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Abstract
Electrocardiography (ECG) has become a widely used noninvasive diagnostic tool, increasingly supported by algorithmic 
analysis. However, progress in automated ECG interpretation faces challenges due to the lack of adequate training datasets and 
standardized evaluation procedures, which are crucial to ensure comparability of algorithms. In this study, ECG classification 
models are proposed using the recently published PTB-XL dataset of 12 clinical leads. This research aims to overcome existing 
limitations by thoroughly investigating the performance of different deep learning-based classification algorithms. Specifically, 
we investigate the effectiveness of convolutional neural networks (CNNs), deep neural networks (DNNs), long short-term memory 
(LSTM) and U-net architectures in accurately classifying ECG signals. In addition, we explore the potential of reinforcement 
learning techniques using classifiers pre-trained on PTB-XL to further improve classification accuracy and robustness. This 
comprehensive analysis not only underscores the significant potential of deep learning algorithms in ECG analysis, but also 
highlights the importance of standardized datasets such as PTB-XL in advancing the field. By establishing PTB-XL as a key 
resource, this study aims to foster collaboration among researchers and encourage further contributions aimed at refining and 
extending the dataset to better serve the ECG analysis community.
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1. Introduction
Cardiovascular diseases (CVDs) rank among the leading causes of 
death worldwide second only to cancer in high-income countries 
[22,6]. Electrocardiography (ECG) is a non-invasive tool used 
to assess a patient’s overall heart health and serves as a crucial 
diagnostic tool for cardiovascular diseases. In the United States, 
approximately 5% of medical visits involve an ECG [5]. Despite 
its importance, interpreting ECGs is a challenging task, even for 
cardiologists, let alone residents, general practitioners or emergency 
physicians who must interpret ECGs in urgent situations [16,8]. 
Furthermore, the growing field of telemedicine, particularly ECG 
Holter monitoring, will further emphasize the need for advanced 
decision support systems based on automated ECG interpretation 
algorithms. Recent years have seen significant advancements in 
automated ECG interpretation algorithms, particularly those based 
on deep learning. These approaches have not only matched or 
surpassed cardiologist-level performance for certain tasks but have 
also enabled difficult-to-make statements at the cardiologist level, 
such as determining ECG diagnoses [3,9,4, 11 and 14]. 

The ease of data collection and reduced dimensionality compared 

to imaging data have also drawn the broader machine learning 
community towards ECG classification, as evidenced by numerous 
research articles each year, see for a recent review [10]. Significant 
advancements in computer vision, such as object recognition, were 
largely due to the availability of large datasets and the competitive 
nature of classification challenges with clear evaluation procedures. 
However, two major issues hinder the progression of ECG 
analysis: firstly, publicly accessible ECG datasets are generally 
small and the large datasets currently available remain inaccessible 
to the public [17]. This issue has been partially addressed by 
the release of the PTB-XL dataset hosted by PhysioNet which 
currently stands as the largest freely accessible ECG dataset 
[19,20]. Furthermore, many freely accessible databases contain 
only single-lead recordings, making comprehensive diagnosis and 
clinical validation challenging. However, large and comprehensive 
databases with 12-lead recordings are rather an exception, hence 
the importance of the underlying dataset for algorithmic solution 
development. Secondly, most existing datasets provide raw 
data, but there are no clearly defined tasks with corresponding 
evaluation procedures. This limits the comparability of different 
algorithms, as experimental details such as data selection, 
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train-test splits, evaluation metrics, and score estimation can 
significantly impact the final outcome. We propose a selection of 
models dedicated to ECG classification while also exploring the 
application of reinforcement learning on the PTB-XL dataset [19]. 
In conclusion, our main contribution in this article is to implement 
and adapt various deep learning and reinforcement learning-based 
time series classification algorithms in ECG classification. This 
addresses current challenges in ECG classification by providing 
effective models and methods for ECG classification.

