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Abstract
Code Search is a key task that many programmers often have to perform while developing solutions to problems. Current 
methodologies suffer from an inability to perform accurately on prompts that contain some ambiguity or ones that require additional 
context relative to a code-base. We introduce the approach of using Retrieval Augmented Generation (RAG) powered agents to 
inject information into user prompts allowing for better inputs into embedding models. By utilizing RAG, agents enhance user 
queries with relevant details from GitHub repositories, making them more informative and contextually aligned. Additionally, we 
introduce a multi-stream ensemble approach which when paired with agentic workflow can obtain improved retrieval accuracy, 
which we deploy on application called repo-rift.com. Experimental results on the CodeSearchNet dataset demonstrate that 
RepoRift significantly outperforms existing methods, achieving an 78.2% success rate at Success@10 and a 34.6% success rate 
at Success@1. This research presents a substantial advancement in semantic code search, highlighting the potential of agentic 
LLMs and RAG to enhance code retrieval systems.

Engineering: Open Access

1. Introduction
A key task that many programmers often perform is searching 
through codebases to find snippets that can solve specific 
problems. This practice coined as code search is essential for 
facilitating code reuse [1]. While traditional code search involves 
the usage of keyword matching, code search has evolved to learn 
and predict on the semantics behind queries and snippets allowing 
programmers to more accurately retrieve code that aligns with their 
intent. Recent advances in deep learning have been at the center of 
current methodologies. Through training large language models 
(LLM) on large corpora of text and code, LLMs have obtained 
strong natural language to code generation capabilities which has 
extended to better semantic code search. Notable research in this 
domain includes "Deep Code Search", which utilizes recurrent 
neural networks, to learn sequential information behind code 
and their descriptions and consequently map them into a unified 
vector space [2]. Building upon DeepCS, other architectures like 
Carl-CS which exploits co-attentive representation learning and 
PSCS which focuses on using code flow obtained from Abstract 
Syntax Trees also improved code search capabilities [3,4]. Other 
significant work in this domain is "CodeBERT: A Pre- Trained 
Model for Programming and Natural Languages", which leverages 
a bi-modal transformer to jointly model programming and natural 
languages, significantly enhancing the model’s ability to form 
accurate embeddings based on semantic content. Building on this 

approach, the paper "Text and Code Embeddings by Contrastive 
Pre-Training" by OpenAI introduces a contrastive learning 
technique paired with unprecedented large training data to 
generate state of the art embeddings for both text and code, further 
enhancing the ability (even above CodeBERT and variations like 
GraphCodeBERT to match natural language queries with relevant 
code snippets by distinguishing subtle differences in meaning 
across various contexts
 [5-7].

Despite these advancements, semantic code search still faces 
many challenges. Natural language queries provided by a user 
can be ambiguous or requiring more detail. One example of this 
is the Vocabulary Mismatch Problem where different individuals 
use varying keywords or terms to describe the same concept 
or functionality, or the same keywords to describe different 
functionalities. For instance, the term "model" can refer to a 
machine learning model, a database schema, or a software design 
pattern [8]. Even in the field of Artificial Intelligence, for example, 
the keyword "Positional Encoding" has a different context and 
purpose when referring to attention mechanisms in transformers 
compared to its use in neural radiance fields [9,10]. This issue can 
lead to weak code search results or force a user to do extra work to 
provide additional details in their input prompt.
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In this paper, we propose using agentic large language models 
(LLMs) to improve semantic code search. Agentic LLMs involve 
multiple specialized agents working collaboratively to handle 
different aspects of a task. Using agents lead to more powerful 
capabilities than single LLMS due to their augmented reasoning 
and ability to decision make [11]. In the context of semantic code 
search, these agents are designed to append useful information to 
the user prompt. By using Retrieval Augmented Generation (RAG), 
the system looks up information on the internet pertaining to a 
specific GitHub repository to understand its context. This allows 
agents to recursively call prompts, injecting relevant information 
into a user’s natural language query and effectively adding enough 
detail to eliminate the Vocabulary Mismatch Problem. Therefore, 
compared to previous research that focuses on improving mappings 
between natural language and code specifically, we focused on 
augmenting the user prompt via RAG powered agents. Through 
our results, we have shown how such augmentations trickle down 
and improve the performance of already created embedding based 
methods. We utilize OpenAI’s state-of-the-art text embeddings as 
they currently have the strongest performance in prominent code 
search evaluation sets like CodeSearchNet. [6]. Additionally, 
we translate the natural language output of agents into code to 
improve code search. The purpose of this is to bridge the semantic 
gap between human-readable natural language queries and code 
snippets in order to improve search accuracy and relevance in code 
search engines [8]. To maximize the accuracy of our code search 
results, we implement an ensemble approach. This approach 
involves conducting multiple comparisons to identify the most 
relevant code snippets.

Additionally, we have built an online website, RepoRift, which 
implements these advanced code search techniques delineated in 
the paper. This platform allows for any user to enter in a github 
repository and ask their own natural language queries for code 
search. For more details, visit www.repo-rift.com.
To summarize, our main contributions are:

1.1. Information Injection Via Agentic Large Language Models 
(LLMs) and Retrieval Augmented Generation (RAG)
We use agents with RAG internet search capabilities to augment 
user prompts to break down technical terms, contain more specific 
information, and alleviate the Vocabulary Mismatch Problem. 
Moreover, we have shown how such a strategy leads to better 
inputs for embedding models. 

