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Abstract
This study explores three fundamental epidemiological models, the Susceptible-Infected (SI), Susceptible-Infected-Susceptible 
(SIS), and Susceptible-Infected-Recovered (SIR) models of the disease of corona virus and aids. These models capture various 
aspects of disease transmission and recovery within population, offering insights into the dynamics infectious diseases across 
different scenarios. This SI, SIS, and SIR models, highlighting their significance in infectious disease modelling and their impli-
cations for public health.
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1. Introduction
Much of our headway over the most recent couple of years has made it important to apply numerical strategies to genuine issues emerging 
from various fields be it Science, Money, executives and so forth. The utilization of math in tackling genuine issues has become broad, 
particularly because of the rising computational force of PCs and processing strategies. The World Health Organization (WHO) has 
named the novel coronavirus (CoV) "2019-nCoV",or "COVID-19" as the cause of the disease. There is a current pneumonia outbreak 
that started near Wuhan in December 2019 in China's Hubei Province. The COVID-19 virus is dangerous. Based on phylogenetic 
research using the entire available genome, bats are thought to be the reservoir of the COVID-19 virus, however the intermediate host 
or hosts have not yet been identified. The illness brought on by the SARSCoV-2 coronavirus is known as COVID-19. It is often spread 
through relationships and by touching. The COVID-19 vaccine is effective in preventing serious illness and death. Even after getting the 
vaccine, a person may have little or no symptoms of Covid-19. COVID-19 can infect anyone, and while most people recover without 
treatment, some can become seriously ill or die. Arzu ÇİLLİ and Kıvanç ERGEN analysis the number of infected people to present day 
for these diseases results showed that SI and SIS models, Rima Devi, Balendra Kumar Dev Choudhury work ona critical birth count 
of less than 1 between 9 and 10 days after infection indicates that the disease is under control for SIR Module [1,2]. R. Ross Analyzing 
epidemiological models to evaluate the effectiveness of bed nets as a preventive measure in malaria areas [3]. Constantinos analyse 
themodeling methods used for the surveillance and forecasting of infectious disease outbreaks [4].

The abbreviation of the AIDS is “Acquired Immune Deficiency Syndrome”, and HIV is “Human Immunodeficiency Virus”. Here in 
this disease the individual’s immune system fails to fight against the infection. The AIDS is caused by the retrovirus named as HIV. 
The individual come to know about this disease by undergoing a test i.e., “ELISA” “Enzyme-Linked Immunosorbent Assay” if that 
person has HIV-antibodies then he is called as HIV-Positive. P Affandi and Faisal studied A mathematical SIR model for successful 
malaria control in South Kalimantan [5]. According to reports from South Kalimantan, South Kalimantan is a province where malaria 
is prevalent due to the proximity of workplaces to the forest, such as miners and recruiters living on the edge of the forest.. Ashlynn 
R. Daughton, Nicholascontributed Develop mechanisms to enhance public health collaboration and community models to support 
positive disease detection during outbreaks [6]. Devi R & Choudhury BKD, given result as Chickenpox is a highly contagious disease 
[7]. The risk of complications depends on age and immunity. Again, Devi R & Choudhury BKD, analysedthe transmission of diseases 
in human population and their study of causes of existence is treat this as an infection. Mathematical models help predict the content of 
biological products in epidemiological studies and content that cannot be obtained directly from data [8]. Waleed M. Sweileh conclude 
that Mathematical models are becoming increasingly popular as tools for understanding the evolution of infectious diseases [9]. The use 
of mathematical models for infectious diseases seems to be the most important method. Collaborative research in mathematics with less 
developed countries is needed and should be prioritized and funded.. Wedajo AJ theresults of the mathematical analysis of the model are 
confirmed by the simulation study [10]. The mathematical analysis results of the model are confirmed by simulation studies. As a result, 
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it is concluded that the immigrant epidemic will cause disruption in the population and increase the number of diseases. It is concluded 
that the infected immigrants will contribute positively and increase the disease in the population.

1.1 Program Codefor Predicting Graphs
Python: Python is a famous significant level, broadly useful This programming language was created by Guido van Rossum in 1991 and 
was also developed by the Python Software Foundation. Programmers can express their ideas in fewer lines because the syntax is created 
primarily with readable code. Python is a programming language that allows faster and more efficient programming.The version used 
for below process is the Python version 3.8.10. The IDE used in our work is “SPYDER of version 5”.
 
