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Abstract
The study of Large-Eddy Simulations (LES) in turbulent flows continues to be a critical area of research, particularly in 
understanding the behavior of small-scale turbulence structures and their impact on resolved scales. In this study, we 
focus on the LES of turbulent flows, particularly the one-dimensional Stochastic Burgers Equation (SBE), using fully 
conservative higher-order schemes. The interaction between spatial discretization and SubGrid-Scale (SGS) modeling is 
explored rigorously by validating these schemes against analytical solutions for both the Linear Advection-Diffusion (LAD) 
equation and the Non-Linear Burgers (NLB) equation under laminar conditions. This ensures robustness before applying the 
approach to LES of stochastic turbulence. The study investigates how second-order and fourth-order discretization schemes 
influence the dynamic coefficients of various SGS models, including Constant Smagorinsky (CS), Dynamic Smagorinsky 
(DS), Dynamic Wong-Lilly (DWL), 1.5-order Turbulent Kinetic Energy Deardorff (TKED), Equilibrium Heinz (EH), and 
Dynamic Heinz (DH) models. The second-order scheme was found to amplify fluctuations in dynamic SGS coefficients due 
to its higher numerical dissipation, contrasting with the more stable behavior observed with the fourth-order scheme, which 
better captures resolved scales and results in smaller dynamic coefficients. Despite inherent differences in SGS models 
and discretization schemes, the final velocity distributions in one-dimensional turbulence simulations were remarkably 
consistent, suggesting a limited influence of SGS modeling on large-scale structures in simplified turbulence scenarios. 
However, notable variations in resolved-scale kinetic energy were uncovered, emphasizing the importance of accurately 
capturing small-scale turbulence structures for precise energy dissipation predictions in LES.
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Nomenclature 
Latin symbols Greek symbols 
𝐶𝐶�� : Coefficient of Constant Smagorinsky, � 𝛽𝛽 : Spectral slope of the noise, � 
𝐶𝐶��  : Coefficient of Dynamic Heinz, � Δ� : Filter width, 𝑚𝑚 
𝐶𝐶��  : Coefficient of Dynamic Smagorinsky, � Δ� : Test width, 𝑚𝑚 
𝐶𝐶���  : Coefficient of Dynamic Wong-Lilly, � ���, 𝑡𝑡� : Noise term, 𝑚𝑚 𝑠𝑠�� 
𝐶𝐶�� : Coefficient of Equilibrium Heinz, � 𝜈𝜈 : Kinematic viscosity, 𝑚𝑚� 𝑠𝑠 
𝐷𝐷� : Noise amplitude, 𝑚𝑚� 𝑠𝑠�� 𝜏𝜏� : Residual (or SGS) stress, 𝑚𝑚� 𝑠𝑠�� 
𝑓𝑓��� : Gaussian random variable, � 𝜙𝜙 : General quantity, � 
𝑓𝑓��𝑘𝑘��  : Fourier transform, �    
𝐹𝐹�� : Inverse Fourier transform, � Superscripts 
����  : One-dimensional box filter, �   ̅ : Filtered value 
��𝜒𝜒� : Heaviside function, �   ̃ : Test filtered value 
𝑘𝑘 : SGS turbulent kinetic energy, 𝐽𝐽 CS : Constant Smagorinsky Model 
𝑘𝑘� : Wavenumber, 𝑚𝑚�� DH : Dynamic Heinz Model 
𝐾𝐾𝐾𝐾 : Resolved-scale kinetic energy, 𝐽𝐽 DS : Dynamic Smagorinsky Model 
𝐾𝐾�� : Total coefficient Dynamic Heinz, 𝐽𝐽�� 𝑚𝑚 DWL : Dynamic Wong-Lilly Model 
𝐾𝐾���� : Coefficient of Turbulent Kinetic Enertgy 

