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Abstract
Artificial Neural Networks (ANNs) play an essential role in artificial intelligence to explore and simulate the traffic behaviour 
on road network safety. In this study, eight cluster as input variables and one output were utilize to simulate the performance 
of the model. Input predictors involved traffic of conflict, vehicle category, second vehicles passing right turn motor vehicles 
(RMV), first vehicles passing (RMV), speed limit, gap pattern, day time, and infrastructure. Meanwhile output variables were 
right turn motor vehicles (RMV). Neural Network Fitting apply as the Machine Learning has been implemented to measure 
the mean square error and the regression value. The network was trained with eight hundred and forty-one datasets has been 
collected on mix traffic condition. Neural Network Fitting consist three approaches to trained the datasets namely Levenberg-
Marquardt Algorithm (LMA), Bayesian-Regularization Algorithm (BRA) and Scaled Conjugate Gradient Algorithm (SCGA). 
Two layer feedforward network were use to analyse the regression. The assessment between those machine learning is carried 
out to justify the best performance outcomes. This study reveals that scaled conjugate gradient algorithm perform the best 
result in training, validating and test process for mean square error less than 0.05 meanwhile regression value determines 
more than 0.90.
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1. Introduction
Annually, average of 1.3 million lives due catastrophic loss on 
roadways worldwide, meanwhile around 10 million are experience 
causalities [1]. Recently, the increasing number of researchers 
concentrating the development of system that can detect or 
identify the hazardous driving behaviors instantly. In autonomous, 
the process to recognize the hazardous situation by collection 
of training data that associate with serious traffic conflicts [2]. 
This approach, can train the artificial intelligent to improve the 
risk prevention of autonomous vehicles [3]. Automated vehicle 
typically assembled with verified controllers’ function to analysis 
the hazard and strategy to mitigate the hazard [3]. The essential of 
having these controllers are ability to detect and prevent of hazards 
in every possible angle or dimension situation. The challenges in 
autonomous vehicles (AV) are regarding cybersecurity issues and 

how to protect the AV from cyber-attacks [4]. Despite of having 
unique password the application of security protocols and supply 
chain might be the best solution to defend the AV from any 
disruption. 

The near-infrared (NIR) camera sensors technique used to record 
the driver reaction classification [5]. However, the data collected 
is less than 30 cases and have limitation for recognizing the 
driving characteristic. Driver’s Risk Field (DRF) were introduced 
by (Kolekar et al., 2020), to measure the probability of traffic 
conflict event by using two-dimensional field [6]. Yet, this 
method has not practically been practices to detect the reckless 
driving behavior in real time series. Recently, the study using 
machine learning algorithms to investigated the reckless driving 
behavior [7]. The method has ability to detect the hazardous 
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driving behavior automatically by applying the algorithms. This 
approach has advantage to improve the accuracy of previous 
algorithms by removing the bias in dataset and refining the 
quality of data. Intelligent driver model (IDM) study the effect 
of lighting environment influences the traffic behavior [8]. The 
outcomes reveal, infrastructure like tunnel lighting and sunscreens 
at tunnel gateway can improve the traffic flows and avoiding traffic 
swaying. Recently multi-attention-based Hybrid-Complication 
Spatial- Time Based Recurrent Network (HRSRN) purpose to 
predict traffic flow at urban and rural area [9]. The advantage of 
this system it has ability to capture traffic flow spatial- time based 
topographies. This method performed good result from previous 
models in terms of mean absolute error (MAE) and root mean 
square error (RMSE).

Another visual technique to compute traffic flow, macroscopic 
analysis, concentration traffic geographies and traffic flow response, 
call novel traffic flow prediction model, V-STF [10]. The model 
justifies the improvement of accuracy during non-interrupted 
peak hours in congested road environments. This method also 
performed a good result in predicting immediate traffic disruption. 

The psychological behavioral data model using deep learning 
approach propose for driver identification and verification [11]. The 
approach implementing fully convolution network and excitation 
block, performed accuracy and verification accuracy of 99.60% 
and 90.91 respectively. On the top of that, the model effectively 

distinguishes drivers and frauds detections for the security reasons.