1.2 Spyder
Spyder is a powerful scientific environment written in python for the analyse and discuss of the diseases which are mentioned as before. 
Spyder is friendly IDE – “Integrated Development Environment” built specially for data science. Additionally, in case there is any 
syntax error then it shows a warning sign beside the line number and mentions the error in the code there by making easy for user to 
rectify the error. 

2. Methodology
Here, we are going to discuss the three mathematical models of analysing the rate of spread of disease,
1. SI MODEL
2. SIS MODEL 
3. SIR MODEL

2.1 SI Model
The SI Model is known as “SUSCEPTIBLE INFECTED MODEL”. This is basic model used in epidemiology to understand the 
dynamics of infectious diseases.
 
Here, S stands for “SUSCEPTIBLE” and I stand for “INFECTED”. 

2.1.1 SI Model

3

SI model:

β

In this model, there is no recovery stage or removal of infection i.e., once the person gets
infected, he remains infected. This model doesn’t capture the dynamics of improvement. 

Mathematically, this model is described by using the differential equations I.e., to express the 
rate of change of individuals in each compartment with respect to time. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 =  −𝛽𝛽𝛽𝛽𝛽𝛽 →①

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 =  𝛽𝛽𝛽𝛽𝛽𝛽 →②

Where, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

: Rate of change of susceptible population over time t. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

: Rate of change of Infected population over time t.

𝛽𝛽 : Rate of Transmission from susceptible to infected.

Interpretation of equations:

The ① indicates susceptible population decrease due to increase in time as individual 
become infected. 
The ② indicates increase of infected population i.e., the more infected individuals the faster 
the spread of disease.
β: Indicates how the transmission follows, the higher β leads to faster spread, emphasizing 
the measures of prevention.
To find the number of infected people after time ‘t’.
consider, 𝛽𝛽 =  1

𝑥𝑥
Differentiate w.r.t time we get,

𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

=  
−1
𝑥𝑥2

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

Suspected Infected

In this model, there is no recovery stage or removal of infection i.e., once the person gets infected, he remains infected. This model 
doesn’t capture the dynamics of improvement. 
 
Mathematically, this model is described by using the differential equations I.e., to express the rate of change of individuals in each 
compartment with respect to time. 
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β :Rate of Transmission from susceptible to infected.
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2.2 Interpretation of Equations
The ① indicates susceptible population decrease due to increase in time as individual become infected. 
The ② indicates increase of infected population i.e., the more infected individuals the faster the spread of disease.
β: Indicates how the transmission follows, the higher β leads to faster spread, emphasizing the measures of prevention.
To find the number of infected people after time ‘t’. 
consider,  
Differentiate w.r.t time we get,

Eliminating ‘S’ from above equation we get,

By rearranging we get,

This is the infected rate after time ‘t’.
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This is the infected rate after time ‘t’.

4

w.k.t.,                 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 =  𝛽𝛽𝛽𝛽𝛽𝛽

−1
𝑥𝑥2

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

 = 𝛽𝛽SI

−1
𝑥𝑥2

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

=  𝛽𝛽S
1
𝑥𝑥

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

=  −𝑥𝑥𝛽𝛽S

Eliminating ‘S’ from above equation we get,
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

=  −𝑥𝑥𝛽𝛽

By rearranging we get,

−𝑑𝑑𝑥𝑥
𝑥𝑥𝛽𝛽

= 𝑑𝑑𝑑𝑑

�
−𝑑𝑑𝑥𝑥
𝑥𝑥𝛽𝛽

1
𝑑𝑑(𝑑𝑑)

1
𝑑𝑑0

=  � 𝑑𝑑𝑑𝑑
𝑑𝑑

0

− �
log 1

𝛽𝛽(𝑑𝑑) −  log 1
𝛽𝛽0

𝛽𝛽 � = 𝑑𝑑

− �log
1
𝛽𝛽(𝑑𝑑)

−  log
1
𝛽𝛽0
� = 𝑑𝑑𝛽𝛽

log

1
𝛽𝛽(𝑑𝑑)

1
𝛽𝛽0

=  −  𝑑𝑑𝛽𝛽

1
𝛽𝛽(𝑑𝑑)

1
𝛽𝛽0

=  𝑒𝑒−𝑑𝑑𝑡𝑡

1
𝛽𝛽(𝑑𝑑)

=  
𝑒𝑒−𝑑𝑑𝑡𝑡

𝛽𝛽0

𝛽𝛽(𝑑𝑑) =  
𝛽𝛽0
𝑒𝑒−𝑑𝑑𝑡𝑡

This is the infected rate after time ‘t’.
4

w.k.t.,                 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 =  𝛽𝛽𝛽𝛽𝛽𝛽

