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Abstract
The theory of Ismail's non-extensive maximum entropy solution (NME) is described in detail. It is used as an inductive 
inference technique for heavy-tailed queues with a non-robust mean queue length and a non-extensive "long-range" 
interaction. In our novel method, we substitute the non-robust mean queue length for the conventional Pollaczeck-Khinchin 
mean queue length. In other words, the new non-extensivity parameter q will be included in the resulting state probability 
function. Numerical portraits are provided to capture the influential effect of the derived formalism, pq,I (Sn ), n=0,1,2,… on 
the stable M/GEq,I /1 queue with heavy tails. More potentially, some applications of Hurst Exponent to social computing and 
connected health are provided. Conclusion with some challenging open problems and possible future research pathways are 
given.

J Sen Net Data Comm, 2024

Member IAENG, IEEE, School of Computing, AI, and 
Electronics, University of Bradford, United Kingdom

Keywords: Queue, Noros Mean Queue Length, Stable M/G/1 Queue, Ismail’s Second Entropy(HI
q)

ISSN: 2994-6433

1. Introduction
The NME formalism, following the work of Rényi and Tsallis, is a mathematical technique used for inductive reasoning in physical 
systems with "long-range" interactions that exhibit non-extensive order. This approach builds upon Shannon's classical extensive 
maximum entropy (ME) formalism, which is used for analyzing "short-range" interactions in extensive systems[1-7]. The NME 
formalism provides a closed form expression to understand and reason about these complex physical systems. Stable steady state 
probabilities p(n) for M / G / 1 queue, where n = 0, 1, 2,... in accordance with the results of the first two EME applications to stable M/G/1 
queues. The dependent functional of the EME mean constraints was maximized during its derivation.

Normalization, 
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utilization (SU),
 ρ = 1- p(0) [5].

For a stable M/G/1 queueing system, the proposed solution in [5-11] was shown to be stochastically exact when the service (S) times 
adhered to the GE distribution as indicated by figure 1.

 

 
Figure 1.  A schematic portrait of GE-type service time distribution with parameters {1/   Cs2>1} 
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Figure 1: A Schematic Portrait of GE-Type Service Time Distribution with Parameters {1/μ, Cs
2>1}

2. Inductive ME Formalisms
Shannon’s entropy that depicts expressing “short range" interactions H1,S (p)[3](equivalently, q→1), is defined by

Here c is a constant(c> 0) and p1,S (Sn),n=0,1,2,… represent short range interactions [13].

Ismail’s second entropy, namely HI
q is defined by

φ serves as a well-defined positive function, with q to be any real number. Notably, φ(q)→1, HI
q of (2) reduces to the Shannon’s 

formula(3).

3. The Non-Extensive Formalism of Stable M/G/1 Queueing System
3.1 The Shannonian Closed Form Expression
The authors of [5] have proved that EMS Shannon’s maximum entropy measure given by [3],
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By taking the Hurst parameter,    .         . .  
It should be noted that the heuristic formula (44) explicitly accounts for the detrimental combined effects on queueing 
system performance of traffic burstiness (by  the SCVs         ) and self-similarity (via parameter  ). When     
     = 1, the expression (44) reduces correctly to the Noros formula. Additionally, equation (44) produces the MQL 
expression for the stable         queue for    . (i.e., q → 1)14–17]. 
 
 
    VI. APPLICATIONS OF HURST EXPONENT TO SOCIAL COMPUTING AND CONNECTED HEALTH 
 
A. Applications of Hurst Exponent to social computing 
 
Sentiment analysis is a useful tool for summarizing a story arc's storyline and for capturing the attitudes, emotions, and 
moods[18], among other representations in literature. Using Kazuo Ishiguro's "Never Let Me Go" as an example, the 
authors suggest applying fractal analysis and nonlinear adaptive filtering to examine the narrative coherence and 
dynamic progression of a novel. They show that these techniques can extract a story arc that reflects the novel's tragic 
trend and that the time-varying Hurst exponent reflects the plot's dynamic progression. These results point to the 
possible applications of multifractal theory in large-scale literary analysis and computational narratology. 
The Syuzhet sentiment dictionary was utilized by the writers [18] to extract sentiment time series from the book "Never 
Let Me Go." To find story arcs, they first normalize the emotion ratings and then use a nonlinear adaptive filtering 
technique. The ensuing plot arcs demonstrate that "Never Let Me Go" is a tragedy since there is a peak of positive 
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By taking the Hurst parameter, H = 1.5 - q,1 > q > 0.5. 

