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Abstract
SAIR model of growth of an epidemic is extended to a system of many interacting regions. Interactions are described by ex-
change of populations between various regions. Differences caused by the exchange of susceptible population, in addition to 
infected individuals are noted. It is shown that initial phase of the epidemic is governed by a linear system. Analysis of linear 
system shows that a fundamental mode gets established that governs the spatial profile of the spread of the disease.
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1. Introduction
Covid-19 pandemic has given rise to renewed interest in the 
Mathematical Mod- elling of spread of a contagious disease, 
Yang and Wang [2020], Lobato et.al. [2021], Agrawal et.al. 
[2021], Peter et.al. [2021] [1-4]. This is an old topic, dating back 
to the work of Kermack and Meckendrick [1927] who proposed 
the SIR model [5]. In this model the population Π of a region 
under study is divided in three groups, namely Susceptible (S), 
Infected (I) and Removed (R). It is pos- tulated that the disease 
spreads through a contact between a susceptible person and an 
infected individual with the probability β′dt/Π in an infinitesimal 
time in- terval dt. Thus the number of people getting infected 
in a time dt is given by β′SIdt , where S  and I  denote the 
number of susceptible and infected individuals at time t. The 
infected individuals are transferred to the Removed (R) group 
at the rate γIdt, either through recovery or death. One then sets 
up non-linear, first order, ordinary differential equations (ODE) 
describing how people go over from one group to another. These 
equations merely state the conservation of the total number of 
people in three groups. Their non-linearity makes it diffi- cult 
to analyse them theoretically and hence are generally studied 
numerically. In what follows we will set β = β′/Π which is 
equivalent to the normalization Π = 1.

This basic model has been improved by various authors 
by including addi- tional groups to account for the specific 
characteristics of a particular disease. Thus for example in the 
SEIR model, Li and Muldowney [1995], one introduces another 
group of Exposed (E) people On contacting the disease a 
susceptible individual moves to Exposed (E) group for a certain 
incubation period before moving to the Infected (I) group [6]. 
The SAIR model was introduced by Robinson and Stilianakis 
[2013] to account for Asymptomatic (A) individuals [7]. 
Suscepti- ble individuals can contact disease by a contact with 
either the Asymptomatic person or an infected one and join the 
Asymptomatic group. Asymptomatic individuals either recover 

from the infection and directly move to Removed (R) group or 
move to Infected (I) group. The Infected persons move to the 
removed group either through recovery or death. Once again one 
can set up ODE describing conservation of people in these four 
groups.

Most of the studies consider only one region, which can be a 
town,  city, state or a country. Few authors have considered the 
spatial and temporal de- velopment of the epidemic which is the 
subject of this paper. Thus e.g. Noble [1974], added diffusion 
terms to the balance equations for both Susceptible and Infected 
persons of basic SIR model [8]. This converts these two equations 
to time-dependent partial differential equations (PDE). Recently 
Besse and Faye [2021] used diffusion equation to account for 
migration of (only) infected indi- viduals on connected graphs, 
a system of cities connected by a transportation network [9]. 
This converts the infected (I) population equation for each node 
(city) to a non-linear PDE, coupling the neighbouring parts of 
the transportation net- work The equations for Susceptible (S) 
and Removed (R) groups remain the non-linear ODE. A much 
simpler approach was followed by Zakary, Richik and Elmouki 
[2017] who considered a discrete time evolution of Multi-
region SIR model, allowing for the migration of only infected 
individuals [10-11]. We follow this approach but over continuous 
time, using classical mathematical physics meth- ods. Further 
we will examine the consequences of allowing movement of all, 
the Susceptible, Asymptomatic carriers and Infected people to 
different regions, i.e. with SAIR model.

In the next section we first briefly recall the basic SAIR model 
and then set out its generalization to multi-region case. All 
individuals are assigned a home region and the population of the 
regions is divided in S, A, I and R groups. Interactions between 
different regions is described in terms of a ”population exchange 
matrix”, that accounts for the people of one home region that 
are present in another region.  We write down the equations of 
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evolution of S, A, I and R groups in each region for model (a) that 
allows for migration of S, A and I persons. Thus a Susceptible 
individual can catch infection in his home region by a contact 
with an individual belonging to A and I groups of all regions 
that are present in his home region. In addition he can also be 
infected in some other region if he happens to be present in that 
region. We also consider a model (b) when only A and I groups 
migrate while Susceptible are confined to home region. They 
catch infection only in their home region by contact with A and 
I individuals  belonging to  any  region.  In  either  model  we 
obtain a set of 2N coupled. non-linear equations for the S and A 
populations of N regions. Remaining 2N equations governing the 
populations of I and R groups of N regions are linear equations, 
each region is also decoupled from others. Then in section 3 we 
observe that in the initial stages of the epidemic the Infected and 
Asymptomatic (A) populations of all  regions  are  much  smaller  
than the Susceptible (S) populations. This allows us to obtain 
a linearized model involving ”population exchange matrix”. 
We note a central role played by the eigenvalue spectrum of 
this matrix on the future growth of the epidemic. We obtain 
the modes of this linearized model and show that a dominant 

fundamental mode exists with all non-negative elements.  This 
fundamental mode grows much more rapidly than other modes. 
This concept of Fundamental Mode is borrowed from Reactor 
Physics describing the growth of neutron population in a 
nuclear reactor. We then set up the development of the solution 
of non-linear equations by a perturbation series expansion. In 
section 4, we illustrate our theoretical conclusions by numerical 
computations.  We consider a system of just two regions when 
all migration from one region is to the only other region. This 
results in a particularly simple form of equations that can be 
easily solved. It is seen that model predicts all the features of the 
phenomenon, in quantitative terms, which one feels intuitively. 
Lastly in section 5 we state our conclusions.

2. Basic Equations
As mentioned in the Introduction, the SAIR model divides the 
population of a region i in four groups, namely, Susceptible (S), 
Asymptomatic (A), Infected
(I) and Removed (R). Let these symbols also denote the number 
of individuals in the region. One can easily write down the 
equations governing the time evolution of these four groups as

Here  βA, βI   denote  the  rate  at  which  an  Asymptomatic  
or  Infected  individ- ual causes infection in a Susceptible 
person. γA denotes the rate at which an asymptomatic person 
recovers from the disease and moves directly to the re- moved 
group while α measures the rate at which asymptomatic persons 
move to infected group after showing symptoms of the disease. 

γI  measure the rate of removal of infected persons by recovery 
(fraction µ) and death with frac- tion (1 − µ). For simplicity we 
will consider the simplified SAIR model when βA  = βI  = β  and  
γA  = γI  = γ  though  this  assumption  can  be  relaxed  without 
any additional difficulties. Eq. (1) then reduce to

We observe that first two equations are non-linear and coupled 
while the re- maining three are linear and are essentially driven 
by a “source” αA. We now describe the extension of Eq. (2) to 
multi-region case.

2.1 Model (a) Movement of Susceptible, Asymptomatic and 
Infected Groups
Let us now consider a collection of N regions. Let us assume 
that a fraction ξi,j of the population of the region j is visiting the 
region i at any given time. We will assume that this fraction is 

time-independent. For simplicity we will also assume that same 
fraction is applicable to susceptible, asymptomatic and infected 
groups, though this assumption can be easily relaxed. We also 
denote                                Let Si, Ai, Ii and Ri denote the susceptible, 
asymptomatic, infected and removed populations in the i-th 
region, i = 1, 2,..........N. Let us also for the moment assume that 
the people who show symptoms of the disease i.e. the infected 
individuals, isolate themselves and avoid further contacts. Then 
the time evolution of the Si is governed by the equation

model (b) when only A and I groups migrate while Susceptibles are confined to
home region. They catch infection only in their home region by contact with
A and I individuals belonging to any region. In either model we obtain a set
of 2N coupled. non-linear equations for the S and A populations of N regions.
Remaining 2N equations governing the populations of I and R groups of N
regions are linear equations, each region is also decoupled from others. Then
in section 3 we observe that in the initial stages of the epidemic the Infected
(I) and Asymptomatic (A) populations of all regions are much smaller than
the Susceptible (S) populations. This allows us to obtain a linearised model
involving ”population exchange matrix”. We note a central role played by the
eigenvalue spectrum of this matrix on the future growth of the epidemic. We
obtain the modes of this linearized model and show that a dominant fundamental
mode exists with all non-negative elements. This fundamental mode grows
much more rapidly than other modes. This concept of Fundamental Mode is
borrowed from Reactor Physics describing the growth of neutron population in
a nuclear reactor. We then set up the development of the solution of non-linear
equations by a perturbation series expansion. In section 4, we illustrate our
theoretical conclusions by numerical computations. We consider a system of
just two regions when all migration from one region is to the only other region.
This results in a particularly simple form of equations that can be easily solved.
It is seen that model predicts all the features of the phenomenon, in quantitative
terms, which one feels intuitively. Lastly in section 5 we state our conclusions.

2 Basic Equations

As mentioned in the Introduction, the SAIR model divides the population of
a region i in four groups, namely, Susceptible (S), Asymptomatic (A), Infected
(I) and Removed (R). Let these symbols also denote the number of individuals
in the region. One can easily write down the equations governing the time
evolution of these four groups as

dS

dt
= −[βAA+ βII]S

dA

dt
= [βAA+ βII]S − γAA− αA

dI

dt
= αA− γII;

dR

dt
= γAA+ γII

dD

dt
= γI(1− µ)I (1)

Here βA, βI denote the rate at which an Asymptomatic or Infected individ-
ual causes infection in a Susceptible person. γA denotes the rate at which an
asymptomatic person recovers from the disease and moves directly to the re-
moved group while α measures the rate at which asymptomatic persons move
to infected group after showing symptoms of the disease. γI measure the rate
of removal of infected persons by recovery (fraction µ) and death with frac-
tion (1 − µ). For simplicity we will consider the simplified SAIR model when
βA = βI = β and γA = γI = γ though this assumption can be relaxed without
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any additional difficulties. Eq. (1) then reduce to

dS

dt
= −β[A+ I]S;

dA

dt
= β[A+ I]S − γA− αA

dI

dt
= αA− γI;

dR

dt
= γ[A+ I]

dD

dt
= γ(1− µ)I (2)

We observe that first two equations are non-linear and coupled while the re-
maining three are linear and are essentially driven by a “source” αA. We now
describe the extension of Eq. (2) to multi-region case.

2.1 Model (a) Movement of Susceptible, Asymptomatic
and Infected groups

Let us now consider a collection of N regions. Let us assume that a fraction
ξi,j of the population of the region j is visiting the region i at any given time.
We will assume that this fraction is time-independent. For simplicity we will
also assume that same fraction is applicable to susceptible, asymptomatic and
infected groups, though this assumption can be easily relaxed. We also denote
ξi =

∑N
j=1,j ̸=i ξj,i. Let Si, Ai, Ii and Ri denote the susceptible, asymptomatic,

infected and removed populations in the i-th region, i = 1, 2, .......N . Let us also
for the moment assume that the people who show symptoms of the disease i.e.
the infected individuals, isolate themselves and avoid further contacts. Then
the time evolution of the Si is governed by the equation

dSi

dt
= −(1− ξi)

[
βi,i(1− ξi)Ai +

N∑
j=1,j ̸=i

ξi,jβi,jAj

]
Si

−
( N∑

j=1,j ̸=i

ξj,i[βi,j(1− ξj)Aj +
N∑

k=1,k ̸=j

ξj,kβi,kAk] Si

)
(3)

Eq. (3) states that the rate of change of susceptible population in the region
i consists of two parts. A fraction (1 − ξi)Si catches infection locally from the
asymptomatic people of the same region whose number is (1 − ξi)Ai and rate
βi,i. Thus this rate is (1 − ξi)

2βi,iAiSi. Another set of susceptible is affected
by the fraction ξi,j of asymptomatic people of region j who were visiting the
region i, and that totals to βi,jξi,jAj(1−ξi)Si. The second term accounts for the
fraction ξj,i of susceptible of region i contacting infection in some other region j,
from the asymptomatic carriers of that region (rate βi,jξj,iAj(1− ξj)Si) as well
as from the asymptomatic individuals visiting region j, including those from
region i. We Separate the contribution from region i, set ζ2i =

∑N
j=1,j ̸=i ξ

2
j,i and

define ξk,iηi,k =
∑N

j=1,j ̸=i,j ̸=k ξj,iξj,k. With this notation we can write Eq. (3)
as

dSi

dt
= −

[
βi,i[(1− ξi)

2 + ζ2i ]Ai
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Eq. (3) states that the rate of change of susceptible population 
in the region i consists of two parts. A fraction (1 − ξi)Si catches 
infection locally from the asymptomatic people of the same 
region whose number is (1 − ξi)Ai and rate βi,i. Thus this rate 
is (1 − ξi)

2βi,iAiSi. Another set of susceptible is affected by the 
fraction ξi,j of asymptomatic people of region j who were visiting 
the region i, and that totals to βi,jξi,jAj(1−ξi)Si. The second term 

accounts for the fraction ξj,i of susceptible of region i contacting 
infection in some other region j, from the asymptomatic 
carriers of that region (rate βi,jξj,iAj(1−ξj)Si) as well as from the 
asymptomatic individuals visiting region j, including those from 
region i. We Separate the contribution from region i, set ζ2

i = ΣN 
j=1,j≠i ξ

2
j,i and define ξk,iηi,k = ΣN

j=1,j≠i,j≠k ξj,iξj,k. With this notation we 
can write Eq. (3) as

any additional difficulties. Eq. (1) then reduce to

dS

dt
= −β[A+ I]S;

dA

dt
= β[A+ I]S − γA− αA

dI

dt
= αA− γI;

dR

dt
= γ[A+ I]

dD

dt
= γ(1− µ)I (2)

We observe that first two equations are non-linear and coupled while the re-
maining three are linear and are essentially driven by a “source” αA. We now
describe the extension of Eq. (2) to multi-region case.
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N∑
j=1,j ̸=i

ξi,jβi,jAj

]
Si

−
( N∑

j=1,j ̸=i

ξj,i[βi,j(1− ξj)Aj +

N∑
k=1,k ̸=j

ξj,kβi,kAk] Si

)
(3)
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∑N
j=1,j ̸=i ξ

2
j,i and
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j=1,j ̸=i,j ̸=k ξj,iξj,k. With this notation we can write Eq. (3)
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dSi

dt
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[
βi,i[(1− ξi)

2 + ζ2i ]Ai

4
+

N∑
j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jAj

]
Si (4)

This is an extension of a slightly modified form of SAIR model. A straight
forward extension of SAIR model of Eq. (2) wherein asymptomatic carriers and
infected individuals both come in contact of susceptible population can also be
worked out and is given below. As we will see there is no material difference
between these two versions of generalised SAIR models.

The growth of Asymptomatic people Ai of region i is given by

dAi

dt
=

[
βi,i[(1− ξi)

2 + ζ2i ]Ai

+
N∑

j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jAj

]
Si − (γi + αi)Ai (5)

It is assumed that on contacting the infection a person moves initially to the
asymptomatic group. A fraction recovers at the rate γiAi while another fraction
moves to the Infected category Ii at the rate αiAi. Hence other three equations
of the set, Eq. (2), are generalised to

dIi
dt

= αiAi − γiIi;
dRi

dt
= γi[Ai + Ii]

dDi

dt
= γi(1− µi)Ii (6)

These are three linear equations for the region i, de-coupled from other regions
and driven by a source term αiAi.

It is seen that Eqs. (4) and (5) are a set of 2N coupled, non-linear equations
and one cannot treat region i in isolation. It is not very hard to numerically
solve Eqs. (4), (5) and (6) if the number of regions N is not too large. Fractions
ξi,j depend upon the geographical boundaries of the regions i, j and the number
of people of region j that regularly visit region i for work, study and other
purposes. This data can be inferred from normal monitoring of daily commute
of people.

A straight forward generalization of Eq.(2) is as follows. Define Mi = Ai +
Ii, i = 1, 1, ...N . Using same arguments as before we arrive at the following
equations in place of Eqs. (4), (5) and (6)

dSi

dt
= −

[
βi,i[(1− ξi)

2 + ζ2i ]Mi

+

N∑
j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jMj

]
Si (7)

dMi

dt
=

[
βi,i[(1− ξi)

2 + ζ2i ]Mi

+

N∑
j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jMj

]
Si − γiMi (8)

5
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Remarks made for Eqs. (4), (5) and (6) are also applicable to Eqs. (7), (8)
and (9). Eqs. (7) and (8) are a set of 2N coupled set of non-linear, first order
equations while Eq. (9), a set of three linear first order ordinary differential
equations determining Ii, Ri and Di for the region i, isolated from other regions.
Since the coupling of different regions is through Eqs. (7) and (8), we will
concentrate only on these two equations. We also note that the treatment of
Eqs. (4) and (5) is practically the same. It merely needs a redefinition of the
parameters βi, γi.