−1
𝑥𝑥2

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

 = 𝛽𝛽SI

−1
𝑥𝑥2

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

=  𝛽𝛽S
1
𝑥𝑥

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

=  −𝑥𝑥𝛽𝛽S

Eliminating ‘S’ from above equation we get,
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

=  −𝑥𝑥𝛽𝛽

By rearranging we get,

−𝑑𝑑𝑥𝑥
𝑥𝑥𝛽𝛽

= 𝑑𝑑𝑑𝑑

�
−𝑑𝑑𝑥𝑥
𝑥𝑥𝛽𝛽

1
𝑑𝑑(𝑑𝑑)

1
𝑑𝑑0

=  � 𝑑𝑑𝑑𝑑
𝑑𝑑

0

− �
log 1

𝛽𝛽(𝑑𝑑) −  log 1
𝛽𝛽0

𝛽𝛽 � = 𝑑𝑑

− �log
1
𝛽𝛽(𝑑𝑑)

−  log
1
𝛽𝛽0
� = 𝑑𝑑𝛽𝛽

log

1
𝛽𝛽(𝑑𝑑)

1
𝛽𝛽0

=  −  𝑑𝑑𝛽𝛽

1
𝛽𝛽(𝑑𝑑)

1
𝛽𝛽0

=  𝑒𝑒−𝑑𝑑𝑡𝑡

1
𝛽𝛽(𝑑𝑑)

=  
𝑒𝑒−𝑑𝑑𝑡𝑡

𝛽𝛽0

𝛽𝛽(𝑑𝑑) =  
𝛽𝛽0
𝑒𝑒−𝑑𝑑𝑡𝑡

This is the infected rate after time ‘t’.



Petro Chem Indus Intern, 2024 Volume 7 | Issue 4 | 4

2.2.1 Python Code for SI Model with Graph
#Code from the IDE Spyder of 3.8 version Python 
“import matplotlib.pyplot as pt 
n = 1000000;
S = N - 1;
I = 1; 
beta = 0.6 ;
suscept = [ ] #suspectible compartment;
infect = [ ] # infected compartment;
probab = [ ] # probability of infection at time t ;
def infection (S, I, n):
 t = 0 
 while (t < 100): 
 S = S - beta * ((S * I / n));
 I = I + beta * ((S * I) / n); 
 p = beta * (I / n);
 suscept.Append(S); 
 infect.append(I); 
 probab.append(p) ; 
 t = t + 1 ; 
infection(S, I, n); 
figure = pt.figure();
pt.suptitle('SImodel'); ax1=figure.add_subplot(211);
infect_line=pt.plot(infect,label='I(t)'); suscept_line = pt.plot(suscept,label='S(t)') 
pt.legend(handles=[infect_line,suscept_line]) ;
pt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) # use scientific notation 
ax2 = figure.add_subplot(212) ;
probab_line=pt.plot(probab,label='p(t)') ;
pt.legend(handles=probab_line) ;
# manipulate ;
vals = ax2.get_yticks() ax1.set_yticks(vals) ;
ax2.set_yticklabels(['{:3.2f}%'.format(x*100) for x in vals]) pt.xlabel('T') ;
pt.ylabel('p') ;
pt.show()’’

• The plot (on the top) denotes the number of susceptible individuals (S) and infectious individuals (I) over time (t).
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suscept = [ ] #suspectible compartment;
infect = [ ] # infected compartment;
probab = [ ] # probability of infection at time t ;
def infection (S, I, n):

t = 0     
while (t < 100): 

S = S - beta * ((S * I / 
n));

I = I + beta * ((S * I) / 
n);

p = beta * (I / n);
suscept.Append(S);
infect.append(I);         
probab.append(p) ;
t = t + 1 ;

infection(S, I, n);
figure = pt.figure();
pt.suptitle('SImodel');
ax1=figure.add_subplot(211);
infect_line=pt.plot(infect,label='I(t)');
suscept_line = 
pt.plot(suscept,label='S(t)')
pt.legend(handles=[infect_line,suscept_line]) ;
pt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) # use scientific notation 
ax2 = figure.add_subplot(212) ;
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 Th
e plot (on 
the top)
denotes the 
number of 