1.2. Ensemble Architecture with Multi-Stream Comparisons
We utilize OpenAI’s state-of-the-art text embeddings to capture 
nuanced meanings, translating natural language queries into code 
and using an ensemble approach with multi-stream comparisons. 
This method enhances the accuracy and relevance of retrieved 

code snippets by examining multiple facets of the query and code 
context.

1.3. RepoRift Platform
We developed www.repo-rift.com, an online platform that 
implements these advanced techniques, providing developers with 
a practical tool for code searches. Powered by the architecture 
discussed in this paper, RepoRift offers a novel solution in 3 ways
• It narrows down the context of a query to a single repository, 
• It uses agentic interactions to hone accuracy and efficacy, and 
• It returns easy-to-read results in a timely manner. Visit www.

repo-rift.com for more details. Currently only Python is 
supported.

2. Methodology
2.1. Information Injection via Agentic Large Language Models 
(LLMs) and Retrieval Augmented Generation (RAG)
Given a natural language query Q and a GitHub repository database 
D, as seen in Figure 1 we enhance the query using an agent with 
internet access. The agent’s primary objectives are to contextualize 
Q relative to D and to enrich Q with additional details, thereby 
improving the match between the user input and the correct code 
snippet.

Our agent architecture, built using the CrewAI framework on top 
of OpenAI’s GPT-4 model, functions as a "Technical Research 
Writer." The agent augments the query based on the prompt:

"Given an input text prompt: [Q]. Add more technical details 
about some of the topics in this text prompt in the general context 
of the following github repo: [D]. If you can’t find how it is 
implemented in the repository, then provide information on how 
it is implemented generally. Ensure that you are not given more 
info than necessary and only give info on specifically the topics 
present in the input text prompt. Your paragraph will help localize 
the ideas in the input text prompt in a large repository so deviating 
from topic can lead to inaccuracies down the pipeline. You are on 
a timer be quick, so you must be called two times at most and look 
at one website at most each time called".

This approach ensures the augmentation is relevant and focused on 
the topics present in the query.

We employ a retrieval-augmented generation (RAG) technique, 
where information is first gathered from the internet. The retrieved 
information, determined to be relevant based on embedding cosine 
similarity, is then used to augment the query [12]. The output of 
the agent post-retrieval is the augmented prompt.

A = Agent (Retrieval (Q, D))                                               (1)

https://repo-rift.com/
https://repo-rift.com/
https://repo-rift.com/
https://repo-rift.com/
https://repo-rift.com/


Volume 2 | Issue 5 | 3Eng OA, 2024

LLM Agents Improve Semantic Code Search

info on specifically the topics present in the input text prompt. Your paragraph will help localize the ideas in the input
text prompt in a large repository so deviating from topic can lead to inaccuracies down the pipeline. You are on a timer
be quick, so you must be called two times at most and look at one website at most each time called".

This approach ensures the augmentation is relevant and focused on the topics present in the query.

We employ a retrieval-augmented generation (RAG) technique, where information is first gathered from the internet.
The retrieved information, determined to be relevant based on embedding cosine similarity, is then used to augment the
query [12]. The output of the agent post-retrieval is the augmented prompt.

A = Agent(Retrieval(Q,D)) (1)

Figure 1: An example showing the idea of how a natural langauge query taken fron CodeSearchNet [13] is augmented
by Agents allowing for better matching.

2.2 Ensemble Architecture with Multi-Stream Comparisons

The purpose of the ensemble architecture is through many different comparisons, a more accurate final set of likely
snippets can be formed. Additionally, during code generation, classes can be created with many different functions, and
a multi-stream architecture that breaks down the generated code is needed. Once A is created, our methodology forwards
it to multi-stream processes that work together to produce a small set of targeted snippets. In our implementation, all
code (exclusively in Python) is divided into a set of functions Y and a set of classes Z. The initial step involves creating
an embedding for A. Then the first stream compares the embedding of Q with the embeddings of each element in Y
where the top 3 elements in Y with the largest cosine similarity to Q are added to the final target set:

Embedding(A) = eA

eY = {eY1
, eY2

, . . . , eYn
}

Cosine Similarity(eQ, eYi
) =

eQ · eYi

∥eQ∥∥eYi
∥

Top 3 in Y = {Yi1 , Yi2 , Yi3}
The second stream processes involves generation of code A through two chains of OpenAI’s GPT-3.5-turbo to generate
code C and then evaluate its quality.

GPT-3.5-turbo(A) → C

C is then converted to an embedding and compared with the embeddings of each element in Y and Z

Embedding(C) = eC

eY = {eY1 , eY2 , . . . , eYm}
eZ = {eZ1 , eZ2 , . . . , eZk

}

Cosine Similarity(eC , eYi) =
eC · eYi

∥eC∥∥eYi∥

3

Figure 1: An Example Showing the Idea of How A Natural Language Query Taken from Codesearchnet [13] is Augmented by Agents 
Allowing for Better Matching

2.2. Ensemble Architecture with Multi-Stream Comparisons
The purpose of the ensemble architecture is through many 
different comparisons, a more accurate final set of likely snippets 
can be formed. Additionally, during code generation, classes can 
be created with many different functions, and a multi-stream 
architecture that breaks down the generated code is needed. 
Once A is created, our methodology forwards it to multi-stream 
processes that work together to produce a small set of targeted 
snippets. In our implementation, all code (exclusively in Python) 
is divided into a set of functions Y and a set of classes Z. The 
initial step involves creating an embedding for A. Then the first 
stream compares the embedding of Q with the embeddings of each 
element in Y where the top 3 elements in Y with the largest cosine 
similarity to Q are added to the final target set:

The second stream processes involves generation of code A 
through two chains of OpenAI’s GPT-3.5-turbo to generate code C 
and then evaluate its quality.