2.2 Model (b) Movements of only Asymptomatic and In-
fected groups

Many authors study the effect of movement of infected groups (Asymptomatic
and Symptomatic) only. The susceptible population remains confined to their
home region. With the notation introduced earlier this model leads to the
following differential equations in place of Eqs. (7) and (8).
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Eq. (9) remains unchanged and is written here for completeness
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= αiMi − (γi + αi)Ii;
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dt
= γiMi

dDi

dt
= γi(1− µi)Ii (12)

For completeness let us also write down the solutions of Eq. (12). Thus we have

Ii(t) = αi

∫ t

0

Mi(t
′)e−(αi+γi)(t−t′)dt′ (13)

Ri(t) = γi

∫ t

0

Mi(t
′)dt′ (14)

and

Di(t) = αiγi(1− µi)

∫ t

0

Mi(t
′)e−(αi+γi)(t−t′)dt′ (15)

Eqs. (12), (13), (14) and (15) are applicable to both models (a) and (b). We
thus have to study Eqs. (7) and (8) (or equivalently Eqs. (10) and (11)) and
obtain Mi(t), i = 1, 2, ...N and we proceed to do that in the next section. We
may add here that although we consider Eqs. (7) and (8), most of the analysis
is also applicable to Eqs. (10) and (11). Any difference will be pointed out as
we go along.
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In the initial stages of the epidemic, the number of infected 
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while Si,0 are constants independent of time. We have introduced 
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is small in all regions. The Susceptible populations Si is close to their initial
fixed values. We can therefore assume Si = Si,0 + λsi(t) where the change si(t)
is small while Si,0 are constants independent of time. We have introduced a
perturbation parameter λ. We expand both Mi and si as power series in λ and
write

Mi =
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n=0

λnM
(n)
i (t); si =

∞∑
n=0

λns
(n)
i (t); (16)

Eqs. (7) and (8) are modified to

dsi
dt

= −
[
[(1− ξi)

2 + ζ2i ]βi,iMi

+

N∑
j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jMj

]
[Si,0 + λsi] (17)
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=

[
[(1− ξi)

2 + ζ2i ]βi,iMi

+

N∑
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{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jMj

]
[Si,0 + λsi]− γiMi (18)

Substituting the expansions, Eq. (16), in Eqs. (17) and (18) and equating the
coefficients of λn on both sides of equation we have

ds
(n)
i

dt
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2 + ζ2i ]βi,iM
(n)
i

+
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(n−1−k)
j

]
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(k)
i (19)

for n = 0, 1, 2, .... and
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j
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i
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(n−1−k)
i

+

N∑
j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jM
(n−1−k)
j

]
s
(k)
i (19)

for n = 0, 1, 2, .... and

dM
(n)
i

dt
=

[
[(1− ξi)

2 + ζ2i ]βi,iM
(n)
i

+

N∑
j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jM
(n)
j

]
Si,0 − γiM

(n)
i

7

Substituting the expansions, Eq. (16), in Eqs. (17) and (18) and equating the coefficients of λn on both sides of equation we have
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3 Linearization and Solution of Eqs. (7) and (8)
by Perturbation Expansion

In the initial stages of the epidemic, the number of infected individuals Mi(t)
is small in all regions. The Susceptible populations Si is close to their initial
fixed values. We can therefore assume Si = Si,0 + λsi(t) where the change si(t)
is small while Si,0 are constants independent of time. We have introduced a
perturbation parameter λ. We expand both Mi and si as power series in λ and
write

Mi =

∞∑
n=0

λnM
(n)
i (t); si =

∞∑
n=0

λns
(n)
i (t); (16)

Eqs. (7) and (8) are modified to

dsi
dt

= −
[
[(1− ξi)

2 + ζ2i ]βi,iMi

+

N∑
j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jMj

]
[Si,0 + λsi] (17)

dMi

dt
=

[
[(1− ξi)

2 + ζ2i ]βi,iMi

+

N∑
j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jMj

]
[Si,0 + λsi]− γiMi (18)

Substituting the expansions, Eq. (16), in Eqs. (17) and (18) and equating the
coefficients of λn on both sides of equation we have

ds
(n)
i

dt
= −

[
[(1− ξi)

2 + ζ2i ]βi,iM
(n)
i

+

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(n)
j

]
Si,0 −

(n−1)∑
k=0

[
[(1−ξi)

2+ζ2i ]βi,iM
(n−1−k)
i

+
N∑

j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jM
(n−1−k)
j

]
s
(k)
i (19)

for n = 0, 1, 2, .... and

dM
(n)
i

dt
=

[
[(1− ξi)

2 + ζ2i ]βi,iM
(n)
i

+

N∑
j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jM
(n)
j

]
Si,0 − γiM

(n)
i

7+

(n−1)∑
k=0

[
[(1−ξi)

2+ζ2i ]βi,iM
(n−1−k)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(n−1−k)
j

]
s
(k)
i

(20)
In the zeroth order approximation

ds
(0)
i

dt
= −

[
[(1−ξi)

2+ζ2i ]βi,iM
(0)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(0)
j

]
Si,0

(21)

dM
(0)
i

dt
=

[
[(1−ξi)

2+ζ2i ]βi,iM
(0)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(0)
j

]
Si,0−γiM

(0)
i

(22)
Eq. (22) is a set of N coupled, first order, linear differential equations with

constant coefficients. It can be solved easily by reducing it to a set of decoupled
equations which we will outline below. Eq. (23) does not have the functions

s
(0)
i in its RHS. Thus its solution is straight forward when M

(0)
i are known and

we have (at time t = 0 we have s
(n)
i (0) = 0 for all n)

s
(0)
i (t) = −Si,0

∫ t

0

[
[(1− ξi)

2 + ζ2i ]βi,iM
(0)
i (t′)

+
N∑

j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jM
(0)
j (t′)

]
dt′ (23)

let us now consider Eq. (22) and cast it in a matrix form. Let us define a Matrix
H with matrix elements

Hi,j = βi,jSi,0{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}, i ̸= j; Hi,i = Si,0[(1−ξi)
2+ζ2i ]βi,i−γi
(24)

and a column vector x(0)(t) with components M
(0)
i (t). Then Eq. (22) can be

written in a compact form

dx(0)(t)

dt
= Hx(0)(t) (25)

Time independent N ×N , real square matrix H has N eigenvalues ν1, ν2, ....νN ,
real or complex, repeated or distinct. Complex eigenvalues occur in conjugate
pairs and lead to oscillatory solutions. We will assume that it has N eigen-
vectors. Let P be an N × N matrix whose columns are the eigenvectors of
H. The case of H having fewer eigenvectors can also be treated by including
generalized eigenvectors. That will slightly modify the treatment given below.
Pre-multiplying Eq. (25) by the time independent matrix P−1 we get

dy(0)

dt
= Λy(0); y(0) = P−1x(0); HP = PΛ (26)

8

In the zeroth order approximation

+

(n−1)∑
k=0

[
[(1−ξi)

2+ζ2i ]βi,iM
(n−1−k)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(n−1−k)
j

]
s
(k)
i

(20)
In the zeroth order approximation

ds
(0)
i

dt
= −

[
[(1−ξi)

2+ζ2i ]βi,iM
(0)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(0)
j

]
Si,0

(21)

dM
(0)
i

dt
=

[
[(1−ξi)

2+ζ2i ]βi,iM
(0)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(0)
j

]
Si,0−γiM

(0)
i

(22)
Eq. (22) is a set of N coupled, first order, linear differential equations with

constant coefficients. It can be solved easily by reducing it to a set of decoupled
equations which we will outline below. Eq. (23) does not have the functions

s
(0)
i in its RHS. Thus its solution is straight forward when M

(0)
i are known and

we have (at time t = 0 we have s
(n)
i (0) = 0 for all n)

s
(0)
i (t) = −Si,0

∫ t

0

[
[(1− ξi)

2 + ζ2i ]βi,iM
(0)
i (t′)

+
N∑

j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jM
(0)
j (t′)

]
dt′ (23)

let us now consider Eq. (22) and cast it in a matrix form. Let us define a Matrix
H with matrix elements

Hi,j = βi,jSi,0{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}, i ̸= j; Hi,i = Si,0[(1−ξi)
2+ζ2i ]βi,i−γi
(24)

and a column vector x(0)(t) with components M
(0)
i (t). Then Eq. (22) can be

written in a compact form

dx(0)(t)

dt
= Hx(0)(t) (25)

Time independent N ×N , real square matrix H has N eigenvalues ν1, ν2, ....νN ,
real or complex, repeated or distinct. Complex eigenvalues occur in conjugate
pairs and lead to oscillatory solutions. We will assume that it has N eigen-
vectors. Let P be an N × N matrix whose columns are the eigenvectors of
H. The case of H having fewer eigenvectors can also be treated by including
generalized eigenvectors. That will slightly modify the treatment given below.
Pre-multiplying Eq. (25) by the time independent matrix P−1 we get

dy(0)

dt
= Λy(0); y(0) = P−1x(0); HP = PΛ (26)

8

Eq. (22) is a set of N coupled, first order, linear differential 
equations with constant coefficients. It can be solved easily by 
reducing it to a set of decoupled equations which we will outline 

below. Eq. (23) does not have the functions s(0)
i in its RHS. Thus 

its solution is straight forward when M(0)
i are known and we have 

(at time t = 0 we have s(n)
i (0) = 0 for all n)

+

(n−1)∑
k=0

[
[(1−ξi)

2+ζ2i ]βi,iM
(n−1−k)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(n−1−k)
j

]
s
(k)
i

(20)
In the zeroth order approximation

ds
(0)
i

dt
= −

[
[(1−ξi)

2+ζ2i ]βi,iM
(0)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(0)
j

]
Si,0

(21)

dM
(0)
i

dt
=

[
[(1−ξi)

2+ζ2i ]βi,iM
(0)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(0)
j

]
Si,0−γiM

(0)
i

(22)
Eq. (22) is a set of N coupled, first order, linear differential equations with

constant coefficients. It can be solved easily by reducing it to a set of decoupled
equations which we will outline below. Eq. (23) does not have the functions

s
(0)
i in its RHS. Thus its solution is straight forward when M

(0)
i are known and

we have (at time t = 0 we have s
(n)
i (0) = 0 for all n)

s
(0)
i (t) = −Si,0

∫ t

0

[
[(1− ξi)

2 + ζ2i ]βi,iM
(0)
i (t′)

+
N∑

j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jM
(0)
j (t′)

]
dt′ (23)

let us now consider Eq. (22) and cast it in a matrix form. Let us define a Matrix
H with matrix elements

Hi,j = βi,jSi,0{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}, i ̸= j; Hi,i = Si,0[(1−ξi)
2+ζ2i ]βi,i−γi
(24)

and a column vector x(0)(t) with components M
(0)
i (t). Then Eq. (22) can be

written in a compact form

dx(0)(t)

dt
= Hx(0)(t) (25)

Time independent N ×N , real square matrix H has N eigenvalues ν1, ν2, ....νN ,
real or complex, repeated or distinct. Complex eigenvalues occur in conjugate
pairs and lead to oscillatory solutions. We will assume that it has N eigen-
vectors. Let P be an N × N matrix whose columns are the eigenvectors of
H. The case of H having fewer eigenvectors can also be treated by including
generalized eigenvectors. That will slightly modify the treatment given below.
Pre-multiplying Eq. (25) by the time independent matrix P−1 we get

dy(0)

dt
= Λy(0); y(0) = P−1x(0); HP = PΛ (26)
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let us now consider Eq. (22) and cast it in a matrix form. Let us define a Matrix H with matrix elements

+

(n−1)∑
k=0

[
[(1−ξi)

2+ζ2i ]βi,iM
(n−1−k)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(n−1−k)
j

]
s
(k)
i

(20)
In the zeroth order approximation

ds
(0)
i

dt
= −

[
[(1−ξi)

2+ζ2i ]βi,iM
(0)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(0)
j

]
Si,0

(21)

dM
(0)
i

dt
=

[
[(1−ξi)

2+ζ2i ]βi,iM
(0)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(0)
j

]
Si,0−γiM

(0)
i

(22)
Eq. (22) is a set of N coupled, first order, linear differential equations with

constant coefficients. It can be solved easily by reducing it to a set of decoupled
equations which we will outline below. Eq. (23) does not have the functions

s
(0)
i in its RHS. Thus its solution is straight forward when M

(0)
i are known and

we have (at time t = 0 we have s
(n)
i (0) = 0 for all n)

s
(0)
i (t) = −Si,0

∫ t

0

[
[(1− ξi)

2 + ζ2i ]βi,iM
(0)
i (t′)

+
N∑

j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jM
(0)
j (t′)

]
dt′ (23)

let us now consider Eq. (22) and cast it in a matrix form. Let us define a Matrix
H with matrix elements

Hi,j = βi,jSi,0{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}, i ̸= j; Hi,i = Si,0[(1−ξi)
2+ζ2i ]βi,i−γi
(24)

and a column vector x(0)(t) with components M
(0)
i (t). Then Eq. (22) can be

written in a compact form

dx(0)(t)

dt
= Hx(0)(t) (25)

Time independent N ×N , real square matrix H has N eigenvalues ν1, ν2, ....νN ,
real or complex, repeated or distinct. Complex eigenvalues occur in conjugate
pairs and lead to oscillatory solutions. We will assume that it has N eigen-
vectors. Let P be an N × N matrix whose columns are the eigenvectors of
H. The case of H having fewer eigenvectors can also be treated by including
generalized eigenvectors. That will slightly modify the treatment given below.
Pre-multiplying Eq. (25) by the time independent matrix P−1 we get

dy(0)

dt
= Λy(0); y(0) = P−1x(0); HP = PΛ (26)
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and a column vector x(0)(t) with components M(0)
i (t). Then Eq. (22) can be written in a compact for 

+

(n−1)∑
k=0

[
[(1−ξi)

2+ζ2i ]βi,iM
(n−1−k)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(n−1−k)
j

]
s
(k)
i

(20)
In the zeroth order approximation

ds
(0)
i

dt
= −

[
[(1−ξi)

2+ζ2i ]βi,iM
(0)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(0)
j

]
Si,0

(21)

dM
(0)
i

dt
=

[
[(1−ξi)

2+ζ2i ]βi,iM
(0)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(0)
j

]
Si,0−γiM

(0)
i

(22)
Eq. (22) is a set of N coupled, first order, linear differential equations with

constant coefficients. It can be solved easily by reducing it to a set of decoupled
equations which we will outline below. Eq. (23) does not have the functions

s
(0)
i in its RHS. Thus its solution is straight forward when M

(0)
i are known and

we have (at time t = 0 we have s
(n)
i (0) = 0 for all n)

s
(0)
i (t) = −Si,0

∫ t

0

[
[(1− ξi)

2 + ζ2i ]βi,iM
(0)
i (t′)

+
N∑

j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jM
(0)
j (t′)

]
dt′ (23)

let us now consider Eq. (22) and cast it in a matrix form. Let us define a Matrix
H with matrix elements

Hi,j = βi,jSi,0{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}, i ̸= j; Hi,i = Si,0[(1−ξi)
2+ζ2i ]βi,i−γi
(24)

and a column vector x(0)(t) with components M
(0)
i (t). Then Eq. (22) can be

written in a compact form

dx(0)(t)

dt
= Hx(0)(t) (25)

Time independent N ×N , real square matrix H has N eigenvalues ν1, ν2, ....νN ,
real or complex, repeated or distinct. Complex eigenvalues occur in conjugate
pairs and lead to oscillatory solutions. We will assume that it has N eigen-
vectors. Let P be an N × N matrix whose columns are the eigenvectors of
H. The case of H having fewer eigenvectors can also be treated by including
generalized eigenvectors. That will slightly modify the treatment given below.
Pre-multiplying Eq. (25) by the time independent matrix P−1 we get

dy(0)

dt
= Λy(0); y(0) = P−1x(0); HP = PΛ (26)
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Time independent N × N, real square matrix H has N eigenvalues 
ν1, ν2, ....νN, real or complex, repeated or distinct. Complex 
eigenvalues occur in conjugate pairs and lead to oscillatory 
solutions. We will assume that it has N eigenvectors. Let P be an 
N × N matrix whose columns are the eigenvectors of H. The case 

of H having fewer eigenvectors can also be treated by including 
generalized eigenvectors. That will slightly modify the treatment 
given below. Pre-multiplying Eq. (25) by the time independent 
matrix P−1 we get
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+

(n−1)∑
k=0

[
[(1−ξi)

2+ζ2i ]βi,iM
(n−1−k)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(n−1−k)
j

]
s
(k)
i

(20)
In the zeroth order approximation

ds
(0)
i

dt
= −

[
[(1−ξi)

2+ζ2i ]βi,iM
(0)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(0)
j

]
Si,0

(21)

dM
(0)
i

dt
=

[
[(1−ξi)

2+ζ2i ]βi,iM
(0)
i +

N∑
j=1,j ̸=i

{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}βi,jM
(0)
j

]
Si,0−γiM

(0)
i

(22)
Eq. (22) is a set of N coupled, first order, linear differential equations with

constant coefficients. It can be solved easily by reducing it to a set of decoupled
equations which we will outline below. Eq. (23) does not have the functions

s
(0)
i in its RHS. Thus its solution is straight forward when M

(0)
i are known and

we have (at time t = 0 we have s
(n)
i (0) = 0 for all n)

s
(0)
i (t) = −Si,0

∫ t

0

[
[(1− ξi)

2 + ζ2i ]βi,iM
(0)
i (t′)

+
N∑

j=1,j ̸=i

{(1− ξi)ξi,j + (1− ξj)ξj,i + ηi,jξj,i}βi,jM
(0)
j (t′)

]
dt′ (23)

let us now consider Eq. (22) and cast it in a matrix form. Let us define a Matrix
H with matrix elements

Hi,j = βi,jSi,0{(1−ξi)ξi,j+(1−ξj)ξj,i+ηi,jξj,i}, i ̸= j; Hi,i = Si,0[(1−ξi)
2+ζ2i ]βi,i−γi
(24)

and a column vector x(0)(t) with components M
(0)
i (t). Then Eq. (22) can be

written in a compact form

dx(0)(t)

dt
= Hx(0)(t) (25)

Time independent N ×N , real square matrix H has N eigenvalues ν1, ν2, ....νN ,
real or complex, repeated or distinct. Complex eigenvalues occur in conjugate
pairs and lead to oscillatory solutions. We will assume that it has N eigen-
vectors. Let P be an N × N matrix whose columns are the eigenvectors of
H. The case of H having fewer eigenvectors can also be treated by including
generalized eigenvectors. That will slightly modify the treatment given below.
Pre-multiplying Eq. (25) by the time independent matrix P−1 we get

dy(0)

dt
= Λy(0); y(0) = P−1x(0); HP = PΛ (26)
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where Λ is a diagonal matrix with entries ν1, ν2, ....νN along the main diagonal. The differential equations in Eq. (26) are easily solved 
and we have
where Λ is a diagonal matrix with entries ν1, ν2, ....νN along the main diagonal.
The differential equations in Eq. (26) are easily solved and we have

y(0)(t) = eΛty(0)(0); (27)

where eΛt is a diagonal matrix with entries eν1t, eν2t, .....eνN t along the main
diagonal. Thus we have

x(0)(t) = PeΛtP−1x(0)(0); (28)

x(0)(0) is the column vector of known initial values of Mi, i = 1, 2, ...N at
t = 0. Eq. (28) describes the time evolution of infections as a superposition of
eigenvectors of the matrix H. Each eigenvector evolves at the rate eνit, with its
eigenvalue νi. If the real part ℜ(νi) of the eigenvalue is negative the eigenvector
decays with time or grows if ℜ(νi) > 0. Consequences of these are examined in
next subsection.

