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Abstract 
Based on the various documents, 1989-2002, through the original texts, in addition to the author's contributions, this paper 
presents the refutation of the mathematicians and physicists A. Logunov and M. Mestvirishvil of A. Einstein's "general relativity", 
from the relativistic theory of gravitation of these authors, who applying the fundamental principle of the science of physics of 
the conservation of the energy-momentum and using absolute differential calculus they rigorously perform their mathematical 
tests. It is conclusively shown that, from the Einstein-Grossman-Hilbert equations, gravity is absurdly a metric field devoid 
of physical reality unlike all other fields in nature that are material fields, interrupting the chain of transformations between 
the different existing fields. Also, in Einstein's theory the proved "inertial mass" equal to gravitational mass has no physical 
meaning. Therefore, "general relativity" does not obey the correspondence principle with Newton's gravity. 
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1. Introduction
What was once called the general theory of relativity, GTR, 
from which only the Einstein- Grossmann-Hilbert equations 
are preserved today, because the principles that were used as 
guidelines for its structuring were negated over time, as great 
philosophers of science like Norton Earman and Glymour 
among others have presented it, since the general relativity 
of the movement not is valid in extended gravity and the 
covariance general is a property of the tensors in the space-
time universal of Riemann, apart that Einstein abandoned early 
the Mach´s principle [1]. Although its equations were obtained 
in November of 1915, GTR comes from 1907, when from the 
perspective of restricted relativity, on the basis of equivalence 
between inertial and gravitational masses and in that the laws 
of nature are independent of the state of motion, Albert Einstein 
formulated the equivalence between all kinds of movements, 
that is, those not subject to forces and those, that according to 
Newton, if they are, like the accelerated and the gravitational 
movements, although, limited to the homogeneous gravitational 
frames. So, first of all, these are equations about the geodetic 
motion of bodies and particles. And, secondly, of the general 
relativity of movement, although paradoxically restricted to a 
spacetime empty of matter.

Let us remember that according to Galilei's principle of relativity, 
valid in inertial frames, and adopted in special relativity, 
movement is a coordinate´s effect, since from mechanics, there is 
no kinematic way between two frames of reference, to establish 
which one is at rest. It will be in relative motion the one that 
according to the other changes its coordinates with respect to its 
frame, both being able to affirm it.

The generalization of relativity made by Einstein to all 

movements: inertial, accelerated and gravitational, is that any 
accelerated frame can be considered as an inertial frame although 
under the action of a local homogeneous gravitational field and 
this frame in free fall as an inertial one. Therefore, the movements 
inertial, accelerated and ¡¡gravitational homogeneous¡¡ are 
relative states, simple effect of change of coordinates as if they 
really did not exist.

Furthermore, spacetime, the scenery of such coordinate´s 
changes between frames, in 1908, was introduced by the 
mathematician Hermann Minkowski, through a mathematical 
model, uniting space and time on a four-dimensional continuum. 
This model was adopted by the science of physics, although 
only operationally defined not thus physically, constituting an 
unfortunate failure of a science of nature, which studies matter, 
but lacks the definition of one of its fundamental categories, so 
that philosophy, supplements it. The substantialism, according 
to the equations Einstein-Grossmann-Hilbert, defines it as 
a geometric entity, although existing in itself, which it serves 
of container of what exists materially; “All things are stored 
in time as an order of succession; and in space as order of 
situation” (Newton). On other hand, the relationism define it as 
a category of thought, which expresses geometric relationships 
between dynamic bodies and dynamic material particles; "Space 
is something merely relative, as time is. Space is an order of 
coexistence, just as time is an order of succession” (Leibniz and 
Clarke).

Consequence is that the movement is illusory, always subjective 
effect of the observers in their frames of reference regarding 
their perception of the space-temporal change of the other 
frames. Thus, Newton's and Maxwell's laws of physics are the 
same in all frames of reference regardless of their apparent state 
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of motion as if such preservation were a geometric property of 
spacetime.

Einstein was a failed relativist absolute unlike Newton and 
Galileo defenders of the absolute movement whose existence 
they could not prove, by what they accepted the principle of 
relativity although only valid in inertial frames.

Since antiquity, two currents of thought have disputed the 
conception of movement, being in one absolute and in the 
other relative. Among others the most notable, in the group of 
absolutists were Aristotle and Newton while in the group of 
relativists were Descartes, Leibniz and Mach.

The gravitation homogeneous explains the acceleration that 
bodies and particles undergo in a gravitational field, but not their 
attraction. In September 1913, Einstein had to introduce the 
concept of extended gravity in front of the homogeneous one, 
which he called from then on, point gravitation. "A physicist 
sharing our point of view can characterize the gravitational 
field as apparent because by a suitable choice of a state of 
acceleration, he can achieve that at a given point in spacetime 
a gravitational field is not present. But it is obvious that for 
extended gravitational fields this fading of the gravitational field 
cannot, in general, be achieved by a transformation. For example, 
it is not possible to fade the gravitational field of the Earth by 
choosing an appropriate reference system” [2,3]. The extended 
gravity is a permanent gravitational field that is not equivalent 
to a uniformly accelerated frame of reference. The extended 
gravitational field comprises both acceleration and attraction. 
Einstein wrote that "The theory of relativity (in the point sense) 
has to be replaced by a more general theory that contains the 
former as a limited case" [2]. In 1969, the author warned, from 
the structuralism approach, to clean the "general relativity" of 
Einstein's prejudices from his culture, ideology and psychology: 
"In his famous abstraction of the elevator that rises animated 
by a uniformly accelerated movement it turns out that a Such a 
system may or may not be a gravitational field; it all depends on 
whether the observer is outside or inside the elevator. The person 
inside the elevator cannot determine if the elevator is hanging 
from the cable, in the gravitational field, or if it experiences an 
acceleration directed upwards. Indeed, in both cases the objects 
will fall in the same way to the elevator floor. But, the truth is 
that the gravitation fields are neither created nor destroyed by 
the transformation of the reference system, they exist objectively 
regardless of our consciousness and prior to it. The empirical-
criticist Einstein rejects objective truth and its knowability, that 
is to say, if the thing in itself exists as something different than 
a mere complex of sensations, what rebels to knowledge is "the 
thing for us"; Einstein was a philosophical idealist ”[4].

Albert Einstein, physicist, and Marcel Grossman, mathematician, 
section VI A undergraduates, specializing in mathematics, 
physics, and astronomy in department VI, School for Teachers 
of Mathematics and Science, Zurich Polytechnic School; former 
colleagues during the first two basic years, of the four years in 
total; Both Ph.D from the University of Zurich worked together
in Zurich between August 1912 and March 1914, producing the 

best scientific result achieved by Einstein: the Entwurf theory, 
which was presented in June 1913.

Between, 1908-1909, Minkowski, former professor of Einstein, 
introduced in special relativity the geometric method and 
geometric thought, who, inspired by Felix Klein's work on 
new non-Euclidean geometries, in his Erlangen program the 
traditional algebraic instruments supporting physics were 
replaced by geometric ones [5]. "Minkowski indicated that the 
geometers have focused on the transformation of space. But 
they have ignored the transformation groups associated with 
mechanics, those that connect various inertial states of motion. 
Minkowski proceeded to treat those groups in exactly the same 
way as the geometric groups. In particular he constructed the 
geometry associated with the Lorentz transformation. To begin 
with it was not the geometry of space, but of spacetime, and 
the notion of spacetime was introduced into physics almost as a 
product of the Erlangen program. He further found that spacetime 
has the hyperbolic structure now associated with Minkowski's 
spacetime. From this geometric perspective the formulation of a 
theory that satisfies the principle of relativity in inertial systems 
becomes trivial. It is only required to formulate the theory in 
terms of the geometric entities of the spacetime, effect of the 
various types of spacetime vectors by Minkowski defined and 
the theory will be Lorentz covariant, automatically” [5]. Later, in 
1915, with the formulation of general relativity, Einstein adopted 
spacetime with Riemann geometry geometrizing gravity.

The bridge between special and general relativity was the 
Entwurf theory. Between 1905 and 1907, Einstein like 
Poincare and Minkowski failed to obtain a relativistic theory of 
gravitation, RTG, from special relativity due to the impossibility 
of describing the gravitational potential using a 4-vector. At this 
point Einstein was unaware of the tensors.

In 1912, Grossmann, who had served as a professor of descriptive 
geometry since absolute differential calculus, introduced in 
1901 by Gregorio Ricci-Curbastro and Tullio Levi-Civitta, 
introduced Einstein to tensioners, a powerful new mathematical 
tool, with the power of being able to integrate the principles of 
equivalence and relativity at the same time, given its covariance 
property, which could be applied in the Riemann spacetime or 
in the Minkowski spacetime, a special case of the first when the 
curvature tensor Ri

jkl = 0.

Absolute differential calculus represents quantities as geometric 
objects in that sense it is complementary to the Erlangen 
program, "allowing the relationships between such quantities 
to be valid in any frame of reference", that is, the property of 
covariance [6].

Einstein chose the tensors applied to Minkowski's spacetime 
since he, as a physicist, at that point understood that extended 
gravity was a phenomenon of energy similar to electromagnetic 
and it was essential to him “that the laws of conservation be 
satisfied by material processes and the gravitational field taken 
together. So we demand the existence of the expression tμν for 
the impulse and energy flows of the gravitational field, together 
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with the corresponding amounts Tμν of the material processes 
”[7]. Furthermore, Einstein devised the argument of the hole to 
justify the limited covariance, which occurs when the tensors 
are applied to the Minkowsky spacetime, due to its lack of 
universality that possesses the Riemann spacetime, avoiding the 
indeterminism that would result from a general covariance. But, 
the equations of the Entwurf theory failed in give in limit of the 
weak gravity the equations of Newton and, on the other hand, in 
astronomy the trajectory of Mercury.

General relativity arose not as the further development of 
Entwurf theory but from Einstein's deep personal crisis, in stiff 
competition with the best German mathematician of the time, 
David Hilbert, begun in July 1915, and ended in November 
1915, when Hilbert first and 5 days later Einstein delivered the 
equations giving the results, that the equations of the Entwurf 
theory could not. Einstein was forced to apply the tensors to 
Riemann's spacetime, the other alternative that Grossmann had 
given Einstein, at the cost of renouncing the materiality of the 
gravitational field, which became a field of geometric nature, 
devoid of physical reality. So Einstein had to give up to the 
hole argument, for which, with the help of the philosopher 
Moritz Schlick, he elaborated "the point coincidence argument" 
with which the indeterminism of the general covariance was 
overcome. Einstein presented the general covariance as the 
realization of the general principle of relativity. And without 
know Einstein how the equations work.

"As noted 90 years ago by Hilbert (1917), Einstein (1918), 
Schrodinger (1918) and Bauer (1918) within the approach 
of geometric gravity (general relativity) there are no tensor 
characteristics of impulse-energy for the field of gravity ”[8].

As in the Einstein-Grossmann-Hilbert equations, it is impossible 
to obtain a tensor for the energy and momentum of the 
gravitational field that satisfies the conditions:
1. When added to other forms of energy, the sum is preserved.
2. It is independent of coordinate systems.

In exchange Einstein built his pseudotensor that satisfies only 
the condition that the sum be preserved; Other physicists have 
obtained similar pseudo-tensors, the Landau-Lifshitz being 
notable, but the problem is that the pseudo-tensors only behave 
as tensors with respect to linear transformations of reference 
frames, that is, the pseudo-tensors are not general covariates and 
they are consequently confined to Minkowski's spacetime.