GPT-3.5-turbo (A) → C

C is then converted to an embedding and compared with the 
embeddings of each element in Y and Z

The top three snippets in both Y and Z with the highest cosine 
similarity to the vector representation of C are compiled and added 
to the final target set:

The final stream involves a comparison of component functions. 
C is broken down into its component functions. The embeddings 
of each component function are compared with the embeddings of 
each element in Y , and the smallest cosine similarity distance for 
each component function is added to the final target set.

The final target set is compiled by combining the top matches from 
all streams:

Final Target Set = 
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Cosine Similarity(eC , eZi) =
eC · eZi

∥eC∥∥eZi∥
The top three snippets in both Y and Z with the highest cosine similarity to the vector representation of C are compiled
and added to the final target set:

Top 3 in Y = {Yi4 , Yi5 , Yi6}
Top 3 in Z = {Zi1 , Zi2 , Zi3}

The final stream involves a comparison of component functions. C is broken down into its component functions. The
embeddings of each component function are compared with the embeddings of each element in Y , and the smallest
cosine similarity distance for each component function is added to the final target set.

C = {C1, C2, . . . , Cp}

eCi = Embedding(Ci)

Cosine Similarity(eCi
, eYj

) =
eCi · eYj

∥eCi
∥∥eYj

∥
Smallest Cosine Similarity for Ci = min

j
Cosine Similarity(eCi , eYj )

The final target set is compiled by combining the top matches from all streams:

Final Target Set = {Yi1 , Yi2 , Yi3} ∪ {Yi4 , Yi5 , Yi6} ∪ {Zi1 , Zi2 , Zi3} ∪ {Best matches from component functions}

This multi-stream approach ensures a comprehensive and targeted selection of code snippets based on the initial input
A. The creation of the final target set significantly reduces the number of potential code snippets from a large volume to
approximately 5 to 15 snippets. To enhance the precision of similarity matching, we further process the final target set
using GPT-4o to identify the most relevant snippets. It is important to note that GPT-4o has token limitations, making
it impractical to input a large amount of snippet data directly. This constraint underscores the importance of using
embeddings initially to generate a refined target set

3 Experimental Setup

3.0.1 Dataset

Following [4], we leverage the CodeSearchNet dataset [13], which features numerous pairs of natural language queries
and corresponding code snippets, all associated with specific GitHub repositories. To conduct our study, we manually
processed each natural language query via repo-rift.com, randomly selecting 101 rows from the Python evaluation set
of CodeSearchNet. To maintain fairness and ensure broad applicability, we included queries of varying lengths and
only altered the natural language query if it detailed parameters or return types. Furthermore, some queries were left
unmodified, even those containing parameter and return information, to uphold generalizability.

We excluded and replaced only those rows where the code snippet had been removed from the current main branch
of the repository or when the repository size exceeded the upload capacity of our repo-rift.com application. The
azure-sdk-python repo was the sole instance of the latter issue. We opted to exclude snippets not present in the main
branch because our repo-rift.com application could not effectively upload files from previous branches, thus making
replacement a more straightforward solution.

3.0.2 Implementation Details

For the backend of the RepoRift application, we employ third-party packages and OpenAI APIs. The agent is constructed
using the CrewAI framework. The website is built with the Vue JavaScript framework and SQL, and it is deployed on a
standard AWS plan. To evaluate our software, we manually input 101 rows of data into our website and observe the
results displayed as panels on the right.

3.0.3 Evaluation Metrics

Following previous codesearch research from DeepCS [2], CARLCS [3] , and PSCS [4], we utilize the same Success@10
and Success@1 metrics to compare accuracy. While the aforementioned methods have been translated to evaluate
the Java Dataset of CodeSearchNet, we test on the Python Dataset. Success@k is a metric that determines whether a
detected code snippet from a system is in the top k results. Therefore, to be positively labeled in the Success@1 metric,
the result must be the highest rank.
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info on specifically the topics present in the input text prompt. Your paragraph will help localize the ideas in the input
text prompt in a large repository so deviating from topic can lead to inaccuracies down the pipeline. You are on a timer
be quick, so you must be called two times at most and look at one website at most each time called".

This approach ensures the augmentation is relevant and focused on the topics present in the query.

We employ a retrieval-augmented generation (RAG) technique, where information is first gathered from the internet.
The retrieved information, determined to be relevant based on embedding cosine similarity, is then used to augment the
query [12]. The output of the agent post-retrieval is the augmented prompt.

A = Agent(Retrieval(Q,D)) (1)

Figure 1: An example showing the idea of how a natural langauge query taken fron CodeSearchNet [13] is augmented
by Agents allowing for better matching.
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}

Cosine Similarity(eQ, eYi
) =

eQ · eYi

∥eQ∥∥eYi
∥

Top 3 in Y = {Yi1 , Yi2 , Yi3}
The second stream processes involves generation of code A through two chains of OpenAI’s GPT-3.5-turbo to generate
code C and then evaluate its quality.

GPT-3.5-turbo(A) → C

C is then converted to an embedding and compared with the embeddings of each element in Y and Z

Embedding(C) = eC

eY = {eY1 , eY2 , . . . , eYm}
eZ = {eZ1 , eZ2 , . . . , eZk

}

Cosine Similarity(eC , eYi) =
eC · eYi

∥eC∥∥eYi∥
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The retrieved information, determined to be relevant based on embedding cosine similarity, is then used to augment the
query [12]. The output of the agent post-retrieval is the augmented prompt.