We observe from Eq. (23) that to compute s
(0)
i we need to find expressions

for integrals
∫ t

0
M

(0)
i (t′)dt. These can be found easily when we notice

∫ t

0

x(0)(t′)dt′ = PΛ−1[eΛt − I]P−1x(0)(0); (29)

where I is the identity matrix.
We now consider the evaluation of higher terms in the perturbation series,

i.e evaluation of n − th order terms M
(n)
i and s

(n)
i for n = 1, 2, .....We first

observe that initial values at t = 0 of M
(n)
i (0) and s

(n)
i (0) vanish for all indices

i = 1, 2, ...N and n = 1, 2, ....∞.. Defining the N dimensional vector x(n)(t)

with components M
(n)
i (t), i = 1, 2, ...N , we see that Eq. (20) can be written in

matrix form as
dx(n)(t)

dt
= Hx(n)(t) + b(n)(t) (30)

where the source vector b(n)(t) involves functionsM
(k)
i (t) and s

(k)
i (t) of previous

orders k = 0, 1, 2, ...n − 1. An expression for b(n)(t) can be written down as
follows. Let S(k)(t) be a sequence of N × N diagonal matrices with diagonal

elements (s
(k)
1 (t)/S1,0, s

(k)
2 (t)/S2,0, ....s

(k)
N (t))/SN,0) for k = 0, 1, 2, ..... Then the

vector b(n)(t) is given by

b(n)(t) =

n−1∑
k=0

S(k)(t)Hx(n−1−k)(t) (31)

Thus the vector b(n)(t) can be computed if the vectors x(n−1−k)(t) and matrices
S(k)(t) of earlier terms in the series expansion are known. For the moment
we will assume that these are known, though we have to devise methods for
computing diagonal matrices S(k)(t), k = 0, 1, 2, ..n− 1

Pre-multiplying Eq. (30) by the matrix P−1 we get

dy(n)(t)

dt
= Λy(n)(t) +P−1b(n)(t); y(n) = P−1x(n) (32)
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where eΛt is a diagonal matrix with entries e ν 1 t, e ν 2 t, .....e ν N t along the main diagonal. Thus we have

where Λ is a diagonal matrix with entries ν1, ν2, ....νN along the main diagonal.
The differential equations in Eq. (26) are easily solved and we have

y(0)(t) = eΛty(0)(0); (27)

where eΛt is a diagonal matrix with entries eν1t, eν2t, .....eνN t along the main
diagonal. Thus we have

x(0)(t) = PeΛtP−1x(0)(0); (28)

x(0)(0) is the column vector of known initial values of Mi, i = 1, 2, ...N at
t = 0. Eq. (28) describes the time evolution of infections as a superposition of
eigenvectors of the matrix H. Each eigenvector evolves at the rate eνit, with its
eigenvalue νi. If the real part ℜ(νi) of the eigenvalue is negative the eigenvector
decays with time or grows if ℜ(νi) > 0. Consequences of these are examined in
next subsection.

We observe from Eq. (23) that to compute s
(0)
i we need to find expressions

for integrals
∫ t

0
M

(0)
i (t′)dt. These can be found easily when we notice

∫ t

0

x(0)(t′)dt′ = PΛ−1[eΛt − I]P−1x(0)(0); (29)

where I is the identity matrix.
We now consider the evaluation of higher terms in the perturbation series,

i.e evaluation of n − th order terms M
(n)
i and s

(n)
i for n = 1, 2, .....We first

observe that initial values at t = 0 of M
(n)
i (0) and s

(n)
i (0) vanish for all indices

i = 1, 2, ...N and n = 1, 2, ....∞.. Defining the N dimensional vector x(n)(t)

with components M
(n)
i (t), i = 1, 2, ...N , we see that Eq. (20) can be written in

matrix form as
dx(n)(t)

dt
= Hx(n)(t) + b(n)(t) (30)

where the source vector b(n)(t) involves functionsM
(k)
i (t) and s

(k)
i (t) of previous

orders k = 0, 1, 2, ...n − 1. An expression for b(n)(t) can be written down as
follows. Let S(k)(t) be a sequence of N × N diagonal matrices with diagonal

elements (s
(k)
1 (t)/S1,0, s

(k)
2 (t)/S2,0, ....s

(k)
N (t))/SN,0) for k = 0, 1, 2, ..... Then the

vector b(n)(t) is given by

b(n)(t) =

n−1∑
k=0

S(k)(t)Hx(n−1−k)(t) (31)

Thus the vector b(n)(t) can be computed if the vectors x(n−1−k)(t) and matrices
S(k)(t) of earlier terms in the series expansion are known. For the moment
we will assume that these are known, though we have to devise methods for
computing diagonal matrices S(k)(t), k = 0, 1, 2, ..n− 1

Pre-multiplying Eq. (30) by the matrix P−1 we get

dy(n)(t)

dt
= Λy(n)(t) +P−1b(n)(t); y(n) = P−1x(n) (32)
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x(0)(0) is the column vector of known initial values of Mi, i 
= 1, 2, ...N at t = 0. Eq. (28) describes the time evolution of 
infections as a superposition of eigenvectors of the matrix H. 
Each eigenvector evolves at the rate eν i t, with its eigenvalue νi. 
If the real part ℜ(νi) of the eigenvalue is negative the eigenvector

decays with time or grows if ℜ(νi) > 0. Consequences of these 
are examined in next subsection. We observe from Eq. (23) that 
to compute s(0)

i we need to find expressions for integrals ∫t
0 M

(0)
i 

(t′)dt. These can be found easily when we notice

where Λ is a diagonal matrix with entries ν1, ν2, ....νN along the main diagonal.
The differential equations in Eq. (26) are easily solved and we have

y(0)(t) = eΛty(0)(0); (27)

where eΛt is a diagonal matrix with entries eν1t, eν2t, .....eνN t along the main
diagonal. Thus we have

x(0)(t) = PeΛtP−1x(0)(0); (28)

x(0)(0) is the column vector of known initial values of Mi, i = 1, 2, ...N at
t = 0. Eq. (28) describes the time evolution of infections as a superposition of
eigenvectors of the matrix H. Each eigenvector evolves at the rate eνit, with its
eigenvalue νi. If the real part ℜ(νi) of the eigenvalue is negative the eigenvector
decays with time or grows if ℜ(νi) > 0. Consequences of these are examined in
next subsection.

We observe from Eq. (23) that to compute s
(0)
i we need to find expressions

for integrals
∫ t

0
M

(0)
i (t′)dt. These can be found easily when we notice

∫ t

0

x(0)(t′)dt′ = PΛ−1[eΛt − I]P−1x(0)(0); (29)

where I is the identity matrix.
We now consider the evaluation of higher terms in the perturbation series,

i.e evaluation of n − th order terms M
(n)
i and s

(n)
i for n = 1, 2, .....We first

observe that initial values at t = 0 of M
(n)
i (0) and s

(n)
i (0) vanish for all indices

i = 1, 2, ...N and n = 1, 2, ....∞.. Defining the N dimensional vector x(n)(t)

with components M
(n)
i (t), i = 1, 2, ...N , we see that Eq. (20) can be written in

matrix form as
dx(n)(t)

dt
= Hx(n)(t) + b(n)(t) (30)

where the source vector b(n)(t) involves functionsM
(k)
i (t) and s

(k)
i (t) of previous

orders k = 0, 1, 2, ...n − 1. An expression for b(n)(t) can be written down as
follows. Let S(k)(t) be a sequence of N × N diagonal matrices with diagonal

elements (s
(k)
1 (t)/S1,0, s

(k)
2 (t)/S2,0, ....s

(k)
N (t))/SN,0) for k = 0, 1, 2, ..... Then the

vector b(n)(t) is given by

b(n)(t) =

n−1∑
k=0

S(k)(t)Hx(n−1−k)(t) (31)

Thus the vector b(n)(t) can be computed if the vectors x(n−1−k)(t) and matrices
S(k)(t) of earlier terms in the series expansion are known. For the moment
we will assume that these are known, though we have to devise methods for
computing diagonal matrices S(k)(t), k = 0, 1, 2, ..n− 1

Pre-multiplying Eq. (30) by the matrix P−1 we get

dy(n)(t)

dt
= Λy(n)(t) +P−1b(n)(t); y(n) = P−1x(n) (32)
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where I is the identity matrix.
We now consider the evaluation of higher terms in the 
perturbation series, i.e evaluation of n − th order terms M(n)

i and 
s(n)

i for n = 1, 2, .....We first observe that initial values at t = 0 

of M(n)
i (0) and s(n)

i (0) vanish for all indices i = 1, 2, ...N and 
n = 1, 2, ....∞.. Defining the N dimensional vector x(n)(t) with 
components M(n)

i (t), i = 1, 2, ...N , we see that Eq. (20) can be 
written in matrix form as

where Λ is a diagonal matrix with entries ν1, ν2, ....νN along the main diagonal.
The differential equations in Eq. (26) are easily solved and we have

y(0)(t) = eΛty(0)(0); (27)

where eΛt is a diagonal matrix with entries eν1t, eν2t, .....eνN t along the main
diagonal. Thus we have

x(0)(t) = PeΛtP−1x(0)(0); (28)

x(0)(0) is the column vector of known initial values of Mi, i = 1, 2, ...N at
t = 0. Eq. (28) describes the time evolution of infections as a superposition of
eigenvectors of the matrix H. Each eigenvector evolves at the rate eνit, with its
eigenvalue νi. If the real part ℜ(νi) of the eigenvalue is negative the eigenvector
decays with time or grows if ℜ(νi) > 0. Consequences of these are examined in
next subsection.

We observe from Eq. (23) that to compute s
(0)
i we need to find expressions

for integrals
∫ t

0
M

(0)
i (t′)dt. These can be found easily when we notice

∫ t

0

x(0)(t′)dt′ = PΛ−1[eΛt − I]P−1x(0)(0); (29)

where I is the identity matrix.
We now consider the evaluation of higher terms in the perturbation series,

i.e evaluation of n − th order terms M
(n)
i and s

(n)
i for n = 1, 2, .....We first

observe that initial values at t = 0 of M
(n)
i (0) and s

(n)
i (0) vanish for all indices

i = 1, 2, ...N and n = 1, 2, ....∞.. Defining the N dimensional vector x(n)(t)

with components M
(n)
i (t), i = 1, 2, ...N , we see that Eq. (20) can be written in

matrix form as
dx(n)(t)

dt
= Hx(n)(t) + b(n)(t) (30)

where the source vector b(n)(t) involves functionsM
(k)
i (t) and s

(k)
i (t) of previous

orders k = 0, 1, 2, ...n − 1. An expression for b(n)(t) can be written down as
follows. Let S(k)(t) be a sequence of N × N diagonal matrices with diagonal

elements (s
(k)
1 (t)/S1,0, s

(k)
2 (t)/S2,0, ....s

(k)
N (t))/SN,0) for k = 0, 1, 2, ..... Then the

vector b(n)(t) is given by

b(n)(t) =

n−1∑
k=0

S(k)(t)Hx(n−1−k)(t) (31)

Thus the vector b(n)(t) can be computed if the vectors x(n−1−k)(t) and matrices
S(k)(t) of earlier terms in the series expansion are known. For the moment
we will assume that these are known, though we have to devise methods for
computing diagonal matrices S(k)(t), k = 0, 1, 2, ..n− 1

Pre-multiplying Eq. (30) by the matrix P−1 we get

dy(n)(t)

dt
= Λy(n)(t) +P−1b(n)(t); y(n) = P−1x(n) (32)
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where the source vector b(n)(t) involves functions M(k)
i (t) and s(k)

i (t) of previous orders k = 0, 1, 2, ...n − 1. An expression for b(n)

(t) can be written down as follows. Let S(k)(t) be a sequence of 

N × N diagonal matrices with diagonal elements (s(k)
1 (t)/S1,0, s

(k)
2 

(t)/S2,0, ....s
(k)

N (t)) / SN,0) for k = 0, 1, 2, ..... Then the vector b(n)
(t) is given by

where Λ is a diagonal matrix with entries ν1, ν2, ....νN along the main diagonal.
The differential equations in Eq. (26) are easily solved and we have

y(0)(t) = eΛty(0)(0); (27)

where eΛt is a diagonal matrix with entries eν1t, eν2t, .....eνN t along the main
diagonal. Thus we have

x(0)(t) = PeΛtP−1x(0)(0); (28)

x(0)(0) is the column vector of known initial values of Mi, i = 1, 2, ...N at
t = 0. Eq. (28) describes the time evolution of infections as a superposition of
eigenvectors of the matrix H. Each eigenvector evolves at the rate eνit, with its
eigenvalue νi. If the real part ℜ(νi) of the eigenvalue is negative the eigenvector
decays with time or grows if ℜ(νi) > 0. Consequences of these are examined in
next subsection.

We observe from Eq. (23) that to compute s
(0)
i we need to find expressions

for integrals
∫ t

0
M

(0)
i (t′)dt. These can be found easily when we notice

∫ t

0

x(0)(t′)dt′ = PΛ−1[eΛt − I]P−1x(0)(0); (29)

where I is the identity matrix.
We now consider the evaluation of higher terms in the perturbation series,

i.e evaluation of n − th order terms M
(n)
i and s

(n)
i for n = 1, 2, .....We first

observe that initial values at t = 0 of M
(n)
i (0) and s

(n)
i (0) vanish for all indices

i = 1, 2, ...N and n = 1, 2, ....∞.. Defining the N dimensional vector x(n)(t)

with components M
(n)
i (t), i = 1, 2, ...N , we see that Eq. (20) can be written in

matrix form as
dx(n)(t)

dt
= Hx(n)(t) + b(n)(t) (30)

where the source vector b(n)(t) involves functionsM
(k)
i (t) and s

(k)
i (t) of previous

orders k = 0, 1, 2, ...n − 1. An expression for b(n)(t) can be written down as
follows. Let S(k)(t) be a sequence of N × N diagonal matrices with diagonal

elements (s
(k)
1 (t)/S1,0, s

(k)
2 (t)/S2,0, ....s

(k)
N (t))/SN,0) for k = 0, 1, 2, ..... Then the

vector b(n)(t) is given by

b(n)(t) =

n−1∑
k=0

S(k)(t)Hx(n−1−k)(t) (31)

Thus the vector b(n)(t) can be computed if the vectors x(n−1−k)(t) and matrices
S(k)(t) of earlier terms in the series expansion are known. For the moment
we will assume that these are known, though we have to devise methods for
computing diagonal matrices S(k)(t), k = 0, 1, 2, ..n− 1

Pre-multiplying Eq. (30) by the matrix P−1 we get

dy(n)(t)

dt
= Λy(n)(t) +P−1b(n)(t); y(n) = P−1x(n) (32)
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Thus the vector b(n)(t) can be computed if the vectors x(n−1−k)(t) 
and matrices S(k)(t) of earlier terms in the series expansion are 
known. For the moment we will assume that these are known, 

though we have to devise methods for computing diagonal 
matrices S(k)(t), k = 0, 1, 2, ..n − 1 Pre-multiplying Eq. (30) by 
the matrix P−1 we get

where Λ is a diagonal matrix with entries ν1, ν2, ....νN along the main diagonal.
The differential equations in Eq. (26) are easily solved and we have

y(0)(t) = eΛty(0)(0); (27)

where eΛt is a diagonal matrix with entries eν1t, eν2t, .....eνN t along the main
diagonal. Thus we have

x(0)(t) = PeΛtP−1x(0)(0); (28)

x(0)(0) is the column vector of known initial values of Mi, i = 1, 2, ...N at
t = 0. Eq. (28) describes the time evolution of infections as a superposition of
eigenvectors of the matrix H. Each eigenvector evolves at the rate eνit, with its
eigenvalue νi. If the real part ℜ(νi) of the eigenvalue is negative the eigenvector
decays with time or grows if ℜ(νi) > 0. Consequences of these are examined in
next subsection.