The non-localization of the energy of gravity is today the standard 
solution used by those who still cling to "general relativity" but 
which causes gravity cannot be treated quantum, while all the 
other fields are localizable, that is, detectable.

Therefore, in "general relativity", the geometrization of gravity 
was not due to Einstein using absolute differential calculus, the 
principle of geometrization or Riemann geometry, nor because 
the metric tensor encodes or allows obtaining all the data set 
related to the casual geometric structure of space-time. Gravity 
was geometrized because the metric tensor, as a metric field, 

is also the same gravitational field, devoid of impulse-energy 
because the corresponding tensor of impulse-energy generator 
tμν, does not exist, violating the conservation law of energy 
impulse of matter and the gravitational field, taken together. 
The metric field is just geometric objects, in itself without any 
physical content, in particular, as in modern general relativity, 
the gravitational field is the curvature on a Lorentzian manifold 
(Riemann spacetime of positive curvature), which Wheeler 
called geometrodynamic, or rather in Einstein the gravitational 
potentials: “gk = - (grad ϴ)k, k = x1,… x4 that is to say, gμν ↔ ϴ 
Γk

αβ ↔ gk” [9].

Paradoxically, "general relativity" is restricted to extended 
gravity that does not obey Einstein's principle of equivalence, 
a matter recognized by himself in 1913, and what is even more 
serious, violates the existing experimental equality between 
inertial and gravitational masses, since that the inertial mass 
depends on the spatial coordinates, lacking of physical meaning, 
as in 1986 was demonstrated by Logunov and Mestvirishvili.

In 1986, just over six decades after Einstein, Poincare and 
Minkowski's early failure to generalize restricted relativity, the 
group of the Soviets Anatoli Logunov and M. Mestvirishvili 
resumed the Entwurf theory, that confronting it with "general 
relativity" they found the great Einstein's error of the 
geometrization of gravity, which returned them to restricted 
relativity, and from Poincare's approach they formulated RTG, its 
true generalization, by using a dualistic structure of space-time: 
Minkowski - Lorentzian manifold. Of course, without Einstein's 
inconsistent principle of equivalence, keeping Minkowski's 
space-time primary, thereby preserving the law of conservation 
of energy and momentum of matter and gravity taken both, and 
materializing the static gravitational field, compound of virtual 
gravitons, generated from the tensor of matter, Tμν, plus the 
tensor of the gravitational field, tμν. Through the superposition 
of the secondary Lorentzian manifold, due to the presence of 
the gravitational field in the Minkowski space, the curved space-
time is conserved, consequently the general covariant equations, 
necessary to give in the limit of weak gravity, the Newton's 
equations and in their astronomical application the correct 
orbit of Mercury, that is, a wonderful result of ingenuity and 
mathematical technique based on absolute differential calculus, 
variational calculus, and gauge formalisms. In 2004, with the 
additional collaboration of S.S. Gershtein and N.P. Tkachenko, 
RTG was revised to explain the accelerated expansion of the 
Universe.

In this work we present, according to their original texts, 
Logunov and Mestvirishvili's critique of "general relativity", 
first the critique of Einstein's principle of equivalence, then the 
critique of the violation of inertial and gravitational mass equality 
and hereinafter the critique of the geometrization of gravity. This 
block of conclusive criticism has not been answered by any of 
Einstein's renowned scientific representatives. The relativistic 
theory of gravitation that Logunov and Mestvirishvili offer 
as a replacement for "general relativity”, it is accepted as an 
alternative theory. 
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2. Einstein's Equivalence Principle
Although the equivalence principle was formulated with the 
aim of serving as a guide for the generalization of the relativity 
of movement, it is only applicable in the absence of matter, 
therefore devoid of gravity, that is, of extended gravity, precisely 
the phenomenon that it intended explain general relativity. 
However, it is even more dramatic since a vacuum at rest, in 
Einstein's elevator, produces electromagnetic waves that break 
the equivalence between a uniform accelerated frame and a 
gravitational frame. Of course, the alleged law of equivalence 
between the different types of movements existing in nature 
that makes movement illusory as a simple effect of changes in 
coordinates between frames of reference is mere speculation.

"In the first stage of creating his theory, Einstein used the formal 
analogy between an inertial force field and a gravitational field 
as his main idea. In fact, these fields have a lot in common 
in their action on the mechanical movement of objects; the 
movement of objects under the action of a gravitational field is 
indistinguishable from their movement in an appropriately chosen 
non-inertial frame of reference; In both fields, the acceleration of 
objects does not depend on their mass or composition. This gave 
Einstein the basis for claiming that the gravitational mass of an 
object must be exactly equal to the inertial mass of the object and 
led him to the formulation of the equivalence principle (Einstein 
and Grossmann, 1913).

The theory described here stems from the conviction that the 
proportionality between the inertial and gravitational mass of 
a body is an exact law of nature that must be expressed as a 
fundamental principle of theoretical physics. We tried to reflect 
this conviction in a series of previous documents, in which an 
attempt was made to reduce the gravitational mass to the inertial 
mass; This aspiration led us to the hypothesis that physically a 
gravitational field (homogeneous in an infinitely small volume) 
can be completely replaced by an accelerated frame of reference. 
Graphically, this hypothesis can be formulated as follows: an 
observer locked in an elevator has no way of deciding whether 
the elevator is at rest in a static gravitational field or if the 
elevator is located in a gravitational free space in accelerated 
motion that it is maintained by forces acting on the elevator 
(equivalence hypothesis).

From Einstein's point of view, the only difference between inertial 
force fields and gravitational fields consists of the different 
external sources that these fields generate: the first is due to 
the non-inertia of the frame of reference used by the observer 
and the second is generated by material objects. However, as 
Einstein believed, these fields have an equivalent effect on all 
physical processes and are therefore indistinguishable in other 
respects. This statement created the illusion of the possibility 
of excluding the effect of the gravitational field on all physical 
phenomena through an appropriate transformation of the space-
time coordinates, by the analogy of the destruction of inertial 
force fields.

However, inertial forces and gravitational forces are completely 
different in origin, since for the former the curvature tensor is 

identically zero, while for the latter it is not zero. Consequently, 
the effect of the former on all physical phenomena can be 
nullified throughout space (globally) by transferring to an 
inertial frame of reference, while the effect of gravitational 
forces can be destroyed only in the local regions of space and not 
for all physical processes, but only for the simplest ones, those in 
which the space- time curvature is not present.

Therefore, on the one hand, the equivalence principle is invalid 
for processes involving particles with higher spins because the 
equations for the particles explicitly contain the curvature tensor, 
on the other hand, the principle cannot be applied to extended 
objects, since that in this case the deviation of the geodesics 
corresponding to the edge points of the object are manifested. 
Since the curvature tensor enters the deviation equation, 
inertial forces and gravitational forces are not equivalent for the 
mechanical movements of an extended object.

Therefore, the equivalence principle, understood as the 
possibility of excluding the gravitational field in an infinitesimal 
region is not correct, since, there is no way in which we can 
exclude the curvature of space (if it is not zero) selecting an 
appropriate frame of reference, even within a given precision. 
Furthermore, gravitational fields and inertial force fields do not 
have similar effects on all physical processes.

It is true to note that Einstein subsequently reconsidered his 
view of the equivalence principle and did not insist on complete 
equivalence of inertial force fields and gravitational fields, noting 
that the former (non-inertial frames of reference) constitute a 
particular case of gravitational fields satisfying the Riemann 
Ri

nml = 0 condition. Einstein wrote (1949):

There is a special type of space whose physical structure 
(field) can be presumed to be precisely known on the basis of 
the special theory of relativity. This is an empty space without 
electromagnetic field and without matter. It is completely 
determined by its metric property: Let dx0, dy0, dz0, and dt0 be 
the coordinate differences of two infinitesimally close points 
(events); so

it is a measurable quantity that is independent of the special 
choice of the inertial system. If the new coordinates x1, x2, x3 
and x4, are entered in this space, through a general coordinate 
transformation, then the quantity ds2 for the same pair of points 
has the form

(sum for i and k from 1 to 4), where gik = gki. The gik that form a 
symmetric tensor and are continuous functions of x1,… x4, then 
describe according to the equivalence principle a gravitational 
field of a special class, namely one that can be transformed back 
into the form (1).

From Riemann's research on metric spaces, the mathematical 
properties of this gik field can be given exactly (Riemann 
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gravitational field (out of matter and in the absence of an electromagnetic 
field). 
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condition). However, what you are looking for are the equations 
satisfied by the general gravitational fields. It is natural to 
suppose that they can also be described as tensor fields of the gik 
type that, in general, do not admit the transformation to the form 
(1), that is, they do not satisfy the Riemann condition, but they 
are weaker conditions, which, only in the Riemann condition, 
they are independent of the choice of coordinates (that is, they 
are generally invariant). A simple formal consideration leads 
to weaker conditions that are closely related to the Riemann 
condition. These conditions are the same equations of the 
pure gravitational field (out of matter and in the absence of an 
electromagnetic field).

Therefore, Einstein altered the physical meaning of the 
equivalence principle, although this fact apparently went 
unnoticed by many.

In creating the general theory of relativity, Einstein was fully 
guided by the equivalence principle in his initial wording, which 
therefore played a heuristic role in constructing the theory 
(Einstein and Grossmann, 1914):

The whole theory originated from the conviction that in a 
gravitational field all physical processes occur in the same way 
as in the absence of a gravitational field but in an appropriate 
accelerated (three-dimensional) coordinate system (equivalence 
hypothesis).

As in those days, thanks to Minkowski's discovery, it was known 
that different reference frames correspond to different metrics 
(generally outside the diagonal) of space-time, Einstein and 
Grossmann, 1913, concluded that the metric space-time tensor of 
Riemann must be taken as the field variable for the gravitational 
field and that this tensor is determined by the distribution and 
motion of matter. In this way the idea of a link between matter 
and the geometry of space-time arose.

Based on these assumptions, Einstein and Grossmann intuitively 
attempted to establish the form of the equations linking the 
components of Riemann's metric tensor of space-time with 
the impulse-energy tensor for matter. After numerous failed 
attempts, Einstein found such equations in late 1915. A little 
earlier, Hilbert, 1915, came up with the same equations (his 
reasoning was based on variational principles), we will call these 
equations the Hilbert-Einstein equations.

It should be noted that the Riemann space-time metric tensor 
cannot serve as a characteristic of the gravitational field because 
its asymptotic behavior depends on the choice of the three-
dimensional (spatial) coordinate system” [10]. 

3. The Inertial Mass in "General Relativity"
The Einstein-Grossmann-Hilbert equations violate the 
equivalence between inertial and gravitational masses, 
established experimentally, with great precision, in repeated 
experiments, and on which the Einstein equivalence principle 
is precisely based, because according to these equations the 
inertial mass is the effect of the choice of the three- dimensional 

coordinate system, on the Lorentzian variety, therefore, without 
physical meaning.

“Einstein considered the equality of the inertial and gravitational 
mass of an object as an exact law of nature, a law that must be 
reflected in his theory. Today, it is assumed in "general relativity" 
that the gravitational mass of a system consisting of matter and 
gravitational field is equal to the inertial mass of the system. 
Such statements are contained in the works of Einstein, 1918, 
Tolman, 1934, and Weyl, 1923. Subsequently, the "test" of this 
statement with various alterations was made by other authors (see 
Landau and Lifshitz, 1975, Misner, Thorne, and Wheeler, 1973, 
and Metier, 1952). However, the statement is wrong. Following 
Denisov and Logunov, 1982, we will now demonstrate this.

