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Abstract
Purpose
This study aims to evaluate the efficacy of various machine learning models in predicting heart failure incidence using 
medical data, focusing on the innovative aspect of a novel dataset. Unlike previous studies that predominantly examined 
features such as smoking status or age, this research explores novel features. The primary challenge addressed is the 
utilization of these new features, coupled with machine learning techniques, to accurately diagnose heart failure.

Methods
Five machine learning models, including logistic regression, support vector classifier, decision tree classifier, random 
forest classifier, and K-nearest neighbors, were applied to analyze medical data from a dataset comprising over 900 
individuals. The dataset encompasses diverse parameters such as age, sex, chest pain severity, blood pressure, cholesterol 
levels, blood sugar levels, and electrocardiogram results, introducing a novel approach to feature selection.

Results
The evaluation of machine learning models unveiled varying performances in predicting heart failure. Logistic regression 
and support vector classifier exhibited the highest accuracy of 88%, followed by the decision tree classifier (below 85%), 
random forest classifier (84%), and K-nearest neighbors (82%). Additionally, the analysis revealed a balanced dataset 
distribution and highlighted sex-based disparities in heart failure incidence, along with significant correlations with 
factors such as age, chest pain severity, blood glucose levels, and physical activity.

Conclusions
The findings underscore the potential of integrating multiple machine learning models for early detection of heart failure, 
leveraging the inclusion of novel features in the dataset. However, careful model selection is crucial to account for 
discrepancies in accuracy among different models, emphasizing the importance of tailoring approaches based on specific 
project requirements.
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1. Introduction
Heart failure, also known as congestive heart failure, is a condition 
in which an individual's heart cannot supply enough blood for 
the body's needs. This can occur when the heart fails to pump 
or fill with blood adequately. The term "heart failure" does not 
imply a complete cessation of heart function [1]. Nevertheless, 
heart failure is a serious condition requiring medical care. In the 
United States alone, more than 6 million adults are affected by 
heart failure, as reported by the Centers for Disease Control and 

Prevention. Although children can also experience heart failure, 
this article focuses on heart failure in adults [2].

Despite the abundance of medical data and continuous 
advancements in data science, various groups are striving to 
create indicators that can help predict diseases in the future. 
Cardiovascular diseases (CVDs) are globally recognized as the 
leading cause of death, accounting for approximately 17.9 million 
deaths annually and constituting 31% of total global deaths [3]. 
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Heart failure is a common consequence of CVD. Individuals with 
a history of cardiovascular diseases or those at high risk (due to 
factors such as elevated blood pressure, diabetes, hyperlipidemia, or 
existing diseases) require early diagnosis and management, where 
a machine learning model can prove highly useful. Therefore, we 
aim to automatically address another nature-bound problem and 
focus on future challenges using artificial intelligence techniques. 
The goal of this article is to predict whether an individual is prone 
to heart failure based on multiple features, including numerical 
and categorical characteristics. We delve into the examination and 
construction of several machine learning models in this article, 
introducing the model with the highest accuracy as the final result.

2. Research Method
The study dataset comprises information from more than 900 
individuals and is vital due to its inclusion of various details, 
such as age, sex, chest pain type (TA: Typical Angina, ATA: 
Atypical Angina, NAP: Non-Anginal Pain, ASY: Asymptomatic), 
resting blood pressure, cholesterol and blood sugar levels, resting 
electrocardiogram results, maximum heart rate, exercise-induced 
angina, Oldpeak, and ST segment slope during exercise. The last 
column indicates whether the individual has experienced heart 
failure. These data hold significant importance as primary inputs 
for machine learning models in predicting the likelihood of actual 
heart failure in individuals.
This dataset is compiled from data published by the following 
institutions and centers:
1) Hungarian Institute of Cardiology, Budapest: András Jánosi
2) University Hospital, Zurich, Switzerland: William Steiger
3) University Hospital, Basel, Switzerland: Matthias Pfisterer
4) Medical Center, Long Beach, and Cleveland Clinic Foundation: 
Robert Detrano

In this research, diverse machine learning models were employed 
to predict heart failure. The details of the models, including logistic 
regression, support vector classifier (SVC), decision tree classifier, 
random forest classifier, and K-nearest neighbors classifier, will 
be examined. Additionally, four different metrics- predictions, 

accuracy, recall, and F1-score-will be utilized to evaluate the 
model's performance, along with a confusion matrix.