Deardorff, 𝐽𝐽�� 𝑚𝑚 
EH : Equilibrium Heinz Model 

𝑙𝑙  : Domain length, 𝑚𝑚 TKED : Turbulent Kinetic Energy 
Deardorff Model 

𝐿𝐿��  : Resolved stress (or Germano Identity), 𝑚𝑚� 𝑠𝑠��    
𝑀𝑀��  : Scaled composite rate-of-strain, 𝑚𝑚� 𝑠𝑠��    
𝑀𝑀��∗  : Modified scaled composite rate-of-strain, 𝑚𝑚� 𝑠𝑠��    
𝑁𝑁  : Number of grid points, �    
𝑁𝑁��  : Scaled gradient of velocity, 𝑚𝑚�/� 𝑠𝑠��    
𝑡𝑡  : Time, 𝑠𝑠    

���, 𝑡𝑡� : One-dimensional velocity field, 𝑚𝑚 𝑠𝑠��    
 

 

 

 

 

 

 

 

 

 

1. Introduction
Large-eddy simulation (LES) is a sophisticated Computational 
Fluid Dynamics (CFD) technique that has garnered significant 
attention in the study of turbulent flows across various 
engineering and scientific applications. By resolving large-scale 
turbulent structures directly and modeling the effects of smaller 
scales through SubGrid-Scale (SGS) models, LES offers a more 
detailed representation of turbulent flows compared to traditional 
Reynolds-Averaged Navier–Stokes (RANS) models [1,2]. This 
methodology enables researchers to capture the most significant 
scales of turbulence, providing valuable insights into complex 
flow phenomena, as extensively elaborated by Okraschevski 
[3]. The development of LES methodologies has been an active 
area of research, focusing on enhancing both the accuracy and 
efficiency of turbulent flow simulations. Caban and Tyliszczak 
explored advanced filtering techniques to improve the modeling 
of turbulent reactive flows in combustion applications [1]. 
Additionally, Tian et al. investigated the incorporation of 
physics-informed machine learning approaches to enhance 
the predictive capabilities of Lagrangian LES simulations [4]. 
Such advancements highlight the continuous evolution of LES 
techniques in addressing challenges associated with turbulent 
flow modeling. One of the key advantages of LES is its ability to 
capture unsteady features of flows and aero-acoustic properties, 
as demonstrated by Lombard et al. in their study of wingtip 
vortices [5]. The application of LES extends into various 
fields, including aerospace engineering and environmental fluid 
dynamics. For instance, Li et al. demonstrated the use of LES 
in studying hurricane evolution during landfall, enabling an 

investigation into the impact of complex flow structures, such 
as roll vortices, on atmospheric behavior [6]. Furthermore, 
LES has been applied to analyze wind turbine wakes and their 
sensitivity to SGS models, showcasing its versatility in studying 
aerodynamic phenomena [7]. In combustion research, Ali et 
al. emphasized the pivotal role of LES in studying turbulent 
premixed combustion processes under varying conditions 
[8]. By simulating reactive flows in combustion chambers, 
LES provides detailed insights into the interactions between 
turbulence and combustion dynamics, leading to advancements 
in combustion system design and optimization. This intricate 
interplay between flow dynamics and chemical reactions has 
solidified LES’s position as a valuable tool in propulsion research 
and environmental sustainability efforts. The integration of LES 
with other computational methods has further expanded its 
applicability in diverse fields. Zhang and Shih developed hybrid 
LES-RANS approaches, effectively combining the strengths 
of both methodologies for more efficient and accurate flow 
simulations [9]. Moreover, Kempf and Munz demonstrated the 
use of zonal direct-hybrid simulations to enable simultaneous 
modeling of large eddy dynamics and acoustic propagation, 
illustrating the versatility of LES in aeroacoustics studies [10]. 
The advancements in LES methodologies are also evident in 
industrial applications aimed at optimizing processes involving 
fluid dynamics and heat transfer. Li et al. utilized LES to 
predict conjugate heat transfer in turbulent channel flows, 
demonstrating its accuracy in capturing thermal processes [2]. 
Additionally, Korinek and Tisovský employed LES in modeling 
impinging jet heat transfer, evaluating the influence of local 
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grid refinement on heat transfer characteristics, showcasing 
its utility in various industrial heat transfer applications [11]. 
Furthermore, Hu et al. utilized LES to explore the formation 
of vortices around hydrofoils, while Protas et al. highlighted 
the limitations of RANS models, where turbulence is modeled 
empirically, in accurately capturing turbulent structures [12,13]. 
By resolving larger turbulent structures, LES provides a more 
detailed representation of the flow field, making it invaluable 
for understanding turbulence dynamics [14]. The evolution of 
LES has been marked by advancements in numerical methods 
and modeling techniques, with Östh et al. exploring nonlinear 
subscale turbulence terms to enhance model accuracy, particularly 
in high-Reynolds-number flows [15]. Xie et al. further developed 
reduced-order modeling techniques that leverage LES data for 
more efficient simulations of turbulent flows, underscoring the 
continuous refinement of LES methodologies to improve their 
predictive capabilities and computational efficiency [16].