By adopting driving simulator to analyse the different between 
new and experience drivers [12]. The study reveal, new drivers can 
only respond operation either braking or steering in the conflict 
situation. Meanwhile experienced drivers, has abilities to combine 
both operations at the same time, and to overcome the traffic 
destruction. Furthermore, experienced drivers can handle difficult 
situation such as quick respond scanning the safe surrounding 
to avoid hazardous environment, meanwhile novice driver react 
opposite. This finding may provide essential perspective for future 
driving assistance system. 

In neuroscience the definition of artificial neural networks (ANNs) 
are accomplishing human-stage characteristic performance in 
multiple tasks, including face recognition, language analysing, 
complex gameplay, and motor learning [13-16]. Previous study 
found the automotive industry, construction and road safety 
are dominant applying of machine learning algorithms for risk 
valuation. Meanwhile in engineering risk assessment, artificial 
neural networks are the leading method for machine learning [17]. 
Figure 1, shows the application field of the machine learning in 
multidisciplinary field including autonomous, traffic prediction, 
image recognition, medical diagnosis, speech recognition, fraud 
detection, automatic language translation, virtual personal assistant, 
email spam, stock market trading and product recommendation.
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linking the n input neurons to the ith in hidden neuron, βi is the 
flow connecting the ith hidden neuron to the single output neurons, 
bi the bias connected with the ith hidden neuron [18]. Provide a 
dataset with Z total observation, each with predictor set Xi and 
dichotomous outcomes Yi, the value of wi, βi and bi are found by 
minimizing the distance between predicted and actual outcomes.
 

The structure of this study was organizing as follow, Section 2 
briefly describe the methodology of the study and machine 
learning. Section 3 focus on neural network fitting and the 
different between three methods Levenberg-Marquardt Algorithm, 
Bayesian-Regularization Algorithm and Scaled Conjugate 
Gradient Algorithm. Next, Section 4 discussion and finally Section 
5 finding and conclusion.

2. Methodology
Federal Route 50, located in the southern peninsula of Malaysia, 
was selected for this study. The design of this infrastructure has 
four lane and two carriageways with a design speed of 100 km/h. 
In 2024, it will have the capacity to receive more than 92,000 veh/
day or 9,100 veh/h. Data collection using a video camera at eleven 
blackspot areas was accomplished, and microscopic analysis of the 
traffic behavior was performed in the laboratory.

Table 1, summarize the input layer and output layer for ANN 
model. Input layer represent of 58 attributes. Meanwhile, Output 
layer consist of right turn motor vehicles (RMV). In the input layer 
dataset, this study has eight main cluster involved vehicle category 
(VC), second vehicle passing RMV (SVP), first vehicle passing 
RMV (FVP), speed limit (SP), gap pattern (GP), infrastructure 
(Infra), type of conflict (TC) and day time (DT). Speed limit has 
20 items: speed limit less than (SP 25kph, SP30kph, SP35kph…n), 
vehicle category has 7 items: passenger cars, riders, pillions, lorries, 
and vans. Traffic of conflict has 5 items: angular conflict, rear end 
conflict, head-on conflict, change lane conflict, motorcycle stop 
conflict (AGc, REc, Hoc, CLc, and MSc) [19-21]. Infrastructure 
has 5 items: channelization, traffic signal, median, lane width 
and pedestrian bridge (Chlzation, TS, Md, Lw, and Pb) [22]. Gap 
patterns consist 5 items: gap pattern 1, gap pattern 2, gap pattern 
3, gap pattern 4 and gap pattern 5 (Gp1, Gp2, Gp3, Gp4 and Gp5) 
[23]. Second vehicle is passenger car, motorcycle, bus, lorry and 
van passing the RMV on the major road has 5 items (SCar, SMc, 
SBus, SLorry, and SVan) [21]. First vehicle is passenger car, 
motorcycle, bus, lorry and van passing the RMV on the major road 
has 5 items (FCar, FMc, FBus, FLorry and FVan). Day times has 
3 items: morning, midday and afternoon. Meanwhile gap, waiting 
time and traffic volume, each has 1 item respectively [21].
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Abbreviations Description
RMV RMV=1 if motor vehicles turned right at a gap acceptance, but 0 if not.
Gap Gap which is rejected or accepted (sec).
WT Waiting time of RMV (seconds)
TV Traffic Volume (veh/hr)
Car, Mc, Rider, Pillon, Van, Lorry, and Bus. Car, Mc, Rider, Pillion, Van, Lorry and Bus=1 if the RMV is car, and 0 if otherwise.
SCar, SMc, SBus, SLorry, SVan Second vehicle is passenger car, motorcycle, bus, lorry and van passing the RMV on the major 