A = Agent(Retrieval(Q,D)) (1)

Figure 1: An example showing the idea of how a natural langauge query taken fron CodeSearchNet [13] is augmented
by Agents allowing for better matching.
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Cosine Similarity(eC , eZi) =
eC · eZi

∥eC∥∥eZi∥
The top three snippets in both Y and Z with the highest cosine similarity to the vector representation of C are compiled
and added to the final target set:

Top 3 in Y = {Yi4 , Yi5 , Yi6}
Top 3 in Z = {Zi1 , Zi2 , Zi3}

The final stream involves a comparison of component functions. C is broken down into its component functions. The
embeddings of each component function are compared with the embeddings of each element in Y , and the smallest
cosine similarity distance for each component function is added to the final target set.

C = {C1, C2, . . . , Cp}

eCi = Embedding(Ci)

Cosine Similarity(eCi
, eYj

) =
eCi · eYj

∥eCi
∥∥eYj

∥
Smallest Cosine Similarity for Ci = min

j
Cosine Similarity(eCi , eYj )

The final target set is compiled by combining the top matches from all streams:

Final Target Set = {Yi1 , Yi2 , Yi3} ∪ {Yi4 , Yi5 , Yi6} ∪ {Zi1 , Zi2 , Zi3} ∪ {Best matches from component functions}

This multi-stream approach ensures a comprehensive and targeted selection of code snippets based on the initial input
A. The creation of the final target set significantly reduces the number of potential code snippets from a large volume to
approximately 5 to 15 snippets. To enhance the precision of similarity matching, we further process the final target set
using GPT-4o to identify the most relevant snippets. It is important to note that GPT-4o has token limitations, making
it impractical to input a large amount of snippet data directly. This constraint underscores the importance of using
embeddings initially to generate a refined target set

3 Experimental Setup

3.0.1 Dataset

Following [4], we leverage the CodeSearchNet dataset [13], which features numerous pairs of natural language queries
and corresponding code snippets, all associated with specific GitHub repositories. To conduct our study, we manually
processed each natural language query via repo-rift.com, randomly selecting 101 rows from the Python evaluation set
of CodeSearchNet. To maintain fairness and ensure broad applicability, we included queries of varying lengths and
only altered the natural language query if it detailed parameters or return types. Furthermore, some queries were left
unmodified, even those containing parameter and return information, to uphold generalizability.

We excluded and replaced only those rows where the code snippet had been removed from the current main branch
of the repository or when the repository size exceeded the upload capacity of our repo-rift.com application. The
azure-sdk-python repo was the sole instance of the latter issue. We opted to exclude snippets not present in the main
branch because our repo-rift.com application could not effectively upload files from previous branches, thus making
replacement a more straightforward solution.

3.0.2 Implementation Details

For the backend of the RepoRift application, we employ third-party packages and OpenAI APIs. The agent is constructed
using the CrewAI framework. The website is built with the Vue JavaScript framework and SQL, and it is deployed on a
standard AWS plan. To evaluate our software, we manually input 101 rows of data into our website and observe the
results displayed as panels on the right.

3.0.3 Evaluation Metrics

Following previous codesearch research from DeepCS [2], CARLCS [3] , and PSCS [4], we utilize the same Success@10
and Success@1 metrics to compare accuracy. While the aforementioned methods have been translated to evaluate
the Java Dataset of CodeSearchNet, we test on the Python Dataset. Success@k is a metric that determines whether a
detected code snippet from a system is in the top k results. Therefore, to be positively labeled in the Success@1 metric,
the result must be the highest rank.
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Cosine Similarity(eC , eZi) =
eC · eZi

∥eC∥∥eZi∥
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C = {C1, C2, . . . , Cp}

eCi = Embedding(Ci)

Cosine Similarity(eCi
, eYj

) =
eCi · eYj

∥eCi
∥∥eYj

∥
Smallest Cosine Similarity for Ci = min

j
Cosine Similarity(eCi , eYj )

The final target set is compiled by combining the top matches from all streams:

Final Target Set = {Yi1 , Yi2 , Yi3} ∪ {Yi4 , Yi5 , Yi6} ∪ {Zi1 , Zi2 , Zi3} ∪ {Best matches from component functions}

This multi-stream approach ensures a comprehensive and targeted selection of code snippets based on the initial input
A. The creation of the final target set significantly reduces the number of potential code snippets from a large volume to
approximately 5 to 15 snippets. To enhance the precision of similarity matching, we further process the final target set
using GPT-4o to identify the most relevant snippets. It is important to note that GPT-4o has token limitations, making
it impractical to input a large amount of snippet data directly. This constraint underscores the importance of using
embeddings initially to generate a refined target set

3 Experimental Setup

3.0.1 Dataset

Following [4], we leverage the CodeSearchNet dataset [13], which features numerous pairs of natural language queries
and corresponding code snippets, all associated with specific GitHub repositories. To conduct our study, we manually
processed each natural language query via repo-rift.com, randomly selecting 101 rows from the Python evaluation set
of CodeSearchNet. To maintain fairness and ensure broad applicability, we included queries of varying lengths and
only altered the natural language query if it detailed parameters or return types. Furthermore, some queries were left
unmodified, even those containing parameter and return information, to uphold generalizability.

We excluded and replaced only those rows where the code snippet had been removed from the current main branch
of the repository or when the repository size exceeded the upload capacity of our repo-rift.com application. The
azure-sdk-python repo was the sole instance of the latter issue. We opted to exclude snippets not present in the main
branch because our repo-rift.com application could not effectively upload files from previous branches, thus making
replacement a more straightforward solution.