We observe from Eq. (23) that to compute s
(0)
i we need to find expressions

for integrals
∫ t

0
M

(0)
i (t′)dt. These can be found easily when we notice

∫ t

0

x(0)(t′)dt′ = PΛ−1[eΛt − I]P−1x(0)(0); (29)

where I is the identity matrix.
We now consider the evaluation of higher terms in the perturbation series,

i.e evaluation of n − th order terms M
(n)
i and s

(n)
i for n = 1, 2, .....We first

observe that initial values at t = 0 of M
(n)
i (0) and s

(n)
i (0) vanish for all indices

i = 1, 2, ...N and n = 1, 2, ....∞.. Defining the N dimensional vector x(n)(t)

with components M
(n)
i (t), i = 1, 2, ...N , we see that Eq. (20) can be written in

matrix form as
dx(n)(t)

dt
= Hx(n)(t) + b(n)(t) (30)

where the source vector b(n)(t) involves functionsM
(k)
i (t) and s

(k)
i (t) of previous

orders k = 0, 1, 2, ...n − 1. An expression for b(n)(t) can be written down as
follows. Let S(k)(t) be a sequence of N × N diagonal matrices with diagonal

elements (s
(k)
1 (t)/S1,0, s

(k)
2 (t)/S2,0, ....s

(k)
N (t))/SN,0) for k = 0, 1, 2, ..... Then the

vector b(n)(t) is given by

b(n)(t) =

n−1∑
k=0

S(k)(t)Hx(n−1−k)(t) (31)

Thus the vector b(n)(t) can be computed if the vectors x(n−1−k)(t) and matrices
S(k)(t) of earlier terms in the series expansion are known. For the moment
we will assume that these are known, though we have to devise methods for
computing diagonal matrices S(k)(t), k = 0, 1, 2, ..n− 1

Pre-multiplying Eq. (30) by the matrix P−1 we get

dy(n)(t)

dt
= Λy(n)(t) +P−1b(n)(t); y(n) = P−1x(n) (32)

9
and the solution of Eq. (32) is given byand the solution of Eq. (32) is given by

y(n)(t) =

∫ t

0

eΛ(t−t′)P−1b(n)(t′)dt′; x(n)(t) =

∫ t

0

PeΛ(t−t′)P−1b(n)(t′)dt′;

(33)
We now turn our attention to the computation of the matrices S(k)(t), k =

0, 1, 2, ..n−1. Let s(k)(t), denoteN dimensional vector with components (s
(n)
1 (t), s

(n)
2 (t), ....s

n)
N (t)).

It is clear that this vector immediately yields the diagonal matrix S(k)(t). We
already have an expression for the vector s(0) from Eqs. (23) and (29). Thus
we have

s(0)(t) = −[H+ Γ]PΛ−1[eΛt − I]P−1x(0)(0); (34)

where Γ is a diagonal matrix with elements γiδi,j , i, j = 1, 2, ...N . We see from
Eq. (23) that

ds(n)(t)

dt
= −[H+ Γ]x(n)(t) + b(n)(t) (35)

. Hence we have

s(n)(t) = −[H+ Γ]

∫ t

0

x(n)(t′)dt′ −
∫ t

0

b(n)(t′)dt′ (36)

Substituting for x(n) from Eq. (33) we have

s(n)(t) = −[H+ Γ]

∫ t

0

x(n)(t′)dt′ −
∫ t

0

b(n)(t′)dt′

= −[H+ Γ]

∫ t

0

PΛ−1[eΛ(t−t”) − I]P−1b(n)(t”)dt”−
∫ t

0

b(n)(t′)dt′ (37)

We can now successively compute M
(n)
i (t) (or the vectors x(n)(t)) i.e. all terms

in perturbation expansion. We form the matrix H, given by Eq. (24), and find
its eigenvalues (ν1, ν2, ...., νN ) and the corresponding eigenvectors and obtain
the matrices Λ,P and P−1. as defined in Eq. (26). We can then obtain the
vector x(0)(t) from Eq. (28) and known initial values of Mi, i = 1, 2, ...N at
t = 0. We also obtain the vector s(0)(t) from Eq. (34) and then compute the
diagonal matrix S(0). We can then compute the vectors b(1),x(1) and s(1) from
Eqs. (31), (33) and (37) for the case of n = 1.. Knowing these vectors for n = 1
we can compute the corresponding vectors for n = 2 and so on.

3.1 Model (b)

The analysis given above is also applicable to Model (b) wherein Susceptible
population is confined to their home region i.e. the starting equations are Eqs.
(10) and (11). For perturbation expansions, Eqs. (17) and (18) are replaced by

dsi
dt

= −
[
(1− ξi)βi,iMi +

N∑
j=1,j ̸=i

ξi,jβi,jMj

]
[Si,0 + λsi] (38)
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We now turn our attention to the computation of the matrices 
S(k)(t), k = 0, 1, 2, ..n−1. Let s(k)(t), denote N dimensional vector 
with components (s(n)

1 (t), s
(n)

2 (t), ....s
n
N (t)). It is clear that this 

vector immediately yields the diagonal matrix S(k)(t). We already 
have an expression for the vector s(0) from Eqs. (23) and (29). 
Thus we have

and the solution of Eq. (32) is given by

y(n)(t) =

∫ t

0

eΛ(t−t′)P−1b(n)(t′)dt′; x(n)(t) =

∫ t

0

PeΛ(t−t′)P−1b(n)(t′)dt′;

(33)
We now turn our attention to the computation of the matrices S(k)(t), k =

0, 1, 2, ..n−1. Let s(k)(t), denoteN dimensional vector with components (s
(n)
1 (t), s

(n)
2 (t), ....s

n)
N (t)).

It is clear that this vector immediately yields the diagonal matrix S(k)(t). We
already have an expression for the vector s(0) from Eqs. (23) and (29). Thus
we have

s(0)(t) = −[H+ Γ]PΛ−1[eΛt − I]P−1x(0)(0); (34)

where Γ is a diagonal matrix with elements γiδi,j , i, j = 1, 2, ...N . We see from
Eq. (23) that

ds(n)(t)

dt
= −[H+ Γ]x(n)(t) + b(n)(t) (35)

. Hence we have

s(n)(t) = −[H+ Γ]

∫ t

0

x(n)(t′)dt′ −
∫ t

0

b(n)(t′)dt′ (36)

Substituting for x(n) from Eq. (33) we have

s(n)(t) = −[H+ Γ]

∫ t

0

x(n)(t′)dt′ −
∫ t

0

b(n)(t′)dt′

= −[H+ Γ]

∫ t

0

PΛ−1[eΛ(t−t”) − I]P−1b(n)(t”)dt”−
∫ t

0

b(n)(t′)dt′ (37)

We can now successively compute M
(n)
i (t) (or the vectors x(n)(t)) i.e. all terms

in perturbation expansion. We form the matrix H, given by Eq. (24), and find
its eigenvalues (ν1, ν2, ...., νN ) and the corresponding eigenvectors and obtain
the matrices Λ,P and P−1. as defined in Eq. (26). We can then obtain the
vector x(0)(t) from Eq. (28) and known initial values of Mi, i = 1, 2, ...N at
t = 0. We also obtain the vector s(0)(t) from Eq. (34) and then compute the
diagonal matrix S(0). We can then compute the vectors b(1),x(1) and s(1) from
Eqs. (31), (33) and (37) for the case of n = 1.. Knowing these vectors for n = 1
we can compute the corresponding vectors for n = 2 and so on.

3.1 Model (b)

The analysis given above is also applicable to Model (b) wherein Susceptible
population is confined to their home region i.e. the starting equations are Eqs.
(10) and (11). For perturbation expansions, Eqs. (17) and (18) are replaced by

dsi
dt

= −
[
(1− ξi)βi,iMi +

N∑
j=1,j ̸=i

ξi,jβi,jMj

]
[Si,0 + λsi] (38)
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where Γ is a diagonal matrix with elements γiδi,j, i, j = 1, 2, ...N. We see from
Eq. (23) that

and the solution of Eq. (32) is given by

y(n)(t) =

∫ t

0

eΛ(t−t′)P−1b(n)(t′)dt′; x(n)(t) =

∫ t

0

PeΛ(t−t′)P−1b(n)(t′)dt′;

(33)
We now turn our attention to the computation of the matrices S(k)(t), k =

0, 1, 2, ..n−1. Let s(k)(t), denoteN dimensional vector with components (s
(n)
1 (t), s

(n)
2 (t), ....s

n)
N (t)).

It is clear that this vector immediately yields the diagonal matrix S(k)(t). We
already have an expression for the vector s(0) from Eqs. (23) and (29). Thus
we have

s(0)(t) = −[H+ Γ]PΛ−1[eΛt − I]P−1x(0)(0); (34)

where Γ is a diagonal matrix with elements γiδi,j , i, j = 1, 2, ...N . We see from
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We can now successively compute M
(n)
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[
(1− ξi)βi,iMi +

N∑
j=1,j ̸=i

ξi,jβi,jMj

]
[Si,0 + λsi]− γiMi (39)

Using the expansion, Eq. (16), in these equations we obtain the following equa-

tions for s
(n)
i (t) and M

(n)
i (t)

ds
(n)
i

dt
= −

[
(1− ξi)βi,iM

(n)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n)
j

]
Si,0

−
(n−1)∑
k=0

[
(1− ξi)βi,iM

(n−1−k)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n−1−k)
j

]
s
(k)
i (40)

for n = 0, 1, 2, .... and

dM
(n)
i

dt
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ξi,jβi,jM
(n)
j
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+
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(1− ξi)βi,iM

(n−1−k)
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N∑
j=1,j ̸=i

ξi,jβi,jM
(n−1−k)
j

]
s
(k)
i (41)

Matrix formulation presented earlier (for zeroth and higher order approxima-
tions) is applicable to Eqs. (40) and (41) if we replace the matrix H with the
matrix Hb whose matrix elements are given by

(Hb)i,j = [βi,j(1− ξi)Si,0 − γi]δi,j + βi,jξi,jSi,0[1− δi,j ] (42)

Here δi,j is Kronecker’s δ function, being unity when i = j and zero otherwise.
Thus for example Eqs. (25) and (26) are modified to

dx(0)(t)

dt
= Hbx

(0)(t) (43)

dy(0)

dt
= Λby

(0); y(0) = P−1
b x(0); HbPb = PbΛb (44)

where Λb and Pb are the matrices of eigenvalues and eigenvectors of the matrix
Hb respectively. Rest of the analysis, Eqs. (27) to (41) is same as before after
replacing the matrices H,Λ,P and P−1 with Hb,Λb,Pb and P−1

b .

3.2 The Fundamental Mode

We now examine the eigenvalue problem of matrices H and Hb more closely
as it is clear from above analysis that the eigenvalues of these matrices play a
crucial role in the growth of the epidemic.

Our first observation is that if the fractions ξi,j are symmetric i.e. ξi,j = ξj,i
then the matrices H and Hb are real symmetric matrices. All their eigen-
values are real and they have N distinct eigenvectors. Thus P and Pb exist

11

Using the expansion, Eq. (16), in these equations we obtain the following equations for s(n)
i (t) and M(n)

i (t)

dMi

dt
=

[
(1− ξi)βi,iMi +

N∑
j=1,j ̸=i

ξi,jβi,jMj

]
[Si,0 + λsi]− γiMi (39)

Using the expansion, Eq. (16), in these equations we obtain the following equa-

tions for s
(n)
i (t) and M

(n)
i (t)

ds
(n)
i

dt
= −

[
(1− ξi)βi,iM

(n)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n)
j

]
Si,0

−
(n−1)∑
k=0

[
(1− ξi)βi,iM

(n−1−k)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n−1−k)
j

]
s
(k)
i (40)

for n = 0, 1, 2, .... and

dM
(n)
i

dt
=

[
(1− ξi)βi,iM

(n)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n)
j

]
Si,0 − γiM

(n)
i

+

(n−1)∑
k=0

[
(1− ξi)βi,iM

(n−1−k)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n−1−k)
j

]
s
(k)
i (41)

Matrix formulation presented earlier (for zeroth and higher order approxima-
tions) is applicable to Eqs. (40) and (41) if we replace the matrix H with the
matrix Hb whose matrix elements are given by

(Hb)i,j = [βi,j(1− ξi)Si,0 − γi]δi,j + βi,jξi,jSi,0[1− δi,j ] (42)

Here δi,j is Kronecker’s δ function, being unity when i = j and zero otherwise.
Thus for example Eqs. (25) and (26) are modified to

dx(0)(t)

dt
= Hbx

(0)(t) (43)

dy(0)

dt
= Λby

(0); y(0) = P−1
b x(0); HbPb = PbΛb (44)

where Λb and Pb are the matrices of eigenvalues and eigenvectors of the matrix
Hb respectively. Rest of the analysis, Eqs. (27) to (41) is same as before after
replacing the matrices H,Λ,P and P−1 with Hb,Λb,Pb and P−1

b .

3.2 The Fundamental Mode

We now examine the eigenvalue problem of matrices H and Hb more closely
as it is clear from above analysis that the eigenvalues of these matrices play a
crucial role in the growth of the epidemic.

Our first observation is that if the fractions ξi,j are symmetric i.e. ξi,j = ξj,i
then the matrices H and Hb are real symmetric matrices. All their eigen-
values are real and they have N distinct eigenvectors. Thus P and Pb exist

11

for n = 0, 1, 2, .... and

dMi

dt
=

[
(1− ξi)βi,iMi +

N∑
j=1,j ̸=i

ξi,jβi,jMj

]
[Si,0 + λsi]− γiMi (39)

Using the expansion, Eq. (16), in these equations we obtain the following equa-

tions for s
(n)
i (t) and M

(n)
i (t)

ds
(n)
i

dt
= −

[
(1− ξi)βi,iM

(n)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n)
j

]
Si,0

−
(n−1)∑
k=0

[
(1− ξi)βi,iM

(n−1−k)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n−1−k)
j

]
s
(k)
i (40)

for n = 0, 1, 2, .... and

dM
(n)
i

dt
=

[
(1− ξi)βi,iM

(n)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n)
j

]
Si,0 − γiM

(n)
i

+

(n−1)∑
k=0

[
(1− ξi)βi,iM

(n−1−k)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n−1−k)
j

]
s
(k)
i (41)

Matrix formulation presented earlier (for zeroth and higher order approxima-
tions) is applicable to Eqs. (40) and (41) if we replace the matrix H with the
matrix Hb whose matrix elements are given by

(Hb)i,j = [βi,j(1− ξi)Si,0 − γi]δi,j + βi,jξi,jSi,0[1− δi,j ] (42)

Here δi,j is Kronecker’s δ function, being unity when i = j and zero otherwise.
Thus for example Eqs. (25) and (26) are modified to

dx(0)(t)

dt
= Hbx

(0)(t) (43)

dy(0)

dt
= Λby

(0); y(0) = P−1
b x(0); HbPb = PbΛb (44)

where Λb and Pb are the matrices of eigenvalues and eigenvectors of the matrix
Hb respectively. Rest of the analysis, Eqs. (27) to (41) is same as before after
replacing the matrices H,Λ,P and P−1 with Hb,Λb,Pb and P−1

b .

3.2 The Fundamental Mode

We now examine the eigenvalue problem of matrices H and Hb more closely
as it is clear from above analysis that the eigenvalues of these matrices play a
crucial role in the growth of the epidemic.

Our first observation is that if the fractions ξi,j are symmetric i.e. ξi,j = ξj,i
then the matrices H and Hb are real symmetric matrices. All their eigen-
values are real and they have N distinct eigenvectors. Thus P and Pb exist

11

Matrix formulation presented earlier (for zeroth and higher order 
approximations) is applicable to Eqs. (40) and (41) if we replace 

the matrix H with the matrix Hb whose matrix elements are given 
by

dMi

dt
=

[
(1− ξi)βi,iMi +

N∑
j=1,j ̸=i

ξi,jβi,jMj

]
[Si,0 + λsi]− γiMi (39)

Using the expansion, Eq. (16), in these equations we obtain the following equa-

tions for s
(n)
i (t) and M

(n)
i (t)

ds
(n)
i

dt
= −

[
(1− ξi)βi,iM

(n)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n)
j

]
Si,0

−
(n−1)∑
k=0

[
(1− ξi)βi,iM

(n−1−k)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n−1−k)
j

]
s
(k)
i (40)

for n = 0, 1, 2, .... and

dM
(n)
i

dt
=

[
(1− ξi)βi,iM

(n)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n)
j

]
Si,0 − γiM

(n)
i

+

(n−1)∑
k=0

[
(1− ξi)βi,iM

(n−1−k)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n−1−k)
j

]
s
(k)
i (41)

Matrix formulation presented earlier (for zeroth and higher order approxima-
tions) is applicable to Eqs. (40) and (41) if we replace the matrix H with the
matrix Hb whose matrix elements are given by

(Hb)i,j = [βi,j(1− ξi)Si,0 − γi]δi,j + βi,jξi,jSi,0[1− δi,j ] (42)

Here δi,j is Kronecker’s δ function, being unity when i = j and zero otherwise.
Thus for example Eqs. (25) and (26) are modified to

dx(0)(t)

dt
= Hbx

(0)(t) (43)

dy(0)

dt
= Λby

(0); y(0) = P−1
b x(0); HbPb = PbΛb (44)

where Λb and Pb are the matrices of eigenvalues and eigenvectors of the matrix
Hb respectively. Rest of the analysis, Eqs. (27) to (41) is same as before after
replacing the matrices H,Λ,P and P−1 with Hb,Λb,Pb and P−1

b .

3.2 The Fundamental Mode

We now examine the eigenvalue problem of matrices H and Hb more closely
as it is clear from above analysis that the eigenvalues of these matrices play a
crucial role in the growth of the epidemic.