road
FCar, FMc, FBus, FLorry, FVan First vehicle is passenger car, motorcycle, bus, lorry and van passing the RMV on the major road
SP 25,30,35,40 45,50,55,60,65…n Speed limit less than 25 kph, 30 kph, 35kph, 40kph, 45kph, 50kph,55kph,…n =1, but 0 if not.
Gap Pattern 1,2,3,4,5 If the gap was gap pattern 1,2,3,4,5 in Fig. 4, Gap1,2,3,4 and 5 =1, but 0 if not.
Chlzation, TS, Md, Lw, Pb If channelization, traffic signal, median, lane width and pedestrian bridge facility is in unsignalized 

intersection, so Chlzation, TS, Md, Lw = 1, but 0 if not.
AGc, REc, HOc, CLc, MSc If angular conflict (AGc), rear end conflict (REc), Head-on conflict (Hoc), change lane conflict 

(CLc), Motorcycle stop conflict (MSc) detect=1but 0 if not.
Morning, Midday, Afternoon, If morning, midday, afternoon occur=1, but 0 if not.

Table 1: Attributes of traffic behaviour models.

2.1. Machine Learning
In this study MATHLAB R2022b program has been applied and 
using neural network fitting as a machine learning (ML). They 
are three category machine learning adopting in this research 
such as Levenberg-Marquardt Algorithm (LMA), Bayesian-
Regularization Algorithm (BRA) and Scaled Conjugate Gradient 
Algorithm (SCGA). Subsequently, contrast analysis between those 
three-machine learning were carried out to justify the outcomes 
result. First, ANN function to analyse the information from input 
data, training of network, hidden layer, and output layer. Level 

of accuracy in the ANN network achieve through continuous 
training, connection between the units (input layer, hidden layer, 
output layer) and after the error in the prediction is reduced. The 
input or predictor data matrix (841 x 58) representing 841 samples 
of 58 dependent variables. Meanwhile the responses or output 
data matrix (841 x 1) representing 841 samples of 1 independent 
variables. The schematic of the neural network was created using 
neural network fitting. Figure -2 shows a two layer feedforward 
network consist ten sigmoid hidden neurons and single output 
layer neural network with one sigmoid suitable for regression task. 
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The simulation involved seventy percent of data (589 samples) 
was applied for training, fifteen percent (126 samples) used for 

validating and remining portion was used for testing of the neural 
network.
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Figure -3 shows the plot graph between the output rates and input 
rates. The best validation performance is 0.062527, at alteration 
6th. The training process continue until reach alterations 12 and 
then finish. The graph line for validation and test illustrates the 
stable flow after reach the alteration 6th except training line 
diverge after the reach epoch 3.

Next Figure-4 represents the best validating performance is 
0.01875, at epochs one thousand by implementing the Bayesian 
Regularization Algorithm (BRA). The training process stop 
until meet 1000 alterations. Despite of achieved the lowest error 
0.01875, the simulation line between training and test has quite 
big gap. Both lines recorded steady performance before touch 
alterations 200. Moreover, this method excluded the validation 
process.

