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Abstract
The maintenance and troubleshooting of ice and anti-ice systems in Boeing 737 aircraft are critical for ensuring safe 
operations in cold weather conditions. Ice accumulation on key components, such as wings, engines, and sensors, can lead 
to reduced aerodynamic performance, engine malfunctions, and sensor errors. Effective maintenance practices are necessary 
to minimize system failures that could contribute to accidents or incidents. This paper explores the primary environmental 
impacts, including the potential for icing to affect flight safety, and evaluates the effectiveness of current maintenance protocols 
in preventing system failures. Common troubleshooting techniques are discussed, emphasizing diagnostics and corrective 
actions to resolve issues like engine anti-ice valve malfunctions, wing anti-ice leaks, or sensor heating failures. The evaluation 
of past accidents and incidents involving Boeing 737 aircraft due to icerelated failures is analyzed to understand system 
vulnerabilities and improve maintenance procedures.  
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1. Introduction  
Aircraft icing is a critical safety concern in aviation, particularly for 
commercial aircraft like the Boeing 737. This phenomenon occurs 
when supercooled water droplets in clouds freeze upon contact 
with an aircraft's surfaces, potentially altering its aerodynamics 
and compromising flight performance. For the Boeing 737, 
one of the world's most widely used commercial aircraft, ice 
accumulation can significantly affect lift, increase drag, and reduce 
control surface effectiveness. These factors can lead to decreased 
fuel efficiency, reduced maneuverability, and in severe cases, loss 
of control. Consequently, ice protection systems are crucial for 
maintaining safe operations, especially during winter months or 
when flying through icing conditions at various altitudes. 

2. Primary Ice and Anti-Ice Systems on the Boeing 737 
The Boeing 737 employs several sophisticated ice and anti-ice 
systems to ensure safe operation in icing conditions. The wing 
anti-ice system, a critical component, utilizes hot bleed air from 
the engines to heat the leading edges of the wings and prevent 

ice formation. This system is typically activated before entering 
known icing conditions and operates by distributing hot air 
through piccolo tubes inside the wing's leading edge, maintaining 
surface temperatures above freezing. The engine anti-ice system 
similarly uses bleed air to heat the engine inlet cowl and nose cone, 
preventing ice buildup that could potentially damage the engine 
or reduce its performance. Complementing these primary systems, 
the Boeing 737 also features probe heat systems to protect vital 
sensors. These include pitot probes, static ports, and angle of 
attack vanes, all crucial for providing accurate airspeed, altitude, 
and attitude information. The probe heat systems use electrical 
resistance heating elements to maintain temperatures above 
freezing, ensuring these critical instruments remain ice-free and 
functional. Additionally, the 737 is equipped with ice detection 
systems that alert the flight crew to icing conditions, allowing for 
timely activation of anti-ice measures. Together, these systems 
form a comprehensive ice protection strategy, enabling the Boeing 
737 to operate safely in a wide range of atmospheric conditions. 
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Table 2: Temperature Range of the Highest Risk of Aircraft Icing

4. Impact of Ice Accumulation on Boeing 737 Performance 
Ice accumulation on a Boeing 737 can significantly degrade its 
aerodynamic performance, with potentially severe consequences 
for flight safety. The primary impact is on lift generation, where 
even a small amount of ice can disrupt the smooth airflow over 
the wings, leading to a reduction in lift coefficient. Studies have 
shown that ice accretion as thin as 0.8 mm on the leading edge 
can decrease lift by up to 25% and increase drag by 40%. For the 
Boeing 737, this translates to a higher stall speed and reduced 
climb performance, particularly critical during takeoff and landing 
phases. The increased drag also necessitates higher thrust settings 
to maintain airspeed, resulting in increased fuel consumption and 