Our first observation is that if the fractions ξi,j are symmetric i.e. ξi,j = ξj,i
then the matrices H and Hb are real symmetric matrices. All their eigen-
values are real and they have N distinct eigenvectors. Thus P and Pb exist

11

Here δi,j is Kronecker’s δ function, being unity when i = j and zero otherwise. Thus for example Eqs. (25) and (26) are modified to

dMi

dt
=

[
(1− ξi)βi,iMi +

N∑
j=1,j ̸=i

ξi,jβi,jMj

]
[Si,0 + λsi]− γiMi (39)

Using the expansion, Eq. (16), in these equations we obtain the following equa-

tions for s
(n)
i (t) and M

(n)
i (t)

ds
(n)
i

dt
= −

[
(1− ξi)βi,iM

(n)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n)
j

]
Si,0

−
(n−1)∑
k=0

[
(1− ξi)βi,iM

(n−1−k)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n−1−k)
j

]
s
(k)
i (40)

for n = 0, 1, 2, .... and

dM
(n)
i

dt
=

[
(1− ξi)βi,iM

(n)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n)
j

]
Si,0 − γiM

(n)
i

+

(n−1)∑
k=0

[
(1− ξi)βi,iM

(n−1−k)
i +

N∑
j=1,j ̸=i

ξi,jβi,jM
(n−1−k)
j

]
s
(k)
i (41)

Matrix formulation presented earlier (for zeroth and higher order approxima-
tions) is applicable to Eqs. (40) and (41) if we replace the matrix H with the
matrix Hb whose matrix elements are given by

(Hb)i,j = [βi,j(1− ξi)Si,0 − γi]δi,j + βi,jξi,jSi,0[1− δi,j ] (42)

Here δi,j is Kronecker’s δ function, being unity when i = j and zero otherwise.
Thus for example Eqs. (25) and (26) are modified to

dx(0)(t)

dt
= Hbx

(0)(t) (43)

dy(0)

dt
= Λby

(0); y(0) = P−1
b x(0); HbPb = PbΛb (44)

where Λb and Pb are the matrices of eigenvalues and eigenvectors of the matrix
Hb respectively. Rest of the analysis, Eqs. (27) to (41) is same as before after
replacing the matrices H,Λ,P and P−1 with Hb,Λb,Pb and P−1

b .

3.2 The Fundamental Mode

We now examine the eigenvalue problem of matrices H and Hb more closely
as it is clear from above analysis that the eigenvalues of these matrices play a
crucial role in the growth of the epidemic.

Our first observation is that if the fractions ξi,j are symmetric i.e. ξi,j = ξj,i
then the matrices H and Hb are real symmetric matrices. All their eigen-
values are real and they have N distinct eigenvectors. Thus P and Pb exist
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of the epidemic.
Our first observation is that if the fractions ξi,j are symmetric i.e. ξi,j 
= ξj,i then the matrices H and Hb are real symmetric matrices. All 

their eigenvalues are real and they have N distinct eigenvectors. 
Thus P and Pb exist and are orthogonal matrices and P−1 = PT, 
the transpose of P. Similarly P−1

b = PT
b. Since all the eigenvalues 

are real, one of them is the largest. Corresponding eigenvector 
constitutes the fundamental mode if all its elements are non-
negative. This mode grows much faster than other eigenvectors 
and dominates after a few initial time steps. We will assume that 
the eigenvalues are ordered i.e. ν1 > ν2 ≥ ν3, .....νN In case some 
of the eigenvalues are complex then their ordering is according 
to their real part. We also observe that all fractions ξi,j ≥ 0. Thus 
the off-diagonal elements of H and Hb are non-negative. If in 
addition the diagonal elements

and are orthogonal matrices and P−1 = PT, the transpose of P. Similarly
P−1

b = PT
b . Since all the eigenvalues are real, one of them is the largest. Cor-

responding eigenvector constitutes the fundamental mode if all its elements are
non-negative. This mode grows much faster than other eigenvectors and dom-
inates after a few initial time steps. We will assume that the eigenvalues are
ordered i.e. ν1 > ν2 ≥ ν3, .....νN In case some of the eigenvalues are complex
then their ordering is according to their real part.

We also observe that all fractions ξi,j ≥ 0. Thus the off-diagonal elements
of H and Hb are non-negative. If in addition the diagonal elements

Hi,i = Si,0[(1−ξi)
2+ζ2i ]βi,i−γi ≥ 0; (Hb)i,i = [βi,i(1−ξi)Si,0−γi] ≥ 0 (45)

then H ≥ 0,Hb ≥ 0. Let us assume that H and Hb are Irreducible. Then we
have from Perron-Frobenius theorem that these matrices have a largest positive
eigenvalue, with one and only one corresponding eigenvector whose elements are
non-negative. This eigenvector is the dominant fundamental mode which grows
faster than all other modes.

We note that Irreducible, non-negativity, Eq. (45), is a sufficient condition
for the existence of fundamental mode. It is not necessary. Thus e.g. if all
the parameters γi = γ, i = 1, 2, ...N then also fundamental mode exists. This
follows from the fact that in this situation

Γ = γI; G = H+ γI ≥ 0; Gb = Hb + γI ≥ 0 (46)

Thus the matrices G and Gb have a largest positive eigenvalue and a cor-
responding non-negative eigenvector. The eigenvectors of G,Gb are also the
eigenvectors of H,Hb. Thus H,Hb have the same eigenvector which is their
fundamental mode.

It is easy to find this fundamental mode in some simple cases. Let us assume
that all coefficients βi,j = β are equal, γi = γ and all the initial Susceptible
populations Si,0 = S0 are also equal. Further we assume that the fractions
ξi,j = ξj,i are symmetric. Let z = (z1, z2, ...zN ) denote an eigenvector of H
corresponding to an eigenvalue ν

Hz = νz (47)

which is explicitly written

βS0

[
[(1− ξi)

2+ ζ2i ]zi+

N∑
j=1,j ̸=i

{(1− ξi)ξi,j +(1− ξj)ξj,i+ηi,jξj,i}zj
]
= (ν+γ)zi

(48)
It is easily seen that the vector z = (1, 1, .....1), a positive vector, is a solution
of Eq. (48). This follows from the definitions of ζ2i and ηi,j given after Eq. (3)
and symmetry of ξi,j . The corresponding eigenvalue is βS0 − γ.

We also note that under the conditions stated above, before Eq. (47), the
matrix Hb also has same dominant eigenvector and same eigenvalue as H. Re-
maining eigenvalues and eigenvectors, however, are different.
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It is easily seen that the vector z = (1, 1, .....1), a positive vector, is 
a solution of Eq. (48). This follows from the definitions of ζ2

i and 
ηi,j given after Eq. (3) and symmetry of ξi,j . The corresponding 
eigenvalue is βS0 − γ. We also note that under the conditions 
stated above, before Eq. (47), the matrix Hb also has same 
dominant eigenvector and same eigenvalue as H. Remaining 
eigenvalues and eigenvectors, however, are different.

Other eigenvalues of H and Hb are also of interest. They 
determine the rate at  which  the  fundamental  mode  gets  
established.   As  noted  earlier,  if  ℜ(νi)  < 0, i = 1, 2, ..N  
then all these modes decay while if ℜ(νi) > 0 for some i, then 
that mode also grows. In that case the eigenvalue separation 
ν1 (νi), between the fundamental eigenvalue and the particular 
eigenvalue is an important parameter. This parameter determines 
if the fundamental mode gets established before the non-linear 
effects become significant.

Before leaving this section we observe that main advantage of 
the above analysis is theoretical.  By analysing initial phase 
of the epidemic we can iden- tify some characteristics of 

the solutions that can help us to decide which model fits the, 
observed data better. Thus e.g. we can find the influence of 
allowing movement of susceptible population in addition to that 
of infected people. We also expect that the relative proportion of 
infections in different regions will be similar to the fundamental 
mode, even when non-linear effects become im- portant, 
whatever be the initial distribution.  In fact powerful computer 
codes are available that yield accurate numerical solutions of the 
coupled differential equations. The role of perturbation methods 
for obtaining numerical results is limited.

4.1 Two Region Problem
We now apply above considerations to a simple two region 
problem. Since there are only two regions, people going out of 
region 1 are only going to region 2. Thus ξ2,1 = ξ1, ξ1,2 = ξ2. It 
is seen that in this case η1,2 = η2,1 = 0 and ζ2

1 = ξ2
1, ζ

2
2 = ξ2

2. To 
simplify the problem still further we will assume β1,1 = β1,2 = β2,2 
= β and γ1 = γ2 = γ. We will also assume that the initial susceptible 
populations in two regions are equal i.e. 1,0 = S2,0 = S0. Eqs. (7) 
and (8) then take a simple form
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Other eigenvalues of H and Hb are also of interest. They determine the rate
at which the fundamental mode gets established. As noted earlier, if ℜ(νi) <
0, i = 1, 2, ..N then all these modes decay while if ℜ(νi) > 0 for some i, then that
mode also grows. In that case the eigenvalue separation ν1−ℜ(νi), between the
fundamental eigenvalue and the particular eigenvalue is an important parameter.
This parameter determines if the fundamental mode gets established before the
non-linear effects become significant.

Before leaving this section we observe that main advantage of the above
analysis is theoretical. By analysing initial phase of the epidemic we can iden-
tify some characteristics of the solutions that can help us to decide which model
fits the, observed data better. Thus e.g. we can find the influence of allowing
movement of susceptible population in addition to that of infected people. We
also expect that the relative proportion of infections in different regions will
be similar to the fundamental mode, even when non-linear effects become im-
portant, whatever be the initial distribution. In fact powerful computer codes
are available that yield accurate numerical solutions of the coupled differential
equations. The role of perturbation methods for obtaining numerical results is
limited.

4 Two Region Problem

We now apply above considerations to a simple two region problem. Since there
are only two regions, people going out of region 1 are only going to region
2. Thus ξ2,1 = ξ1, ξ1,2 = ξ2. It is seen that in this case η1,2 = η2,1 = 0
and ζ21 = ξ21 , ζ

2
2 = ξ22 . To simplify the problem still further we will assume

β1,1 = β1,2 = β2,2 = β and γ1 = γ2 = γ. We will also assume that the initial
susceptible populations in two regions are equal i.e. S1,0 = S2,0 = S0. Eqs. (7)
and (8) then take a simple form

dS1

dt
= −βS1(t)

[
[(1− ξ1)

2 + ξ21 ]M1 + {ξ1 + ξ2 − 2ξ1ξ2}M2

]

dS2

dt
= −βS2(t)

[
{ξ1 + ξ2 − 2ξ1ξ2}M1 + [(1− ξ2)

2 + ξ22 ]M2

]
(49)

dM1

dt
= βS1(t)

[
[(1− ξ1)

2 + ξ21 ]M1 + {ξ1 + ξ2 − 2ξ1ξ2}M2

]
− γM1

dM2

dt
= βS2(t)

[
{ξ1 + ξ2 − 2ξ1ξ2}M1 + [(1− ξ2)

2 + ξ22 ]M2

]
− γM2 (50)

We solve non-linear equations, Eq. (49) and (50) for S1(0) = S2(0) = S0 and
some initial values ofM1(0),M2(0) << S0. These numerical solutions provide us
the reference solutions against which we check our theoretical conclusions based
on the linearised model. It is seen that the Eqs. (49) and (50) are invariant with
respect to the transformation ξ1 → (1 − ξ1), ξ2 → (1 − ξ2). Numerical results
for any two cases corresponding to this transformation are identical.
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explicitlyMany details of the linearized model can be worked out analytically. The

matrices H and H+ Γ can be written down explicitly

H =

(
βS0[(1− ξ1)

2 + ξ21 ]− γ βS0(ξ1 + ξ2 − 2ξ1ξ2)
βS0(ξ1 + ξ2 − 2ξ1ξ2) βS0[(1− ξ2)

2 + ξ22 ]− γ

)

H+ Γ = βS0

(
[(1− ξ1)

2 + ξ21 ] (ξ1 + ξ2 − 2ξ1ξ2)
(ξ1 + ξ2 − 2ξ1ξ2) [(1− ξ2)

2 + ξ22 ]

)
; = βS0

(
a b
b c

)

(51)
Matrix H is a real symmetric matrix. It has two real eigenvalues ν1, ν2 given
by the equation

ν1 = βS0
a+ c+ r

2
−γ; ν2 = βS0

a+ c− r

2
−γ; r =

√
(a− c)2 + 4b2 (52)

where the coefficients a, b, c are identified as the elements of the matrix H+ Γ
in Eq. (51). H has two real eigenvectors and the orthogonal matrix P (of
eigenvectors) and its inverse are given by

P =

√
2

r(r + c− a)

(
b − r+c−a

2
r+c−a

2 b

)
=

(
p0 −p1
p1 p0

)
; P−1 =

(
p0 p1
−p1 p0

)

(53)
Here p0, p1 are the components of the normalised fundamental eigenvector. The
eigenvalue ν1 > ν2 and the corresponding eigenvector is the fundamental mode.
In general the eigenvalues ν1, ν2 and corresponding eigenvectors depend on the
parameters ξ1, ξ2. These also conform to the transformation mentioned above.
However in case ξ1 = ξ2 = ξ we have ν1 = βS0 − γ, independent of ξ1, ξ2 while
ν2 = βS0(1−4ξ+4ξ2)−γ. In this case we have c = a and r = 2b. The matrices
P and P−1 then reduce to

P =

√
1

2

(
1 −1
1 1

)
; P−1 =

√
1

2

(
1 1
−1 1

)
(54)

Another interesting case is when ξ2 = (1 − ξ1). In this case the eigenvalue
ν1 = 2βS0[ξ

2
1 + ξ22 ]− γ > βS0 − γ and ν2 = −γ. The matrix P of eigenvectors

and its inverse P−1 are again given by Eq. (54). Thus the fundamental mode is
same as that for the case ξ1 = ξ2 but is attained earlier in time as the separation
of eigenvalues is larger.

If we consider the model (b) then we have the equations

dS3

dt
= −βS3(t)

[
(1− ξ1)M3 + ξ2M4

]

dS4

dt
= −βS4(t)

[
ξ1M3 + (1− ξ2)M4

]
(55)

dM3

dt
= βS3(t)

[
(1− ξ1)M3 + ξ2M4

]
− γM3
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matrix H + Γ in Eq. (51). H has two real eigenvectors and the 

orthogonal matrix P (of eigenvectors) and its inverse are given 
by

Many details of the linearized model can be worked out analytically. The
matrices H and H+ Γ can be written down explicitly

H =

(
βS0[(1− ξ1)

2 + ξ21 ]− γ βS0(ξ1 + ξ2 − 2ξ1ξ2)
βS0(ξ1 + ξ2 − 2ξ1ξ2) βS0[(1− ξ2)

2 + ξ22 ]− γ

)

H+ Γ = βS0

(
[(1− ξ1)

2 + ξ21 ] (ξ1 + ξ2 − 2ξ1ξ2)
(ξ1 + ξ2 − 2ξ1ξ2) [(1− ξ2)

2 + ξ22 ]

)
; = βS0

(
a b
b c

)

(51)
Matrix H is a real symmetric matrix. It has two real eigenvalues ν1, ν2 given
by the equation

ν1 = βS0
a+ c+ r

2
−γ; ν2 = βS0

a+ c− r

2
−γ; r =

√
(a− c)2 + 4b2 (52)

where the coefficients a, b, c are identified as the elements of the matrix H+ Γ
in Eq. (51). H has two real eigenvectors and the orthogonal matrix P (of
eigenvectors) and its inverse are given by

P =

√
2

r(r + c− a)

(
b − r+c−a

2
r+c−a

2 b

)
=

(
p0 −p1
p1 p0

)
; P−1 =

(
p0 p1
−p1 p0

)

(53)
Here p0, p1 are the components of the normalised fundamental eigenvector. The
eigenvalue ν1 > ν2 and the corresponding eigenvector is the fundamental mode.
In general the eigenvalues ν1, ν2 and corresponding eigenvectors depend on the
parameters ξ1, ξ2. These also conform to the transformation mentioned above.
However in case ξ1 = ξ2 = ξ we have ν1 = βS0 − γ, independent of ξ1, ξ2 while
ν2 = βS0(1−4ξ+4ξ2)−γ. In this case we have c = a and r = 2b. The matrices
P and P−1 then reduce to

P =

√
1

2

(
1 −1
1 1

)
; P−1 =

√
1

2

(
1 1
−1 1

)
(54)

Another interesting case is when ξ2 = (1 − ξ1). In this case the eigenvalue
ν1 = 2βS0[ξ

2
1 + ξ22 ]− γ > βS0 − γ and ν2 = −γ. The matrix P of eigenvectors

and its inverse P−1 are again given by Eq. (54). Thus the fundamental mode is
same as that for the case ξ1 = ξ2 but is attained earlier in time as the separation
of eigenvalues is larger.