In Scaled Conjugate Gradient Algorithm (SCGA) as depicted in 
Figure-5, the best validating performance is 0.0427 which close 
to zero, at alterations 44. The training run until fifty alterations. 
Despite of having second best validation performance from other 
models. Scaled Conjugate Gradient Algorithm represent uniform 
result of MSE simulation (close to zero) for all three steps training, 
validating, and testing at epochs 44. This machine learning has 
been identifying as excellence result for overall steps in the 
validation performance.
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all three steps training, validating, and testing at epochs 44. This machine learning has been

identifying as excellence result for overall steps in the validation performance.

Figure 3: Network Performance for Traffic Characteristic Created with Simulation Data

Using Levenberg-Marquardt Algorithm

Figure 4: Network Performance for Traffic Characteristic Created with Simulation Data Using Bayesian-Regularization Algorithm
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3.2.Regression Plot

Figure-6, illustrates the connection between output target values. Typically if the training

process is adequate fit, it reflect to output values and target values will achieve same result.

Generally, R =1 indicate the prefect regression index between the outputs and the targets. The

regression coefficient obtained for tranning, validating, test and all was 0.945, 0.86655,

0.88293 and 0.92391 respectively. The result describes in Levenberg-Marquardt Algorithm

(LMA) there is a precision of data fit. Furthermore, it can be explain that the outcomes are

acceptable with reasonable errors and the result is close to target. Moreover, the regression

between outputs and targets is nearly precise.

Figure 7 shows regression coefficient result for training, test and all was 0.96104, 0.8811 and

0.94848 respectively. The outcomes explain that with Bayesian-Regularization Algorithm,

there is a good regression (R close to one) between output and target. Base on three processes

in the BRA result perform better regression value than LMA. However, this method does not

include validation plot in the process.

Meanwhile Figure 8, by adopting Scaled Conjugate Gradient Algorithm (SCGA)

determination of regression coefficient for training, validating, test and all was 0.92047,
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3.2. Regression Plot
Figure-6, illustrates the connection between output target values. 
Typically if the training process is adequate fit, it reflect to output 
values and target values will achieve same result. Generally, R =1 
indicate the prefect regression index between the outputs and the 
targets. The regression coefficient obtained for tranning, validating, 
test and all was 0.945, 0.86655, 0.88293 and 0.92391 respectively. 
The result describes in Levenberg-Marquardt Algorithm (LMA) 
there is a precision of data fit. Furthermore, it can be explain that 
the outcomes are acceptable with reasonable errors and the result 
is close to target. Moreover, the regression between outputs and 
targets is nearly precise. 

Figure 7 shows regression coefficient result for training, test and 
all was 0.96104, 0.8811 and 0.94848 respectively. The outcomes 

explain that with Bayesian-Regularization Algorithm, there is a 
good regression (R close to one) between output and target. Base 
on three processes in the BRA result perform better regression 
value than LMA. However, this method does not include validation 
plot in the process. 

Meanwhile Figure 8, by adopting Scaled Conjugate Gradient 
Algorithm (SCGA) determination of regression coefficient for 
training, validating, test and all was 0.92047, 0.90798, 0.90403 
and 0.91591 respectively. The result indicated an improvement 
of regression coefficient from previous machine learning and the 
result nearly to target. All four process in SCGA perform R value 
above 0.90, which is higher than previous result. Therefore, in 
average this method can consider as the best performance for four 
steps of training, validating, testing and all.

0.90798, 0.90403 and 0.91591 respectively. The result indicated an improvement of

regression coefficient from previous machine learning and the result nearly to target. All four

process in SCGA perform R value above 0.90, which is higher than previous result. Therefore,

in average this method can consider as the best performance for four steps of training,

validating, testing and all.