3. Model
3.1 Logistic Regression Model
Logistic regression stands out as a crucial model in the realm of 
classification, catering to issues grounded in both numerical and 
categorical inputs. This model computes probability predictions 
and employs a logistic function for decision-making. Essentially, 
logistic regression constitutes an equation predicting the 
probability of the dependent variable (e.g., heart disease) based 
on independent variables (features of the patient). The model was 
trained on the designated dataset utilizing features such as age, sex, 
chest pain type (TA: Typical Angina, ATA: Atypical Angina, NAP: 
Non-Anginal Pain, ASY: Asymptomatic), resting blood pressure, 
cholesterol levels, blood sugar levels, resting electrocardiogram 
results, maximum heart rate, exercise-induced angina, Oldpeak, 
and ST segment slope. The accuracy and performance of this model 
for the prediction of heart failure were thoroughly evaluated.

Some advantages of this model include the following:
A) Simplicity and high interpretability: A logistic regression is a 
straightforward model that lends itself to easy interpretation. [4]
B) High Efficiency in Binary Classification Problems: The 
presence of the logistic function in this model makes it suitable for 
binary classification problems.
C) Resistance to Noisy Data: This model generally exhibits 
resistance to noisy and outlier data.
However, the model has several limitations, including the 
following:
D) Suitability Only for Binary Classification Problems: Logistic 
Regression is suitable only for binary classification problems, and 
its performance may be suboptimal for multiclass problems.
E) Sensitivity to Data Errors: This model is sensitive to outliers 
and errors in the data and may be influenced by noisy data.
F) Limited Complexity: Logistic regression has limited complexity 
and may exhibit inappropriate performance for complex problems 
with nonlinear structures.

Figure 1: Conceptual Logistic Regression Model
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3.2 Support Vector Classifier (SVC)
The support vector classifier (SVC) is a machine learning 
model employed for classification tasks. This model focuses 
on differentiating various classes of data using the concept of 
separable categories. The primary goal of this model is to create 
an optimal overlap of data in feature space separated by decision 
boundaries (determinants) [5].

In this article, the SVC model is utilized as one of the principal 
models. The features used to train this model include various 
information related to heart failure patients. The results obtained 
from this model are reported in the article to evaluate its accuracy 
and performance in diagnosing and predicting heart failure [6].

The advantages of this model include the following:
a) Effectiveness in high-dimensional feature spaces: The SVC 
algorithm is usually effective at dealing with high-dimensional 
feature spaces and outlier data.
b) High generalization ability: This model, considering the concept 
of kernels, exhibits a high level of generalizability.
c) Robustness against outliers: The SVC enhances the resistance to 
outlier data by maximizing the margin.
d) This model has several limitations, which include the following:
e) Computational complexity: The training time for the SVC 
model on voluminous data may be lengthy.
 f) Sensitivity to kernel selection: The quality of kernel selection in 
the SVC model can significantly impact its performance.
g) Difficulty in interpretation: Several SVC models, due to their 
high complexity, may pose challenges in interpreting the decision-
making process. 4.2	 Accuracy
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Figure 2: Support Vector Classifier Conceptual Model

3.3 Decision Tree Classifier
The decision tree classifier is a machine learning model used for 
classification and regression tasks. This model is structured as a 
tree, making multiple decisions based on input features. At each 
tree node, a test is conducted on a feature, and the data are directed 
to one of the tree branches based on the result [7].