• Firstly, the number of susceptible individuals is rated high (nearer to the total size of the population, N), and the number of infectious 
individuals is rare (countable individual).
• As the time, the number of susceptible individuals diminishes while the number of infectious individuals gets more. This is why 
Because of the spread of disease from infected to suspected individual.
• Gradually, the number of susceptible individuals goes down to a low level, while the number of infectious individuals reaches a highest 
position and then begins to get vanished. This indicates that a sizeable portion of the population has been infected, and the epidemic 
starts to decline.
• The plot (to the bottom) shows the probability of infection (p) over time (t).
• Firstly, when the number of infectious individuals is less, the probability of infection is also less.
• As the number of infectious individuals goes higher, the probability of infection also gets higher. This is due to the spread going 
extremely fast from infected individuals, leading to a higher possibility of susceptible individuals getting infected.
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• The peak of the probability of infection depends on the epidemic where the disease spread rapidly.
• After reaching its peak, the probability of infection gradually goes down as the epidemic subsides and fewer individuals remain 
susceptible.

2.3 SIS Model
The SIS Model abbreviation is “SUSCEPTIBLE INFECTED SUSCEPTIBLE MODEL”. This model also used in epidemiology to 
understand the dynamics of infectious diseases.
 Here, S stands for “SUSCEPTIBLE” and I stand for “INFECTED” and again S stands for “SUSCEPTIBLE”. 
 
If a person in his real gets caused by a viral disease and gets cured then again, he has possibility of getting affected by same disease in 
his future. In this SIS model we will study about the person getting infected again and again. 

2.4 SIS Model

6

susceptible individuals (S) and infectious individuals (I) over time (t).
 Firstly, the number of susceptible individuals is rated high (nearer to the total size of 

the population, N), and the number of infectious individuals is rare (countable
individual).

 As the time, the number of susceptible individuals diminishes while the number of 
infectious individuals gets more. This is why Because of the spread of disease from 
infected to suspected individual.

 Gradually, the number of susceptible individuals goes down to a low level, while the 
number of infectious individuals reaches a highest position and then begins to get 
vanished. This indicates that a sizeable portion of the population has been infected, 
and the epidemic starts to decline.

 The plot (to the bottom) shows the probability of infection (p) over time (t).
 Firstly, when the number of infectious individuals is less, the probability of infection 

is also less.
 As the number of infectious individuals goes higher, the probability of infection also 

gets higher. This is due to the spread going extremely fast from infected individuals,
leading to a higher possibility of susceptible individuals getting infected.

 The peak of the probability of infection depends on the epidemic where the disease 
spread rapidly.

 After reaching its peak, the probability of infection gradually goes down as the 
epidemic subsides and fewer individuals remain susceptible.

SIS MODEL:

The SIS Model abbreviation is “SUSCEPTIBLE INFECTED SUSCEPTIBLE MODEL”.
This model also used in epidemiology to understand the dynamics of infectious diseases.  

Here, S stands for “SUSCEPTIBLE” and I stand for “INFECTED” and again S stands for 
“SUSCEPTIBLE”. 

If a person in his real gets caused by a viral disease and gets cured then again, he has 
possibility of getting affected by same disease in his future. In this SIS model we will study 
about the person getting infected again and again. 

SIS model:

β

Suspected
Infected

Mathematically, this model is described by using the differential equations I.e., to express the 
rate of change of individuals in each compartment with respect to time.

Where,    :Rate of change of susceptible population over time t. 
 
      : Rate of change of Infected population over time t.

β:Rate of Transmission from susceptible to infected. 
 γ: Transmission rate from infected to susceptible. 

2.5 Interpretation of Equations
The ① indicates susceptible population decrease due to increase in time as individual become infected. 
The ② indicates increase of infected population i.e., the more infected individuals the faster the spread of disease. 
Now let, S(t) + I(t) = N

Where, N: Total population of the nation 
Eliminating the S from equations we get 

 
If initially there are no people who are infected, then the people of nation would have stayed healthy. 
 
Hence, I0 → at t = 0 
            I(𝑡) → at t = t 
 
Where, I0 is initial number of infected people in society. 

 To Find the number of infected people after time ‘t’. 
consider,            
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SI model:

β

In this model, there is no recovery stage or removal of infection i.e., once the person gets
infected, he remains infected. This model doesn’t capture the dynamics of improvement. 

Mathematically, this model is described by using the differential equations I.e., to express the 
rate of change of individuals in each compartment with respect to time. 
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: Rate of change of susceptible population over time t. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

: Rate of change of Infected population over time t.

𝛽𝛽 : Rate of Transmission from susceptible to infected.