Figure 6: Regression Plot for Traffic Behaviour Model Adopting Levenberg-Marquardt

Algorithm

Figure 6: Regression Plot for Traffic Behaviour Model Adopting Levenberg-Marquardt Algorithm
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Figure 7: Regression Plot for Traffic Behaviour Model Adopting Bayesian-Regularization

Algorithm

Figure 8: Regression Plot for Traffic Behaviour Model Adopting Scaled Conjugate Gradient

Algorithm
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Figure 8: Regression Plot for Traffic Behaviour Model Adopting Scaled Conjugate Gradient

Algorithm

Figure 8: Regression Plot for Traffic Behaviour Model Adopting Scaled Conjugate Gradient Algorithm

Algorithm

3.3. MSE and Regression 
Table 2 shows the outcomes for training, validation and testing 
of neural network fitting by adopting Levenberg-Marquardt 
Algorithm. Mean Squared Error (MSE) defines as average squared 
variance between outputs and targets. The less values of MSE 
mean the better result and zero indicate without error. (R) values 
mean regression, measure the correlation between outputs and 
targets. An R value typically yield between 0 to 1. Regression 
(R) value close to 0 mean less relationship, meanwhile ( R = 1) 
represent prefect relationship. The observation sample of training, 
validating and test obtained 589, 126 and 126 respectively. Next 
MSE of training, validating and test stated 0.0242, 0.0847 and 
0.0780 respectively. Moreover, R value of training, validating and 
test record 0.9494, 0.8226 and 0.8412.

Next approach Bayesian Regularization Algorithm, in Table 3 
present the result for traning and testing only without validating 
process. The data observation in this steps involved seven hundred 
and fifteen for training and one hundred and twenty six for test. 
Subsequently, the R value for training and test recorded 0.9610 
and 0.8811 respectively. Which indicate good correlation between 
outputs and targets. Furthemore, the MSE result for training and 
test process was 0.0187 and 0.0577 respectively. It remark the 
outcomes achived in MSE close to zero value which mean perform 
good result. 

The third mechine learning Scaled Conjugate Gradient Algorithm 
in Table 4, summarize the outputs for three process training, 
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validating and test. The dataset used in the observation for those 
three steps was same as Levenberg-Marquardt Algorithm. The 
R value determine for training, validating and test was 0.9205, 
0.9080 and 0.9040 respectively. Meanwhile The MSE value for 

training, validating and test archived 0.0378, 0.0427 and 0.0451 
respectively. The result perform in this method was better than 
others two approach which recorded R index for all three process 
above 0.90 and received MSE for all those steps less than 0.05.

Observation MSE R
Training 589 0.0242 0.9494
Validating 126 0.0847 0.8226
Test 126 0.0780 0.8412

Table 2: Regression (R)Values and Mean Squared Error (MSE) of Neural Network Fitting (Levenberg-Marquardt Algorithm)

Observation MSE R
Training 715 0.0187 0.9610
Validating - - -
Test 126 0.0577 0.8811

Table 3: Regression (R)Values and Mean Squared Error (MSE) of Neural Network Fitting (Bayesian-Regularization Algorithm)

Observation MSE R
Training 589 0.0378 0.9205
Validating 126 0.0427 0.9080
Test 126 0.0451 0.9040

Table 4: Regression (R)Values and Mean Squared Error (MSE) of Neural Network Fitting (Scaled Conjugate Gradient Algorithm)

3.4. Error Histogram
Base on the value of MSE (Figure -3) and R (Figure-6) are very 
close to zero and one, respectively. It explain that the data fitting 
quite accurate. The error histogram in Figure 9, shows the trained 

neural network for the tree process of tranning, validating and 
test. This histogram illustrates that the data fitting errors are well 
distributed in the accepted range between -0.8569 and 0.9266.

Observation MSE R

Training 715 0.0187 0.9610

Validating - - -

Test 126 0.0577 0.8811

Table 3: Regression (R)Values and Mean Squared Error (MSE) of Neural Network Fitting

(Bayesian-Regularization Algorithm)

Observation MSE R

Training 589 0.0378 0.9205

Validating 126 0.0427 0.9080

Test 126 0.0451 0.9040

Table 4: Regression (R)Values and Mean Squared Error (MSE) of Neural Network Fitting

(Scaled Conjugate Gradient Algorithm)

3.4.Error Histogram

Base on the value of MSE (Figure -3) and R (Figure-6) are very close to zero and one,

respectively. It explain that the data fitting quite accurate. The error histogram in Figure 9,

shows the trained neural network for the tree process of tranning, validating and test. This

histogram illustrates that the data fitting errors are well distributed in the accepted range

between -0.8569 and 0.9266.