SGS models play a crucial role in LES by effectively capturing 
the impact of unresolved turbulent motions on the resolved 
scales. These models are specifically designed to represent 
the SGS turbulence that cannot be explicitly resolved by the 
computational grid. A notable characteristic of SGS models 
is their ability to account for the dissipation of energy from 
resolved to unresolved scales, as highlighted by Moser et al. [17]. 
Recent advancements have marked a significant shift towards 
data-driven approaches. For instance, Xie et al. explored the 
use of Artificial Neural Networks (ANNs) to develop nonlinear 
algebraic models for SGS stresses in LES, showcasing how these 
models can enhance both accuracy and efficiency by capturing 
complex turbulent behaviors [18]. Supporting this notion, Subel 
et al. demonstrated the potential of such data-driven models in 
refining LES results [19]. In addition, the Dynamic Smagorinsky 
(DS) model, introduced by Mallik et al., represents a step forward 
in dynamic SGS modeling [20]. This model improves predictive 
capabilities by adjusting coefficients based on evolving flow 
dynamics. 

Complementing these efforts, researchers have increasingly 
applied machine learning techniques, such as deep learning 
and convolutional neural networks, to develop SGS models 
tailored for specific scenarios, including stable a posteriori LES 
of two-dimensional turbulence and predictions of wind turbine 
wakes, as explored by Guan and Ghobrial [7,21]. Moreover, 
Inagaki and Kobayashi emphasized the importance of accurately 
modeling the transport of SGS turbulent kinetic energy across 
various flow configurations [22]. Their research underlines the 
critical role of SGS energy flux representation in achieving 
realistic simulations. Additionally, Qi et al. and Yuan et al. have 
concentrated on developing scale-similarity dynamic procedures 
and quasi-dynamic SGS kinetic energy models, respectively, to 
enhance LES fidelity in capturing compressible flows [23,24]. 
As for practical applications, Vela-Martín and Long et al. have 
successfully customized SGS models for simulating a wide 
range of phenomena, including isotropic turbulence and bubble 
column bubbly flow [25,26]. Duben et al. also contributed to 
the field by investigating jet aerodynamics, demonstrating 
the versatility and adaptability of these models across diverse 

domains [27]. Also, Hickling presented promising results with 
the integration of deep learning techniques, such as adjoint-
trained models, which indicate a trend toward more autonomous 
and data-informed SGS modeling approaches [28]. This 
evolution signifies a progressive shift in the landscape of LES, 
emphasizing the importance of innovative methodologies for 
capturing complex turbulent phenomena.