Interpretation of equations:

The ① indicates susceptible population decrease due to increase in time as individual 
become infected. 
The ② indicates increase of infected population i.e., the more infected individuals the faster 
the spread of disease.
β: Indicates how the transmission follows, the higher β leads to faster spread, emphasizing 
the measures of prevention.
To find the number of infected people after time ‘t’.
consider, 𝛽𝛽 =  1

𝑥𝑥
Differentiate w.r.t time we get,

𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

=  
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Suspected Infected
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γ

Mathematically, this model is described by using the differential equations I.e., to express the 
rate of change of individuals in each compartment with respect to time.
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Differentiate w.r.t time we get,

Now by arranging and integrating we get,

This is equation for the number of infected rates after the time ‘t’

• At the very first stage, there are small number of infected individuals (initial_I) and a vast number of suscepted individuals (initial_S). 
This is stage before fully spread.
• As the progress, the number of infected individuals (I(t)) increases initial stage. This is due to infected individuals spread the disease 
to suscepted individuals
• Further, the number of suscepted individuals (S(t)) goes down as soon as individuals become infected.
• The rate of increase in the infected population is governed by the transmission rate (β) and the proportion of suscepted and infected 
individuals, while the decrease in the infected population is governed by the recovery rate (γ).
• The suscepted population continues to decline until it reaches a certain level, while the infected population stabilizes around an 
equilibrium point.
• Gradually, the epidemic reaches a dynamic equilibrium where the number of infectious individuals stabilizes. This equilibrium 
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γ

Mathematically, this model is described by using the differential equations I.e., to express the 
rate of change of individuals in each compartment with respect to time.

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −𝛽𝛽𝛽𝛽𝛽𝛽 +  𝛾𝛾𝛽𝛽 →①
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝛽𝛽𝛽𝛽𝛽𝛽 −  𝛾𝛾𝛽𝛽     →②

Where, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

:Rate of change of susceptible population over time t. 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

: Rate of change of Infected population over time t.
β: Rate of Transmission from susceptible to infected. 

 𝛾𝛾: Transmission rate from infected to susceptible. 
Interpretation of equations:

The ① indicates susceptible population decrease due to increase in time as individual 
become infected. 
The ② indicates increase of infected population i.e., the more infected individuals the faster 
the spread of disease. 
Now let, S(t) + I(t) = N

Where, N: Total population of the nation 
Eliminating the S from equations we get 

𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

= (𝛽𝛽𝛽𝛽 −  𝛾𝛾)𝛽𝛽 −  𝛽𝛽𝛽𝛽2

If initially there are no people who are infected, then the people of nation would have stayed 
healthy. 

Hence,  I0
I
→ at t = 0 
(𝑑𝑑) → at t = t 

Where, I0 is initial number of infected people in society. 

To Find the number of infected people after time ‘t’.
consider, 𝛽𝛽 =  1

𝑥𝑥
Differentiate w.r.t time we get,

𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

=  
−1
𝑥𝑥2

 
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

w.k.t.,                                                  𝑑𝑑𝑑𝑑 
𝑑𝑑𝑑𝑑 

= (𝛽𝛽𝛽𝛽 −  𝛾𝛾)𝛽𝛽 −  𝛽𝛽𝛽𝛽2

−1
𝑥𝑥2

 𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

= (𝛽𝛽𝛽𝛽 −  𝛾𝛾)1/𝑥𝑥 −  𝛽𝛽(1)/x^2

8

−  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝛽𝛽𝛽𝛽 −  𝛾𝛾)𝑑𝑑 −  𝛽𝛽
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Now by arranging and integrating we get,
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This is equation for the number of infected rates after the time ‘t’
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represents a balance between the rate of new infections and the rate of recoveries.
• At equilibrium state, the suscepted population also stabilizes at a lower level compared to its initial value.
• In the SIS model, individuals can become infected multiple times since there is no immunity conferred after recovery. This leads to 
oscillations in the infectious population around the equilibrium point.
• These oscillations represent the ongoing transmission of the disease within the population, where individuals alternate between being 
suscepted and infected multiple times.
• The steady state reached by the system indicates a stability present in between suscepted and infected individuals. This suggests that 
the disease persists within the population without being eradicated completely.

2.5.1 SIR Model
The SIR Model abbreviation is “SUSCEPTIBLE INFECTED RECOVERED MODEL”. This model also used in epidemiology to 
understand the dynamics of infectious diseases.
Here, S stands for “SUSCEPTIBLE” and I stand for “INFECTED” and R stand for “RECOVERED”. 
The “SIR” model is a mathematical model used to understand the spread of infectious diseases within a population. It divides the 
population into three parts: Susceptible (S), Infected (I), and Recovered (R).
 