Einstein, 1918, defined the gravitational mass M of an arbitrary 
physical system that is at rest with respect to a Galilean-
Schwarzschild-coordinate system (at infinity), as the quantity 
that is the factor of the term - 2G / c2r in the asymptotic expression 
(when r→ ∞) for the g00 component of the Riemann space-time 
metric tensor: 

                        g00 = 1 – 2G/c2r M

Tolman, 1934, gave a somewhat different definition:

These definitions directly imply that the gravitational mass is 
invariant under three- dimensional coordinate transformations, 
since both the Ricci R00 tensor component and the g00 metric 
tensor component are transformed as a scalar.

In the case of a spherically symmetric static source, these 
definitions are equivalent.

Identity transformations produce
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Therefore, the gravitational mass of any static system, according 
to Tolman's definition, is the factor - 2G/c2r in the asymptotic 
expression for the g00 component substance of the Riemann 
space-time metric tensor. Therefore, for static systems, the 
definitions of gravitational mass given by Einstein and Tolman 
coincide.

Einstein closely related the concept of the inertial mass of a 
physical system in "general relativity" with the idea of the energy 
of the system (Einstein, 1918): ... the quantity that we have 
interpreted as energy plays the role of inertial mass, according to 
the special theory of relativity.

Since Einstein suggested calculating the energy of a system 
within the framework of "general relativity" with the help of 
pseudo-impulse-energy tensors, the inertial mass is calculated 
on the basis of (2.11).

Now we define according to (2.11) the inertial mass of a 
symmetric spherical gravitational field source and study how the 
inertial mass is transformed under coordinate transformations. 
In isotropic Cartesian coordinates, the Riemann space- time 
metric has the form

where rg - 2GM/c2. These coordinates are asymptotically 
Galilean, since the following estimates are true when r → ∞:

If we use the covariant components of the metric (3.5), then 
(2.12) hikl = c4gkm/16πG ∂/∂xm |-g(gikgml - gilgmk) produces 
considering the fact that and integrating on an infinitely distant 
surface, we obtain

hooα = - c4/16πg ∂/∂xβ |g11g22g33g
αβ| Substituting this in (2.10),

considering the fact that

and integrating on an infinitely distant surface, we obtain

Therefore, the P0 component is independent of the g00 component 
of the Riemann space-time metric tensor. Combining (3.5), (3.8) 
and

where r2 = - xαx
α, we arrive at the following expression for the 

impulse-energy component P0:

The fact is that inertial mass "coincides with the gravitational 
mass that gave grounds for claiming that they are also equal in 
"general relativity" Landau and Lifshitz, 1975 (p. 334), wrote: …. 
pα = 0, P0 = Mc, a result that was naturally to be expected. It is an 
expression of the equality of "gravitational" and "inertial" mass 
("gravitational" mass is the mass that determines the gravitational 
field produced by the body, the same mass that appears in the 
metric tensor in a gravitational field, or in particular, in Newton's 
law, the "inertial" mass is the mass that determines the energy 
and impulse relation of the body, in particular, the rest energy of 
the body is equal to this mass multiplied by c2).

However, this statement and similar statements made by 
Einstein, 1918, and other authors (see Eddington, 1923, Misner, 
Thorne, and Wheeler, 1973, Mailer, 1952, and Tolman, 1934) 
are erroneous. As can be easily demonstrated, the "energy" of 
a system and, therefore, the "inertial mass" of the same system, 
(2.11), do not have a physical meaning because their magnitude 
depends on the choice of the three-dimensional coordinate 
system. In fact, a basic requirement that any definition of inertial 
mass must satisfy is the independence of this quantity from the 
choice of the three- dimensional coordinate system; this is valid 
for any physical theory. But in "general relativity" the definition 
(2.11) of "inertial mass" does not meet this requirement.

We will demonstrate, for example, that in the case of a 
Schwarzschild solution, the "inertial mass" (2.11) assumes an 
arbitrary value depending on the choice of the three- dimensional 
coordinate system. To this end, we transfer from the three-
dimensional Cartesian coordinates xαc other xα

N coordinates 
linked to the previous coordinates using the following formula:

where rN = (x2
N + y2

N + Z2
N)1/2, f (rN) is an arbitrary non-singular 

function that obeys the conditions.

It is easy to see that the transformation (3.11) corresponds to a 
change in the arithmetic of the points of the three-dimensional 
space along the radius, rc = rN l1 + f(rN)l. For the transformation 
(3.11) to have an inverse and be one by one, it is necessary and 
sufficient that

Where

Then the Jacobian of this transformation will also be non-zero:

specifically the function

Einstein, 1918, defined the gravitational mass M of an arbitrary physical system that is 
at rest with respect to a Galilean-Schwarzschild-coordinate system (at infinity), as the 
quantity that is the factor of the term - 2G / c2r in the asymptotic expression (when r 
→ ∞) for the g00 component of the Riemann space-time metric tensor: 

g00 = 1 – 2G/c2r M 

Tolman, 1934, gave a somewhat different definition: 

M = c2/4πG ∫R0
0 √-gdV   (3.1) 

These definitions directly imply that the gravitational mass is invariant under three-
dimensional coordinate transformations, since both the Ricci R00 tensor component 
and the g00 metric tensor component are transformed as a scalar. 

In the case of a spherically symmetric static source, these definitions are equivalent. 
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Since Einstein suggested calculating the energy of a system within the framework of 
"general relativity" with the help of pseudo-impulse-energy tensors, the inertial mass 
is calculated on the basis of (2.11). 

mi = 1/c P0  =   1/c2 ∫ (-g)(T00 –  t00) dV    =   1/c2 § h00a dSa       (2.11) 

Now we define according to (2.11) the inertial mass of a symmetric spherical 
gravitational field source and study how the inertial mass is transformed under 
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time metric has the form 
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Substituting this in (2.10), 
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considering the fact that 

dSα – xα /r r2 senθ dθ dϕ     (3.7) 
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where r2 = - xαxα, we arrive at the following expression for the impulse-energy 
component P0: 
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the fact is that inertial mass "coincides with the gravitational mass that gave grounds 
for claiming that they are also equal in "general relativity" Landau and Lifshitz, 1975 (p. 
334), wrote: 

Since Einstein suggested calculating the energy of a system within the framework of 
"general relativity" with the help of pseudo-impulse-energy tensors, the inertial mass 
is calculated on the basis of (2.11). 

mi = 1/c P0  =   1/c2 ∫ (-g)(T00 –  t00) dV    =   1/c2 § h00a dSa       (2.11) 

Now we define according to (2.11) the inertial mass of a symmetric spherical 
gravitational field source and study how the inertial mass is transformed under 
coordinate transformations. In isotropic Cartesian coordinates, the Riemann space-
time metric has the form 

g00 = (1 - rg / 4r)2 / (1 + rg / 4r)2           gαβ = yαβ (1 + rg / 4r)4             (3.5) 

where rg - 2GM/c2. These coordinates are asymptotically Galilean, since the following 
estimates are true when r → ∞: 

g00 = 1 + O (1/r)                  gαβ = yαβ |1 + O (1 /r)|       (3.6) 

If we use the covariant components of the metric (3.5), then (2.12) 

hikl = c4gkm/16πG ∂/∂xm |-g(gikgml - gilgmk)|                                                                                      

produces 

hooα
      =   - c4/16πg  ∂/∂xβ |g11g22g33gαβ| 

Substituting this in (2.10), 

Pi= 1/c § h0ia dSa = const     (2.10) 

considering the fact that 

dSα – xα /r r2 senθ dθ dϕ     (3.7) 

and integrating on an infinitely distant surface, we obtain 

P0 = c3/16πG limite r →∞  r2 ∫ xα/r |∂/∂xβ -g11g22g33gαβ| senθ dθ dϕ          (3.8) 

Therefore, the P0 component is independent of the g00 component of the Riemann 
space-time metric tensor. Combining (3.5), (3.8) and 

∂/∂xβ  f(r) = xβ  /r  ∂/r  f(r)          (3.9) 

where r2 = - xαxα, we arrive at the following expression for the impulse-energy 
component P0: 

P0 = c3rg / 2G = Mc         (3.10) 

the fact is that inertial mass "coincides with the gravitational mass that gave grounds 
for claiming that they are also equal in "general relativity" Landau and Lifshitz, 1975 (p. 
334), wrote: 

Since Einstein suggested calculating the energy of a system within the framework of 
"general relativity" with the help of pseudo-impulse-energy tensors, the inertial mass 
is calculated on the basis of (2.11). 

mi = 1/c P0  =   1/c2 ∫ (-g)(T00 –  t00) dV    =   1/c2 § h00a dSa       (2.11) 

Now we define according to (2.11) the inertial mass of a symmetric spherical 
gravitational field source and study how the inertial mass is transformed under 
coordinate transformations. In isotropic Cartesian coordinates, the Riemann space-
time metric has the form 

g00 = (1 - rg / 4r)2 / (1 + rg / 4r)2           gαβ = yαβ (1 + rg / 4r)4             (3.5) 

where rg - 2GM/c2. These coordinates are asymptotically Galilean, since the following 
estimates are true when r → ∞: 

g00 = 1 + O (1/r)                  gαβ = yαβ |1 + O (1 /r)|       (3.6) 

If we use the covariant components of the metric (3.5), then (2.12) 

hikl = c4gkm/16πG ∂/∂xm |-g(gikgml - gilgmk)|                                                                                      

produces 

hooα
      =   - c4/16πg  ∂/∂xβ |g11g22g33gαβ| 

Substituting this in (2.10), 

Pi= 1/c § h0ia dSa = const     (2.10) 

considering the fact that 

dSα – xα /r r2 senθ dθ dϕ     (3.7) 

and integrating on an infinitely distant surface, we obtain 

P0 = c3/16πG limite r →∞  r2 ∫ xα/r |∂/∂xβ -g11g22g33gαβ| senθ dθ dϕ          (3.8) 

Therefore, the P0 component is independent of the g00 component of the Riemann 
space-time metric tensor. Combining (3.5), (3.8) and 

∂/∂xβ  f(r) = xβ  /r  ∂/r  f(r)          (3.9) 

where r2 = - xαxα, we arrive at the following expression for the impulse-energy 
component P0: 

P0 = c3rg / 2G = Mc         (3.10) 

the fact is that inertial mass "coincides with the gravitational mass that gave grounds 
for claiming that they are also equal in "general relativity" Landau and Lifshitz, 1975 (p. 
334), wrote: 

Since Einstein suggested calculating the energy of a system within the framework of 
"general relativity" with the help of pseudo-impulse-energy tensors, the inertial mass 
is calculated on the basis of (2.11). 

mi = 1/c P0  =   1/c2 ∫ (-g)(T00 –  t00) dV    =   1/c2 § h00a dSa       (2.11) 

Now we define according to (2.11) the inertial mass of a symmetric spherical 
gravitational field source and study how the inertial mass is transformed under 
coordinate transformations. In isotropic Cartesian coordinates, the Riemann space-
time metric has the form 

g00 = (1 - rg / 4r)2 / (1 + rg / 4r)2           gαβ = yαβ (1 + rg / 4r)4             (3.5) 

where rg - 2GM/c2. These coordinates are asymptotically Galilean, since the following 
estimates are true when r → ∞: 

g00 = 1 + O (1/r)                  gαβ = yαβ |1 + O (1 /r)|       (3.6) 

If we use the covariant components of the metric (3.5), then (2.12) 

hikl = c4gkm/16πG ∂/∂xm |-g(gikgml - gilgmk)|                                                                                      

produces 

hooα
      =   - c4/16πg  ∂/∂xβ |g11g22g33gαβ| 

Substituting this in (2.10), 

Pi= 1/c § h0ia dSa = const     (2.10) 

considering the fact that 

dSα – xα /r r2 senθ dθ dϕ     (3.7) 

and integrating on an infinitely distant surface, we obtain 

P0 = c3/16πG limite r →∞  r2 ∫ xα/r |∂/∂xβ -g11g22g33gαβ| senθ dθ dϕ          (3.8) 