This classifier serves as a primary model for categorizing patients 
with heart failure. The features utilized in this model encompass 
various information related to patients. The results obtained from 
this model are reported in the article to evaluate its performance 
and compare it with those of other models.

The advantages of employing this model include the following:

a) Simplicity and interpretability: The tree-like structure of a 
decision tree allows for simplicity and easy interpretation.
b) No Need for Preprocessing: This model typically does not 
require data preprocessing and exhibits high resistance to outlier 
data.
c) Applicability to discrete and continuous data: A decision tree 
can effectively handle both discrete and continuous data, such as 
patient-related features [8].
d) However, this model has several limitations:
e) Risk of Overfitting: Decision trees with excessive depth may 
overfit the data, fitting it too closely and not generalizing well to 
new data.
f) Sensitivity to Small Data Changes: Small changes in the data 
may lead to significant alterations in the tree structure.
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Figure 3: Conceptual Model of Decision Trees

3.4 Random Forest Classifier
The random forest classifier is a machine learning model that 
operates on the principle of creating multiple decision trees, 
collectively referred to as a "random forest." Each tree in this 
ensemble is formed randomly from a subset of both data and 
features, and subsequent decisions are made based on these trees 
[9]. Ultimately, the results from each tree were amalgamated to 
yield the final decision.

In this study, the random forest classifier was employed for the 
classification of heart failure patients to enhance accuracy and 
mitigate issues related to overfitting. This model is utilized to 
improve the overall classification performance and ensure result 
stability. The advantages of this model are meticulously reported 
in the article with precision and are systematically compared with 
those of other models.

The key advantages of this model include the following:
a) Enhanced Resistance to Overfitting: The amalgamation of 
results from multiple decision trees imparts greater resilience to 
overfitting.
b) High Precision: This model generally boasts high accuracy in 
classifying novel data [10,11].
c) Versatility with Discrete and Continuous Data: RF exhibits 
versatility, effectively working with diverse datasets containing 
various features.
d) However, noteworthy limitations include the following:
e) Computational Complexity: Constructing multiple decision 
trees may incur substantial computational costs [11].
f) Limited interpretability: Due to the random and combinatory 
nature of decision-making, interpreting RF results may be 
challenging.

Figure 4: Conceptual Model of the Random Forest Model
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3.5 K-nearest Neighbors Classifier
The K-nearest neighbors (KNN) model is a classification algorithm 
that operates based on the similarity between samples. For a new 
sample, KNN selects K similar samples from the training data and 
classifies the new sample based on the majority class among these 
neighbors.

In this study, the KNN was employed for the classification of 
patients with heart failure to determine its role and effectiveness 
in the given problem. This model is utilized to determine the 
classification of a new sample based on its closest neighbors.
The advantages of KNN include the following:

a) Simplicity and Ease of Implementation: KNN is a simple and 
easily implementable model.
b) No training phase is needed: This model directly makes 
decisions based on similarity to training samples and does not 
require a specific training phase.
c) The limitations of the model include the following:
d) Sensitivity to High Dimensions: In datasets with high 
dimensions, the performance of KNN may not be optimal [12,13].
e) High Computational Requirements: Calculating the similarity 
between all samples can be challenging, especially for large 
datasets [14].

Figure 5: K-Nearest Neighbors Conceptual Model

4. Evaluation Metrics
4.1 Confusion Matrix
The confusion matrix serves as a straightforward method for 
assessing the performance and accuracy of our models. This 
matrix is a two-dimensional representation encompassing "actual 
class" and "predicted class," thereby forming a confusion matrix 
in each dimension. The rows signify the actual classifications 
related to heart disease, while the columns depict the predicted 
classifications. The dataset at hand contains two classes, Class 0 
and Class 1.