In this model, there is recovery stage or removal of infection, and this model captures the dynamics of improvement.
Mathematically, this model is decent using the differential equations i.e., to express the rate of change of individuals in each compartment 
with respect to time.

Where,     :Rate of change of susceptible population over time t.       
    : Rate of change of Infected population over time t.
    : Rate of change of Recovered population over time t.
β :Transmission rate from susceptible to infected. 
γ : Transmission rate from infected to recovered. 

2.6 Interpretation of Equations
• The ① denotes that the number of Susceptible individual’s decrease over the time as they encounter infected person and become 
infected.
• The ② denotes that the first term (βSI) is rate at which susceptible individuals become infected. This rate is presented by the transmission 
rate (β) and the number of susceptible (S) and infected individuals(I).
• The second term (γI) denotes the rate at which infected individuals recover. This rate is influenced by the recovered rate (γ).
• The ③ denotes the number of recovered individuals increases over time as infected individuals recover from the disease. 

Now let, S(t)+I(t)+R(t) =N
Where N = Total population of the nation.
Eliminating the S from equations we get,
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In this model, there is recovery stage or removal of infection, and this model captures the 
dynamics of improvement.  
Mathematically, this model is decent using the differential equations i.e., to express the rate 
of change of individuals in each compartment with respect to time.

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −𝛽𝛽𝛽𝛽𝛽𝛽 →①
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝛽𝛽𝛽𝛽𝛽𝛽 −  𝛾𝛾𝛽𝛽  →②
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝛾𝛾𝛽𝛽          →③ 

Where, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

:Rate of change of susceptible population over time t. 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

: Rate of change of Infected population over time t.

               𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 : Rate of change of Recovered population over time t.
β : Transmission rate from susceptible to infected. 

 𝛾𝛾 : Transmission rate from infected to recovered.

Interpretation of equations
 The ① denotes that the number of Susceptible individual’s decrease over the time as they 

encounter infected person and become infected.

:

 The ② denotes that the first term (βSI) is rate at which susceptible individuals become 
infected. This rate is presented by the transmission rate (β) and the number of susceptible (S) 
and infected individuals(I).
The second term (γI) denotes the rate at which infected individuals recover. This rate is 
influenced by the recovered rate (γ).  

 The ③ denotes the number of recovered individuals increases over time as infected 
individuals recover from the disease.                     

Now let, S(t)+I(t)+R(t) =N
Where N = Total population of the nation.
Eliminating the S from equations we get,

𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

=  𝛽𝛽( 𝛽𝛽𝛽𝛽 –  𝛽𝛽𝛽𝛽 −   𝛾𝛾) –  𝛽𝛽𝛽𝛽2

Hence,  𝛽𝛽0→ at t = 0 
I(𝑑𝑑) → at t = t

Where, I0 is initial number of infected people in society. 
To find the number of infected people after time ‘t’.
Solution:

−𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾)𝑑𝑑 − 𝛽𝛽

Let us consider,𝛽𝛽 =  1
𝑥𝑥

𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

=  
−1
𝑑𝑑2

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

−1
𝑑𝑑2

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾)
𝛽𝛽
𝑑𝑑
−  

𝛽𝛽
𝑑𝑑2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝛽𝛽 − ( 𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾)𝑑𝑑
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In this model, there is recovery stage or removal of infection, and this model captures the 
dynamics of improvement.  
Mathematically, this model is decent using the differential equations i.e., to express the rate 
of change of individuals in each compartment with respect to time.
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Where, 𝑑𝑑𝑑𝑑
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:Rate of change of susceptible population over time t. 
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: Rate of change of Infected population over time t.

               𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 : Rate of change of Recovered population over time t.
β : Transmission rate from susceptible to infected. 

 𝛾𝛾 : Transmission rate from infected to recovered.

Interpretation of equations
 The ① denotes that the number of Susceptible individual’s decrease over the time as they 

encounter infected person and become infected.

:

 The ② denotes that the first term (βSI) is rate at which susceptible individuals become 
infected. This rate is presented by the transmission rate (β) and the number of susceptible (S) 
and infected individuals(I).
The second term (γI) denotes the rate at which infected individuals recover. This rate is 

influenced by the recovered rate (γ).  
 The ③ denotes the number of recovered individuals increases over time as infected 

individuals recover from the disease.                     