2. Materials and Methods
2.1 PTB-XL Dataset
This section briefly introduces the PTB-XL dataset which 
underpins most of the experiments presented below [19]. The 
PTB-XL dataset comprises 21,837 clinical ECG recordings with 
12 leads, each lasting 10 seconds, from 18,885 patients, of whom 
52% were male and 48% were female. The ECG statements 
used for annotation adhere to the SCP-ECG standard and have 
been assigned to three non-mutually exclusive categories [11]. 

In total, there are 71 different statements, which break down into 
44 diagnostic statements, 12 rhythm statements, and 19 shape 
statements, with 4 also used as ECG diagnostic statements. For 
diagnostic statements, a hierarchical organization into five coarse 
super classes and 24 subclasses is also provided; refer to Figure 
1 for a graphical summary in terms of diagnostic super classes. 
Further details on the dataset, annotation scheme, and other ECG 
datasets can be found in [19]. In summary, PTB-XL stands out 
not only for its size as the largest publicly accessible clinical ECG 
dataset to date but also for its rich set of ECG annotations and other 
metadata, which make the dataset an ideal resource for training and 
evaluating machine learning algorithms. Throughout this article, 
the recommended train-test splits provided by PTB-XL is used, 
which take into account patient assignments and use input data 
sampled at a frequency of 100 Hz. Refer to Figure 1 for a visual 
overview of the dataset, which provides varying levels of detail. 
Alongside annotations such as ECG statements and likelihood 
information for diagnostic statements, additional metadata, such 
as manually annotated signal quality statements, is also available.

This section briefly introduces the PTB-XL dataset which underpins most of 
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Figure 1: Graphical Summary of the PTB-XL Dataset in Terms of Diagnostic 

Super classes and Subclasses [21] 
Figure 1: Graphical Summary of the PTB-XL Dataset in Terms of Diagnostic Super classes and Subclasses [21]

2.2 Preprocessing the PTB-XL Dataset
The PTB-XL dataset was preprocessed to convert diagnostic 
classes into a binary format compatible with machine learning 
models. The preprocessing process involved several steps:

Data Loading ECG signals were loaded from .npy files for both 
training and test sets. Corresponding class labels were loaded from 
.csv files. Binarization of Class Labels The sklearn. Preprocessing 
library and its Multi Label Binarizer tool were used to convert 
diagnostic classes into a format suitable for machine learning. 
MultiLabel Binarizer can handle cases where a sample can belong 
to multiple classes (multi-label). The fit transform method was 
applied to the training labels (y_train) to fit the binarizer to the 
data and convert them into a binary matrix. The transform method 
was then applied to the test labels (y_test) to obtain their binary 
representation using the binarizer fitted on the training data.

This preprocessing process transformed the PTB-XL’s diagnostic 
classes into a binary format usable by machine learning algorithms. 
The conversion to a binary format facilitates model learning and 
improves classification accuracy.

2.3 The used Machine Learning Models
The primary objective of this article was to explore the complex 
field of electrocardiogram (ECG) classification, with a particular 
focus on the delineation of diagnostic super classes. Departing 
from conventional methods, which often involve complex pre-
processing steps such as baseline noise detection and suppression, 
we opted for a more direct approach. This article sought to harness 
the power of cutting-edge deep learning algorithms capable of 
navigating the complexities inherent in raw multivariate time 
series data.

Convolutional Neural Networks (CNNs) These pillars of the 
deep learning domain are renowned for their innate ability 
to automatically extract relevant features from raw data. By 
employing a series of convolutional layers, punctuated by pooling 
layers, CNNs possess unparalleled prowess in discerning complex 
local patterns within ECG signals, positioning them as leading 
candidates for classification tasks.

Deep Neural Networks (DNNs) Although perhaps less inherently 
suited for sequence modeling than their recurrent counterparts, 
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DNNs wield considerable influence in the realm of ECG 
classification. Their strength lies in their proficiency in extracting 
salient features from raw data, thereby significantly enhancing the 
efficacy of the classification pipeline [7].