Therefore, the P0 component is independent of the g00 component of the Riemann 
space-time metric tensor. Combining (3.5), (3.8) and 

∂/∂xβ  f(r) = xβ  /r  ∂/r  f(r)          (3.9) 

where r2 = - xαxα, we arrive at the following expression for the impulse-energy 
component P0: 

P0 = c3rg / 2G = Mc         (3.10) 

the fact is that inertial mass "coincides with the gravitational mass that gave grounds 
for claiming that they are also equal in "general relativity" Landau and Lifshitz, 1975 (p. 
334), wrote: 

Since Einstein suggested calculating the energy of a system within the framework of 
"general relativity" with the help of pseudo-impulse-energy tensors, the inertial mass 
is calculated on the basis of (2.11). 

mi = 1/c P0  =   1/c2 ∫ (-g)(T00 –  t00) dV    =   1/c2 § h00a dSa       (2.11) 

Now we define according to (2.11) the inertial mass of a symmetric spherical 
gravitational field source and study how the inertial mass is transformed under 
coordinate transformations. In isotropic Cartesian coordinates, the Riemann space-
time metric has the form 

g00 = (1 - rg / 4r)2 / (1 + rg / 4r)2           gαβ = yαβ (1 + rg / 4r)4             (3.5) 

where rg - 2GM/c2. These coordinates are asymptotically Galilean, since the following 
estimates are true when r → ∞: 

g00 = 1 + O (1/r)                  gαβ = yαβ |1 + O (1 /r)|       (3.6) 

If we use the covariant components of the metric (3.5), then (2.12) 

hikl = c4gkm/16πG ∂/∂xm |-g(gikgml - gilgmk)|                                                                                      

produces 

hooα
      =   - c4/16πg  ∂/∂xβ |g11g22g33gαβ| 

Substituting this in (2.10), 

Pi= 1/c § h0ia dSa = const     (2.10) 

considering the fact that 

dSα – xα /r r2 senθ dθ dϕ     (3.7) 

and integrating on an infinitely distant surface, we obtain 

P0 = c3/16πG limite r →∞  r2 ∫ xα/r |∂/∂xβ -g11g22g33gαβ| senθ dθ dϕ          (3.8) 

Therefore, the P0 component is independent of the g00 component of the Riemann 
space-time metric tensor. Combining (3.5), (3.8) and 

∂/∂xβ  f(r) = xβ  /r  ∂/r  f(r)          (3.9) 

where r2 = - xαxα, we arrive at the following expression for the impulse-energy 
component P0: 

P0 = c3rg / 2G = Mc         (3.10) 

the fact is that inertial mass "coincides with the gravitational mass that gave grounds 
for claiming that they are also equal in "general relativity" Landau and Lifshitz, 1975 (p. 
334), wrote: 

Since Einstein suggested calculating the energy of a system within the framework of 
"general relativity" with the help of pseudo-impulse-energy tensors, the inertial mass 
is calculated on the basis of (2.11). 

mi = 1/c P0  =   1/c2 ∫ (-g)(T00 –  t00) dV    =   1/c2 § h00a dSa       (2.11) 

Now we define according to (2.11) the inertial mass of a symmetric spherical 
gravitational field source and study how the inertial mass is transformed under 
coordinate transformations. In isotropic Cartesian coordinates, the Riemann space-
time metric has the form 

g00 = (1 - rg / 4r)2 / (1 + rg / 4r)2           gαβ = yαβ (1 + rg / 4r)4             (3.5) 

where rg - 2GM/c2. These coordinates are asymptotically Galilean, since the following 
estimates are true when r → ∞: 

g00 = 1 + O (1/r)                  gαβ = yαβ |1 + O (1 /r)|       (3.6) 

If we use the covariant components of the metric (3.5), then (2.12) 

hikl = c4gkm/16πG ∂/∂xm |-g(gikgml - gilgmk)|                                                                                      

produces 

hooα
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Substituting this in (2.10), 

Pi= 1/c § h0ia dSa = const     (2.10) 

considering the fact that 

dSα – xα /r r2 senθ dθ dϕ     (3.7) 

and integrating on an infinitely distant surface, we obtain 

P0 = c3/16πG limite r →∞  r2 ∫ xα/r |∂/∂xβ -g11g22g33gαβ| senθ dθ dϕ          (3.8) 

Therefore, the P0 component is independent of the g00 component of the Riemann 
space-time metric tensor. Combining (3.5), (3.8) and 

∂/∂xβ  f(r) = xβ  /r  ∂/r  f(r)          (3.9) 

where r2 = - xαxα, we arrive at the following expression for the impulse-energy 
component P0: 

P0 = c3rg / 2G = Mc         (3.10) 

the fact is that inertial mass "coincides with the gravitational mass that gave grounds 
for claiming that they are also equal in "general relativity" Landau and Lifshitz, 1975 (p. 
334), wrote: 

Since Einstein suggested calculating the energy of a system within the framework of 
"general relativity" with the help of pseudo-impulse-energy tensors, the inertial mass 
is calculated on the basis of (2.11). 

mi = 1/c P0  =   1/c2 ∫ (-g)(T00 –  t00) dV    =   1/c2 § h00a dSa       (2.11) 

Now we define according to (2.11) the inertial mass of a symmetric spherical 
gravitational field source and study how the inertial mass is transformed under 
coordinate transformations. In isotropic Cartesian coordinates, the Riemann space-
time metric has the form 

g00 = (1 - rg / 4r)2 / (1 + rg / 4r)2           gαβ = yαβ (1 + rg / 4r)4             (3.5) 

where rg - 2GM/c2. These coordinates are asymptotically Galilean, since the following 
estimates are true when r → ∞: 

g00 = 1 + O (1/r)                  gαβ = yαβ |1 + O (1 /r)|       (3.6) 

If we use the covariant components of the metric (3.5), then (2.12) 

hikl = c4gkm/16πG ∂/∂xm |-g(gikgml - gilgmk)|                                                                                      

produces 

hooα
      =   - c4/16πg  ∂/∂xβ |g11g22g33gαβ| 

Substituting this in (2.10), 

Pi= 1/c § h0ia dSa = const     (2.10) 

considering the fact that 

dSα – xα /r r2 senθ dθ dϕ     (3.7) 

and integrating on an infinitely distant surface, we obtain 

P0 = c3/16πG limite r →∞  r2 ∫ xα/r |∂/∂xβ -g11g22g33gαβ| senθ dθ dϕ          (3.8) 

Therefore, the P0 component is independent of the g00 component of the Riemann 
space-time metric tensor. Combining (3.5), (3.8) and 

∂/∂xβ  f(r) = xβ  /r  ∂/r  f(r)          (3.9) 

where r2 = - xαxα, we arrive at the following expression for the impulse-energy 
component P0: 

P0 = c3rg / 2G = Mc         (3.10) 

the fact is that inertial mass "coincides with the gravitational mass that gave grounds 
for claiming that they are also equal in "general relativity" Landau and Lifshitz, 1975 (p. 
334), wrote: 

Since Einstein suggested calculating the energy of a system within the framework of 
"general relativity" with the help of pseudo-impulse-energy tensors, the inertial mass 
is calculated on the basis of (2.11). 

mi = 1/c P0  =   1/c2 ∫ (-g)(T00 –  t00) dV    =   1/c2 § h00a dSa       (2.11) 

Now we define according to (2.11) the inertial mass of a symmetric spherical 
gravitational field source and study how the inertial mass is transformed under 
coordinate transformations. In isotropic Cartesian coordinates, the Riemann space-
time metric has the form 

g00 = (1 - rg / 4r)2 / (1 + rg / 4r)2           gαβ = yαβ (1 + rg / 4r)4             (3.5) 

where rg - 2GM/c2. These coordinates are asymptotically Galilean, since the following 
estimates are true when r → ∞: 

g00 = 1 + O (1/r)                  gαβ = yαβ |1 + O (1 /r)|       (3.6) 

If we use the covariant components of the metric (3.5), then (2.12) 

hikl = c4gkm/16πG ∂/∂xm |-g(gikgml - gilgmk)|                                                                                      

produces 

hooα
      =   - c4/16πg  ∂/∂xβ |g11g22g33gαβ| 

Substituting this in (2.10), 

Pi= 1/c § h0ia dSa = const     (2.10) 

considering the fact that 

dSα – xα /r r2 senθ dθ dϕ     (3.7) 

and integrating on an infinitely distant surface, we obtain 

P0 = c3/16πG limite r →∞  r2 ∫ xα/r |∂/∂xβ -g11g22g33gαβ| senθ dθ dϕ          (3.8) 

Therefore, the P0 component is independent of the g00 component of the Riemann 
space-time metric tensor. Combining (3.5), (3.8) and 

∂/∂xβ  f(r) = xβ  /r  ∂/r  f(r)          (3.9) 

where r2 = - xαxα, we arrive at the following expression for the impulse-energy 
component P0: 

P0 = c3rg / 2G = Mc         (3.10) 

the fact is that inertial mass "coincides with the gravitational mass that gave grounds 
for claiming that they are also equal in "general relativity" Landau and Lifshitz, 1975 (p. 
334), wrote: 

…. pα = 0, P0 = Mc, a result that was naturally to be expected. It is an expression 
of the equality of "gravitational" and "inertial" mass ("gravitational" mass is 
the mass that determines the gravitational field produced by the body, the 
same mass that appears in the metric tensor in a gravitational field, or in 
particular, in Newton's law, the "inertial" mass is the mass that determines the 
energy and impulse relation of the body, in particular, the rest energy of the 
body is equal to this mass multiplied by c2). 

However, this statement and similar statements made by Einstein, 1918, and other 
authors (see Eddington, 1923, Misner, Thorne, and Wheeler, 1973, Mailer, 1952, and 
Tolman, 1934) are erroneous. As can be easily demonstrated, the "energy" of a system 
and, therefore, the "inertial mass" of the same system, (2.11), do not have a physical 
meaning because their magnitude depends on the choice of the three-dimensional 
coordinate system. In fact, a basic requirement that any definition of inertial mass 
must satisfy is the independence of this quantity from the choice of the three-
dimensional coordinate system; this is valid for any physical theory. But in "general 
relativity" the definition (2.11) of "inertial mass" does not meet this requirement. 

We will demonstrate, for example, that in the case of a Schwarzschild solution, the 
"inertial mass" (2.11) assumes an arbitrary value depending on the choice of the three-
dimensional coordinate system. To this end, we transfer from the three-dimensional 
Cartesian coordinates xαc other xα

N coordinates linked to the previous coordinates 
using the following formula: 

xαc  = xα
N |1 + f(rN) |                  (3.11) 

where rN = (x2
N + y2

N + Z2
N)1/2, f (rN) is an arbitrary non-singular function that obeys the 

conditions 

f(rN) ≥ 0, lim rN →∞ f(rN) = 0, lim rN →∞ rN  ∂/∂rN f(rN) = 0       (3.12) 

It is easy to see that the transformation (3.11) corresponds to a change in the 
arithmetic of the points of the three-dimensional space along the radius, rc = rN l1 + 
f(rN)l. For the transformation (3.11) to have an inverse and be one by one, it is 
necessary and sufficient that 

∂rc/∂rN = 1 + f + rN f’ › 0. 