Now let, S(t)+I(t)+R(t) =N
Where N = Total population of the nation.
Eliminating the S from equations we get,

𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

=  𝛽𝛽( 𝛽𝛽𝛽𝛽 –  𝛽𝛽𝛽𝛽 −   𝛾𝛾) –  𝛽𝛽𝛽𝛽2

Hence,  𝛽𝛽0→ at t = 0 
I(𝑑𝑑) → at t = t

Where, I0 is initial number of infected people in society. 
To find the number of infected people after time ‘t’.
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Hence, I0→ at t = 0 
 I(𝑡) → at t = t
Where, I0 is initial number of infected people in society. 
To find the number of infected people after time ‘t’.

Solution: Let us consider, 

This is the required rate of infected individuals.

2.6.1 Python Code for SIR Model with Graph
#Code from the Spyder of 3.8 version of python 
“import matplotlib.pylab as pt N = 1000000; 
S = N – 1; 
I = 1; 
R = 0; 
beta = 0.5; 
mu = 0.1; 
suspect = []; 
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Interpretation of equations
 The ① denotes that the number of Susceptible individual’s decrease over the time as they 

encounter infected person and become infected.
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 The ② denotes that the first term (βSI) is rate at which susceptible individuals become 
infected. This rate is presented by the transmission rate (β) and the number of susceptible (S) 
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 The ③ denotes the number of recovered individuals increases over time as infected 
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 The ① denotes that the number of Susceptible individual’s decrease over the time as they 

encounter infected person and become infected.
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 The ② denotes that the first term (βSI) is rate at which susceptible individuals become 
infected. This rate is presented by the transmission rate (β) and the number of susceptible (S) 
and infected individuals(I).
The second term (γI) denotes the rate at which infected individuals recover. This rate is 

influenced by the recovered rate (γ).  
 The ③ denotes the number of recovered individuals increases over time as infected 
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�
𝑑𝑑𝑑𝑑

𝛽𝛽 − ( 𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾)𝑑𝑑

1
𝐼𝐼(𝑡𝑡)

1
𝐼𝐼0

=  � 𝑑𝑑𝑑𝑑
𝑡𝑡

0

log 𝛽𝛽 − ( 𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾)𝑑𝑑 
  1
𝐼𝐼(𝑑𝑑)
1
𝐼𝐼0

=  −𝑑𝑑(  𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾)

� log𝛽𝛽 − ( 𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾) 
1
𝐼𝐼(𝑑𝑑)

− log𝛽𝛽 − ( 𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾) 
1
𝐼𝐼0

 � = −𝑑𝑑( 𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾)

log
𝛽𝛽 − ( 𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾) 1

𝐼𝐼(𝑑𝑑)

 𝛽𝛽 − ( 𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾) 1
𝐼𝐼0

=  −𝑑𝑑 ( 𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾)

𝛽𝛽 − ( 𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾) 1
𝐼𝐼(𝑑𝑑)

𝛽𝛽 − ( 𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾) 1
𝐼𝐼0

=  𝑒𝑒  −𝑡𝑡( 𝛽𝛽𝛽𝛽−  𝛽𝛽𝛽𝛽− 𝛾𝛾)

1
𝐼𝐼(𝑑𝑑)

=  
𝛽𝛽 − ( 𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾) 1

𝐼𝐼0
 𝑒𝑒−𝑡𝑡( 𝛽𝛽𝛽𝛽−  𝛽𝛽𝛽𝛽− 𝛾𝛾)

𝛽𝛽 − ( 𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾)  

𝐼𝐼(𝑑𝑑) =  
𝛽𝛽 − ( 𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾)

𝛽𝛽 − ( 𝛽𝛽𝛽𝛽 −   𝛽𝛽𝛽𝛽 −  𝛾𝛾) 1
𝐼𝐼0

 𝑒𝑒−𝑡𝑡( 𝛽𝛽𝛽𝛽−  𝛽𝛽𝛽𝛽− 𝛾𝛾)

This is the required rate of infected individuals.