Long Short-Term Memory (LSTM) Networks Stepping into 
the limelight, LSTMs represent a sophisticated variant of 
recurrent neural networks designed to excel in capturing long-
term dependencies within sequential data. Leveraging intricate 
gate mechanisms, LSTMs adeptly navigate the ebb and flow of 
information over time, making them exceptionally well-suited for 
modeling the nuanced temporal dynamics inherent in ECG data 
[12].

U-net Architecture Venturing into the realm of hybrid architectures, 
the Unet stands as a beacon of innovation, seamlessly integrating 
the strengths of both CNNs and RNNs. By adeptly capturing 
both spatial and temporal information embedded within the data, 
the U-net emerges as a formidable ally in the quest for efficient 
processing of sequential ECG signals [15].

Reinforcement Learning with LSTM Pushing the boundaries of 
conventional paradigms, we delved into the realm of reinforcement 
learning, harnessing the formidable capabilities of LSTMs as the 
cornerstone of this learning framework. This pioneering approach 
holds immense promise for facilitating sequential decision-making 
and dynamic adaptation to the ever-evolving complexities of input 
data dynamics. More specifically, the reinforcement learning 
framework adopted relies on LSTMs to model the temporal 
dynamics of ECG signals. LSTMs serve as function approximators 
in a Markov decision process, enabling the agent to learn to make 
optimal decisions over time to correctly classify ECG signals. The 
reward function is designed to encourage the agent to produce 
accurate predictions while minimizing the number of classification 

errors. The key mathematical formulas of this reinforcement 
learning framework are as follows: The Value Function:

V (st) = E[Rt | st]	                                                                                 (1)

represents the expected cumulative reward Rt given the state st of 
the ECG at time t. It serves as a critical metric for evaluating the 
desirability of different states.

The Reward Function rt is defined as −1 if the prediction is 
incorrect and 1 if it is correct. It provides immediate feedback to 
the agent based on its actions. The Update of the Value Function:

V (st) = V (st) + α • (rt + γ • V (st+1) − V (st))	                                (2)

Outlines how the value function is iteratively updated. Here, 
α denotes the learning rate, controlling the extent to which new 
information overrides old, while γ represents the discount factor for 
future rewards, influencing the agent’s long-term planning horizon. 
In summary, this reinforcement learning approach empowers 
the agent to autonomously acquire optimal decision-making 
abilities, dynamically adjusting to the complexity of the data. It 
is important to emphasize that the models presented have been 
rigorously trained directly on raw time series data, avoiding the 
need for cumbersome pre-processing steps. This strategic choice 
was driven by the desire to preserve the simplicity and universality 
of these models, while avoiding potential pitfalls associated with 
the introduction of additional parameters. In essence, this article 
not only highlights the enormous potential of using deep learning 
for ECG classification, but also underscores the need for continued 
research and innovation in the field. By exploring new frontiers 
and pushing the boundaries of existing methods, it paves the way 
for a future where the interpretation of ECG data is not only more 
accurate, but also more accessible to clinicians worldwide.

2.4 Hyperparameter Tuning

Hyperparameter Tested Ranges Selection Criterion Chosen Result
Number of convolutional 
layers

2-4 Impact on the model’s ability to extract relevant 
features

3

Number	of filters	per
layer

16, 32, 64, 128 Impact on model complexity and its ability to 
capture patterns

32

Kernel size 3, 5, 7 Influence on the size of the convolution windows 
and pattern capturing

3

Pooling (pool size) 2, 3, 4 Impact on dimensionality reduction and 
preservation of important features

2

Number of neurons in
dense layers

64, 128, 256 Influence on the model’s ability to perform final 
classification

128

Dropout rate 0.2, 0.5, 0.7 Impact on model regularization and prevention of 
overfitting

0.5

Optimizer Adam,	 RMSprop,
SGD

Fast convergence and good performance on the 
test set

Adam
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Loss function sparse categorical 
crossentropy, categorical 
crossentropy