reduced range. Control surface effectiveness is another crucial 
area affected by ice accumulation on the Boeing 737. Ice buildup 
on ailerons, elevators, and rudders can increase their weight and 
alter their aerodynamic properties, potentially leading to reduced 
responsiveness or even control surface lockup in severe cases. 
This can compromise the pilot's ability to maneuver the aircraft 
precisely, especially during critical phases of flight. Furthermore, 
ice accumulation on sensors such as pitot tubes and static ports 
can provide erroneous airspeed and altitude readings, potentially 
leading to incorrect flight control inputs. In the case of the Boeing 
737, which relies heavily on these sensors for its fly-by-wire 
system in newer models, accurate data is crucial for safe operation. 
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5. Evolution of Ice Protection Systems in the Boeing 737 Family 
The ice protection systems in the Boeing 737 family have 
undergone significant evolution since the aircraft's introduction in 
1967. Early models, such as the 737-100 and -200, relied primarily 
on pneumatic de-icing boots on the wing and tail leading edges, 
which inflated to break off accumulated ice. These systems, while 
effective, required careful timing and pilot intervention. The 
engine anti-ice system in these early variants used hot bleed air, 
a principle that has been retained but refined in later models. A 
major leap came with the introduction of the 737 Classic series 
(-300, -400, -500) in the 1980s, which saw the implementation of a 
more advanced thermal anti-ice system for the wings, using engine 
bleed air distributed through piccolo tubes.

The Next Generation (NG) series, introduced in the late 1990s, 
brought further refinements to the ice protection systems. These 
aircraft featured improved bleed air systems with enhanced 
efficiency and reliability. The 737 NG also introduced more 
sophisticated ice detection systems, allowing for earlier and more 
accurate identification of icing conditions. The latest iteration, the 
737 MAX, represents the pinnacle of ice protection technology in 
the 737 family. It incorporates advanced composite materials in 
its construction, which have different thermal properties compared 
to traditional aluminum, necessitating adjustments in the anti-
icing system design. The MAX also features a more electric 
architecture, with some systems that were previously pneumatic 
now being electrically powered, potentially improving overall 
system efficiency and reliability. 
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6. Maintenance Requirements for Boeing 737 Ice Protection 
Systems 
Maintenance of the Boeing 737's ice protection systems is crucial 
for ensuring their reliability and effectiveness. Routine inspections 
are typically conducted as part of the aircraft's regular maintenance 
checks, with more comprehensive examinations during A and C 
checks. These inspections include visual assessments of wing 
leading edges, engine inlets, and probes for signs of wear, 
damage, or contamination. Technicians also inspect pneumatic 
ducts, valves, and electrical connections associated with the anti-
ice systems. The frequency of these inspections is determined 
by the aircraft's maintenance program, which is based on flight 
hours, cycles, and calendar time. Component replacements are 
often performed on a condition-based or time-limited basis. For 

instance, probe heat elements may have specific replacement 
intervals based on operating hours or cycles. The wing anti-ice 
system's pneumatic valves and ducting are inspected for leaks 
and replaced if necessary. Engine anti-ice components, including 
valves and sensors, are typically replaced during engine overhauls 
or when they fail operational tests. System testing procedures are 
comprehensive and include functional checks of the ice detection 
system, verification of proper bleed air flow for wing and engine 
anti-ice, and electrical continuity tests for probe heating elements. 
These tests are often conducted using built-in test equipment 
(BITE) and external test sets to ensure all systems meet the 
required performance standards. 
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to ensure proper functionality, often involving simulated icing 
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8. Notable Icing-Related Incidents Involving Boeing 737 
Aircraft 
One of the most significant icing-related incidents involving a 
Boeing 737 occurred on January 13, 1982, when Air Florida Flight 
90 crashed shortly after takeoff from Washington National Airport. 
The investigation revealed that ice and snow accumulation 
on the wings and engines, combined with improper de-icing 
procedures, led to the accident. This incident highlighted the 
critical importance of proper ground de-icing procedures and led 
to significant improvements in pre-flight ice removal protocols. As 
a result, the aviation industry developed more stringent deicing 
standards, improved de-icing fluids, and enhanced training for 
ground crews and flight personnel on recognizing and addressing 
icing conditions before takeoff. 

