popularity of microstrip antennas. Microstrip patch antennas 
are low-cost, low-profile, lightweight, and relatively easy to make 
[3]. Although the Conventional Microstrip Patch Antenna has a 
lot of good features, its narrow bandwidth and low gain makes it 
unsuitable for Millimeter wave applications[2].In order to solve 
this problem there are a lot of techniques that are being used by 
the researchers such as increasing the thickness of the substrate, 
incorporating antenna arrays and Metamaterials in the design. 
Array antennas can boost gain and efficiency, but they have a 
huge size and complex structure that makes them difficult to use. 
In recent times use of Meta- materials have become a promising 
technique to increase the gain and also to reduce the size of the 
antenna. Metamaterials are basically those materials which possess 
electromagnetic properties that are not found in nature, such as a 
negative index of refraction. Electromagnetic waves are refracted 
in the opposite direction due to the negative index of refraction, 
causing focus which increases the gain, directivity and also the 
bandwidth of the antenna [2,4-6].In Reference 9, Millimeter wave 
antenna array is presented. In Reference 11, a MIMO antenna with 
metamaterial substrate for WLAN applications is presented. In 
Reference 14, multiband metamaterial based antenna is presented. 
But all these antennas have low gain at 28.5GHz.In this paper, 
the performance of Microstrip Patch antenna is improved using 
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a metapelite which have Split ring resonators printed on both the 
sides for better gain. The center frequency is set to be 28.5 GHz. 
After successful simulation of the design in the CST software we 
verified the results in HFSS software and they are compared. The 
antenna with metapelite showed improvement in terms of gain 
and bandwidth when compared to conventional microstrip patch 
antenna.

1.1 Microstrip Patch Antenna Design
The Design of the Microstrip Patch Antenna is shown in Figure 1. 

The dielectric substrate must be broad and have a low dielectric 
constant to achieve superior antenna performance, greater antenna 
efficiency, wider bandwidth, and significantly better radiation [2].
The substrate used for the Microstrip patch antenna is the Taconic 
TLY-5(εr = 2.2,tangent loss = 0.009).The low dissipation, stable 
and uniform dielectric constant, and reduced moisture absorption 
factor facilitate effective deployment of millimeter wave antennas. 
The Dimensions of the patch antenna were calculated using the 
formulas [7]:
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GHz and the peak gain was observed as 9.52dBi.
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The figure 4,5 shows the front and side views of the unit cell 
respectively. The structure consists of Split ring resonators (SRR). 
In a single cell SRR, there are two enclosed loops with splits at 
opposite ends. The loops are of copper material, concentric in 
nature and are separated by a short gap. The huge capacitance 
values produced by the narrow gaps between the rings lower the 
resonant frequency. As a result, the structure’s dimensions are 
modest in comparison to the resonant wavelength and therefore, 
there are Low radiative losses and good quality factors. The unit 

cell is placed on a substrate of length sL = 3.5mm, width sW = 
3.5mm and thickness T1= 1mm.The dimensions of the SRR are R1 
= 1.3mm, R2 = 0.9mm, d = 0.2mm, g = 0.1mm respectively. Electric 
field propagation along the Y-axis and magnetic field propagation 
in the Z-direction are the unit cell’s boundary conditions. A unit 
cell array is placed on the top of the substrate and then on the 
backside of the substrate they are rotated by 180 degrees. From 
figure 6 we can see that the -10 dB bandwidth is from 26.973 GHz 
to 27.856 GHz
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1.3 Proposed Antenna Design
In this paper we are using a Metamaterial plate consisting of 4*3 
unit cells to enhance the gain and bandwidth of the Microstrip 
patch antenna. Figure 7 shows the Top view of the Metaplate, 
Figure 8 shows the complete structure of the proposed antenna. A 
4×3 unit cell array is placed on the top of the metaplate and then 
on the backside of the plate they are rotated by 180 degrees. The 

distance between the MPA and the metaplate also plays a crucial 
role in improving the gain and the bandwidth of the antenna. After 
studying the gain and bandwidth for various values of this distance 
it is chosen to be 16mm for better results. Then the spacing 
between the rows and columns of unit cells has been studied by 
fixing the superstrate distance at 16mm and the spacing is chosen 
to be 0.7mm in both directions for best performance.
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As observed from Table 1 the ideal number of unit cells to obtain 
the maximum performance of antenna is 4×3. Results are then 
verified in the HFSS (High Frequency Structure Simulator) 
software. Figure 11 and 12 shows the reflection coefficient and 
gain of the MPA with metaplate respectively in both CST and 
HFSS softwares and figure 13 shows the radiation pattern of the 
proposed antenna in CST. It is seen that the bandwidth of the MPA 

with metaplate has been increased by 2.25% and 6.21%, gain 
has been increased by 4.82 dBi and 4.53 dBi in CST and HFSS 
softwares respectively when compared to conventional Microstrip 
patch antenna. Therefore, it is verified that metaplate produces 
a focus because of its properties which in turn has increased the 
directivity, eventually increasing the gain and bandwidth of the 
antenna.
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CST and HFSS software’s respectively. Since HFSS uses Finite Element Method (FEM) and 

CST uses Finite Integration in Technique (FIT),there is a slight difference in the results. 

Considering the high gain, high bandwidth and small size of the antenna it is suitable for 5G 

millimeter wave applications [8-13]. 
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3. Conclusion
Millimeter wave Microstrip Patch Antenna with a metaplate 
consisting of Split Ring Resonator(SRR) is proposed and simulated 
in two different softwares-CST and HFSS. The performance of the 
microstrip patch antenna has improved significantly by using a 
metaplate. The antenna shows a peak gain of 14.34 dBi and 14.05 
dBi, bandwidth of 10.14% and 14.1% in CST and HFSS software’s 
respectively. Since HFSS uses Finite Element Method (FEM) and 
CST uses Finite Integration in Technique (FIT),there is a slight 
difference in the results. Considering the high gain, high bandwidth 
and small size of the antenna it is suitable for 5G millimeter wave 
applications [8-13].
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