Where 

f’ = ∂/∂rN  f(rN)  

Then the Jacobian of this transformation will also be non-zero: 

J = det l∂xc/∂xNl = (1 + f)2 ∂rc/∂rN   ≠   0 

specifically the function 

f(rN) = α2 (8GM/c2 rN)1/2 l 1— exp (- ε rN) l       (3.13) 

…. pα = 0, P0 = Mc, a result that was naturally to be expected. It is an expression 
of the equality of "gravitational" and "inertial" mass ("gravitational" mass is 
the mass that determines the gravitational field produced by the body, the 
same mass that appears in the metric tensor in a gravitational field, or in 
particular, in Newton's law, the "inertial" mass is the mass that determines the 
energy and impulse relation of the body, in particular, the rest energy of the 
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and, therefore, the "inertial mass" of the same system, (2.11), do not have a physical 
meaning because their magnitude depends on the choice of the three-dimensional 
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must satisfy is the independence of this quantity from the choice of the three-
dimensional coordinate system; this is valid for any physical theory. But in "general 
relativity" the definition (2.11) of "inertial mass" does not meet this requirement. 

We will demonstrate, for example, that in the case of a Schwarzschild solution, the 
"inertial mass" (2.11) assumes an arbitrary value depending on the choice of the three-
dimensional coordinate system. To this end, we transfer from the three-dimensional 
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using the following formula: 
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f(rN) ≥ 0, lim rN →∞ f(rN) = 0, lim rN →∞ rN  ∂/∂rN f(rN) = 0       (3.12) 
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f(rN)l. For the transformation (3.11) to have an inverse and be one by one, it is 
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∂rc/∂rN = 1 + f + rN f’ › 0. 
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J = det l∂xc/∂xNl = (1 + f)2 ∂rc/∂rN   ≠   0 

specifically the function 

f(rN) = α2 (8GM/c2 rN)1/2 l 1— exp (- ε rN) l       (3.13) 
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particular, in Newton's law, the "inertial" mass is the mass that determines the 
energy and impulse relation of the body, in particular, the rest energy of the 
body is equal to this mass multiplied by c2). 

However, this statement and similar statements made by Einstein, 1918, and other 
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Tolman, 1934) are erroneous. As can be easily demonstrated, the "energy" of a system 
and, therefore, the "inertial mass" of the same system, (2.11), do not have a physical 
meaning because their magnitude depends on the choice of the three-dimensional 
coordinate system. In fact, a basic requirement that any definition of inertial mass 
must satisfy is the independence of this quantity from the choice of the three-
dimensional coordinate system; this is valid for any physical theory. But in "general 
relativity" the definition (2.11) of "inertial mass" does not meet this requirement. 

We will demonstrate, for example, that in the case of a Schwarzschild solution, the 
"inertial mass" (2.11) assumes an arbitrary value depending on the choice of the three-
dimensional coordinate system. To this end, we transfer from the three-dimensional 
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where rN = (x2
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same mass that appears in the metric tensor in a gravitational field, or in 
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energy and impulse relation of the body, in particular, the rest energy of the 
body is equal to this mass multiplied by c2). 
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Tolman, 1934) are erroneous. As can be easily demonstrated, the "energy" of a system 
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must satisfy is the independence of this quantity from the choice of the three-
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relativity" the definition (2.11) of "inertial mass" does not meet this requirement. 

We will demonstrate, for example, that in the case of a Schwarzschild solution, the 
"inertial mass" (2.11) assumes an arbitrary value depending on the choice of the three-
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specifically the function 
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…. pα = 0, P0 = Mc, a result that was naturally to be expected. It is an expression 
of the equality of "gravitational" and "inertial" mass ("gravitational" mass is 
the mass that determines the gravitational field produced by the body, the 
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particular, in Newton's law, the "inertial" mass is the mass that determines the 
energy and impulse relation of the body, in particular, the rest energy of the 
body is equal to this mass multiplied by c2). 
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with arbitrary numbers α and ε not equal to zero, satisfy each of 
the above requirements. If we allow (3.13), we get

showing that rc is a monotonous function of rN. It is easy to verify 
that f(rN) is a non- negative non-singular function in all space. 
The Jacobian of the transformation in this case is strictly greater 
than unity:

Therefore, the transformation (3.11) with the function f(rN) 
defined through (3.13) has an inverse transformation and is one 
to one.

Obviously, the transformation (3.11) does not change the value 
of the gravitational mass (3.1). Now we will calculate the value 
of the "inertial mass" (2.11) in terms of the new xα

N coordinates. 
Applying the tensor transformation law to the metric tensor, f(rN)

we can find the components of the Schwarzschild metric (3.5) in 
terms of new coordinates. The result is

The determinant of the metric tensor (3.15) is

It should be especially noted that the metric (3.15) is 
asymptotically Galilean

lim rN →∞ g00 = 1 lim rN →∞ gαβ = yαβ

In the particular case where the function f is specified by (3.13) 
and rN is sent to infinity, the Riemann space-time metric has the 
following asymptotic behavior:

For the covariant components of the metric (3.15) we have
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we can find the components of the Schwarzschild metric (3.5) in terms of new 
coordinates. The result is 

g00 =  l 1- rg/4rN(1+f) l2 l 1+ rg/4rN(1+f) l-2         (3.15) 

gαβ = l 1+ rg/4rN(1+f) l4 { yαβ (1 + f)2 – xN
α xN

β l (f’)2 + 2/rN f’ (1 + f) l } 
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In the particular case where the function f is specified by (3.13) and rN is sent to 
infinity, the Riemann space-time metric has the following asymptotic behavior: 

g00 ≈ 1+ 0 (1/rN), gαβ = yαβ (1 + 0 (1 / rN
1/2)        (3.17) 
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βB               (3.18) 

where we have entered the notation: 
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It should be especially noted that the metric (3.15) is asymptotically Galilean: 

lim rN →∞ g00 = 1 lim rN →∞ gαβ = yαβ 

In the particular case where the function f is specified by (3.13) and rN is sent to 
infinity, the Riemann space-time metric has the following asymptotic behavior: 

g00 ≈ 1+ 0 (1/rN), gαβ = yαβ (1 + 0 (1 / rN
1/2)        (3.17) 

For the covariant components of the metric (3.15) we have 

g00 = g00
-i, gαβ = yαβA + xN

αxN
βB               (3.18) 

where we have entered the notation: 
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2rNf’(1 + f) l } 
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J = (1 + f)2 ∂rc/∂rN  › 1 
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an inverse transformation and is one to one. 

Obviously, the transformation (3.11) does not change the value of the gravitational 
mass (3.1). Now we will calculate the value of the "inertial mass" (2.11) in terms of the 
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P0 = c3/16πG lim r2
N N→∞ J xN

α/rN  ∂/∂xβ
N { yαβ(1+f)2  l 1 + rg/4rN(1 +f)l8 

                                                                                            X  l (1+f2) + r2
N (f´)2 + 2rNf´ (1 + f) l 

                                                                                            +  xN
α xβ

N / r2
N  (1 + f)2  l1 + rg/4rN(1 +f)l8 

                                                                                                                                                X  lr2
N (f´)2 + 2 rN f´ (1 + f) l} dV 

In view of the validity of (3.9) this produces 

P0 = c3/2G lim rN→∞ J r3
N (f´)2 (1+f)2  l 1 + rg/4rN(1 +f)l8 

+ rg (1+f)2  (1+f+rNf´) l 1 + rg/4rN(1 +f)l7 }        (3.19) 

Taking into account the asymptotic expression (3.12) for f, we finally obtain (see 
Moller, 1965): 

P0 = c3 / 2G lim rN →∞  { rg   + r3N (f’2) }      (3.20) 

Therefore, the "inertial mass" depends essentially on the speed at which f’ tends to 
zero as rN → ∞. Specically, if we take the funcon f(rN) in the form (3.13), from (3.20) 
we obtain 

m1 = M (1 +  α4)           (3.21) 

Therefore, for the "inertial mass" (2.11) of a system consisting of matter and 
gravitational field, we can obtain in "general relativity" any fixed number m1 ≥ M 
depending on the choice of the spatial coordinate system due to arbitrariness of α, 
while the gravitational mass M (3.1) of this system and, consequently, the three effects 
of "general relativity" remain unchanged. Also note that in the case of more complex 
transformations of the spatial coordinates that leave the Galilean asymptotically 
metric, the "inertial mass" (2.11) of the system can assume any fixed value, both 
positive and negative. 

Therefore, we see that in "general relativity" the value of "inertial mass", a concept 
introduced by Einstein and later used by many authors (for example, see Eddington, 
1923, Landau and Lifshltz, 1975, Misner, Thorne and Wheeler, 1973, Mailer, 1952, and 
Tolman, 1934), depends on the choice of the three-dimensional coordinate system, 
and therefore has no physical meaning. Therefore, the claim that "inertial mass" is 
equal to the gravitational mass in Einstein's theory also has no physical meaning. 

Equality occurs in a narrow class of three-dimensional coordinate systems, and since 
"inertial mass" (2.11) and gravitational mass (3.1) obey different transformation laws, 
a transition to other three-dimensional coordinate systems results in a violation of this 
equality. 

More than that, such a definition of "inertial mass" in "general relativity" does not 
obey the correspondence principle with Newton's theory. In fact, since the "inertial 
mass" m1 in Einstein's theory depends on the choice of the three-dimensional 
coordinate system, its expression in the general case of an arbitrary three-dimensional 
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dimensional coordinate system does not become the appropriate 
expression in the theory of Newton, in which the "inertial mass" 
does not depend on such a choice. Therefore, "general relativity" 
contains no classical Newtonian boundary and therefore does not 
satisfy the correspondence principle. This implies that "general 
relativity" is not only logically contradictory from the point of 
view of physics but also directly contradicts the experimental 
data on the equality of inertial mass and active gravitational 
mass.

So why weren't the above mentioned conclusions and the 
necessary conclusions reached? Apparently, the answer is that 
Einstein focused on the impulse-energy problem in "general 
relativity" and after studying it assumed that he had managed to 
find a solution that was definitive to the same extent as in classical 
mechanics. Somewhat later, Klein, 1918, mathematically 
confirmed Einstein's ideas. Einstein's conclusions about the 
impulse-energy of a system are repeated almost without 
variation to this day (for example, see Landau and Lifshitz, 
1975). The studies of these outstanding scientists created the 
belief that in "general relativity" the impulse-energy problem 
had been solved. All this, of course, made it difficult to carry out 
a detailed analysis and reach basic conclusions. But our findings 
are completely at odds with those of Einstein and Klein. Why? 
Because Einstein and Klein's work contains an error. The two 
did not notice that the amount Jσ they operated with is simply 
an identical zero. This simple error is very important, because it 
completely destroys Einstein's conclusions.

Let's take a closer look at this question. To this end, we present 
Einstein's reasoning and analyze its essence. Einstein, 1918, 
wrote:

... I want to show here that with the help of the equation. (1) 
The concepts of energy and momentum can be established as 
clearly as in classical mechanics. The energy and momentum 
of the closed system are completely defined independently of 
the choice of a coordinate system, provided that the motion of 
the system (as a whole) with respect to the coordinate system is 
fixed: for example, "energy at rest" of any closed system does 
not depend on the choice of the coordinate system.

... Let's select a coordinate system so that all linear elements (0, 
0, 0, dx4) have a time shape and all linear elements (dx1, dx2, dx3, 
0) are spatial; then the fourth coordinate can be called in some 
sense "time".