Another notable incident occurred on November 4, 2014, when 
a Boeing 737-300 operated by Jet2 experienced a loss of control 
during approach to Belfast International Airport due to ice crystal 
icing. The aircraft encountered severe vibrations and temporary 
loss of thrust in both engines. This incident led to increased 
awareness of high-altitude ice crystal icing, a phenomenon not 
well understood at the time. Subsequent improvements included 
enhanced engine anti-ice systems designed to better handle 
ice crystal conditions, updated pilot training to recognize and 
respond to such scenarios, and revised operational procedures for 
flying in areas prone to high-altitude ice crystal formation. These 
changes have been incorporated into newer Boeing 737 models 
and retrofitted to older versions where applicable, significantly 
improving safety in challenging atmospheric conditions 
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9. Conclusion  
Ice and anti-ice systems play a pivotal role in ensuring the safety 
and operational efficiency of the Boeing 737 across diverse 
weather conditions and geographical locations. These systems 
are crucial for maintaining aerodynamic integrity, engine 
performance, and sensor functionality in icing conditions, which 
can occur from sea level to high altitudes and in various climates 
[1-17]. 

References
1. Connors, J. J. (2015). Icing and anti-icing systems in 

aviation. Aviation Publishers.
2. Ray, M. (2013). 737 systems overviews. Aviation Book 

Company. 
3. Hardin, J. C., &Brugemann, P. P. (2011). Airplane 

aerodynamics and performance in icing conditions. 
Academic Press. 

4. Newell, D. E., & Bennett, M. J. (2008). Aircraft maintenance 
and engineering guide for ice protection systems. Elsevier 
Aviation Press. 

5. Taylor, D. L. (2007). Transport aircraft ice protection 
systems. McGraw Hill Aviation. 

6. Boeing. (2023). Fleet team digest: Winter operations. Boeing 
Technical Publications. 

7. Carr, G. T. (2014). Ice and rain protection for commercial 
aircraft. Springer Aviation. 

8. Young, T. K. (2010). Fundamentals of aircraft maintenance 
engineering. Pearson. 

9. Federal Aviation Administration. (2021). Advisory circular 
AC 25-30: Ice protection standards. FAA. 



Eng OA, 2024 Volume 2 | Issue 5 | 7

Copyright: ©2024 Anahita Moghtadaei. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited.

https://opastpublishers.com/

10. Daniels, C. L., & Stanton, M. J. (2012). Preventative 
maintenance for ice systems in modern aircraft. Aviation 
Safety Institute. 

11. Gregory, S. L. (2018). Operational maintenance challenges 
for ice systems in Boeing aircraft. Aviation Technology 
Journal, 25(3), 215-230. 

12. Rodgers, L. J., & Stone, K. P. (2015). Safety enhancements 
in aircraft icing protection systems. Aviation Engineering 
Reviews, 18(7), 310-320. 

13. National Transportation Safety Board. (2020). Icing-related 
incidents in Boeing 737 aircraft. NTSB Reports Database. 

14. Stevens, J. T. (2017). Thermal ice protection system design 
and maintenance. Wiley Aerospace Publishing. 

15. Weaver, R. T., & Clarke, P. G. (2016). Pneumatic de-icing 
systems: Best practices. Journal of Aircraft Maintenance, 
22(4), 78-89. 

16. Ruyack, A. R. (2019). Alkali Metal-Based Transient 
Microsystems and Near-Zero Power Radio Receivers 
(Doctoral dissertation, Cornell University).

17. Boeing. (2022). Service bulletin 737-30A1064: Anti-ice 
system updates. Boeing Corporation. 

https://www.proquest.com/openview/6827660fc4a9517cc24af4f043af55b5/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/6827660fc4a9517cc24af4f043af55b5/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/6827660fc4a9517cc24af4f043af55b5/1?pq-origsite=gscholar&cbl=18750&diss=y