One-dimensional Stochastic Burgers Turbulence (SBT) serves 
as a pivotal model for understanding the intricate dynamics of 
turbulent flows influenced by stochastic processes. The Stochastic 
Burgers Equation (SBE), a type of stochastic Partial Differential 
Equation (PDE), captures the interplay between advection and 
diffusion, offering valuable insights into the behavior of turbulent 
systems under random perturbations. For instance, Dong et 
al. extensively explored the global well-posedness, regularity, 
and stability aspects of this model, elucidating the dynamics 
of turbulent flows subjected to multiplicative noise [29]. In 
their research, Dotsenko and De et al. investigated various 
characteristics of one-dimensional SBT, focusing on velocity 
distribution functions, intermittency, and dynamic multi-scaling 
[30,31]. Their findings significantly enhance our understanding 
of the statistical properties and scaling behaviors inherent in 
the turbulent flow field. Additionally, Lu advanced the field by 
employing data-driven model reduction techniques to develop 
efficient parametric closure models specifically tailored for 
one-dimensional SBE, thereby improving the computational 
efficiency and accuracy of simulations [32]. The study of 
ergodicity within the Burgers system has also garnered attention. 
Peszat et al. examined the existence of invariant measures and the 
long-term behavior of solutions driven by stochastic processes, 
further contributing to our understanding of the system's 
dynamics [33]. Moreover, the development of weak Galerkin 
Finite Element Methods (FEMs), along with the formulation of 
exact solutions through specialized approximation techniques, 
has been instrumental in the numerical treatment and analysis 
of coupled viscous Burgers equations. Notably, Chen and Zhang 
as well as Nazir et al. provided valuable insights that enhance 
our grasp of turbulent phenomena through their methodological 
advancements [34,35]. Furthermore, the exploration of moderate 
deviations, strong convergence properties, and large deviation 
principles for SBEs has shed light on rare events and long-term 
statistical behaviors in turbulent flows perturbed by stochastic 
noise. For example, Belfadli et al. Jentzen et al. and Gao all 
contributed to this area, deepening our understanding of the 
implications of stochastic perturbations on turbulence [36-38]. 
In addition, the connection between SBEs and optimal control 
theory has been thoughtfully examined by Mohan et al. [39]. 
Their work elucidates optimal strategies for influencing the 
evolution of turbulent systems under uncertainty, highlighting 
the practical implications of these theoretical frameworks.

In this investigation, our aim is to utilize accurate numerical 
methods, specifically second-order and fourth-order spatial 
discretization schemes, for LES of the one-dimensional SBE 
within the context of turbulent flow. These methods, referred to 
as higher-order schemes, will be implemented using Python.
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The structure of the article is as follows: Sections 2.1 and 2.2 
introduce the problem statement and the modeling approach. 
Section 2.3 details the numerical solution procedure, including 
the discretization of the governing equations. In Section 3, the 
validation process is presented, where results obtained from 
higher-order schemes are compared with analytical solutions. 
Section 4 delves into the analysis, with Section 4.1 examining 
the impact of discretization methods on the evolution of dynamic 
coefficients across different SGS models. Section 4.2 evaluates 
the velocity distribution at the final time, comparing results 
from various SGS models using both second-order and fourth-
order discretization schemes to assess accuracy. Section 4.3 
investigates the effects of different dynamic SGS models on the 
evolution of resolved-scale kinetic energy. The article concludes 
with a summary of the key findings in Section 5.

2. Physical and Mathematical Modelling
2.1 Problem Statement
The one-dimensional SBT model plays a crucial role in 
elucidating the complex dynamics of turbulent flows affected 
by stochastic processes. According to Basu the one-dimensional 
SBE, which is a form of stochastic PDE, encapsulates the 
interaction between advection and diffusion [40]. This provides 
significant insights into the behavior of turbulent systems when 
subject to random disturbances. The equation can be written as 
[40]

Where u(x,t), η(x,t), ν are the velocity field, noise term, and 
kinematic viscosity, respectively. This equation is defined over a 
domain of length l = 2π, with periodic boundary condition (u(0,t) 
= u(2π,t)) and an initial condition of zero (u(x,0)=0). The noise 
term, which is temporally white but spatially correlated, can be 
defined as follows [41]:

In this context, kinematic viscosity (ν), noise amplitude (D0), 
the spectral slope of the noise (β), and the time step size (Δt) 
are set to values of           and 10-4s, respectively 
[40,42]. Furthermore, kw denotes the wavenumber, and f̂(kw) 
represents the Fourier transform of a Gaussian random variable 
(field) f(x), which has a mean of zero and a standard deviation 
of √N. The notation F-1 indicates the inverse Fourier transform, 
while N signifies the number of grid points. According to Basu 
the Direct Numerical Simulation (DNS) is conducted for a 
duration of t = 200s with a resolution of N = 8192, while the 
LES is performed for the same total time with a resolution of 
N = 512 [40]. It is important to note that for DNS, it suffices 
to discretize equation (1) and solve the resulting algebraic 

equation numerically. In contrast, LES simulations require the 
formulation of a filtered equation derived from equation (1), 
along with the implementation of SGS models. The subsequent 
section presents comprehensive formulations of the LES and 
SGS models.