It should be noted that the heuristic formula (44) explicitly accounts for the detrimental combined effects on queueing system performance 
of traffic burstiness (by the SCVs Ca2,Cs2) and self-similarity (via parameter H). When Ca2= Cs2 = 1, the expression (44) reduces 
correctly to the Noros formula. Additionally, equation (44) produces the MQL expression for the stable GE/GE/1 queue for H = 0.5(i.e., 
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6. Applications of Hurst Exponent to Social Computing and Connected Health
6.1 Applications of Hurst Exponent to Social Computing
Sentiment analysis is a useful tool for summarizing a story arc's storyline and for capturing the attitudes, emotions, and moods. among 
other representations in literature [18]. Using Kazuo Ishiguro's "Never Let Me Go" as an example, the authors suggest applying fractal 
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progression. These results point to the possible applications of multifractal theory in large-scale literary analysis and computational 
narratology.

The Syuzhet sentiment dictionary was utilized by the writers [18] to extract sentiment time series from the book "Never Let Me Go." 
To find story arcs, they first normalize the emotion ratings and then use a nonlinear adaptive filtering technique. The ensuing plot arcs 
demonstrate that "Never Let Me Go" is a tragedy since there is a peak of positive sentiment in the middle of the book, contrasted with 
negative sentiment at the beginning and end. In addition, the authors argue that, in addition to simply categorizing the literary genre—
which figure 3(c,f., [18]) visualizes—story arcs can offer insights into the narrative structure and the dynamic growth of attitudes.

sentiment in the middle of the book, contrasted with negative sentiment at the beginning and end. In addition, the 
authors argue that, in addition to simply categorizing the literary genre—which figure 3(c,f., [18]) visualizes—story 
arcs can offer insights into the narrative structure and the dynamic growth of attitudes. 

 
Figure 3. The sentiment time series of "Never Let Me Go" refers to the analysis of the emotional tone or sentiment expressed throughout the novel. By 
extracting sentiment scores at the sentence level and applying nonlinear adaptive filtering, the story arcs of the novel are identified and depicted. The 
sentiment time series reveals that "Never Let Me Go" follows a tragic narrative structure, with negative sentiments at the beginning and end, and a 
peak of positive sentiment in the middle. 
 
A popular field of research in online social networks is influence maximization, which focuses on finding a subset of 
nodes that can start a chain reaction of adoptions that would maximize the propagation of influence. [19] proposed an 
approach to evaluate the potential influence of a node by combining its past activity pattern with its connections. The 
authors of [19] put out a unique Hurst-based Influence Maximisation (HBIM)model to examine the dissemination of 
seed nodes. For early adopter identification, the suggested technique performs better than other current algorithms. 
 
OSNs, or online social networks[20], have grown significantly in popularity recently because of their applications in a 
variety of real-world fields, including social awareness campaigns, recommendation systems, and marketing. The model 
selects a minimal number of seed nodes, and if      . , it only activates the inactive successor of each seed node. 
This process is repeated until no further activations are feasible. The average and predicted influence spreads of the 
suggested model are much higher than those of existing Influence Maximisation methods. 
 

B. Applications of Hurst Exponent to connect health 
 

     Electroencephalographic (EEG) signals can be used by the authors [21] to automatically detect epileptic seizures 
using machine learning techniques. The method utilizes non-linear features, From the EEG signals, metrics like the 
Hurst exponent and logarithmic Higuchi fractal dimension (HFD) are obtained. 
The framework(see figure 4) involves segmenting the EEG data, extracting features such as the Hurst Exponent and 
Logarithmic HFD, and classifying the data using SVM and KNN classifiers with 10-fold cross-validation. 

Figure 3: The sentiment time series of "Never Let Me Go" refers to the analysis of the emotional tone or sentiment expressed 
throughout the novel. By extracting sentiment scores at the sentence level and applying nonlinear adaptive filtering, the story 
arcs of the novel are identified and depicted. The sentiment time series reveals that "Never Let Me Go" follows a tragic narrative 
structure, with negative sentiments at the beginning and end, and a peak of positive sentiment in the middle.

A popular field of research in online social networks is influence maximization, which focuses on finding a subset of nodes that can start 
a chain reaction of adoptions that would maximize the propagation of influence. [19] proposed an approach to evaluate the potential 
influence of a node by combining its past activity pattern with its connections. The authors of [19] put out a unique Hurst-based Influence 
Maximisation (HBIM)model to examine the dissemination of seed nodes. For early adopter identification, the suggested technique 
performs better than other current algorithms.

OSNs, or online social networks[20], have grown significantly in popularity recently because of their applications in a variety of real-
world fields, including social awareness campaigns, recommendation systems, and marketing. The model selects a minimal number of 
seed nodes, and if H > 0.5, it only activates the inactive successor of each seed node. This process is repeated until no further activations 
are feasible. The average and predicted influence spreads of the suggested model are much higher than those of existing Influence 
Maximisation methods.