In order for us to talk about the energy and momentum of a 
system, the energy and impulse densities must disappear outside 
a defined region B. This will only happen if outside of B the guv 
components are constant, that is, when the system in question 
it is, so to speak, immersed in a "Galilean space", and we use 
"Galilean coordinates" to describe the surroundings of the 
system. Region B has infinite dimensions in the direction of the 
time axis, that is, it intersects any hyperplane x4 = constant. The 
section of B by a hyperplane x4 = constant is bounded on all 
sides. Within B there can be no "Galilean coordinate system"; 
the choice of coordinates within B is limited by a natural 

condition, namely that the coordinates must continually pass to 
the coordinates outside of B. Let us now consider some such 
coordinate systems, that is, systems that coincide outside B.
The integral laws of conservation of energy and momentum can 
be obtained from the equation. (1) by integration with respect to 
x1, x2, x3, over region B.

Since at the limits of this region all Uv
σ vanishes, we have

These four equations express, I believe, the laws of conservation 
of momentum (σ = 1, 2, 3) and energy (σ = 4). Let us denote the 
integral in the equation. (3) by Jσ. Now, I indicate that Jσ does not 
depend on the choice of coordinates for any coordinate system 
that outside B coincides with one and the same Galilean system.

He also noted:
Therefore, despite the free choice of coordinates within B, the 
resting energy or mass of the system constitutes a precisely 
defined quantity that does not depend on the choice of the 
coordinate system. This is even more remarkable because thanks 
to the non-tensor nature of Uv

σ an invariable interpretation of the 
components of the energy density cannot be given.

This Einstein reasoning contains a simple but fundamental error. 
To verify this, we write the Hilbert-Einstein equation in the form

where σu
t
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t
v is the density of an antisymmetric pseudotensor. 

Substituting Eq. (3.22) in the expression for the 4-impulse of an 
isolated system, we obtain
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4 disappears everywhere in S. This follows directly from 

expression (2.14) for σu
τ
4. Therefore (3.23) implies that Jτ = 0. 

This is what neither Einstein nor Klein (or others) noticed.

They also did not understand Hilbert's, 1917, correct and 
profound idea (see Introduction) that in "general relativity" 
there are simply no ordinary conservation laws for energy and 
momentum. Everything that followed was completed with the 
dogmatism and faith that for more than half a century canonized 
general relativity, elevating it to an indisputable truth.
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impulse-energy of the gravitational field. But Denisov and 
Logunov, 1982, and Denisov and Solov'ev, 1983, have shown 
that this statement is wrong and indicates that the author does 
not understand the essence of the problem.

It is sometimes said that within the framework of "general 
relativity" the tensor of the impulse-energy gravitational field 
can be constructed by replacing the ordinary derivatives in 
the expression for the pseudotensor with covariant derivatives 
with respect to "the Minkowski metric". These statements, 
however, are wrong. In "general relativity", in contrast to RTG, 
where Minkowski's space-time occupies the center of the stage, 
there can be no global Cartesian coordinates and, therefore, in 
principle we cannot say what shape the Minkowski yik metric 
has in "General relativity" for a given solution to the Hilbert-
Einstein equations. Two solutions of the Hilbert-Einstein 
equations, say, (3.5) and (3.15), where one is obtained from 
the other by transforming only the spatial coordinates, have the 
same state and may, at our option, refer to one and the same yik 
metric. But this directly suggests that for each of these solutions 
we will have different values of the energy of the system. This 
means that the energy of a system depends on the selection of 
the spatial coordinates, which makes no physical sense. Such 
erroneous statements can still be found in the literature (for 
example, see Ponomarev, 1985)” [10]. 

4. Gravity Devoid of Physical Reality
The most universal phenomenon in nature, since it affects 
everything that exists in the Universe, lacks physical reality 
because it is a simple metric field in the GTR.

5. The Gravitational Field Described by the Metric Tensor 
Lacks the Impulse-Energy Tensor
In the absence of the impulse-energy tensor of the gravitational 
field, the fundamental physical laws of the conservation of 
momentum-energy and angular momentum are violated.
“Einstein's Theory of General Relativity (GTR), whose 
basic equations were constructed by Hilbert and Einstein in 
1915, opened a new stage in the investigation of gravitational 
phenomena. But although quite successful, this theory from the 
first impulse of its existence encountered major difficulties in 
determining the physical characteristics of the gravitational field 
and, consequently, in formulating impulse- energy conservation 
laws.

Einstein clearly understood the fundamental importance of the 
conservation laws of impulse-energy, in addition, he considered 
that a total tensor of matter and gravitational field as a whole 
should be the source of the gravitational field. Therefore, in 
1913, he wrote that "The gravitational field tensor tuv is a source 
of the field together with the tensor of material systems Tuv. An 
exclusive position of gravitational field energy compared to 
other forms of energy must lead to unacceptable consequences."

In the same work, Einstein concluded that "in a general case, 
the gravitational field is characterized by ten spatio- temporal 
functions", components of the metric tensor of the riemannian 
space guv. However, clinging to building the theory, Einstein 

failed to make the matter tensor and gravitational field the source 
of the field, since instead of the gravitational field tensor in the 
GTR a pseudo-tensor emerged in Riemannian space.
In 1918 Schrodinger demonstrated that, under proper choice of 
the coordinate system, all components of the gravitational field 
impulse-energy pseudotensor outside the spherically symmetric 
source can be converted to zero. In this regard, Einstein wrote:

"As for Schrodinger's considerations, they are very compelling 
because of their analogy with electrodynamics where the 
voltages and the energy density of any field are different from 
zero. However, I cannot find the reason why we should have the 
same state of affairs for gravitational fields. Gravitational fields 
can occur without introducing stress and energy density. "

As we see, Einstein abandoned the concept of the classical 
Faraday-Maxwell type field, which had an impulse-energy 
density in relation to the gravitational field, although he took 
an important step in relating the gravitational field to a tensor 
quantity. Einstein took a metric tensor of the Riemann guv space 
as such a quantity. This tendency of thought seemed quite natural 
to Einstein, since his point of view on the gravitational field 
was formed under the influence of the equivalence principle for 
inertia and gravitation forces, introduced by himself:
"... for an infinitesimal domain you can always choose the 
coordinates in such a way that the gravitational field would be 
absent from it."

He emphasized this idea several times, for example, in 1923, he 
wrote:
"For any infinitesimal neighborhood of a point in an arbitrary 
gravitational field, we can always point to a local coordinate 
system in such a state of motion, that there would be no 
gravitational field in this local system (local inertial system)."

In this way a notion arose that the gravitational field could not 
be located. The presence of the impulse-energy pseudotensor 
is, in Einstein's opinion, in complete correspondence with the 
equivalence principle.

However, Einstein's earlier statement is not, in fact, true in GTR, 
since the Riemannian space curvature tensor must be considered 
here as a physical characteristic of the field.

Therefore, according to GTR, matter (all substance except 
gravitational fields) is characterized by the impulse-energy 
tensor, and the gravitational field is characterized by Riemann's 
curvature tensor. In this case, if the first has the second rank, 
the second has the fourth rank, that is, in fact, a main difference 
appears between the characteristics of matter and the gravitational 
field in the GTR.

The introduction of the pseudo impulse-energy tensor of the 
gravitational field did not help Einstein preserve the impulse-
energy conservation laws in his theory. This fact was clearly 
understood by Hilbert. In connection with this, he wrote in 1917:
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"I affirm that for the theory of general relativity, that is, in the 
case of the general invariance of the Hamiltonian function, there 
are no energy equations, which ... correspond to the energy 
equations in the orthogonal-invariant theories, also I could 
underline this circumstance as a characteristic feature of GTR ".

By virtue of the absence of a group of ten motion space-time 
parameters in GTR, one cannot in principle introduce into it the 
conservation laws of momentum-energy and angular momentum 
like those that occur in any other physical theory. These laws are 
fundamental in nature, since they simply introduce the universal 
physical characteristics for all forms of matter that allow us to 
consider quantitatively the transformation of one form of matter 
into others.” [11]. 

6. Impulse-Energy Conservation in GTR
In the GTR, the impulse-energy of the total system made up of 
the gravitational field and the material fields existing in nature 
is not conserved.

"In all the physical theories describing the various forms of 
matter, one of the most important field characteristics is the 
impulse-energy tensor density, which is generally obtained by 
varying the density of the Lagrangian Lg field over the gmn 
components of the metric tensor of space-time.

This characteristic reflects the existence of the field: a physical 
field exists in a certain region of space-time if and only if the 
density of the impulse-energy tensor is not zero in the region. 
The impulse-energy of any physical field contributes to the total 
impulse- energy tensor of the system and does not completely 
fade away from the source of the field. This allows considering 
the transport of energy in the form of waves in the direction 
of Faraday and Maxwell, that is, we can study the distribution 
of the force of the field in space, determine the energy flows 
through the surfaces, calculate the change in impulse-energy in 
emission and absorption processes, and perform other energy 
calculations.

In GTR, however, the gravitational field does not possess the 
properties inherent in other physical fields since it lacks such 
a characteristic. In fact, in Einstein's theory, the Lagrangian 
density consists of two parts: the Lagrangian gravitational field 
density Lg =√-g R. which depends only on the metric tensor gmn, 
and the material Lagrangian density Lm = Lm (gmn, ΦA), which 
depends on the gmn metric tensor and the other material fields ΦA. 
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proves to coincide with the field variables (the variation of the 
Lagrangian density on the components of the gravitational field). 
The result is that the density of the system's total symmetric 
impulse-energy tensor (field plus matter) is exactly zero:
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Therefore, since the gravitational field is characterized only by 
the curvature tensor, we cannot introduce into GTR a simpler 
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pseudotensor with the result that in Einstein's theory Pseudo- 
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directly that there cannot be (in GTR) any conservation law 
linking matter and gravitational field. This fundamental fact, 
established in Denisov and Logunov, 1980, and Hilbert, 
1917, means that Einstein's theory was built at the expense 
of repudiating the laws of conservation of matter and the 
gravitational field taken together.

Another physical characteristic of a gravitational field in GTR, 
the Ricci tensor, reflects more the capacity of a gravitational 
field to change the impulse-energy of matter, that is, it reflects 
the action that a gravitational field has on matter, but does not 
provide information about the fluid energy carried by a wave. 
As a result, there is no possibility in Einstein's theory to study 
the distribution of the force of a gravitational field in space, 
to determine the energy flows carried by gravitational waves 
through a surface, etc. That scientists operating within the GTR 
framework can, by employing the idea of pseudo-tensors, find 
conserved quantities for matter and the gravitational field as a 
whole is a profound delusion.

In fact, in GTR the initial relationship to obtain conservation 
laws is identity

If matter is concentrated only in a volume V, the equation. (4.1) 
implies that

There is now a complete series of exact vacuum solutions of 
the Hilbert-Einstein equations for which the stresses ta

o are nil 
everywhere (see Brdicka, 1951, Rudakova, 1971, Shirokov, 
1970, and Shirokov and Budko, 1967). Consequently, for exact 
wave solutions to the Hilbert-Einstein equations that nullify the 
components of the pseudo- impulse-energy tensor, the equation. 
(4.2) produces

that is, the energy of matter and the gravitational field within V 
is conserved. This means that there is no flow of energy from V 
outward, and therefore there can be no action on the test bodies 
located outside V. This conclusion follows from Einstein's 
theory.

However, the exact wave solutions to the Hilbert-Einstein 
equations that nullify the components of the pseudo impulse-
energy tensor result in a non-zero curvature tensor Ri

klm, 
therefore, in view of the equation

where ni is an infinitesimal geodetic deviation vector, and ui 
= dxi /ds is the velocity 4- vector, the waves of curvature act 
on the test bodies outside V and change the energy of these 
bodies. Thus, starting from two different but exact relationships 
from Einstein's general theory of relativity, we reach mutually 

exclusive physical conclusions.