2.2 Formulations of LES and SGS Models
The filtered version of SBE can be achieved by utilizing a one-
dimensional box filter in the following manner proposed by 
Basu [40]:

Given the assumption that the box filter is homogeneous, the 
derivative-filtering error approaches zero [43]. Consequently, in 
equation (3), the positions of the spatial derivatives and the one-
dimensional box filter can be interchanged (for example:   
      Therefore, the final form of the filtered SBE 
can be expressed as follows [44]:

In equations (3) and (4), the bar denotes the filtering operation 
using a filter with a characteristic width of ∆f = ∆x, as described by 
Geurts [45]. The filtered equation is now suitable for numerical 
solution through LES on a grid with a mesh size of ∆x, which is 
significantly larger than the smallest scale of motion, known as 
the Kolmogorov scale. Additionally, in equation (4), τR = (uu)-u̅u̅ 
and η̅ (x,t) represent the residual (or SGS) stress and the filtered 
forcing function, respectively. τR can be obtained using various 
SGS models, while the filtered forcing function η̅ (x,t) is defined 
as follows [44]:

Given that D is the computational domain and G(r,x)~G(r) 
represents a one-dimensional box filter. This filter function (or 
kernel) can be expressed using the Heaviside function, H(χ), as 
follows [44]:

This study considers various SGS models, including the Constant 
Smagorinsky (CS) [46], Dynamic Smagorinsky (DS) Dynamic 
Wong-Lilly (DWL) 1.5-order Turbulent Kinetic Energy 
Deardorff (TKED) Equilibrium Heinz (EH) and Dynamic Heinz 
(DH) models [46-53]. Using each of these models, the residual 
(or SGS) stress, τ^R, can be determined as described in Table 1.
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signifies the number of grid points. According to Basu [40], the Direct Numerical Simulation 

(DNS) is conducted for a duration of � � 200𝑠𝑠 with a resolution of � � 8192, while the LES is 

performed for the same total time with a resolution of � � 512. It is important to note that for 

DNS, it suffices to discretize equation (1) and solve the resulting algebraic equation numerically. 

In contrast, LES simulations require the formulation of a filtered equation derived from equation 

(1), along with the implementation of SGS models. The subsequent section presents 

comprehensive formulations of the LES and SGS models. 

2.2. Formulations of LES and SGS models 

The filtered version of SBE can be achieved by utilizing a one-dimensional box filter in the 

following manner proposed by Basu [40]: 

 ����� �
�
�
���
��
���� � � ������

���� � �̅�𝜂�𝑥𝑥, ��  (3) 

Given the assumption that the box filter is homogeneous, the derivative-filtering error approaches 

zero (Pope [43]). Consequently, in equation (3), the positions of the spatial derivatives and the 

one-dimensional box filter can be interchanged (for example: �����
����~ �������

��  and �
��

���
����~ ����

���). Therefore, 

the final form of the filtered SBE can be expressed as follows (Amani [44]): 

���
�� � 𝑢𝑢� ����� � � ������� �

�
�
���
�� � �̅�𝜂�𝑥𝑥, ��  (4) 

In equations (3) and (4), the bar denotes the filtering operation using a filter with a characteristic 

width of ∆�� ∆𝑥𝑥, as described by Geurts [45]. The filtered equation is now suitable for numerical 

solution through LES on a grid with a mesh size of ∆𝑥𝑥, which is significantly larger than the 

smallest scale of motion, known as the Kolmogorov scale. Additionally, in equation (4), 𝜏𝜏� � 𝑢𝑢𝑢𝑢���� �

𝑢𝑢�𝑢𝑢� and �̅�𝜂�𝑥𝑥, �� represent the residual (or SGS) stress and the filtered forcing function, respectively. 
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𝜏𝜏� can be obtained using various SGS models, while the filtered forcing function �̅�𝜂�𝑥𝑥, 𝑡𝑡� is defined 

as follows (Amani [44]): 