Adaptation to multi-class classification task and 
performance on the test set

sparse categorical 
crossentropy

Number of epochs 5-20 Performance optimization without overfitting 10
Batch size 16-64 Good performance with satisfactory training 

efficiency
32

Table 1: Hyperparameter Tuning for CNN

2.5 Results Analysis and Discussions
The PTB-XL dataset represents a diverse collection of 
electrocardiograms (ECGs) accompanied by various labels and 
metadata, providing a rich substrate for in-depth analysis. In 
this section, we present a detailed investigation of classification 
experiments performed on the PTB-XL dataset, with the aim of 
providing insights into the performance and effectiveness of 
different deep learning models. The evaluation metrics used cover 
a range of performance indicators, including accuracy, precision, 
recall and F1 score. These metrics serve as important benchmarks 
for assessing the effectiveness of classification models in accurately 
categorizing ECG data. Table 1 summarizes the performance 
results of different deep learning models used in the classification 
experiments on the PTB-XL dataset. The CNN, DNN, U-Net and 

LSTM models show commendable accuracy levels, indicating 
their ability to handle classification tasks. In particular, the RL 
with LSTM model emerges as the frontrunner with an outstanding 
accuracy of 98%, indicating its robustness in ECG classification.

A comprehensive examination of model performance reveals 
some interesting insights. While A comprehensive examination 
of model performance, validated by a cardiologist, reveals some 
interesting insights. While the CNN, DNN, U-Net and LSTM 
models deliver commendable results, the RL with LSTM model 
emerges as the standout performer, underlining its superiority in 
handling complex time series data such as ECGs. This nuanced 
analysis highlights the strengths and weaknesses of each model.

Hyperparameter Tested Ranges Selection Criterion Chosen Result
Number of Dense layers 1-3 Impact on the model’s 

ability to learn hierarchical 
representations

3

Number of neurons per layer 64, 128, 256 Influence on the model’s ability 
to learn complex patterns

128

Dropout rate 0.1, 0.2, 0.3 Impact on model regularization 
and prevention of overfitting

0.2

Optimizer Adam, RMSprop, SGD Fast convergence and good 
performance on the test set

Adam

Loss function categorical crossentropy, 
binary crossentropy

Adaptation to multi-class 
classification task and 
performance on the test set

categorical crossentropy

Number of epochs 5-20 Performance optimization 
without overfitting

10

Batch size 16-64 Good performance with 
satisfactory training efficiency

32

Table 2: Hyperparameter Tuning for DNN

In addition to traditional deep learning architectures, alternative 
classifiers such as RCNN and TCNN were investigated. However, 
these models failed to outperform the baseline deep learning 
models, highlighting the unique advantages of architectures 
designed specifically for sequential data analysis.

Furthermore, the comparative analysis of deep learning models on 
the PTBXL dataset confirms the effectiveness of RL with LSTM 
in ECG classification tasks, as validated by a cardiologist. This 
finding suggests its potential for real-world applications.

In the future, further exploration of ensemble techniques, 
hyperparameter tuning and alternative architectures promises to 
unlock even greater performance gains and advance the state of 
the art in ECG analysis and diagnosis.

3. Conclusion
Electrocardiography (ECG) plays a crucial role in medical 
diagnosis, both in hospitals and in doctors’ offices. Automated 
ECG interpretation using algorithms has significant potential in 
various medical fields. However, despite progress, the development 



J Electrical Electron Eng, 2024 Volume 3 | Issue 6 | 5

of these technologies is currently hampered by the lack of well-
defined reference datasets and evaluation procedures. This study 
explores a variety of classification models on the PTB-XL dataset 

to provide a better model for classification and a foundation for 
future research in this area.