3.0.2 Implementation Details

For the backend of the RepoRift application, we employ third-party packages and OpenAI APIs. The agent is constructed
using the CrewAI framework. The website is built with the Vue JavaScript framework and SQL, and it is deployed on a
standard AWS plan. To evaluate our software, we manually input 101 rows of data into our website and observe the
results displayed as panels on the right.

3.0.3 Evaluation Metrics

Following previous codesearch research from DeepCS [2], CARLCS [3] , and PSCS [4], we utilize the same Success@10
and Success@1 metrics to compare accuracy. While the aforementioned methods have been translated to evaluate
the Java Dataset of CodeSearchNet, we test on the Python Dataset. Success@k is a metric that determines whether a
detected code snippet from a system is in the top k results. Therefore, to be positively labeled in the Success@1 metric,
the result must be the highest rank.

4
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Table 1: Evaluation Results centered on a 95% confidence interval
Model Sucess@10 Success@1

DeepCS (CodeSearchNet 19k Validation Set Java) 40.3 14.6
CARLCS (CodeSearchNet 19k Validation Set, Java) 43.7 17.8
PSCS (CodeSearchNet 19k Validation Set, Java) 47.6 22.9
RepoRift (CodeSearchNet Entire Github Repo, Python) 78.2 ±8.1 34.6 ±9.3

Success@k =

{
1, if the correct snippet is within the top k results
0, otherwise

For Success@1, the metric is defined as:

Success@1 =

{
1, if the correct snippet is the top result
0, otherwise

To determine the highest rank in our methodology, we look at all the streams in the multi-streamed process mentioned
in the methods (Section 2.2), and take the snippet that was calculated with the highest cosine similarity. Additionally,
since we reason that many methods can only be fully understood in the context of a class, we consider it a positive label
if the class of the correct snippet is detected by RepoRift even if the individual function is not.

4 Results

We compare our methods to other baselines with the most similar evaluation setups. The evaluation for PSCS, CARLCS,
and DeepCS have all been translated to CodeSearchNet, where they are given thousands of snippets and expected to
find the correct snippet according to a provided natural language query. While these three methods have been built
for Java, all we do differently is test on Python. And while the previous baselines, as per [4], conduct a search over
all test snippets in CodeSearchNet, we conduct a search over all snippets in a GitHub repository as that is what our
use case is specifically designed for. We directly take the success rates from [4] and compare them with the success
rates calculated through our evaluation, making the judgment that the difference is trivial. Additionally we remove
comments from all code snippets to ensure an obvious fair evaluation.

We chose methods that most closely mimic the real-world use of a tool across different GitHub repositories. This
approach involves a constantly dynamic set and size of distractor codes that have tighter relationships to the correct
snippet. The models chosen for comparison, such as DeepCS, CARLCS, and PSCS, are highly cited. While we couldn’t
find a specific well-cited piece of research that used a dynamic set of distractor codes, we selected methods with large
static distractor sets. The methods we compared do not inherently use a dynamic set of distractor codes. However, their
distractor sets are substantial, with 19k snippets, providing a robust benchmark for evaluation. When ranking from 1 to
10, we make the sound conclusion that the distractor snippets from 10 to 999 would be significantly different each time
a new natural language query is processed unlike the fixed distractor codes present in CodeBERT [5]. This variation
closely simulates a dynamic distractor set, making our comparisons relevant and comprehensive.

Table 1 provides the evaluation results, comparing our method, RepoRift, against the baselines. The success rates are
measured at two levels: Success@10 and Success@1, which indicate the percentage of correct snippets found within
the top 10 and the top 1 results, respectively. Despite not being optimized for Success@1 due to its ensemble approach,
RepoRift significantly outperforms all other methods. Specifically, RepoRift achieves an 78.2% ±8.1 success rate
at Success@10, which has a lower bound accuracy that is approximately 22.5% better than the highest-performing
baseline (PSCS at 47.6%). For Success@1, RepoRift achieves a 34.6% ±9.3 success rate, which has a lower bound
accuracy that is approximately 2.4% better than the highest-performing baseline (PSCS at 22.9%).

RepoRift achieves high accuracy with minimal preprocessing of the evaluation set. It effectively handles queries in
various forms, including those written in Russian, raw URLs, and vague conceptual information. This versatility
showcases RepoRift’s capability to understand and process a wide range of input types without requiring extensive
preprocessing. These results demonstrate that RepoRift not only outperforms other methods in both Success@10 and
Success@1 metrics but also does so while maintaining a high level of flexibility and minimal preprocessing. The
improvement in success rates highlights the effectiveness of our approach in searching and identifying relevant code
snippets in a larger and more diverse dataset.
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1 to 10, we make the sound conclusion that the distractor snippets 
from 10 to 999 would be significantly different each time a new 
natural language query is processed unlike the fixed distractor 
codes present in CodeBERT [5]. This variation closely simulates 
a dynamic distractor set, making our comparisons relevant and 
comprehensive.

Table 1 provides the evaluation results, comparing our method, 
RepoRift, against the baselines. The success rates are measured 
at two levels: Success@10 and Success@1, which indicate the 
percentage of correct snippets found within the top 10 and the top 
1 results, respectively. Despite not being optimized for Success@1 
due to its ensemble approach, RepoRift significantly outperforms 
all other methods. Specifically, RepoRift achieves an 78.2% ±8.1 
success rate at Success@10, which has a lower bound accuracy 
that is approximately 22.5% better than the highest-performing 
baseline (PSCS at 47.6%). For Success@1, RepoRift achieves a 
34.6% ±9.3 success rate, which has a lower bound accuracy that 
is approximately 2.4% better than the highest-performing baseline 
(PSCS at 22.9%).