�̅�𝜂�𝑥𝑥, 𝑡𝑡� � � 𝐺𝐺�𝑑𝑑, 𝑥𝑥�𝜂𝜂�𝑥𝑥 � 𝑑𝑑, 𝑡𝑡�𝑑𝑑𝑑𝑑 
�

�����������
�����������⎯⎯⎯⎯⎯⎯⎯⎯⎯� �̅�𝜂�𝑥𝑥, 𝑡𝑡� � � 𝐺𝐺�𝑑𝑑�𝜂𝜂�𝑥𝑥 � 𝑑𝑑, 𝑡𝑡�𝑑𝑑𝑑𝑑 

�   
(5) 

Given that 𝐷𝐷 is the computational domain and 𝐺𝐺�𝑑𝑑, 𝑥𝑥�~𝐺𝐺�𝑑𝑑� represents a one-dimensional box 

filter. This filter function (or kernel) can be expressed using the Heaviside function, 𝐻𝐻�𝜒𝜒�, as 

follows (Amani [44]): 

𝐺𝐺�𝑑𝑑� � �
∆� 𝐻𝐻�𝜒𝜒� �

 
 

𝜒𝜒 � ∆�
� � |𝑑𝑑| �

�
∆� 𝐻𝐻 �

∆�
� � |𝑑𝑑|�  (6) 

This study considers various SGS models, including the Constant Smagorinsky (CS) [46], 

Dynamic Smagorinsky (DS) [46], Dynamic Wong-Lilly (DWL) [47, 48], 1.5-order Turbulent 

Kinetic Energy Deardorff (TKED) [49-51], Equilibrium Heinz (EH) [52, 53], and Dynamic Heinz 

(DH) [52, 53] models. Using each of these models, the residual (or SGS) stress, 𝜏𝜏�, can be 

determined as described in Table 1. 

Table 1 Different residual (or SGS) models and their equations. 
Residual (or SGS) Stress Model’s Name Tag 

Equation 
 

 
(7) 𝜏𝜏�,�� � �2�𝐶𝐶��∆𝑓𝑓�� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �

𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� CS [46] C1 

(8) 𝜏𝜏�,�� � �2𝐶𝐶��∆𝑓𝑓� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �
𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� DS [46] C2 

(9) 𝜏𝜏�,��� � �2𝐶𝐶���∆𝑓𝑓�/� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� DWL [47, 48] C3 

(10) 𝜏𝜏�,���� � �2𝐾𝐾𝑇𝑇𝐾𝐾𝑇𝑇𝐷𝐷 �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �
𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� 

TKED [49-51] C4 

(11) 𝜏𝜏�,�� � �2𝐶𝐶��∆𝑓𝑓� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �
𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� 

EH [52, 53] C5 

(12) 𝜏𝜏�,�� � �2𝐾𝐾𝐷𝐷𝐻𝐻 �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� 
DH [52, 53] C6 

In equation (7), the value of 𝐶𝐶�� typically ranges from 0.1 to 0.2. Here, this coefficient is set to 

0.17 as Pope [43] suggested based on the results obtained by Lilly [48]. The CS model is 

straightforward and easy to implement, offering a reasonable approximation for many flows. 
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Dynamic Smagorinsky (DS) [46], Dynamic Wong-Lilly (DWL) [47, 48], 1.5-order Turbulent 

Kinetic Energy Deardorff (TKED) [49-51], Equilibrium Heinz (EH) [52, 53], and Dynamic Heinz 

(DH) [52, 53] models. Using each of these models, the residual (or SGS) stress, 𝜏𝜏�, can be 

determined as described in Table 1. 
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In equation (7), the value of 𝐶𝐶�� typically ranges from 0.1 to 0.2. Here, this coefficient is set to 

0.17 as Pope [43] suggested based on the results obtained by Lilly [48]. The CS model is 

straightforward and easy to implement, offering a reasonable approximation for many flows. 