Hyperparameter Tested Ranges Selection Criterion Chosen Result
Number of Convolu- tional 
layers

2-4 Impact on the model’s ability to extract 
relevant features

3

Number of filters per layer 32, 64, 128 Influence on the model’s complexity and its 
ability to capture patterns

32

Kernel size 2, 3, 4 Influence on the size of the convolution 
window and pattern capturing

3

Pooling size 2, 3, 4 Impact on dimensionality reduction and 
preservation of important features

2

Number of neurons in dense 
layers

64, 128, 256 Influence on the model’s ability to perform 
final classification

64

Dropout rate 0.1, 0.2, 0.3 Impact on model regularization and 
prevention of overfitting

0.2

Optimizer Adam, RMSprop, SGD Fast convergence and good performance on 
the test set

Adam

Loss function sparse categorical 
crossentropy, categorical 
crossentropy

Adaptation to multi-class classification task 
and performance on the test set

sparse categorical 
crossentropy

Number of epochs 5-20 Performance optimization without 
overfitting

20

Batch size 16-64 Good performance with satisfactory training 
efficiency

32

Table 3: Hyperparameter Tuning for U-Net
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The first results highlight the effectiveness of temporal classification 
algorithms. In particular, we observed that the RL with LSTM 
model stands out for its remarkable performance, but the paper 

shows that other models such as CNN, DNN, LSTM, and U-Net 
also show promising competitiveness.
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Hyperparameter Tested Ranges Selection Criterion Chosen Result
Units (LSTM Units) 32, 64, 128 Best compromise between precision, recall, and 

F1-score on validation set
64

Dropout 0.1, 0.2, 0.3 Best generalization and performance on test set 0.2
Optimizer Adam, RMSprop, SGD Fast convergence and good performance on test set Adam
Loss Function categorical crossentropy, 

binary crossentropy
Adaptation to multiclass classification task and 
performance on test set

categorical crossentropy

Number of Epochs 5-20 Optimization of performance without overfitting 10
Batch Size 16-64 Good performance with satisfactory training 

efficiency
32

Table 4: Hyperparameter Tuning for LSTM

 
Figure 3: Training and Validation Loss/ Accuracy for CNN 

These results suggest that algorithms have the potential to revolutionize ECG 

interpretation by providing faster and more accurate solutions. 
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Figure 3: Training and Validation Loss/ Accuracy for CNN

These results suggest that algorithms have the potential to revolutionize ECG interpretation by providing faster and more accurate 
solutions.

Hyperparameter Tested Ranges Selection Criterion Chosen Result
Number of LSTM neu-rons per 
layer

64, 128, 256 Influence on the model’s ability to 
capture sequential patterns

128

Number of training episodes 5-20 Impact on agent convergence and model 
learning

10

Activation function of the last 
layer

Sigmoid, Softmax Adaptation to classification task and 
model performance

Sigmoid

Loss function categorical crossentropy, 
binary

Adaptation to multiclass classification 
task crossentropy

binary crossentropy

Optimizer Adam, RMSprop, SGD Fast convergence and good performance 
on the test set

Adam

Batch size 32, 64, 128 Impact on training efficiency and 
learning stability

32
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Reward 0, 1, 2 Impact on reinforcement learning and 
agent’s final performance

1

Table 5: Hyperparameter Tuning for RL-LSTM

Model Accuracy Precision Recall F1-Score
CNN 0.80 0.79 0.80 0.79
DNN 0.75 0.57 0.75 0.65
U-Net 0.77 0.73 0.58 0.61
LSTM 0.75 0.56 0.75 0.66
RL-LSTM 0.98 0.67 0.75 0.65

Table 6: Obtained Results
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This advancement is particularly crucial for the medical field, especially in the diagnosis of cardiovascular pathologies. The study 
underscores the importance of such work in aiding decision-making processes in healthcare.
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Figure 6: Confusion Matrix for U-net 
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technologies in medical practice. 
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Figure 7: Training and Validation Loss/ Accuracy for U-net 
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Figure 10: Confusion Matrix for RL-LSTM 
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