RepoRift achieves high accuracy with minimal preprocessing 
of the evaluation set. It effectively handles queries in various 
forms, including those written in Russian, raw URLs, and vague 
conceptual information. This versatility showcases RepoRift’s 
capability to understand and process a wide range of input 
types without requiring extensive preprocessing. These results 
demonstrate that RepoRift not only outperforms other methods in 
both Success@10 and Success@1 metrics but also does so while 
maintaining a high level of flexibility and minimal preprocessing. 
The improvement in success rates highlights the effectiveness of 
our approach in searching and identifying relevant code snippets 
in a larger and more diverse dataset.
 
5. Conclusion
In this paper, we presented the use of information injection as a 
methodology to improve code search. The reasoning behind such 
a use case was to add vital details to alleviate the vagueness and 
ambiguity present in a user prompt for a code search application. 
By leveraging agentic LLM models and RAG, our system was 
able to perform internet searches relevant to a prompt and github 

repository, consequently addressing the Vocubulary Mismatch 
Problem and allowing for context-aware searches.

We provide three main contributions. Firstly, we demonstrate 
how agentic LLMs in combination with RAG allow for 
further contextualization of queries, a methodology we coin 
as information injection. Secondly, by pairing this process with 
a multi-stream ensemble approach we achieve state-of-the-art 
accuracy for semantic code search. By translating the query to 
code and then utilizing many comparison to generate a final set, 
a larger variation of snippets are able to be captured. Finally for 
our third contribution, we deployed our advanced techniques onto 
a website called RepoRift (www.repo-rift.com). RepoRift allows 
users to perform semantic code searches within specific GitHub 
repositories. The platform’s practical utility and performance in 
real-world scenarios underscore the effectiveness of our approach.

Our experimental results, conducted on the CodeSearchNet dataset, 
show that RepoRift significantly outperforms existing methods 
such as DeepCS, CARLCS, and PSCS. Specifically, RepoRift 
achieved an 78.2% success rate at Success@10 and a 34.6% 
success rate at Success@1, demonstrating superior performance 
in both metrics. These results highlight the potential of our method 
to enhance the accuracy and relevance of semantic code searches. 
In conclusion, our research presents a significant advancement in 
the field of semantic code search. By integrating agentic LLMs 
and RAG, we have addressed critical challenges and improved the 
overall effectiveness of code retrieval systems.

5.1. Future Work
Further analyzing the full evaluation breakdown in section 6, we 
were able to discern several weaknesses in our approach that lays 
down a better idea for future work. While utilizing code generation 
before embeddings is helpful for code search, it struggles to 
account for snippets that are almost primarily constructed from 
other functions and classes within a codebase [2]. Therefore, 
while sometimes through naming conventions in generated code 
embeddings can still retrieve the right snippet, the code search 
results for this case are significantly weaker. For instance, below 
are two example of snippets that RepoRift was unable to identify

User Prompt: "convert a field’s content into some valid HTML"
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LLMs and RAG, we have addressed critical challenges and improved the overall effectiveness of code retrieval systems.
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that lays down a better idea for future work. While utilizing code generation before embeddings is helpful for code
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retrieve the right snippet, the code search results for this case are significantly weaker. For instance, below are two
example of snippets that RepoRift was unable to identify:

User Prompt: "convert a field’s content into some valid HTML"

1 # Snippet 1
2 def make_html_items( self , items ):
3 lines = []
4 for item in items:
5 if item.lines:
6 lines.append( self.make_html_code( item.lines ) )
7 else:
8 lines.append( self.make_html_para( item.words ) )
9 return string.join( lines , \’\\n\’␣)

User Prompt: "Parse module defined in *uri*"

1 # Snippet 2
2 def _parse_module(self , uri):
3 filename = self._uri2path(uri)
4 if filename is None:
5 return ([] ,[])
6 f = open(filename , ’rt’)
7 functions , classes = self._parse_lines(f)
8 f.close()
9 return functions , classes

ASTs or any form of translating code to where these other functions and classes are replaced with their raw code serves
as possible area of future work to better address this issue.
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Appendix
Full Evaluation Breakdown
We tested on 101 rows of CodeSearchNet. Table 2 presents the detailed results for each data point examined. Any one of these rows can 
be re-tested by using repo-rift.com.

LLM Agents Improve Semantic Code Search

Table 2: Success rates of various text queries.

Text Query Success @ 10 Success @ 1
Converts an operating system path into a client path by replacing
instances of os.path.sep with ’/’. Note: If the client path contains any
instances of ’/’ already, they will be replaced with ’-’.

✓ ✗

Callback for an option that adds to the ‘actions‘ list. ✓ ✓
Sets up or removes a listener for children being changed on a specified
object.

✓ ✗

Gets a dictionary of ref positions and the ref IDs of the refs for that
game.

✗ ✗

Return the status of all servers. ✓ ✗
Return a new “GroupBy“ object using this frame and the desired
grouping columns. The returned groups are sorted by the natural
group-by column sort. :param by: The columns to group on (either a
single column name, or a list of column names, or a list of column
indices).

✓ ✗

Accepts data in zyx. !!! ✓ ✗
Return an error dict for self.args and kwargs. ✓ ✗
Private helper method ✓ ✗
Adds the default_data to data and dumps it to a json. ✓ ✓
Recursively flatten nested objects ✓ ✓
Propagate "clk" clock and negative reset "rst_n" signal to all
subcomponents

✓ ✓

Read the default config file. :raises DefaultConfigValidationError: There
was a validation error with the *default* file.