10 
 

𝜏𝜏� can be obtained using various SGS models, while the filtered forcing function �̅�𝜂�𝑥𝑥, 𝑡𝑡� is defined 

as follows (Amani [44]): 

�̅�𝜂�𝑥𝑥, 𝑡𝑡� � � 𝐺𝐺�𝑑𝑑, 𝑥𝑥�𝜂𝜂�𝑥𝑥 � 𝑑𝑑, 𝑡𝑡�𝑑𝑑𝑑𝑑 
�

�����������
�����������⎯⎯⎯⎯⎯⎯⎯⎯⎯� �̅�𝜂�𝑥𝑥, 𝑡𝑡� � � 𝐺𝐺�𝑑𝑑�𝜂𝜂�𝑥𝑥 � 𝑑𝑑, 𝑡𝑡�𝑑𝑑𝑑𝑑 

�   
(5) 

Given that 𝐷𝐷 is the computational domain and 𝐺𝐺�𝑑𝑑, 𝑥𝑥�~𝐺𝐺�𝑑𝑑� represents a one-dimensional box 

filter. This filter function (or kernel) can be expressed using the Heaviside function, 𝐻𝐻�𝜒𝜒�, as 

follows (Amani [44]): 

𝐺𝐺�𝑑𝑑� � �
∆� 𝐻𝐻�𝜒𝜒� �

 
 

𝜒𝜒 � ∆�
� � |𝑑𝑑| �

�
∆� 𝐻𝐻 �

∆�
� � |𝑑𝑑|�  (6) 

This study considers various SGS models, including the Constant Smagorinsky (CS) [46], 

Dynamic Smagorinsky (DS) [46], Dynamic Wong-Lilly (DWL) [47, 48], 1.5-order Turbulent 

Kinetic Energy Deardorff (TKED) [49-51], Equilibrium Heinz (EH) [52, 53], and Dynamic Heinz 

(DH) [52, 53] models. Using each of these models, the residual (or SGS) stress, 𝜏𝜏�, can be 

determined as described in Table 1. 

Table 1 Different residual (or SGS) models and their equations. 
Residual (or SGS) Stress Model’s Name Tag 

Equation 
 

 
(7) 𝜏𝜏�,�� � �2�𝐶𝐶��∆𝑓𝑓�� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �

𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� CS [46] C1 

(8) 𝜏𝜏�,�� � �2𝐶𝐶��∆𝑓𝑓� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �
𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� DS [46] C2 

(9) 𝜏𝜏�,��� � �2𝐶𝐶���∆𝑓𝑓�/� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� DWL [47, 48] C3 

(10) 𝜏𝜏�,���� � �2𝐾𝐾𝑇𝑇𝐾𝐾𝑇𝑇𝐷𝐷 �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �
𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� 

TKED [49-51] C4 

(11) 𝜏𝜏�,�� � �2𝐶𝐶��∆𝑓𝑓� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �
𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� 

EH [52, 53] C5 

(12) 𝜏𝜏�,�� � �2𝐾𝐾𝐷𝐷𝐻𝐻 �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� 
DH [52, 53] C6 

In equation (7), the value of 𝐶𝐶�� typically ranges from 0.1 to 0.2. Here, this coefficient is set to 

0.17 as Pope [43] suggested based on the results obtained by Lilly [48]. The CS model is 

straightforward and easy to implement, offering a reasonable approximation for many flows. 

10 
 

𝜏𝜏� can be obtained using various SGS models, while the filtered forcing function �̅�𝜂�𝑥𝑥, 𝑡𝑡� is defined 

as follows (Amani [44]): 

�̅�𝜂�𝑥𝑥, 𝑡𝑡� � � 𝐺𝐺�𝑑𝑑, 𝑥𝑥�𝜂𝜂�𝑥𝑥 � 𝑑𝑑, 𝑡𝑡�𝑑𝑑𝑑𝑑 
�

�����������
�����������⎯⎯⎯⎯⎯⎯⎯⎯⎯� �̅�𝜂�𝑥𝑥, 𝑡𝑡� � � 𝐺𝐺�𝑑𝑑�𝜂𝜂�𝑥𝑥 � 𝑑𝑑, 𝑡𝑡�𝑑𝑑𝑑𝑑 

�   
(5) 

Given that 𝐷𝐷 is the computational domain and 𝐺𝐺�𝑑𝑑, 𝑥𝑥�~𝐺𝐺�𝑑𝑑� represents a one-dimensional box 

filter. This filter function (or kernel) can be expressed using the Heaviside function, 𝐻𝐻�𝜒𝜒�, as 

follows (Amani [44]): 