The elements within the confusion matrix include the following:
1. True Positives (TP): Instances where the true class of the data 
point is "True," and the prediction is also "True."
2. True Negatives (TNs): Instances where the true class of the data 
point is "False," and the prediction is also "False."
3. False Positives (FP): Instances where the true class of the data 
point is "False," yet the prediction is "True."
4. False Negatives (FNs): Instances where the true class of the data 
point is "True," but the prediction is "False."

Figure 6: Conceptual Model Of The Confusion Matrix
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Accuracy is calculated as the ratio of the total number of 
correct predictions of heart disease to the overall dataset size. A 
performance comparison is conducted among five classification 
algorithms. In general, accuracy describes the model's overall 

performance across all classes and is particularly useful when 
all classes have equal importance. It is computed as the ratio of 
the total number of correct predictions to the total number of 
predictions made.

4.2 Recall
Recall assesses a test's ability to identify individuals with heart 
disease as positive. A highly sensitive test indicates a low number 
of false negatives, minimizing the chance of overlooking cases 
of heart disease. This rate is also referred to as the true positive 
rate (TPR). Recall that this approach exclusively considers how 

positive instances are classified and remains unaffected by the 
classification of negative instances, meaning that it is unrelated 
to precision. If the model categorizes all positive instances as 
positive, the recall will be 100%, even if all negative instances are 
mistakenly classified as positive.

Figure 7: How to Calculate Accuracy

Figure 8: How to calculate the Recall

Figure 9: How to Calculate Precision

Figure 10: How to Calculate The F1 Score

4.3 Precision
Precision provides insight into the fraction of positive predictions 
for a specific class that accurately corresponds to instances of heart 
disease. High precision indicates consistent measurement results 
or repetitive readings yielding identical values. Conversely, low 
precision suggests variable measurement values. When the model 
makes a significant number of incorrect positive classifications or 

a limited number of correct positive classifications, this results in 
an increased false discovery rate and decreased precision.
However, the precision is high when
1. The model yields a substantial number of correct positive 
classifications (maximizing the number of true positives).
2. The model results in fewer incorrect positive classifications 
(reducing the number of false positives).

4.4 F1-Score
The F1-score is defined as the geometric mean of the precision and 
recall. It serves as a comprehensive metric in binary and multiclass 
classification, offering a balanced evaluation by combining both 

precision and recall into a unified measure. This score provides a 
holistic understanding of the model's performance, aiding in the 
interpretation of its effectiveness. 

4.4.1 Finding
This section describes the examination and analysis of the data. 
The scrutiny of the data revealed a nearly normal distribution 
pattern across all the datasets. Furthermore, the balance between 
individuals diagnosed with heart failure and those without heart 
failure is nearly equal, providing a substantial foundation for 
the development of an efficient artificial intelligence model. 
Upon closer examination of the data, it becomes apparent that 

the incidence of heart failure is greater in men, who constitute 
approximately 90% of our population. This finding suggested 
a sex-based disparity, indicating greater susceptibility to heart 
failure in men than in women. [15] Further analysis of the male 
population suggested that beyond the age of 50, positive values of 
Oldpeak and a maximum heart rate under 140 years contribute to 
an increased incidence of heart disease.
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Figure 11: Dataset Information Analysis Based on Different Parameters

Figure 12: Dataset Information Analysis

The type of chest pain labeled ASY strongly suggested a high 
probability of heart disease. Consistent with expectations and as 
asserted in various medical publications, patients diagnosed with 
unstable blood glucose levels, whether diabetic or nondiabetic, 
exhibit a statistically significant association with heart disease 

[16]. Exercise-induced angina notably increases the likelihood 
of diagnosing heart disease. An evaluation of the ST_Slope 
values indicated that a flat slope signifies a substantially elevated 
probability of heart disease. Similarly, a downsloping slope yields 
the same conclusion, albeit within a smaller subset of the data.