If we consider the model (b) then we have the equations
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Here p0, p1 are the components of the normalised fundamental eigenvector. The
eigenvalue ν1 > ν2 and the corresponding eigenvector is the fundamental mode.
In general the eigenvalues ν1, ν2 and corresponding eigenvectors depend on the
parameters ξ1, ξ2. These also conform to the transformation mentioned above.
However in case ξ1 = ξ2 = ξ we have ν1 = βS0 − γ, independent of ξ1, ξ2 while
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Another interesting case is when ξ2 = (1 − ξ1). In this case the eigenvalue
ν1 = 2βS0[ξ

2
1 + ξ22 ]− γ > βS0 − γ and ν2 = −γ. The matrix P of eigenvectors

and its inverse P−1 are again given by Eq. (54). Thus the fundamental mode is
same as that for the case ξ1 = ξ2 but is attained earlier in time as the separation
of eigenvalues is larger.
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(1− ξ1)M3 + ξ2M4

]

dS4

dt
= −βS4(t)

[
ξ1M3 + (1− ξ2)M4

]
(55)

dM3

dt
= βS3(t)

[
(1− ξ1)M3 + ξ2M4

]
− γM3

14

Another interesting case is when ξ2 = (1 − ξ1). In this case the 
eigenvalue ν1 = 2βS0[ξ
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(
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Matrix H is a real symmetric matrix. It has two real eigenvalues ν1, ν2 given
by the equation

ν1 = βS0
a+ c+ r

2
−γ; ν2 = βS0

a+ c− r

2
−γ; r =

√
(a− c)2 + 4b2 (52)

where the coefficients a, b, c are identified as the elements of the matrix H+ Γ
in Eq. (51). H has two real eigenvectors and the orthogonal matrix P (of
eigenvectors) and its inverse are given by

P =

√
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(
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Here p0, p1 are the components of the normalised fundamental eigenvector. The
eigenvalue ν1 > ν2 and the corresponding eigenvector is the fundamental mode.
In general the eigenvalues ν1, ν2 and corresponding eigenvectors depend on the
parameters ξ1, ξ2. These also conform to the transformation mentioned above.
However in case ξ1 = ξ2 = ξ we have ν1 = βS0 − γ, independent of ξ1, ξ2 while
ν2 = βS0(1−4ξ+4ξ2)−γ. In this case we have c = a and r = 2b. The matrices
P and P−1 then reduce to

P =

√
1

2

(
1 −1
1 1

)
; P−1 =

√
1

2

(
1 1
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(54)

Another interesting case is when ξ2 = (1 − ξ1). In this case the eigenvalue
ν1 = 2βS0[ξ

2
1 + ξ22 ]− γ > βS0 − γ and ν2 = −γ. The matrix P of eigenvectors

and its inverse P−1 are again given by Eq. (54). Thus the fundamental mode is
same as that for the case ξ1 = ξ2 but is attained earlier in time as the separation
of eigenvalues is larger.

If we consider the model (b) then we have the equations

dS3

dt
= −βS3(t)

[
(1− ξ1)M3 + ξ2M4

]

dS4

dt
= −βS4(t)

[
ξ1M3 + (1− ξ2)M4

]
(55)
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[
(1− ξ1)M3 + ξ2M4

]
− γM3
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dM4

dt
= βS4(t)

[
ξ1M3 + (1− ξ2)M4

]
− γM4 (56)

in place of Eqs. (49) and (50). Linearised treatment deals with the matrix Hb

which in this case reduces to

Hb =

(
βS0(1− ξ1)− γ βS0ξ2

βS0ξ1 βS0(1− ξ2)− γ

)
(57)

The matrix Hb is not symmetric. It has two eigenvalues ν3 = βS0 − γ and
ν4 = βS0[1− (ξ1+ ξ2)]−γ. Its matrix of eigenvectors Pb is not orthogonal. Pb

and Pb
−1 are given by

Pb =

(
ξ2 −1
ξ1 1

)
Pb

−1 = (
1

ξ1 + ξ2
)

(
1 1

−ξ1 ξ2

)
(58)

Clearly the first eigenvalue ν3 > ν4 and the vector (ξ2, ξ1)
T is the fundamental

mode. It is interesting to note that the eigenvalue ν3 is independent of ξ1, ξ2,
but it is the second eigenvector that does not depend on these parameters.

4.1 Numerical Solutions

We solved non-linear equations, Eq. (49) and (50) on one hand and Eqs. (55)
and (56) on other using Mathematica for the initial conditions S1(0) = S2(0) =
S0 = 1.0 and two different initial values of M1(0),M2(0) << S0, namely (i)
M1(0) = M2(0) = 0.001 and (ii) M1(0) = 0.002,M2(0) = 0.0. We like to see
if the dominant mode comes into play or the non-linear effects prevent it from
getting established. We can resolve the initial distribution in two eigenvectors
of the matrix H, given by the two columns of the matrix P, Eq. (53), and write
down the zeroth order solution of the linearized model. Thus for the boundary
condition M1(0) = 0.002 (sometimes 0.0002), and M2(0) = 0.0 we have

M1(t) = M1(0)
[
p20e

ν1t + p21e
ν2t

]
; M2(t) = {M1(0)p0p1}

[
eν1t − eν2t

]
(59)

Likewise if we use the eigenvectors of Hb we have

M3(t) =
M3(0)

ξ1 + ξ2

[
ξ2e

ν3t + ξ1e
ν4t

]
; M4(t) =

M3(0)ξ1
ξ1 + ξ2

[
eν3t − eν4t

]
; (60)

We varied the parameters ξ1, ξ2 over a fairly wide range with values of
0.1, 0.3, 0.5, 0.7 and 0.9, considered three values of β = 0.15, 0.2, 0.25 but kept
γ = 0.1. We observe that the roles of two regions 1 and 2 are interchangeable.
We note that the solution of initial value problems governed by differential
equations is quite sensitive to the number of digits retained in computations.
We observed that retaining six digits in computations gives large errors in the
number of infected persons. If eight digits are retained in all computations, the
errors are still significant. Results reported in tables 4 - 8 were obtained with
retaining 16 digits in all computations.
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in place of Eqs. (49) and 50). Linearised treatment deals with the matrix Hb which in this case reduces to
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We note that the solution of initial value problems governed by differential
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The matrix Hb is not symmetric. It has two eigenvalues ν3 = βS0 − γ and ν4 = βS0[1−(ξ1 +ξ2)] − γ. Its matrix of eigenvectors Pb is 
not orthogonal. Pb and Pb

−1 are given by
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Clearly the first eigenvalue ν3 > ν4 and the vector (ξ2, ξ1)
T is the 

fundamental mode. It is interesting to note that the eigenvalue ν3 
is independent of ξ1, ξ2, but it is the second eigenvector that does 
not depend on these parameters.

4.2 Numerical Solutions
We solved non-linear equations, Eq. (49) and (50) on one hand 
and Eqs. (55) and (56) on other using Mathematica for the initial 
conditions S1(0) = S2(0) = S0 = 1.0 and two different initial values 

of M1(0), M2(0) << S0, namely (i) M1(0) = M2(0) = 0.001 and 
(ii) M1(0) = 0.002, M2(0) = 0.0. We like to see if the dominant 
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matrix P, Eq. (53), and write down the zeroth order solution of 
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mode. It is interesting to note that the eigenvalue ν3 is independent of ξ1, ξ2,
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We varied the parameters ξ1, ξ2 over a fairly wide range with values of
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We observed that retaining six digits in computations gives large errors in the
number of infected persons. If eight digits are retained in all computations, the
errors are still significant. Results reported in tables 4 - 8 were obtained with
retaining 16 digits in all computations.
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equations is quite sensitive to the number of digits retained in computations.
We observed that retaining six digits in computations gives large errors in the
number of infected persons. If eight digits are retained in all computations, the
errors are still significant. Results reported in tables 4 - 8 were obtained with
retaining 16 digits in all computations.
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0.15, 0.2, 0.25 but kept γ = 0.1. We observe that the roles of two 
regions 1 and 2 are interchangeable. We note that the solution 
of initial value problems governed by differential equations is 
quite sensitive to the number of digits retained in computations. 
We observed that retaining six digits in computations gives 
large errors in the number of infected persons. If eight digits 
are retained in all computations, the errors are still significant. 
Results reported in tables 4 - 8 were obtained with retaining 16 
digits in all computations.

We now discuss our numerical results and our inferences from 
them. In Ta- bles 1, 2 and 3 we present the eigenvalues ν1, ν2 
and the fundamental eigenvector of model (a) for various 
combinations of fractions ξ1 and ξ2. These tables corre- spond 
to three values of β (or βS0 as S0 = 1), namely 0.15, 0.2 and 0.25 
respec- tively. For model (b) the eigenvalues are ν3 = βS0 γ, ν4 
= βS0(1 ξ1 ξ2) γ and the fundamental eigenvector is (ξ2, ξ1)

T and 
hence are not listed separately. 

We see from these tables that the fundamental eigenvalue ν1 is 
positive while ν2 is always negative, except when ξ1, ξ2 both are 
small e.g. ξ1 = ξ2  = 0.1. Similarly ν3 > 0 and ν4 is generally  
negative.  Hence  only  the  fundamental mode grows with time 
while the second eigenvector decays. Further, ν1  ≥ ν3 This implies 
that the movement of Susceptible population leads to a more 
rapid growth of disease, compared to the case of movement of 
infected people (asymptomatic or otherwise) only. We also note 
that even a slight increase in ν1 (ν3 does not vary with ξ1, ξ2) leads 
to a substantial increase in the number of infections because of 

the exponential behaviour.

Eigenvalue separation (ν1−ν2) or (ν3−ν4) increases with βS0, 
being directly proportional to this parameter. This suggests 
that fundamental mode is estab- lished earlier for higher values 
of β. Variation of these two separations with ξ1, ξ2 is mixed. 
Sometimes we have (ν1 − ν2) > (ν3 − ν4) while at other times 
reverse is true. Thus in some cases fundamental mode is attained 
earlier for model (a) while in other cases model (b) reaches 
this equilibrium first. Numerical com- putations confirm these 
trends though non-linear effects, due to reduction of S1(t), S2(t), 
S3(t) and S4(t) from their initial value S0, also affect the results. 
Typically the linear model is a fair approximation  when  S1(t), 
S2(t), S3(t)  and S4(t) decrease only by a few percentage points 
from their initial value S0.

We present our results for some typical values of ξ1, ξ2 in tables 
4, 5, 6 and 7 for the smallest value of β  = 0.15 considered by us.  
It is in this case the fundamental mode is attained more slowly 
and is accompanied by a larger reduction of Si(t), i = 1, 2, 3, 4. 
Further we have chosen those cases when initial infections are 
all confined to region 1, while the fundamental mode predicts 
a much higher infections in region 2. Thus is a situation when 
non-linear effects are maximum during approach to equilibrium 
of linear models.

We begin by discussing table 4 where we tabulate S1(t), S2(t), S3(t) 
and S4(t) as well as M1(t), M2(t), M3(t) and M4(t) for ξ1 = 0.3, ξ2 = 
0.1 and t ∈ (0, 150) days for the initial conditions M1(0) = M3(0) 
= 0.002 and M2(0) = M4(0) =0.0. In this case the fundamental 
eigenvalue ν1 = 0.0590833 of model (a) is somewhat larger than 
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ν3 = 0.05 but the second eigenvalue ν2 = −0.0490833 is much 
lower than the eigenvalue ν4 = 0.01. Thus it takes longer for 
model (b) to attain equillibrium than model (a). Numerical results 
show that it takes about 60 days for the fundamental mode to be 
established for model (a), i.e. infections are distributed in two 
regions in proportion to the fundamental eigenvector. In this time 
the susceptible population S1(t), S2(t), decreases by about 6%, 
8% re- spectively. We see that at t = 60 the infected population 
M1(t) = 0.0197329 and M2(t) = 0.0272415. Their sum grows 
by a factor of 23.5 from its initial value of 0.002. However the 
zeroth order solution, Eq. (59), predicts M1(t) = 0.023181 and 
M2(t) = 0.032088. Clearly the zeroth order approximation is not 
a good measure of growth of the disease because of non-linear 
effects of reduction in S1(t), S2(t). In this interval about 4.2% of 
the population move to the ”Re- moved” group by recovery or 
death. The ratio M1(t)/M2(t) = 1.3805 at t = 60 though is closer 
to 1.413 predicted by fundamental eigenvector. For model (b) 
the infected population M3(t) = 0.00967471, M4(t) = 0.0247318 
at t = 60  does not compare well with their Eq. (60) estimate 
of 0.010866, 0.029305 respec- tively while the growth factor is 
17.2. The susceptible populations S3(t), S4(t) decrease by 3.24%, 
7.1% respectively. This is in conformity with the eigenvalue 
ν3  being somewhat less than ν1.The percentage of population 
that moves to Removed group in this time interval is 3.5%.  
The effect of larger second eigenvalue ν4 = −0.01 also shows 
up in the actual calculations.  The ratio M4(t)/M3(t) = 2.556 at 
t = 60 as against the value 3.0 predicted by the eigen-vector. 
This is partly due to slower decay of the second eigenvector 
and partly due to highly skewed fundamental eigenvector, 
three times in region 2 than in region 1. Reduction in S4(t) in 
this time interval also contributes. Overall we observe that the 
movements of susceptible increases the infections significantly, 
though not by an order of magnitude. It also leads to more even 
spatial dis- tribution of fundamental mode.  Further this relative 
proportion of two regions is maintained much longer, beyond 
the applicability of linearized model. This suggests that one need 
not solve for different initial distributions of infected people. It is 
sufficient to consider initial distribution as given by fundamental 
mode.

Above conclusions are corroborated by comparing them with 
results for the initial conditions M1(0) = 0.0002, M2(0) = 0.0 in 
table 5. Since the initial infec- tions are an order of magnitude 
less, the non-linear effects are much less than in table 4.  Thus at 
t = 60 the susceptible populations S1(t), S2(t), S3(t) and S4(t) all 
reduce by less than 1%. It is now seen that M1(t) = 0.00227942, 
M2(t) = 0.00320050 are much closer to their Eq. (59) estimates 
of 0.0023181, 0.0032088 and the ratio M2(t)/M1(t) = 1.404 is 
much closer to theoretical value 1.413. However, more glaring 
difference is in the results of model (b). The ratio M4(t)/M3(t) = 
2.681 is higher than previos value of 2.556 at t = 60 and is still 
increasing with time. The value of this ratio 2.850 at t = 80, is 
still less than theoretical value 3.0. This is because of the slower 
decay of second eigenvector as ν4 = 0.01. At t = 60, the values 
M3(t) = 0.00107362 and M4(t) = 0.0028791 are close to their 
zeroth order estimates.  Comparing the results of tables 4 and 5 
we conclude that if the initial infections are high then non-linear 
effects come into play earlier and interfere with the settling of 
fundamental mode. In that case the solution will depend on the 
initial locations of infections.  However if the epidemic starts 

from small initial infections, then its future growth is largely 
determined by the fundamental eigenvector and the initial 
location of outbreak has less significance.

We next discuss the case ξ1 = ξ2 = 0.3 in table 6. In this case 
the funda- mental eigenvalues ν1 = ν3 = 0.05 and hence the 
epidemic grows at the same rate for both models (a) and (b). 
Further the two eigenvectors are identical for both models, 
the fundamental mode is symmetric in regions 1 and (2) while 
the second eigenvector is antisymmetric. The eigenvalue ν2 = 
−0.076 is less than ν4 =  0.04 and hence the antisymmetric mode 
decays faster for model (a) than model (b). For both the models 
this second eigenmode decays faster than in previous tables 4 
and 5 and the fundamental mode is nearly estab- lished by t = 
50. The results show that indeed M1(t) = 0.0113069, M2(t) = 
0.0112707 are nearly equal to one another at this time and are 
quite close to M3(t) = 0.0113959, M4(t) = 0.011176.  Their  zeroth  
order  estimates,  Eqs. (59) and (60), are M1(t) = 0.01220486, 
M2(t) = 0.01216012 and M3(t)  = 0.0123178, M4(t) = 0.0120472 
are much higher because of neglecting decrease in S1(t), S2(t), 
S3(t) and S4(t). If we reduce the initial infections to 0.0002, the 
reduction in S1(t), S2(t), S3(t) and S4(t) is less than 1% and the 
observed values of M1(t), M2(t), M3(t), M4(t) are much closer to 
their linearized estimates.

In previous cases the fundamental eigenvector for both models 
(a) and (b) are of similar nature. In table 4 it is greater in region 2 
while in table 6 it is equal in both regions. Moreover the second 
eigenvector decayed faster in model (a) than in model (b). We 
now present a case where this eigenvector is higher in region 
2 for model (a) while it is greater in region 1 for model (b). In 
table 7 we consider the case β = 0.15, ξ1 = 0.5, ξ2 = 0.7 and the 
eigenvalues ν1 = 0.0562396 > ν3 = 0.05 and ν2 = −0.09424 > ν4 
= −0.13. Sharper decrease in ν4 implies that model (b) assumes 
equilibrium earlier than model (a). The fundamental eigenvector 
of model (a) assumes a value in region 2 which is 1.0832 times its 
value in region 1 while for model (b) its value in region 1 is 1.4 
times that in region 2. Results of table 7 show that both models 
attain equilibrium by t = 40 the ratios M2(t)/M1(t) = 1.0765, M3(t)/
M4(t) = 1.397 compare well those given by eigenvectors. The 
table shows that M1(t) = 0.0083692, M2(t) = 0.00900517 while 
M3(t) = 0.00827582, M4(t) = 0.00592471 at this time. The zeroth 
order linearized model, Eqs. (59) and (60) predict higher values 
M1(t) = 0.00875241, M2(t) = 0.0094306 and M3(t) = 0.009116, 
M4(t) = 0.0056621 because of slight reduction in susceptible 
populations during this interval. Fraction of people moving 
into Removed group is 0.0127318, 0.0137038 and 0.0132832, 
0.0098403 respectively. There is an apparent mismatch  between  
actual  M4(t)  value  being higher than zeroth order estimate. 
This is observed for all t < 40 and disappears by t = 50 and is 
accompanied by significantly lower computed M3(t) compared 
to its zeroth estimate.