6.2 Applications of Hurst Exponent to Connect Health
Electroencephalographic (EEG) signals can be used by the authors [21] to automatically detect epileptic seizures using machine learning 
techniques. The method utilizes non-linear features, From the EEG signals, metrics like the Hurst exponent and logarithmic Higuchi 
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fractal dimension (HFD) are obtained.

The framework(see figure 4) involves segmenting the EEG data, extracting features such as the Hurst Exponent and Logarithmic HFD, 
and classifying the data using SVM and KNN classifiers with 10-fold cross-validation.

 
Figure 4. A proposed framework for detecting epileptic seizures using EEG (electroencephalogram) data (c.f., [21]). 
 
The authors of [22] undertook a study to evaluate the use of head movements as non-verbal cues in assessing the 
performance of resuscitation teams during a simulated trauma scenario. They aimed to track these head movements as a 
means of understanding and improving team dynamics and communication in emergency situations. The Hurst 
exponent ( ) is used in this study to quantify the decrease in head movement complexity and the increase in attention 
on a specific task during simulated trauma resuscitation. The motion data gathered during the scenarios was used to 
compute the H values, which show how persistent the data is over time. H values ranging from 0.8 to 1 indicate 
considerable persistence (subjects primarily focusing on a particular scene) in the results, suggesting a change in the 
direction of focus after online training and TeamSTEPPS, as visualized by figures 5 and 6(c.f., [22]). 

 
Figure 5. The clustered column charts that display the   estimates of roll head motions, which involve looking up and down. The   estimates, 
calculated using the Hurst exponent algorithm, provide a measure of the persistence of data over time.  

Figure 4: A proposed framework for detecting epileptic seizures using EEG (electroencephalogram) data (c.f., [21]).

The authors of [22] undertook a study to evaluate the use of head movements as non-verbal cues in assessing the performance of 
resuscitation teams during a simulated trauma scenario. They aimed to track these head movements as a means of understanding and 
improving team dynamics and communication in emergency situations. The Hurst exponent (H) is used in this study to quantify the 
decrease in head movement complexity and the increase in attention on a specific task during simulated trauma resuscitation. The motion 
data gathered during the scenarios was used to compute the H values, which show how persistent the data is over time. H values ranging 
from 0.8 to 1 indicate considerable persistence (subjects primarily focusing on a particular scene) in the results, suggesting a change in 
the direction of focus after online training and TeamSTEPPS, as visualized by figures 5 and 6(c.f., [22]).
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Figure 5: The clustered column charts that display the H estimates of roll head motions, which involve looking up and down. The 
H estimates, calculated using the Hurst exponent algorithm, provide a measure of the persistence of data over time.

 
Figure 6. The clustered column charts that display the   estimates of yaw head motions, which represent the movement of the head when looking left 
and right.  
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Is it mathematically feasible to replace all the provided applications pf Hurst Exponent of section VI by 
   ( .  .  (  ))       ( .   ))       .  If this challenging open problem is unlocked, are the obtained results 
interpretable in real-life environments? 
Next phase research involves solving the provided open problems and using other higher order entropies with various 
selections of constraints towards a revolution information-theoretic queueing theory. 
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7. Conclusions, Open Problems and Future Work
pq,I (n),n=0,1,2,…was derived as a novel representation of HI

q's in NME format as a method of inductive inference. To illustrate the effect 
of HI

q's NME state probability pq,I (n) , n=0,1,2,…, numerical portraits were given. Additionally, it is formally demonstrated for the first 
time that there are, in fact, underlying q-dependent families of service time CDF, Fs,q,I of the GEq,I- type, that makes the NME solution of 
HI

q stochastically exact. Some of The Hurst Exponent possible roles to advance social computing and connected health are highlighted.

Some emerging sophisticated open problems are as follows:

• Open Problem One
Is it analytically possible to unlock the challenge of determining the threshold for pq,I (n)  and Fs,I (t) (c,f., (11) and (37)) respectively, 
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with respect to the involved parameters?

• Open Problem Two
A very tough open problem can be formulated as, if given both EI (S

2)  and CI s
2 (c.f., (39) and (40)) respectively. Can we find a closed 

for expression that to determine the thresholds with respect to the involved parameters? The question is still open. 

• Open Problem Three
Can we extend the undertaken analysis of this paper to the EME phase for q ∉(0.5,1)) and Lq(c.f., (9)). What will the resulting solutions 
look like?

• Open Problem Four
Is it mathematically feasible to replace all the provided applications pf Hurst Exponent of section VI by LH  (c.f.,(44))  for q ∉(0.5,1)), H 
= 1 - q. If this challenging open problem is unlocked, are the obtained results interpretable in real-life environments?

Next phase research involves solving the provided open problems and using other higher order entropies with various selections of 
constraints towards a revolution information-theoretic queueing theory.
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