Python code for SIR model with graph:
#Code from the Spyder of 3.8 version of python
“import matplotlib.pylab as pt N = 1000000;
S = N – 1;
I = 1;
R = 0;
beta = 0.5;
mu = 0.1;
suspect = [];
infect = [];
recover = [];
def infection(S, I, R, N):;
for t in range (1, 100):;        

dS = S –(beta * S * I)/N ;
dI = I + ((beta * S * I)/R) – R;
dR = mu * i ;
S=S+dS ;
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I=I+dI ;
R=R+Dr;
suscept.append(S);
infect.append(I);
recover.append(R);

infection (S, I, R, N);
pt.plot(infect,label=’I(t)’);
pt.plot(suscept,label=’S(t)’);
pt.plot(recover,label=’R(t)’);
pt.legend();
pt.xlabel(‘t’);
pt.ylabel(‘population’);
pt.title(‘SIR MODEL’)’’
pt.show()

 The total population `N` is set at 1,000,000. 
 Initial values are set for the number of infected (`I = 1`) and recovered (`R = 0`) individuals. 

The number of suscepted individuals `S` is calculated as the total population minus the 
number of infectious and recovered individuals. 

 𝛽𝛽 represents the transmission rate, determining how easily the infection spreads from infected 
to suscepted individuals.

 𝛾𝛾 represents the recovered rate, indicating the rate at which infected individuals recover and 
become immune. 

 The `infection` function simulates the spread of the infection over time using Euler’s method 
for numerical integration. It iterates over a range of time steps (from 1 to 100) and calculates 
the changes in the number of suscepted, infected, and recovered individuals based on the SIR 
model equations. 

 Within each iteration, the changes (`dS`, `dI`, and `dR`) are calculated using the differential 
equations of the SIR model. Then, the suscepted (`S`), infected (`I`), and recovered (`R`) 
populations are updated accordingly. - The values of `S`, `I`, and `R` at each time step are 
appended to their respective lists (`suspect`, `infect`, `recover`). 

 The number of infectious individuals (`I(t)`), susceptible individuals (`S(t)`) and recovered 
individuals (`R(t)`) are plotted against time (`T`). 

 The legend indicates which curve corresponds to each population category. 
 Axes labels and a title are added to the plot to provide context. 

In conclusion, the Susceptible-Infected (SI), Susceptible-Infected Susceptible (SIS), 
and Susceptible-Infected-recovered (SIR) models represent indispensable tools in 
understanding the dynamics of infectious disease such as HIV and COVID-19. These models 

Conclusion:

infect = []; 
recover = []; 
def infection(S, I, R, N):;
for t in range (1, 100):;
dS = S –(beta * S * I)/N ; 
dI = I + ((beta * S * I)/R) – R; 
dR = mu * i ;
S=S+dS ;
I=I+dI ;
R=R+Dr; 
suscept.append(S); 
infect.append(I); 
recover.append(R);
infection (S, I, R, N); 
pt.plot(infect,label=’I(t)’); 
pt.plot(suscept,label=’S(t)’); 
pt.plot(recover,label=’R(t)’); 
pt.legend(); 
pt.xlabel(‘t’); 
pt.ylabel(‘population’); 
pt.title(‘SIR MODEL’)’’
pt.show() 

• The total population `N` is set at 1,000,000. 
• Initial values are set for the number of infected (`I = 1`) and recovered (`R = 0`) individuals. The number of suscepted individuals `S` 
is calculated as the total population minus the number of infectious and recovered individuals. 
• 𝛽 represents the transmission rate, determining how easily the infection spreads from infected to suscepted individuals. 
• 𝛾 represents the recovered rate, indicating the rate at which infected individuals recover and become immune. 
• The `infection` function simulates the spread of the infection over time using Euler’s method for numerical integration. It iterates over 
a range of time steps (from 1 to 100) and calculates the changes in the number of suscepted, infected, and recovered individuals based 
on the SIR model equations. 
• Within each iteration, the changes (`dS`, `dI`, and `dR`) are calculated using the differential equations of the SIR model. Then, the 
suscepted (`S`), infected (`I`), and recovered (`R`) populations are updated accordingly. - The values of `S`, `I`, and `R` at each time step 
are appended to their respective lists (`suspect`, `infect`, `recover`). 
• The number of infectious individuals (`I(t)`), susceptible individuals (`S(t)`) and recovered individuals (`R(t)`) are plotted against time 
(`T`). 
• The legend indicates which curve corresponds to each population category. 
• Axes labels and a title are added to the plot to provide context. 

3. Conclusion
In conclusion, the Susceptible-Infected (SI), Susceptible-Infected Susceptible (SIS), and Susceptible-Infected-recovered (SIR) models 
represent indispensable tools in understanding the dynamics of infectious disease such as HIV and COVID-19. These models have 
provided valuable insights into the transmission dynamics, endemic equilibrium, and the impact of invention strategies on diseases. 
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