Figure 9: Error Histogram Of Neural Network Simulation Levenberg-Marquardt AlgorithmFigure 9: Error Histogram Of Neural Network Simulation Levenberg-Marquardt Algorithm
In Figure 10, depicted the error histogram using Bayesian-
regularization algorithm. This machine learning analysis only two 
process training and test without validation. It indicates that the 

data fitting errors are also reasonably distributed and fall between 
-0.6 to 0.9353. This error is reasonably acceptable and qualify for 
training distribution outcomes.
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In Figure 10, depicted the error histogram using Bayesian-regularization algorithm. This

machine learning analysis only two process training and test without validation. It indicates

that the data fitting errors are also reasonably distributed and fall between -0.6 to 0.9353. This

error is reasonably acceptable and qualify for training distribution outcomes.

Figure 10: Error Histogram of Neural Network Simulation Bayesian-Regularization

Algorithm

The third machine learning Scaled Conjugate Gradient Algorithm as depicted in Figure 10,

plot the error histogram. This approach involved three steps training, validating and test. It

indicates that the data fitting errors are acceptable sensibly distributed and most error range

between -0.9786 to 0.8698. The outcomes from this method are nearly like Levenberg-

Marquardt Algorithm.
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error is reasonably acceptable and qualify for training distribution outcomes.

Figure 10: Error Histogram of Neural Network Simulation Bayesian-Regularization

Algorithm

The third machine learning Scaled Conjugate Gradient Algorithm as depicted in Figure 10,

plot the error histogram. This approach involved three steps training, validating and test. It

indicates that the data fitting errors are acceptable sensibly distributed and most error range

between -0.9786 to 0.8698. The outcomes from this method are nearly like Levenberg-

Marquardt Algorithm.

Figure 11: Error Histogram Of Neural Network Simulation Scaled Conjugate Gradient Algorithm
4. Discussion
In the input predectors data, eight main group has been identify 
in the traffic behavior dataset. They are vehicle category, second 
vehicle passing RMV, first vehicle passing RMV, speed limit, 
gap pattern, infrastructure, type of conflict and day time. The 
assessment between three machine learning by presenting network 
visualization simulation, regression algorithm, and error histogram 
diagram for training, validation and test process may contribute to 
the present literature, as a domain to traffic safety measure and 
basic review for autonomous vehicles.

To understand more precise the impact of each variable in the 
traffic behavior models. It is necessary to develop the models based 
on eight group in input dataset. The focus group will implement 
the machine learning and other analytic approach to crystalize the 
result. In addition, near-infrared (NIR) camera sensors technique, 
Driver’s Risk Field (DRF), Intelligent driver model (IDM) and 
Multi-Attention-Based Hybrid-Complication Spatial- Time Based 

Recurrent Network (HRSRN) are few potential techniques to be 
explore.

5. Conclusion
The analysis of Levenberg-Marquardt Algorithm (LMA), 
Bayesian-Regularization Algorithm (BRA), Scaled Conjugate 
Gredient Algorithm (SCGA) involved network performance 
simulation, regression plot and error histogram of neural network 
simulation. This paper has carried out evaluation between those 
three mechine learning and revealed that Scaled Conjugate Gradient 
Algorithm (SCGA) exihibit the best prediction performance for 
traffic behavior dataset. In average the result for (SCGA) mean 
square error were below 0.05 and regression value achived more 
than 0.90 in training, validating and test steps. The finding from 
this study has significance impact as the proposed approach can 
be utilized to mechine learning as well as other research flied to 
determine the highest prediction accuracy.
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