Regardless of the presence of elevated blood glucose, the majority 
of heart failure cases seem to manifest around the age of 50 and 
beyond. Additionally, individuals with a history of regular exercise 
appear to have a significantly lower incidence of heart failure than 
their counterparts. In conclusion, the correlation coefficients of 

each dataset with heart failure indicate that, with the exception 
of RestingBP and the RestingECG, the remaining datasets show 
statistically significant positive or negative relationships with our 
target.
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Figure 13: Checking The Correlation of the Data With the Target

Figure 14: Performance of The Logistic Regression Model

For machine learning model development, an 80–20 split was 
employed after thorough analysis, allocating 80% of the total data 
for training and the remaining 20% for testing. In general, four 
metrics- precision, recall, F1-score, and accuracy- were considered 
to assess model performance. Additionally, the confusion matrix 
was examined for clarity.

The logistic regression model yielded an accuracy of approximately 
88%. Examining the presented confusion matrix suggested that 
this model adeptly captured the data patterns, leading to precise 
predictions. 

The support vector classifier model also achieved an accuracy of 
approximately 88%, indicating its ability to effectively identify 
behavioral patterns within the data. By scrutinizing the confusion 

matrix, it becomes evident that this model performed similarly to 
the logistic regression model, providing comparable correct and 
incorrect predictions.
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Figure 15: Performance of the Support Vector Classifier Model

Figure 16: Performance of the Decision Tree Classifier Model

On the other hand, the third model, the decision tree classifier, 
exhibited a lower accuracy than the two preceding models and 
failed to achieve an accuracy exceeding 85%. The confusion 

matrix of this model indicates that, relative to the two previous 
models, it recorded a greater number of incorrect predictions.

The random forest classifier machine learning model also 
demonstrated relatively lower accuracy than the three preceding 
models. The hyperparameters of this model were fine-tuned using 
the grid search cv library to obtain optimal values. This model 

achieved a maximum accuracy of 84%. An examination of the 
confusion matrix revealed that the number of correct predictions 
considered in this model was lower than that in the three previous 
algorithms.
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Figure 17: Performance of the Random Forest Classifier Model

Figure 18: Performance of the K-Nearest Neighbors Classifier Model

In conclusion, the K-nearest neighbors classifier model, as the 
fifth approach, exhibited a lower accuracy of 82% compared to the 
preceding models. The confusion matrix clearly indicates that this 

algorithm recorded a greater number of incorrect predictions than 
did the other models. 

5. Conclusion
Based on the findings of this study and comparisons with prior 
research, it appears that other studies utilizing different datasets, 
features, and models have achieved relatively consistent accuracies 
with the variables examined in this investigation [17,18]. In this 
research, we employed five distinct machine learning models to 
predict heart failure using medical data. Detailed analysis revealed 
significant patterns in both the numerical and categorical features 
of the data.

In-depth examination revealed that the logistic regression model 
outperformed the other models, with an accuracy of approximately 

88%, demonstrating superior predictive capabilities. This model 
accurately identified patterns within the data. Similarly, the support 
vector classifier yielded comparable results, indicating its ability to 
adapt well to the behavioral patterns in the data.

However, the decision tree classifier model exhibited lower 
accuracy but still managed to capture the data characteristics. 
Other models, such as the random forest classifier and K-nearest 
neighbors classifier, also presented results but with lower accuracy 
than the initial models. 
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These results suggest that a combination of various machine learning 
models can be effective at predicting heart failure. Furthermore, 

selecting an appropriate model requires careful consideration 
based on project requirements and specific conditions.

Figure 19: The Table Showing the Collective Performance of the Models

5.1 Recommendations for Future Research
1) Feature Expansion
Expanding the dataset's feature set is advisable. Incorporating 
additional information related to heart failure, particularly features 
identified with higher correlations in this study, could enhance the 
predictive capabilities of the models.
2) Incorporating ECG Data
If feasible, integrating data points derived from electrocardiogram 
(ECG) signals is recommended. This addition has the potential to 
significantly improve the accuracy of predictive models.
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