To understand the reason for these contradictory conclusions, 
let's take a closer look at the formalism of pseudo-impulse-
energy tensors in Einstein's theory.

Since tni is a pseudo tensor, by selecting an appropriate coordinate 
system we can override all the components of tni at each point in 
space. This fact only raises doubts about the interpretation of tni 

as tensions and impulse-energy density of the gravitational field.

In general, it is said in this regard (see Mailer, 1952) that the 
energy of the gravitational field in GTR cannot in principle 
be localized, that is, that a local distribution of the energy of a 
gravitational field has no physical meaning since that it depends 
on the choice of the coordinate system and that only the total 
energy of the closed systems can be well defined. But such a 
statement does not resist criticism either.

In fact, a local distribution of the "energy" of the gravitational 
field defined through any impulse-energy pseudotensor depends 
on the choice of the coordinate system and can be canceled at 
any point in space, which is generally interpreted as the absence 
of a gravitational field "energy density" at this point. But a 
gravitational field described by the curvature tensor cannot be 
overridden by passing to any admissible coordinate system. 
Therefore, due to the fact that the curvature waves act on 
physical processes, we cannot affirm that in a certain coordinate 
system the gravitational field is null.

This is most clearly seen if we take the example of the exact 
wave solutions for which the components of the impulse-energy 
pseudo tensor disappear everywhere, whereas the curvature 
waves do not. And vice versa, in the case of flat space-time, 
when the Riemann space-time gni metric tensor is equal to 
the yni metric tensor of the pseudo- Euclidean spacetime, the 
components of the pseudo-tensors may not disappear although 
there is no gravitational field and all the components of the 
curvature tensor are zero in any coordinate system.

For example, in the spherical coordinate system in pseudo 
Euclidean space-time where 

We have the following formula for the component of Einstein's 
pseudo tensor (see Bauer, 1918):

It is clear that t0
0 < 0 and that the total gravitational field "energy" 

in this coordinate system is infinite.

The Landau-Lifshitz pseudotensor in this case demonstrates a 
different distribution of "energy" in space:
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∂2ni/∂s2 + Ri
klmukulnm = 0     (4.3) 

where ni is an infinitesimal geodetic deviation vector, and ui = dxi /ds is the velocity 4-
vector, the waves of curvature act on the test bodies outside V and change the energy 
of these bodies. Thus, starting from two different but exact relationships from 
Einstein's general theory of relativity, we reach mutually exclusive physical 
conclusions. 

To understand the reason for these contradictory conclusions, let's take a closer look 
at the formalism of pseudo-impulse-energy tensors in Einstein's theory. 

Since tni is a pseudo tensor, by selecting an appropriate coordinate system we can 
override all the components of tni at each point in space. This fact only raises doubts 
about the interpretation of tni as tensions and impulse-energy density of the 
gravitational field. 

In general, it is said in this regard (see Mailer, 1952) that the energy of the 
gravitational field in GTR cannot in principle be localized, that is, that a local 
distribution of the energy of a gravitational field has no physical meaning since that it 
depends on the choice of the coordinate system and that only the total energy of the 
closed systems can be well defined. But such a statement does not resist criticism 
either. 

In fact, a local distribution of the "energy" of the gravitational field defined through 
any impulse-energy pseudotensor depends on the choice of the coordinate system and 
can be canceled at any point in space, which is generally interpreted as the absence of 
a gravitational field "energy density" at this point. But a gravitational field described by 
the curvature tensor cannot be overridden by passing to any admissible coordinate 
system. Therefore, due to the fact that the curvature waves act on physical processes, 
we cannot affirm that in a certain coordinate system the gravitational field is null. 

This is most clearly seen if we take the example of the exact wave solutions for which 
the components of the impulse-energy pseudo tensor disappear everywhere, whereas 
the curvature waves do not. And vice versa, in the case of flat space-time, when the 
Riemann space-time gni metric tensor is equal to the yni metric tensor of the pseudo-
Euclidean spacetime, the components of the pseudo-tensors may not disappear 
although there is no gravitational field and all the components of the curvature tensor 
are zero in any coordinate system. 

For example, in the spherical coordinate system in pseudo Euclidean space-time where 
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klm = 0,  g00 = 1, gtt = -1, gθθ = - r2,  gϕϕ  = -r2 seno2θ 

We have the following formula for the component of Einstein's pseudo tensor (see 
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system is infinite. 

The Landau-Lifshitz pseudotensor in this case demonstrates a different distribution of 
"energy" in space: 

(- g) t0
0 = - r2/8π (1 + 4 seno2θ). 

The examples just discussed show that the pseudo-impulse-energy tensors in Einstein's 
theory do not serve as physical characteristics of the gravitational field and therefore 
have no physical meaning” [10]. 

4.3 The pseudo impulse-energy tensors of the gravitational field in the GTR 

In exchange for the impulse-energy tensor tuv for the gravitational field of Entwurf theory, in 
the GTR, Einstein introduced his pseudo-tensor, which can be obtained from the Landau-
Lifshitz pseudo-tensor, and that it has given rise to other alternative pseudo tensors such as 
those of Lorentz and others. 

"Einstein believed that in GTR the gravitational field along with matter must obey a 
conservation law of some kind (Einstein, 1914): 

... it goes without saying that we must demand that matter and the 
gravitational field taken together satisfy the laws of conservation of energy 
and momentum. 

In his opinion, this problem had been completely solved on the basis of "conservation 
laws" that used the impulse-energy pseudotensor as the impulse-energy characteristic 
of the gravitational field. The common line of reasoning leading to such "conservation 
laws" is as follows (Landau and Lifshitz, 1975). If the Hilbert-Einstein equations are 
written as 

(-c4 / 8πG) g {Rik – ½ gik R} = -gTik            (2.1)                       

where g = det gik, Rik is the Ricci tensor and Tik the impulse-energy tensor for matter, 
then the left side can be represented as the sum of two non-covariant quantities: 

 (-c4 / 8πG) g {Rik – ½ gik R} = ∂/∂xl  hikl + gtik           (2.2)                      
    

where tik = tki is the gravitational field energy-impulse pseudotensor, and hikl = hilk is the 
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The examples just discussed show that the pseudo-impulse-
energy tensors in Einstein's theory do not serve as physical 
characteristics of the gravitational field and therefore have no 
physical meaning” [10].
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Field in the GTR
In exchange for the impulse-energy tensor tuv for the gravitational 
field of Entwurf theory, in the GTR, Einstein introduced his 
pseudo-tensor, which can be obtained from the Landau- Lifshitz 
pseudo-tensor, and that it has given rise to other alternative 
pseudo tensors such as those of Lorentz and others.

"Einstein believed that in GTR the gravitational field along with 
matter must obey a conservation law of some kind (Einstein, 
1914):

... it goes without saying that we must demand that matter and the 
gravitational field taken together satisfy the laws of conservation 
of energy and momentum.

In his opinion, this problem had been completely solved on 
the basis of "conservation laws" that used the impulse-energy 
pseudotensor as the impulse-energy characteristic of the 
gravitational field. The common line of reasoning leading to 
such "conservation laws" is as follows (Landau and Lifshitz, 
1975). If the Hilbert-Einstein equations are written as
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fully defined meaning and are independent of the choice of the 
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The choice of gravitational field energy-impulse pseudo-tensors 
largely depended on the preference of different authors and, as a 
general rule, was made on the basis of secondary properties. For 
example, if we take the form

the Landau-Lifshitz pseudo symmetric tensor is obtained, which 
contains only the first derivatives of the metric tensor

If it is assumed that

Einstein's pseudo tensor is obtained

which coincides with the canonical impulse-energy pseudo 
tensor obtained from the non-covariant Lagrangian gravitational 
field density

In

from which we obtain the Lorentz pseudotensor

That coincides with the canonical impulse-energy pseudo-tensor 
obtained by the non- covariant infinitesimal displacement method 
from the co-variant Lagrangian density of the gravitational field 
Lg = √-gR” [10].

8. The Gravitational Field Devoid of Physical Reality
Because the gravitational field is a metric field, it has no physical 
reality, interrupting the chain of transformations that exist in 
nature among all the physical fields.

“From our point of view, it is not allowed to consider a metric 
field as the gravitational field, since this contradicts the very 
essence of the concept of field as physical reality. Therefore, it is 
impossible to agree with the following reasoning by A. Einstein:

"The gravitational field" exists "with respect to system K' in the 
same sense as any other physical quantity that can be defined 
in a given frame of reference, even though it does not exist in 

system K. There is nothing strange here, and it can be easily 
demonstrated with the following example taken from classical 
mechanics. No one doubts the "reality" of kinetic energy, since 
otherwise it would be necessary to give up energy in general. 
However, it is clear that the kinetic energy of the bodies 
depends on the state of movement of the reference system: by 
an appropriate choice of the latter it is obviously possible to 
provide the kinetic energy of the uniform movement of a given 
body to assume, at a certain moment, a positive value or zero. In 
the special case, when all masses have equal value and equally 
oriented speeds, it is possible, by appropriate choice of the 
reference system, to make the total kinetic energy equal to zero. 
In my opinion the analogy is complete”.

As we see, Einstein gave up the concept of the classical field, 
like the Faraday-Maxwell field that has an impulse-energy 
density, in relation to the gravitational field. Precisely this path 
led him to the construction of GTR, and that gravitational energy 
is not localizable, with the introduction of the pseudotensor of 
the gravitational field.

If the gravitational field is considered a physical field, then, like 
all other physical fields, it is characterized by the impulse-energy 
tensor tμν. If in some frame of reference, for example, K', there 
is a gravitational field, this means that certain components (or all 
of them) of the tensor tμν differ from zero. The tensor tμν cannot 
be reduced to zero by a coordinate transformation, that is, if a 
gravitational field exists, then it represents a physical reality, and 
cannot be annihilated by a choice of reference system. It is not 
correct to compare such a gravitational field with kinetic energy, 
since the latter is not characterized by a covariant quantity. It 
should be noted that such a comparison is not admissible, also, in 
GTR, since the gravitational field in this theory is characterized 
by the Riemann curvature tensor. If it differs from zero, then 
the gravitational field exists, and cannot be annihilated by a 
reference system choice, even locally.

Accelerated reference systems have played an important heuristic 
role in A. Einstein's creative work, although they have nothing 
to do with the essence of GTR. By identifying accelerated 
reference systems with the gravitational field, A. Einstein came 
to perceive the metric space-time tensor as the main feature 
of the gravitational field. But the metric tensor reflects both 
the natural properties of geometry and the choice of reference 
system. In this way the possibility arises of explaining the force 
of gravity in a kinematic way, reducing it to the inertial force. 
But in this case it is necessary to renounce the gravitational field 
as a physical field. Gravitational fields (as A. Einstein wrote in 
1918) can be established without introducing stress and energy 
density. "But that is a serious loss, and one cannot consent to it.

Surprisingly, even in 1933 A. Einstein wrote:

"In the theory of special relativity, as H. Minkowski shows, 
this metric was quasi-Euclidean, that is, the" length"ds2 of a 
linear element represented a certain quadratic function of the 
differential coordinate. If, on the other hand, new coordinates 
are introduced with the help of a linear transformation, then ds2 
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remains a homogeneous function of the coordinate differentials, 
but the coefficients of this function (gμν) will no longer be 
constant. From a mathematical point of view, this means that 
physical space (fourth- dimensional) has a Riemannian metric”.