✓ ✓

Sets the service name and version the request should target Args: service
(str): The name of the service as displayed in the services.json file
version (str): The version of the service as displayed in the services.json
file Returns: The request builder instance in order to chain calls

✓ ✗

Computes the standard deviation of a mixture distribution. This function
works regardless of the component distribution, so long as each
component’s mean and standard deviation can be provided. Args:
mixture_weight_vector: A 2D tensor with shape [batch_size,
num_components] mean_vector: A 2D tensor of mixture component
means. Has shape ‘[batch_size, num_components]‘. stddev_vector: A
2D tensor of mixture component standard deviations. Has shape
‘[batch_size, num_components]‘. Returns: A 1D tensor of shape
‘[batch_size]‘ representing the standard deviation of the mixture
distribution with given weights and component means and standard
deviations. Raises: ValueError: If the shapes of the input tensors are not
as expected."

✓ ✓

Invert all instructions. ✗ ✗
Encodes a byte string into trytes. ✓ ✗
Convert a MySQL TIMESTAMP to a Timestamp object. ✓ ✓
Removes all components from the canvas ✗ ✗
Handles the component being changed. ✓ ✗
http://stackoverflow.com/questions/29107800 ✓ ✗
Fetch the pages from the backend url for MediaWiki >=1.27 The
method retrieves, from a MediaWiki url, the wiki pages.

✗ ✗

A change handler for the ’objects’ list of the Include. If the object is
initialized objects which are removed will be unparented and objects
which are added will be reparented. Old objects will be destroyed if the
’destroy_old’ flag is True.

✓ ✗
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Text Query Success @ 10 Success @ 1
Generate the time in seconds in which DHCPDISCOVER will be
retransmitted. [:rfc:‘2131#section-3.1‘]:: might retransmit the
DHCPREQUEST message four times, for a total delay of 60 seconds
[:rfc:‘2131#section-4.1‘]:: For example, in a 10Mb/sec Ethernet
internetwork, the delay before the first retransmission SHOULD be 4
seconds randomized by the value of a uniform random number chosen
from the range -1 to +1. Clients with clocks that provide resolution
granularity of less than one second may choose a non-integer
randomization value. The delay before the next retransmission
SHOULD be 8 seconds randomized by the value of a uniform number
chosen from the range -1 to +1. The retransmission delay SHOULD be
doubled with subsequent retransmissions up to a maximum of 64
seconds.

✓ ✗

Get the items fetched by the jobs. ✓ ✗
This is the actual zest.releaser entry point Relevant items in the context
dict: name Name of the project being released tagdir Directory where
the tag checkout is placed (*if* a tag checkout has been made) version
Version we’re releasing workingdir Original working directory

✓ ✗

Update the splitter and readline delims when greedy is changed ✓ ✓
Given an array of datapoints, inserts them to the stream. This is different
from insert(), because it requires an array of valid datapoints, whereas
insert only requires the data portion of the datapoint, and fills out the
rest:: s = cdb["mystream"] s.create("type": "number")
s.insert_array(["d": 4, "t": time.time(),"d": 5, "t": time.time()],
restamp=False) The optional ‘restamp‘ parameter specifies whether or
not the database should rewrite the timestamps of datapoints which have
a timestamp that is less than one that already exists in the database. That
is, if restamp is False, and a datapoint has a timestamp less than a
datapoint that already exists in the database, then the insert will fail. If
restamp is True, then all datapoints with timestamps below the
datapoints already in the database will have their timestamps
overwritten to the same timestamp as the most recent datapoint hat
already exists in the database, and the insert will succeed

✓ ✓

Gets the twitter feed for a given handle. :param handle: The twitter
handle. :return: A list of entries in a user’s feed. :raises ApiError: When
the api couldn’t connect. :raises CircuitBreakerError: When the circuit
breaker is open.

✓ ✗

Return list containing URIs with base URI. ✓ ✓
Calls ‘fn‘ and computes the gradient of the result wrt ‘args_list‘ ✗ ✗
Iterates over the actions and executes them in order. ✗ ✗
Returns the log found at the remote_log_location. Returns ” if no logs
are found or there is an error. :param remote_log_location: the log’s
location in remote storage :type remote_log_location: str (path) :param
return_error: if True, returns a string error message if an error occurs.
Otherwise returns ” when an error occurs. :type return_error: bool

✓ ✓

This will setup logging for stdout and stderr :param formatter: :param
log_level: str of the overall logging level for setLevel :param
log_stdout_level: str of the logging level of stdout :param str_format: str
of the logging format :param date_format: str of the date format :param
silence_modules: list of str of modules to exclude from logging :param
log_filter: logging.filter instance to add to handler :return: None

✓ ✓

Logs in to Steam ✓ ✗
Iterate through the i_chunk and tmp_ner_path to generate a new Chunk
with body.ner

✗ ✗

Retrieves connection to Cloud Text to Speech ✓ ✗
Calculate image translations in parallel ✓ ✗
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Text Query Success @ 10 Success @ 1
Estimate the ‘weighted Jaccard similarity‘ between the multi-sets
represented by this weighted MinHash and the other.

✓ ✓

Write a ’.dot’ file. ✓ ✓
Build different type of Dingding message As most commonly used type,
text message just need post message content rather than a dict like
“’content’: ’message’

✓ ✗

Return the list of all contained scope from global to local ✓ ✗
Remove a process ✓ ✓
Create a new code cell with input and output ✓ ✓
r\’"[^"]+" ✓ ✗
Assign parameters to new parameters or values. ✓ ✗
Deletes the widget by the given name. Note that this feature is currently
experimental as there seems to be a memory leak with this method.