Lastly we observe that if the interaction between the regions is 
small, each region will evolve almost independently and thhe 
fundamental mode will hardly ever set in. In table 8 we present 
the results for the case β = 0.15, ξ1 = ξ2 = 0.1 with reduced initial 
conditions M1(0) = 0.0002, M2(0) = 0.0 so  as  to  minimize 
the non-linear effects. Fundamental mode is symmetric in two 
regions for both the models (a) and (b) and so are the eigenvalues 
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ν1 = ν3 = 0.05. The second eigenvector is antisymmetric with ν2 
= −0.004, small but negative, while ν4 = 0.02 is positive. Table 8 
shows that M1(t) ≈ M2(t) only by t = 100 when they differ by less 
than 1%. By this time S1(t), S2(t) reduce by nearly 4%. Model 

(b) results show that there are more than 1% difference between 
M3(t) and M4(t) even for t = 160, suggesting that fundamental 
mode does not get established.

Table 1 Eigenvalues and Fundamental Eigenvector, Eqs. (52), (53) for β = 0.15

β ξ1 ξ2 ν1 ν2 p0 p1

0.15 0.1 0.1 0.05000000 -0.00400000 0.70710678 0.70710678
0.3 0.05908327 -0.04908327 0.81633943 0.57757246
0.5 0.07774643 -0.07974643 0.80770531 0.58958641
0.7 0.10562306 -0.09562306 0.76775173 0.64074744
0.9 0.14600000 -0.10000000 0.70710678 0.70710678

0.3 0.1 0.05908327 -0.04908327 0.57757246 0.81633943
0.3 0.05000000 -0.07600000 0.70710678 0.70710678
0.5 0.05623962 -0.09423962 0.73476024 0.67832690
0.7 0.07400000 -0.10000000 0.70710678 0.70710678
0.9 0.10562306 -0.09562306 0.64074744 0.76775173

0.5 0.1 0.07774643 -0.07974643 0.58958641 0.80770531
0.3 0.05623962 -0.09423962 0.67832690 0.73476024
0.5 0.05000000 -0.10000000 0.70710678 0.70710678
0.7 0.05623962 -0.09423962 0.67832690 0.73476024
0.9 0.07774643 -0.07974643 0.58958641 0.80770531

0.7 0.1 0.10562306 -0.09562306 0.64074744 0.76775173
0.3 0.07400000 -0.10000000 0.70710678 0.70710678
0.5 0.05623962 -0.09423962 0.73476024 0.67832690
0.7 0.05000000 -0.07600000 0.70710678 0.70710678
0.9 0.05908327 -0.04908327 0.57757246 0.81633943

0.9 0.1 0.14600000 -0.10000000 0.70710678 0.70710678
0.3 0.10562306 -0.09562306 0.76775173 0.64074744
0.5 0.07774643 -0.07974643 0.80770531 0.58958641
0.7 0.05908327 -0.04908327 0.81633943 0.57757246
0.9 0.05000000 -0.00400000 0.70710678 0.70710678

Table 2 Eigenvalues and Fundamental Eigenvector, Eqs. (52), (53) for β = 0.20

β ξ1 ξ2 ν1 ν2 p0 p1

0.20 0.1 0.1 0.10000000 0.02800000 0.70710678 0.70710678
0.3 0.11211103 -0.03211103 0.81633943 0.57757246
0.5 0.13699524 -0.07299524 0.80770531 0.58958641
0.7 0.17416408 -0.09416408 0.76775173 0.64074744
0.9 0.22800000 -0.10000000 0.70710678 0.70710678

0.3 0.1 0.11211103 -0.03211103 0.57757246 0.81633943
0.3 0.10000000 -0.06800000 0.70710678 0.70710678
0.5 0.10831949 -0.09231949 0.73476024 0.67832690
0.7 0.13200000 -0.10000000 0.70710678 0.70710678
0.9 0.17416408 -0.09416408 0.64074744 0.76775173

0.5 0.1 0.13699524 -0.07299524 0.58958641 0.80770531
0.3 0.10831949 -0.09231949 0.67832690 0.73476024
0.5 0.10000000 -0.10000000 0.70710678 0.70710678
0.7 0.10831949 -0.09231949 0.67832690 0.73476024
0.9 0.13699524 -0.07299524 0.58958641 0.80770531

0.7 0.1 0.17416408 -0.09416408 0.64074744 0.76775173
0.3 0.13200000 -0.10000000 0.70710678 0.70710678
0.5 0.10831949 -0.09231949 0.73476024 0.67832690
0.7 0.10000000 -0.06800000 0.70710678 0.70710678
0.9 0.11211103 -0.03211103 0.57757246 0.81633943

0.9 0.1 0.22800000 -0.10000000 0.70710678 0.70710678
0.3 0.17416408 -0.09416408 0.76775173 0.64074744
0.5 0.13699524 -0.07299524 0.80770531 0.58958641
0.7 0.11211103 -0.03211103 0.81633943 0.57757246
0.9 0.10000000 0.02800000 0.70710678 0.70710678
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Table 3 Eigenvalues and Fundamental Eigenvector, Eqs. (52), (53) for β = 0.25

β ξ1 ξ2 ν1 ν2 p0 p1

0.25 0.1 0.1 0.15000000 0.06000000 0.70710678 0.70710678
0.3 0.16513878 -0.01513878 0.81633943 0.57757246
0.5 0.19624405 -0.06624405 0.80770531 0.58958641
0.7 0.24270510 -0.09270510 0.76775173 0.64074744
0.9 0.31000000 -0.10000000 0.70710678 0.70710678

0.3 0.1 0.16513878 -0.01513878 0.57757246 0.81633943
0.3 0.15000000 -0.06000000 0.70710678 0.70710678
0.5 0.16039936 -0.09039936 0.73476024 0.6783269
0.7 0.19000000 -0.10000000 0.70710678 0.70710678
0.9 0.24270510 -0.09270510 0.64074744 0.76775173

0.5 0.1 0.19624405 -0.06624405 0.58958641 0.80770531
0.3 0.16039936 -0.09039936 0.67832690 0.73476024
0.5 0.15000000 -0.10000000 0.70710678 0.70710678
0.7 0.16039936 -0.09039936 0.67832690 0.73476024
0.9 0.19624405 -0.06624405 0.58958641 0.80770531

0.7 0.1 0.24270510 -0.09270510 0.64074744 0.76775173
0.3 0.19000000 -0.10000000 0.70710678 0.70710678
0.5 0.16039936 -0.09039936 0.73476024 0.6783269
0.7 0.15000000 -0.06000000 0.70710678 0.70710678
0.9 0.16513878 -0.01513878 0.57757246 0.81633943

0.9 0.1 0.31000000 -0.10000000 0.70710678 0.70710678
0.3 0.24270510 -0.09270510 0.76775173 0.64074744
0.5 0.19624405 -0.06624405 0.80770531 0.58958641
0.7 0.16513878 -0.01513878 0.81633943 0.57757246
0.9 0.15000000 0.06000000 0.70710678 0.70710678

Table 4 Solution of Eqs. (49), (50) and (55), (56) WorkingPrecision 16
β = 0.15, ξ1 = 0.3, ξ2 = 0.1,M1(0) = M3(0) = 0.002,M2(0) = M4(0) = 0

t S1 (t) S2 (t) S3 (t) S4 (t) M1 (t) M2 (t) M3 (t) M4 (t)
0 1.00000 1.00000 1.00000 1.00000 0.002000 0.*10∧-9 0.002000 0.*10∧-9
10 0.99777 0.99791 0.99762 0.99788 0.002156 0.001247 0.002232 0.001262
20 0.99439 0.99389 0.99468 0.99371 0.002926 0.003062 0.002685 0.003153
30 0.98891 0.98658 0.99078 0.98620 0.004661 0.005910 0.003499 0.006061
40 0.97946 0.97353 0.98519 0.97337 0.007907 0.010683 0.004886 0.010569
50 0.96317 0.95099 0.97689 0.95259 0.013450 0.018478 0.007120 0.017277
60 0.93712 0.91519 0.96479 0.92137 0.021996 0.030203 0.010456 0.026620
70 0.89715 0.86125 0.94725 0.87682 0.033961 0.046046 0.015150 0.038536
80 0.84195 0.78874 0.92305 0.81865 0.047972 0.063601 0.021078 0.051531
90 0.77468 0.70352 0.89205 0.75023 0.060626 0.077920 0.027559 0.062905
100 0.70283 0.61622 0.85521 0.67674 0.067981 0.084064 0.033632 0.069997
110 0.63520 0.53780 0.81504 0.60564 0.067659 0.080163 0.037973 0.070801
120 0.57810 0.47432 0.77458 0.54268 0.060985 0.069138 0.039670 0.065588
130 0.53319 0.42636 0.73682 0.49055 0.050441 0.054581 0.038681 0.056568
140 0.50012 0.39233 0.70344 0.44941 0.038823 0.040287 0.035455 0.045754
150 0.47723 0.36961 0.67525 0.41809 0.028200 0.028570 0.030857 0.035333
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β ξ1 ξ2 ν1 ν2 p0 p1

0.25 0.1 0.1 0.15000000 0.06000000 0.70710678 0.70710678
0.3 0.16513878 -0.01513878 0.81633943 0.57757246
0.5 0.19624405 -0.06624405 0.80770531 0.58958641
0.7 0.24270510 -0.09270510 0.76775173 0.64074744
0.9 0.31000000 -0.10000000 0.70710678 0.70710678

0.3 0.1 0.16513878 -0.01513878 0.57757246 0.81633943
0.3 0.15000000 -0.06000000 0.70710678 0.70710678
0.5 0.16039936 -0.09039936 0.73476024 0.6783269
0.7 0.19000000 -0.10000000 0.70710678 0.70710678
0.9 0.24270510 -0.09270510 0.64074744 0.76775173

0.5 0.1 0.19624405 -0.06624405 0.58958641 0.80770531
0.3 0.16039936 -0.09039936 0.67832690 0.73476024
0.5 0.15000000 -0.10000000 0.70710678 0.70710678
0.7 0.16039936 -0.09039936 0.67832690 0.73476024
0.9 0.19624405 -0.06624405 0.58958641 0.80770531

0.7 0.1 0.24270510 -0.09270510 0.64074744 0.76775173
0.3 0.19000000 -0.10000000 0.70710678 0.70710678
0.5 0.16039936 -0.09039936 0.73476024 0.6783269
0.7 0.15000000 -0.06000000 0.70710678 0.70710678
0.9 0.16513878 -0.01513878 0.57757246 0.81633943

0.9 0.1 0.31000000 -0.10000000 0.70710678 0.70710678
0.3 0.24270510 -0.09270510 0.76775173 0.64074744
0.5 0.19624405 -0.06624405 0.80770531 0.58958641
0.7 0.16513878 -0.01513878 0.81633943 0.57757246
0.9 0.15000000 0.06000000 0.70710678 0.70710678

Table 4 Solution of Eqs. (49), (50) and (55), (56) WorkingPrecision 16
β = 0.15, ξ1 = 0.3, ξ2 = 0.1,M1(0) = M3(0) = 0.002,M2(0) = M4(0) = 0

t S1 (t) S2 (t) S3 (t) S4 (t) M1 (t) M2 (t) M3 (t) M4 (t)
0 1.00000 1.00000 1.00000 1.00000 0.002000 0.*10∧-9 0.002000 0.*10∧-9
10 0.99777 0.99791 0.99762 0.99788 0.002156 0.001247 0.002232 0.001262
20 0.99439 0.99389 0.99468 0.99371 0.002926 0.003062 0.002685 0.003153
30 0.98891 0.98658 0.99078 0.98620 0.004661 0.005910 0.003499 0.006061
40 0.97946 0.97353 0.98519 0.97337 0.007907 0.010683 0.004886 0.010569
50 0.96317 0.95099 0.97689 0.95259 0.013450 0.018478 0.007120 0.017277
60 0.93712 0.91519 0.96479 0.92137 0.021996 0.030203 0.010456 0.026620
70 0.89715 0.86125 0.94725 0.87682 0.033961 0.046046 0.015150 0.038536
80 0.84195 0.78874 0.92305 0.81865 0.047972 0.063601 0.021078 0.051531
90 0.77468 0.70352 0.89205 0.75023 0.060626 0.077920 0.027559 0.062905
100 0.70283 0.61622 0.85521 0.67674 0.067981 0.084064 0.033632 0.069997
110 0.63520 0.53780 0.81504 0.60564 0.067659 0.080163 0.037973 0.070801
120 0.57810 0.47432 0.77458 0.54268 0.060985 0.069138 0.039670 0.065588
130 0.53319 0.42636 0.73682 0.49055 0.050441 0.054581 0.038681 0.056568
140 0.50012 0.39233 0.70344 0.44941 0.038823 0.040287 0.035455 0.045754
150 0.47723 0.36961 0.67525 0.41809 0.028200 0.028570 0.030857 0.035333
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Table 4: Solution of Eqs. (49), (50) and (55), (56) WorkingPrecision 16 β = 0.15, ξ1 = 0.3, ξ2 = 0.1,M1(0) = M3(0) = 0.002,M2(0) 
= M4(0) = 0

Table 5 Solution of Eqs. (49), (50) and (55), (56) WorkingPrecision 16
β = 0.15, ξ1 = 0.3, ξ2 = 0.1,M1(0) = M3(0) = 0.0002,M2(0) = M4(0) = 0

t S1 (t) S2 (t) S3 (t) S4 (t) M1 (t) M2 (t) M3 (t) M4 (t)
0 1.00000000 1.00000000 1.00000000 1.00000000 0.00020000 0.*10∧-22 0.00020000 0.*10∧-22
10 0.99980167 0.99983341 0.99977424 0.99983653 0.00020203 0.00011253 0.00021814 0.00011158
20 0.99950776 0.99948758 0.99949774 0.99947169 0.00026723 0.00027191 0.00025859 0.00028476
30 0.99901686 0.99883639 0.99912866 0.99878474 0.00042256 0.00053240 0.00033473 0.00056006
40 0.99815667 0.99764712 0.99859928 0.99757749 0.00072480 0.00098442 0.00046851 0.00100328
50 0.99662560 0.99550123 0.99779982 0.99552731 0.00128060 0.00178407 0.00069566 0.00172033
60 0.99389463 0.99165929 0.99655295 0.99211504 0.00227942 0.00320050 0.00107362 0.00287891
70 0.98904889 0.98484493 0.99457511 0.98652054 0.00404505 0.00568595 0.00169314 0.00473734
80 0.98055576 0.97293781 0.99142104 0.97748614 0.00710092 0.00995806 0.00269312 0.00767491
90 0.96599794 0.95265248 0.98641304 0.96317675 0.01221130 0.01703052 0.00427556 0.01220230
100 0.94197188 0.91952689 0.97857176 0.94113302 0.02027469 0.02800171 0.00670828 0.01889891
110 0.90465623 0.86895825 0.96660053 0.90852859 0.03182571 0.04326612 0.01028826 0.02818329
120 0.85169824 0.79904349 0.94902513 0.86302108 0.04599567 0.06106886 0.01522333 0.03983967
130 0.78505184 0.71417803 0.92460784 0.80425743 0.05960611 0.07663777 0.02141055 0.05244321
140 0.71210806 0.62534263 0.89302185 0.73529740 0.06809916 0.08420260 0.02819839 0.06326605
150 0.64262529 0.54474330 0.85544970 0.66248052 0.06855830 0.08123850 0.03437389 0.06930110
160 0.58383435 0.47969771 0.81456679 0.59313751 0.06171852 0.07011592 0.03857092 0.06897278
170 0.53830121 0.43137480 0.77373870 0.53275108 0.05080277 0.05552027 0.03990701 0.06298839
180 0.50508325 0.39730004 0.73593719 0.48367491 0.03910810 0.04131850 0.03835699 0.05359563
190 0.48175403 0.37399212 0.70304751 0.44567718 0.02869274 0.02946602 0.03461726 0.04319717
200 0.46575091 0.35831738 0.67578403 0.41716732 0.02035415 0.02042420 0.02967509 0.03347375
210 0.45493150 0.34787365 0.65399124 0.39618166 0.01410647 0.01389592 0.02442325 0.02524126
220 0.44768270 0.34095062 0.63703030 0.38090347 0.00962123 0.00934148 0.01947711 0.01869083
230 0.44285406 0.33637438 0.62408313 0.36984631 0.00649050 0.00623184 0.01516379 0.01368038
240 0.43964946 0.33335409 0.61433719 0.36186703 0.00434572 0.00413724 0.01159351 0.00994232
250 0.43752792 0.33136252 0.60707476 0.35611539 0.00289477 0.00273834 0.00874416 0.00719639