This is certainly incorrect, since a pseudo-Euclidean metric 
cannot be transformed into a Riemannian metric by coordinate 
transformation. But the main point here is something else, 
namely, that way, thanks to his deep intuition, A. Einstein came 
to the need to introduce precisely the Riemannian space, since 
he considered the metric tensor gμν of this space to describe 
gravity. This was essentially how the tensor nature of gravity 
was revealed. The unity of Riemannian metrics and gravity is the 
fundamental principle underlying the theory of general relativity. 
V.A.Fock wrote about this principle:

"... precisely this principle represents the essence of Einstein's 
theory of gravity."

However, from a general point of view, the answer to the 
following question is still not clear: why is it necessary to relate 
gravity precisely to Riemannian space, and not to any other? 
The introduction of the Riemannian space allowed the scalar 
curvature R to be used as a function of the Lagrangian and, with 
the help of the principle of least action, to obtain the Hilbert-
Einstein equation. Thus the construction of Einstein's theory of 
general relativity was completed.

All of the above is explained by the absence in Riemannian 
space of the group of ten space-time motion parameters, making 
it essentially impossible to introduce conservation laws of 
momentum-energy and angular momentum, similar to those 
considered valid in any other physical theory. Another peculiar 
feature of GTR, compared to known theories, is the presence 
of second order derivatives in the Lagrangian R function. 
About fifty years ago, Nathan Rosen demonstrated that if, along 
with the Riemannian metric, the γμν metric is introduced from 
Minkowski's space, then it is possible to construct the Lagrangian 
scalar density of the gravitational field, which will not contain 
derivatives of orders greater than one. Thus, for example, he 
constructed such a Lagrangian density that it led to the Hilbert-
Einstein equations. Thus arose bimetric formalism. However, 
such an approach immediately complicates the problem of 
constructing a theory of gravity, since, when using the tensors 
gμν and γμν, a large number of scalar densities can be written, 
and it is not at all clear which scalar density should be chosen 
like Lagrangian density to build the theory of gravity. Although 
the mathematical apparatus of GTR allows introduce, instead 
of ordinary derivatives, covariant derivatives of the Minkowski 
space, the γμν metric that is not present in the Hilbert-Einstein 
equations makes its use in GTR devoid of physical meaning, 
since the Solutions for the gμν metric are independent of the 
choice of γμν. It should be noted that the substitution of covariant 
derivatives for ordinary derivatives in the Minkowski space 
leaves the Hilbert-Einstein equations intact. This is explained 
by the fact that, if in Minkowski space one substitutes covariant 
derivatives for ordinary ones in the Riemann curvature tensor, 
it will not change. Such a substitution in the Riemann tensor 

is nothing, but an identical transformation. Precisely for this 
reason, such freedom in the writing of the Riemann tensor 
cannot be taken as an advantage within the GTR framework, 
since the Minkowski space metric tensor does not fit into the 
Hilbert-Einstein equations.

At GTR we only treat the Riemannian space metric as the main 
characteristic of gravity, which reflects both the characteristics 
of geometry and the choice of the reference frame. When the 
gravitational interaction is deactivated, that is, when the Riemann 
curvature tensor is equal to zero, we arrive at the Minkowski 
space. It is precisely for this reason that the problem of satisfying 
the equivalence principle arises in GTR, since it is impossible to 
determine in which frame of reference (inertial or accelerated) 
we came to be when the gravitational field was annulled.

In 1921, in the article "Geometry and Experiment", A. Einstein 
wrote:
"The question of whether this continuum has a Euclidean, 
Riemannian, or any other structure is a physical problem, 
which can only be solved by experiment, and not a problem of 
convention regarding the choice of simple convenience...".

This is naturally correct. But immediately a question arises: 
what experiment? There can be many experimental facts. Thus, 
for example, it is possible, in principle, to study the movement of 
light and test bodies, to establish unambiguously the geometry 
of space-time. Should a physical theory be based on it? At first 
glance, the answer to this question might be positive. And the 
matter would seem resolved. Precisely that was the path that 
A. Einstein took to build GTR. The test bodies and light move 
along the geodetic lines of Riemannian space-time. So he based 
the theory on Riemannian space. However, the situation is much 
more complex. All types of matter satisfy the conservation 
laws of momentum-energy and angular momentum. Precisely 
these laws, which originated from a generalization of numerous 
experimental data, characterize the general dynamic properties 
of all forms of matter by introducing universal characteristics 
that allow the quantitative description of the transformation of 
some forms of matter into others. And all this also represents 
experimental facts, which have become fundamental physical 
principles. What should be done with them? If one follows A. 
Einstein and retains Riemannian geometry as a basis, then they 
must be discarded” [12].

9. Riemann Space is not Eligible as Primary Space
The quantities gμν of the metric tensor are variables of the 
gravitational field, on the one hand, and the components of 
space-time, on the other hand. By virtue of this physical and 
geometric dualism of guv and the impossibility of the existence 
of the tuv tensor for the metric tensor, due to the Riemann space, 
the "physics" of the gravitational field is geometric, consequence 
of taking the Riemann manifold as primary space.

"Poincare and Minkowski's discovery of the fourth-dimensional 
world provided a fundamental possibility to demonstrate that, 
in the general case, various frames of reference are assigned 
a different metric, γμν (x), of space-time, depending on the xμ 
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coordinates of this frame and not necessarily diagonal. For 
example, in an arbitrary non-inertial frame of reference S', 
the metric coefficients γ’μν turn out to be functions of the x' 
coordinates of this system. This finally causes the acceleration 
of a point of free matter with respect to S' and the inertial forces 
expressed through the first-order derivatives of the tensor γ’μν 
with respect to the relevant coordinates. The kinematic nature 
of inertial forces is reflected in the fact that the accelerations 
of free material bodies induced by them will be independent of 
their masses. Gravitational forces, as is known, have the same 
property because, as seen in the experiment, the gravitational 
mass of a body is equal to its inertial. Only this circumstance 
was used by Einstein when he concluded that the gravitational 
field, similar to that of inertial forces, should be described by the 
metric tensor gμν, although in Riemannian space-time.

At this primal point, Einstein departed from the concept of 
the gravitational field as physical reality. This has just led to 
unmanageable GTR difficulties. One of them that is derived 
directly from the above is related to the non-location of the 
gravitational field. It is well known that in all physical theories a 
primary characteristic of the field has always been the impulse-
energy tensor density obtained, following Hilbert, by the 
variation of the Lagrangian density of the field on the components 
of the metric tensor of space-time. This characteristic reflects 
the fact that the field exists: a density of the energy-impulse 
tensor different from zero in some region of space-time is the 
necessary and sufficient condition for a physical field to exist 
in it. In GTR, the gravitational field does not possess such a 
characteristic and this is explained by the fact that in Einstein's 
theory the quantities gμν have a dual interpretation: they are field 
variables, on the one hand, and the components of the metric 
space tensor- time, on the other hand. By virtue of this physical 
and geometric dualism of guv, the expression for the density of 
the full symmetric impulse-energy tensor must also be the field 
equation. Apparently, this suggests that this field of a system, as 
defined above in the agreed manner, must be rigorously equal to 
zero throughout space-time, while the density of the impulse-
energy tensor of the gravitational field must be zero beyond 
substance. In GTR, the gravitational field beyond the source, 
therefore, turns out to lack the basic physical characteristic, that 
is, the impulse-energy tensor and, consequently, the theory also 
lacks impulse-energy and angular momentum, that is, the laws 
of conservation of the substance and gravitational field taken 
together.

In 1918, Einstein, realizing clearly the need for the "energy and 
momentum" characteristics of the gravitational field and the laws 
of conservation, introduced the concept of the impulse-energy 
pseudotensor τuv of the gravitational field. However, in the same 
year, Schrodinger demonstrated that all the components of τuv 
can be converted to zero outside of a homogeneous sphere by 
a special choice of the coordinates of three-dimensional space.

Another fundamental difficulty inherent in the GTR and related 
to the identification of the gravitational field as a metric tensor 
of the Riemannian space is the absence not only of local laws, 
but also integrals of the conservation of energy, momentum and 

angular momentum. The first person to notice this as a specific 
feature of GTR was Hilbert. The fundamental fact that the 
conservation laws of momentum-energy and angular momentum 
are basically impossible in GTR because the Riemannian space 
introduced into it does not have the maximum group of space-
time motion, was left beyond the attention of contemporaries.

Some of the more unsatisfactory consequences of GTR are the 
non-uniqueness of its predictions for gravitational effects. This 
conclusion can be reached from the fact that with the agreed 
space arithmetic, the Hilbert-Einstein equations do not define the 
Riemannian space-time metric (in the general case, its solution 
can contain four arbitrary functions). We have demonstrated the 
non-singularity of GTR predictions using two examples: the 
calculation of inertial mass and the effect of the gravitational 
delay of the radar echo.

Such an analysis shows that the non-singularity of predictions 
for gravitational effects is an inherent feature of GTR. Therefore, 
the absence in GTR of the conservation laws of momentum-
energy and angular momentum; the rejection of the concepts 
of the gravitational field as a physical field, as well as the non-
singularity of the predictions for the gravitational effects, make 
this theory unsatisfactory from the point of view of physics and 
demand that the concepts of gravitation be reviewed cardinally.

In our opinion, in establishing the structure of space-time, one 
must proceed not from particular (and different for different 
sources) facts of the nature of the movement of light and test 
bodies, but of the more general dynamic properties of the 
matter, that is, its conservation laws are not only fundamentally 
important, but also verifiable experimentally. Apparently, the 
existence of ten conservation laws (of energy, momentum and 
angular momentum) objectively reflects the property of our 
material world that manifests itself in the homogeneity and 
isotropy of space-time.

There are three known types of spaces that allow the introduction 
of ten motion integrals. These are the space of constant negative 
curvature (Lobachevsky space), the space of zero curvature 
(Euclidean space) and the space of constant positive curvature 
(Riemann space). The first two spaces are infinite while the 
third is closed but without limits. If any theory, including that 
of the gravitational field, is required to contain the ten laws of 
conservation, Riemannian geometry of the general form must 
necessarily be rejected and one of the geometries mentioned 
above must be chosen as the underlying one. All currently 
known experimental data on weak and strong electromagnetic 
interactions unambiguously favor space-time with pseudo-
Euclidean geometry (underlying primary field theory) and there 
are no facts to question it, this geometry should naturally be 
considered unique for all physical theories without exception 
for the theory of gravitation. In this case, compliance with 
the conservation laws for energy momentum and angular 
momentum, which are taken separately, will be guaranteed” 
[13].
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10. Conclusions
The rigorous conclusive criticism of the “general relativity” of 
the mathematician-physicists A. Logunov and M. Mestvirishvili, 
of a primarily mathematical nature, ratify what H. Minkowski 
has stated: “The gravitational field is, at best, a geometric field, 
not physical" [14] and by A. Einstein himself:" We denote 
everything except the gravitational field as matter. Therefore, 
our use of the word includes not only matter in the ordinary 
sense, but also the electromagnetic field” [15] because “as 90 
years ago by Hilbert (1917), Einstein (1918), Schrodinger ( 
1918) and Bauer (1918) within the focus of geometric gravity 
(general relativity) there are no tensor characteristics of the 
impulse-energy for the gravity field [8]." The gravitational field 
is a metric field without physical reality.

On the other hand, Einstein's principle of equivalence is not 
applicable to extended gravity but to a Universe devoid of it, 
therefore, of matter (which includes everything except the 
gravitational field). Furthermore, the equivalence between the 
inertial and gravitational masses is violated, which constitutes 
an experimentally established fact. Consequently, also, it is 
confirmed that the so-called "general relativity" is not a theory 
because it lacks principles, but the Einstein-Grossmann-
Hilbert equations, which work, according to their astronomical 
predictions, although it is not known why.
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