✓ ✓

Tries to decode strings that look like dates into datetime objects. ✓ ✓
Return a string representation of an object ✗ ✗
[Russian text] ✓ ✗
Get a selfLink for the manifest, for use by the client get_manifest
function, along with the parents pull

✓ ✗

Returns the year ID of the season in which this game took place. Useful
for week 17 January games.

✓ ✗

Set the loop points within the sound. The sound must have been created
with “loop=True“. The default parameters cause the loop points to be
set to the entire sound duration. :note: There is currently no API for
converting sample numbers to times.

✓ ✓

Returns a completed game state object, setting an optional message to
display after the game is over.

✓ ✗

Computes graph and static ‘sample_shape ✗ ✗
Read header data from Gadget data file ’filename’ with Gadget file type
’gtype’. Returns offsets of positions and velocities.

✓ ✗

Get RtlNetlist context from signals ✓ ✓
Return a schedule shifted forward by “time` ✓ ✗
Read the code and update all links. ✓ ✗
Raise exception if clbit is not in this circuit or bad format. ✗ ✗
Return archive name without extension ✓ ✓
Serve custom HTML page ✓ ✗
Comparison for x coordinate ✓ ✗
Close the socket to free system resources. After the socket is closed,
further operations with socket will fail. Multiple calls to close will have
no effect.

✓ ✓

Find the path to the folder associated with a given profile. I.e. find
$IPYTHONDIR/profile_whatever.

✗ ✗

Opens a Python script for editing. ✓ ✓
Matches an outgoing HTTP request against the current mock matchers.
This method acts like a delegator to ‘pook.MatcherEngine

✗ ✗

Return a string summarizing the call stack. ✓ ✗
Runs :attr:‘executable‘ with “input“ as stdin. :class:‘AssetHandlerError‘
exception is raised, if execution is failed, otherwise stdout is returned.

✓ ✓

Determines if a given Auth header is from the Bot Framework Emulator ✓ ✓
Format level str ✗ ✗
Deeply updates a dictionary. List values are concatenated. ✓ ✓
Obtain the reconstruction error for the input test_data. ✓ ✗
Runs the model to generate multivariate normal distribution. ✓ ✓
A performant bulk insert for cx Oracle that uses prepared statements via
‘executemany()‘.For best performance, pass in ‘rows‘ as an iterator.

✓ ✗

Console setup. ✗ ✗
Pad dimensions of event tensors for mixture distributions. ✓ ✗
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Text Query Success @ 10 Success @ 1
Try to parse a container type (dict, list, or tuple). ✗ ✗
Convert number to string guaranteeing result is not in scientific notation. ✓ ✗
Deserializes the Keras-serialized function. (De)serializing Python
functions from/to bytecode is unsafe. Therefore we also use the
function’s type as an anonymous function (’lambda’) or named function
in the Python environment (’function’).

✓ ✓

Return a wrapper for an fd. ✗ ✗
Wrap the context data in a django.template.Context object. ✓ ✗
Return a Python AST Node for a ‘do‘ expression. ✗ ✗
Takes a value from Postgres, and converts it to a value that’s safe for
JSON/Google Cloud Storage/BigQuery. Dates are converted to UTC
seconds. Decimals are converted to floats. Times are converted to
seconds.

✓ ✓

Hands-free plotting. ✓ ✗
Gets a (single) value matching ‘partial_selector‘. If the partial_selector
exactly matches a complete selector, the value associated with the
complete selector is returned.

✗ ✗

Start a capture process but make sure to catch any errors during this
process, log them but otherwise ignore them.

✓ ✓

Return True if okay, raise Exception if not ✗ ✗
Verify a message signature using the specified signing key ✓ ✓
Parses the .nextflow.log file for signatures of pipeline status and sets the
:attr:‘status_info‘ attribute.

✓ ✓

Get a queue that allows direct access to the internal buffer. If the dataset
to be read is chunked, the block size should be a multiple of the chunk
size to maximise performance. In this case it is best to leave it to the
default. When cyclicF̄alse, and block size does not divide the dataset
evenly, the remainder elements will not be returned by the queue. When
cyclicT̄rue, the remainder elements will be part of a block that wraps
around the end and includes element from the beginning of the dataset.
By default, blocks are returned in the order in which they become
available. The ordered option will force blocks to be returned in on-disk
order.

✓ ✗

Parse module defined in *uri* ✗ ✗
Count the objects of a repository. The method returns the total number
of objects (packed and unpacked) available on the repository.

✓ ✓

Find the function that handles the retrieval of the code ✓ ✗
List all course roles available to an account, for the passed Canvas
account ID, including course roles inherited from parent accounts.

✓ ✓

Example of printing the current upstream. ✓ ✓
Convert a field’s content into some valid HTML ✗ ✗
Execute gerrit command against the archive ✓ ✗
Word : TERM | LBRACKET TERM RBRACKET | LBRACKET
TERM RBRACKET literal_list

✗ ✗

Adds a number of zeros (digital silence) to the AudioSegment (returning
a new one).

✓ ✗

http://stackoverflow.com/questions/29107800. ✓ ✗

Feedback of RepoRift Application

To further promote the application of research techniques, we deployed our research methods onto a website called
repo-rift.com. To further learn about the application of code search in industry, we reached out and showed demos to
52 researchers and software engineers working for organizations like Microsoft, Google, Snap, NASA, Intel, SpaceX,
Caterpillar, Cisco, John Deere, Capital One, and so on along with research groups from some of the top universities in
the world. Our major feedback from the demo expressed the desire for an application like repo-rift.com to allow easy
access code search to anaybody. Such an outreach underscores the need for increased research in the code search space
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