Table 6 Solution of Eqs. (49), (50) and (55), (56) WorkingPrecision 16
β = 0.15, ξ1 = 0.3, ξ2 = 0.3,M1(0) = M3(0) = 0.002,M2(0) = M4(0) = 0

t S1 (t) S2 (t) S3 (t) S4 (t) M1 (t) M2 (t) M3 (t) M4 (t)
0 1.00000 1.00000 1.00000 1.00000 0.002000 0.*10∧-9 0.002000 0.*10∧-9
10 0.99759 0.99791 0.99729 0.99822 0.002245 0.0012488 0.002436 0.001058
20 0.99395 0.99444 0.99339 0.99500 0.003132 0.0027082 0.003372 0.002467
30 0.98822 0.98875 0.98746 0.98951 0.004940 0.0046317 0.005082 0.004487
40 0.97898 0.97948 0.97809 0.98039 0.007945 0.007571 0.007948 0.007564
50 0.96427 0.96473 0.96330 0.96572 0.012558 0.0121169 0.012450 0.012219
60 0.94210 0.94256 0.94108 0.94354 0.019160 0.018778 0.019015 0.018905
70 0.90961 0.91011 0.90861 0.91101 0.028073 0.027891 0.027968 0.027965
80 0.86521 0.86572 0.86428 0.86654 0.038904 0.038877 0.038758 0.038849
90 0.80939 0.80988 0.80908 0.81113 0.050091 0.050115 0.049652 0.049820
100 0.74572 0.74616 0.74593 0.74773 0.059046 0.059079 0.058509 0.058728
110 0.68022 0.68061 0.68097 0.68252 0.063233 0.063272 0.062732 0.062973
120 0.61940 0.61976 0.62033 0.62165 0.061695 0.061736 0.061328 0.061559
130 0.56720 0.56752 0.56831 0.56945 0.055416 0.055453 0.055420 0.055621
140 0.52527 0.52556 0.52623 0.52722 0.046401 0.046432 0.046518 0.046679
150 0.49348 0.49375 0.49408 0.49498 0.036652 0.036676 0.036865 0.036987
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Table 5: Solution of Eqs. (49), (50) and (55), (56) WorkingPrecision 16 β = 0.15, ξ1 = 0.3, ξ2 = 0.1,M1(0) = M3(0) = 0.0002,M2(0) 
= M4(0) = 0
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90 0.96599794 0.95265248 0.98641304 0.96317675 0.01221130 0.01703052 0.00427556 0.01220230
100 0.94197188 0.91952689 0.97857176 0.94113302 0.02027469 0.02800171 0.00670828 0.01889891
110 0.90465623 0.86895825 0.96660053 0.90852859 0.03182571 0.04326612 0.01028826 0.02818329
120 0.85169824 0.79904349 0.94902513 0.86302108 0.04599567 0.06106886 0.01522333 0.03983967
130 0.78505184 0.71417803 0.92460784 0.80425743 0.05960611 0.07663777 0.02141055 0.05244321
140 0.71210806 0.62534263 0.89302185 0.73529740 0.06809916 0.08420260 0.02819839 0.06326605
150 0.64262529 0.54474330 0.85544970 0.66248052 0.06855830 0.08123850 0.03437389 0.06930110
160 0.58383435 0.47969771 0.81456679 0.59313751 0.06171852 0.07011592 0.03857092 0.06897278
170 0.53830121 0.43137480 0.77373870 0.53275108 0.05080277 0.05552027 0.03990701 0.06298839
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0 1.00000 1.00000 1.00000 1.00000 0.002000 0.*10∧-9 0.002000 0.*10∧-9
10 0.99759 0.99791 0.99729 0.99822 0.002245 0.0012488 0.002436 0.001058
20 0.99395 0.99444 0.99339 0.99500 0.003132 0.0027082 0.003372 0.002467
30 0.98822 0.98875 0.98746 0.98951 0.004940 0.0046317 0.005082 0.004487
40 0.97898 0.97948 0.97809 0.98039 0.007945 0.007571 0.007948 0.007564
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80 0.86521 0.86572 0.86428 0.86654 0.038904 0.038877 0.038758 0.038849
90 0.80939 0.80988 0.80908 0.81113 0.050091 0.050115 0.049652 0.049820
100 0.74572 0.74616 0.74593 0.74773 0.059046 0.059079 0.058509 0.058728
110 0.68022 0.68061 0.68097 0.68252 0.063233 0.063272 0.062732 0.062973
120 0.61940 0.61976 0.62033 0.62165 0.061695 0.061736 0.061328 0.061559
130 0.56720 0.56752 0.56831 0.56945 0.055416 0.055453 0.055420 0.055621
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Table 6: Solution of Eqs. (49), (50) and (55), (56) WorkingPrecision 16 β = 0.15, ξ1 = 0.3, ξ2 = 0.3,M1(0) = M3(0) = 0.002,M2(0) 
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Table 7 Solution of Eqs. (49), (50) and (55), (56) WorkingPrecision 16
β = 0.15, ξ1 = 0.5, ξ2 = 0.7,M1(0) = M3(0) = 0.002,M2(0) = M4(0) = 0

t S1 (t) S2 (t) S3 (t) S4 (t) M1 (t) M2 (t) M3 (t) M4 (t)
0 1.00000 1.00000 1.00000 1.00000 0.002000 0.*10∧-9 0.002000 0.*10∧-9
10 0.99768 0.99757 0.99753 0.99797 0.002179 0.001476 0.002203 0.001295
20 0.99380 0.99340 0.99299 0.99465 0.003256 0.003240 0.003522 0.002566
30 0.98725 0.98630 0.98577 0.98947 0.005642 0.005672 0.005874 0.004264
40 0.97602 0.97413 0.97456 0.98144 0.009773 0.009660 0.009495 0.006818
50 0.95718 0.95376 0.95699 0.96878 0.016256 0.016224 0.014971 0.010780
60 0.92782 0.92213 0.93030 0.94944 0.025570 0.026264 0.022888 0.016565
70 0.88399 0.87510 0.89172 0.92124 0.037825 0.040140 0.033446 0.024400
80 0.82464 0.81170 0.83966 0.88268 0.052079 0.055663 0.045902 0.033877
90 0.75320 0.73587 0.77532 0.83420 0.064875 0.068984 0.058118 0.043572
100 0.67753 0.65620 0.70365 0.77898 0.071918 0.075925 0.066962 0.051207
110 0.60693 0.58252 0.63197 0.72232 0.071133 0.074511 0.069852 0.054660
120 0.54724 0.52078 0.56802 0.67045 0.063610 0.066062 0.066617 0.053353
130 0.50058 0.47290 0.51423 0.62573 0.052293 0.053843 0.058912 0.048294
140 0.46628 0.43795 0.47097 0.58894 0.040193 0.041087 0.048815 0.040945
150 0.44213 0.41349 0.43776 0.56016 0.029401 0.029912 0.038426 0.032908

Table 8 Solution of Eqs. (49), (50) and (55), (56) WorkingPrecision 16
β = 0.15, ξ1 = 0.1, ξ2 = 0.1,M1(0) = M3(0) = 0.0002,M2(0) = M4(0) = 0

t S1 (t) S2 (t) S3 (t) S4 (t) M1 (t) M2 (t) M3 (t) M4 (t)
0 1.00000000 1.00000000 1.00000000 1.00000000 0.00020000 0.*10∧-23 0.00020000 0.*10∧-23
10 0.99971131 0.99989947 0.99967259 0.99993820 0.00026092 0.00006879 0.00028696 0.00004274
20 0.99930037 0.99966911 0.99918996 0.99977963 0.00036387 0.00017943 0.00042063 0.00012261
30 0.99868590 0.99922768 0.99846479 0.99944924 0.00053577 0.00035893 0.00062883 0.00026561
40 0.99773487 0.99844194 0.99735700 0.99882121 0.00082050 0.00065137 0.00095642 0.00051472
50 0.99623068 0.99709472 0.99564217 0.99768686 0.00128914 0.00112816 0.00147530 0.00094022
60 0.99382309 0.99483453 0.99296213 0.99570393 0.00205547 0.00190362 0.00229958 0.00165564
70 0.98995322 0.99110013 0.98875153 0.99231989 0.00329794 0.00315716 0.00360678 0.00284047
80 0.98374795 0.98501429 0.98213556 0.98666293 0.00528712 0.00516081 0.00566387 0.00476911
90 0.97389105 0.97525406 0.97180704 0.97740662 0.00840947 0.00830330 0.00884880 0.00783713
100 0.95851434 0.95994118 0.95592699 0.96265074 0.01315956 0.01308218 0.01363973 0.01255692
110 0.93523040 0.93667491 0.93216807 0.93994108 0.02003861 0.02000177 0.02051179 0.01945884
120 0.90153496 0.90293706 0.89812096 0.90666499 0.02926932 0.02928600 0.02965630 0.02880249
130 0.85581361 0.85710542 0.85228155 0.86107617 0.04030179 0.04038114 0.04050404 0.04006445
140 0.79880139 0.79992236 0.79545717 0.80381370 0.05137371 0.05151350 0.05131310 0.05146534
150 0.73451274 0.73542835 0.73163657 0.73890806 0.05975504 0.05993711 0.05942503 0.06019487
160 0.66937363 0.67008506 0.66711944 0.67293028 0.06301857 0.06321366 0.06250035 0.06371670
170 0.60971241 0.61024939 0.60808009 0.61240385 0.06047722 0.06065724 0.05989696 0.06127766
180 0.55952332 0.55992748 0.55840938 0.56146714 0.05342786 0.05357585 0.05289354 0.05418653
190 0.51995687 0.52026764 0.51922557 0.52132667 0.04412479 0.04423642 0.04369328 0.04475754
200 0.49016766 0.49041595 0.48969720 0.49112907 0.03459883 0.03467805 0.03428076 0.03508199
210 0.46842533 0.46863293 0.46812387 0.46910954 0.02610582 0.02615977 0.02588591 0.02645303
220 0.45287664 0.45305807 0.45268124 0.45337784 0.01915787 0.01919366 0.01901253 0.01939729
230 0.44190388 0.44206853 0.44177366 0.44228611 0.01378429 0.01380768 0.01369127 0.01394491
240 0.43422707 0.43438094 0.43413636 0.43453260 0.00978132 0.00979650 0.00972315 0.00988716
250 0.42888657 0.42903348 0.42881955 0.42914283 0.00687396 0.00688379 0.00683821 0.00694292

5 CONCLUSIONS

In this paper we have extended the SAIR model of spread of an epidemic to
a system comprising of many regions. Interaction between various regions is
described by the fraction of population of any region that is present in other re-
gions. We considered two models, one which allows for migration of Susceptible
and Aymptomatic groups and the other which confines Susceptible population
to their home region. We then developed ordinary differential equations that
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β = 0.15, ξ1 = 0.5, ξ2 = 0.7,M1(0) = M3(0) = 0.002,M2(0) = M4(0) = 0

t S1 (t) S2 (t) S3 (t) S4 (t) M1 (t) M2 (t) M3 (t) M4 (t)
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20 0.99380 0.99340 0.99299 0.99465 0.003256 0.003240 0.003522 0.002566
30 0.98725 0.98630 0.98577 0.98947 0.005642 0.005672 0.005874 0.004264
40 0.97602 0.97413 0.97456 0.98144 0.009773 0.009660 0.009495 0.006818
50 0.95718 0.95376 0.95699 0.96878 0.016256 0.016224 0.014971 0.010780
60 0.92782 0.92213 0.93030 0.94944 0.025570 0.026264 0.022888 0.016565
70 0.88399 0.87510 0.89172 0.92124 0.037825 0.040140 0.033446 0.024400
80 0.82464 0.81170 0.83966 0.88268 0.052079 0.055663 0.045902 0.033877
90 0.75320 0.73587 0.77532 0.83420 0.064875 0.068984 0.058118 0.043572
100 0.67753 0.65620 0.70365 0.77898 0.071918 0.075925 0.066962 0.051207
110 0.60693 0.58252 0.63197 0.72232 0.071133 0.074511 0.069852 0.054660
120 0.54724 0.52078 0.56802 0.67045 0.063610 0.066062 0.066617 0.053353
130 0.50058 0.47290 0.51423 0.62573 0.052293 0.053843 0.058912 0.048294
140 0.46628 0.43795 0.47097 0.58894 0.040193 0.041087 0.048815 0.040945
150 0.44213 0.41349 0.43776 0.56016 0.029401 0.029912 0.038426 0.032908

Table 8 Solution of Eqs. (49), (50) and (55), (56) WorkingPrecision 16
β = 0.15, ξ1 = 0.1, ξ2 = 0.1,M1(0) = M3(0) = 0.0002,M2(0) = M4(0) = 0

t S1 (t) S2 (t) S3 (t) S4 (t) M1 (t) M2 (t) M3 (t) M4 (t)
0 1.00000000 1.00000000 1.00000000 1.00000000 0.00020000 0.*10∧-23 0.00020000 0.*10∧-23
10 0.99971131 0.99989947 0.99967259 0.99993820 0.00026092 0.00006879 0.00028696 0.00004274
20 0.99930037 0.99966911 0.99918996 0.99977963 0.00036387 0.00017943 0.00042063 0.00012261
30 0.99868590 0.99922768 0.99846479 0.99944924 0.00053577 0.00035893 0.00062883 0.00026561
40 0.99773487 0.99844194 0.99735700 0.99882121 0.00082050 0.00065137 0.00095642 0.00051472
50 0.99623068 0.99709472 0.99564217 0.99768686 0.00128914 0.00112816 0.00147530 0.00094022
60 0.99382309 0.99483453 0.99296213 0.99570393 0.00205547 0.00190362 0.00229958 0.00165564
70 0.98995322 0.99110013 0.98875153 0.99231989 0.00329794 0.00315716 0.00360678 0.00284047
80 0.98374795 0.98501429 0.98213556 0.98666293 0.00528712 0.00516081 0.00566387 0.00476911
90 0.97389105 0.97525406 0.97180704 0.97740662 0.00840947 0.00830330 0.00884880 0.00783713
100 0.95851434 0.95994118 0.95592699 0.96265074 0.01315956 0.01308218 0.01363973 0.01255692
110 0.93523040 0.93667491 0.93216807 0.93994108 0.02003861 0.02000177 0.02051179 0.01945884
120 0.90153496 0.90293706 0.89812096 0.90666499 0.02926932 0.02928600 0.02965630 0.02880249
130 0.85581361 0.85710542 0.85228155 0.86107617 0.04030179 0.04038114 0.04050404 0.04006445
140 0.79880139 0.79992236 0.79545717 0.80381370 0.05137371 0.05151350 0.05131310 0.05146534
150 0.73451274 0.73542835 0.73163657 0.73890806 0.05975504 0.05993711 0.05942503 0.06019487
160 0.66937363 0.67008506 0.66711944 0.67293028 0.06301857 0.06321366 0.06250035 0.06371670
170 0.60971241 0.61024939 0.60808009 0.61240385 0.06047722 0.06065724 0.05989696 0.06127766
180 0.55952332 0.55992748 0.55840938 0.56146714 0.05342786 0.05357585 0.05289354 0.05418653
190 0.51995687 0.52026764 0.51922557 0.52132667 0.04412479 0.04423642 0.04369328 0.04475754
200 0.49016766 0.49041595 0.48969720 0.49112907 0.03459883 0.03467805 0.03428076 0.03508199
210 0.46842533 0.46863293 0.46812387 0.46910954 0.02610582 0.02615977 0.02588591 0.02645303
220 0.45287664 0.45305807 0.45268124 0.45337784 0.01915787 0.01919366 0.01901253 0.01939729
230 0.44190388 0.44206853 0.44177366 0.44228611 0.01378429 0.01380768 0.01369127 0.01394491
240 0.43422707 0.43438094 0.43413636 0.43453260 0.00978132 0.00979650 0.00972315 0.00988716
250 0.42888657 0.42903348 0.42881955 0.42914283 0.00687396 0.00688379 0.00683821 0.00694292

5 CONCLUSIONS

In this paper we have extended the SAIR model of spread of an epidemic to
a system comprising of many regions. Interaction between various regions is
described by the fraction of population of any region that is present in other re-
gions. We considered two models, one which allows for migration of Susceptible
and Aymptomatic groups and the other which confines Susceptible population
to their home region. We then developed ordinary differential equations that
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5. Conclusions
In this paper we have extended the SAIR model of spread 
of an epidemic to a system comprising of many regions. 
Interaction between various regions is described by the fraction 
of population of any region that is present in other re- gions. 
We considered two models, one which allows for migration 
of Susceptible and Aymptomatic groups and the other which 
confines Susceptible population to their home region. We then 

developed ordinary differential equations that describe the time 
evolution of Susceptible, Asymptomatic carriers, Infected and 
Removed groups of people of all the regions. It is noted that 
only half the equations are non-linear that are also coupled for 
different regions. Further in the initial stages of the evolution 
of disease, the number of infected and asymp- tomatic carriers 
is much smaller than the susceptible population. This allows us 
to treat these equations by expanding in a perturbation series 
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involving only linear equations in all orders of approximation. 
The zeroth order approximation yields a simple set of coupled, 
linear, first order ordinary differential equations involving a 
constant matrix of the interactions between various regions. 
We cast these equations in matrix form and note that same 
interaction matrix governs the evolution of all higher order 
terms, only the source terms are different. We then observed the 
crucial role played by the spectrum of this matrix and noted that 
a fundamental mode exists which grows much faster than other 
eigenvec- tors. This fundamental mode gets established if real 
part of other eigenvalues is sufficiently negative.  Future spatial 
and temporal evolution of the disease then is governed by the 
shape of this mode only and the location of initial outbreak does 
not have much significance. If some other modes also grow, 
though slower than the fundamental one,  then non-linear effects 
interfere with setting in of the dominant mode. It is noted that 
this is the case when the regions interact weakly with each other.

We then applied above analysis to a simple two region problem 
for which lot of work can be carried out analytically. We verified 
our theoretical conclusions and confirmed that restricting the 
movement even of susceptible population only does lead to a 
slower growth of the epidemic. It was also found that once the 
fundamental mode sets in, subsequent time evolution roughly 
maintains the spatial shape much longer, well beyond the 
applicability of linearized model.

An apparent limitation of this analysis is that the spread of 
disease during commute from one region to another is neglected. 
It is well known that every major city has a well-developed 
public transportation system where people come in close contact 
with each other. Likewise different cities and countries are 
linked through a travel network. This network makes a major 
contribution to spread of disease. It should be noted that this 
transport network can be regarded as another region with a 
population that equals the number of people normally using the 
network. The exchange of population from transport region to 
other regions and vice versa is high so that sum of people that go 
to (and from) other regions almost equals its entire population.
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