𝐺𝐺�𝑑𝑑� � �
∆� 𝐻𝐻�𝜒𝜒� �

 
 

𝜒𝜒 � ∆�
� � |𝑑𝑑| �

�
∆� 𝐻𝐻 �

∆�
� � |𝑑𝑑|�  (6) 

This study considers various SGS models, including the Constant Smagorinsky (CS) [46], 

Dynamic Smagorinsky (DS) [46], Dynamic Wong-Lilly (DWL) [47, 48], 1.5-order Turbulent 

Kinetic Energy Deardorff (TKED) [49-51], Equilibrium Heinz (EH) [52, 53], and Dynamic Heinz 

(DH) [52, 53] models. Using each of these models, the residual (or SGS) stress, 𝜏𝜏�, can be 

determined as described in Table 1. 

Table 1 Different residual (or SGS) models and their equations. 
Residual (or SGS) Stress Model’s Name Tag 

Equation 
 

 
(7) 𝜏𝜏�,�� � �2�𝐶𝐶��∆𝑓𝑓�� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �

𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� CS [46] C1 

(8) 𝜏𝜏�,�� � �2𝐶𝐶��∆𝑓𝑓� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �
𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� DS [46] C2 

(9) 𝜏𝜏�,��� � �2𝐶𝐶���∆𝑓𝑓�/� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� DWL [47, 48] C3 

(10) 𝜏𝜏�,���� � �2𝐾𝐾𝑇𝑇𝐾𝐾𝑇𝑇𝐷𝐷 �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �
𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� 

TKED [49-51] C4 

(11) 𝜏𝜏�,�� � �2𝐶𝐶��∆𝑓𝑓� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �
𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� 

EH [52, 53] C5 

(12) 𝜏𝜏�,�� � �2𝐾𝐾𝐷𝐷𝐻𝐻 �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� 
DH [52, 53] C6 

In equation (7), the value of 𝐶𝐶�� typically ranges from 0.1 to 0.2. Here, this coefficient is set to 

0.17 as Pope [43] suggested based on the results obtained by Lilly [48]. The CS model is 

straightforward and easy to implement, offering a reasonable approximation for many flows. 



   Volume 3 | Issue 10 | 5J Math Techniques Comput Math, 2024

10 
 

𝜏𝜏� can be obtained using various SGS models, while the filtered forcing function �̅�𝜂�𝑥𝑥, 𝑡𝑡� is defined 

as follows (Amani [44]): 

�̅�𝜂�𝑥𝑥, 𝑡𝑡� � � 𝐺𝐺�𝑑𝑑, 𝑥𝑥�𝜂𝜂�𝑥𝑥 � 𝑑𝑑, 𝑡𝑡�𝑑𝑑𝑑𝑑 
�

�����������
�����������⎯⎯⎯⎯⎯⎯⎯⎯⎯� �̅�𝜂�𝑥𝑥, 𝑡𝑡� � � 𝐺𝐺�𝑑𝑑�𝜂𝜂�𝑥𝑥 � 𝑑𝑑, 𝑡𝑡�𝑑𝑑𝑑𝑑 

�   
(5) 

Given that 𝐷𝐷 is the computational domain and 𝐺𝐺�𝑑𝑑, 𝑥𝑥�~𝐺𝐺�𝑑𝑑� represents a one-dimensional box 

filter. This filter function (or kernel) can be expressed using the Heaviside function, 𝐻𝐻�𝜒𝜒�, as 

follows (Amani [44]): 

𝐺𝐺�𝑑𝑑� � �
∆� 𝐻𝐻�𝜒𝜒� �

 
 

𝜒𝜒 � ∆�
� � |𝑑𝑑| �

�
∆� 𝐻𝐻 �

∆�
� � |𝑑𝑑|�  (6) 

This study considers various SGS models, including the Constant Smagorinsky (CS) [46], 

Dynamic Smagorinsky (DS) [46], Dynamic Wong-Lilly (DWL) [47, 48], 1.5-order Turbulent 

Kinetic Energy Deardorff (TKED) [49-51], Equilibrium Heinz (EH) [52, 53], and Dynamic Heinz 

(DH) [52, 53] models. Using each of these models, the residual (or SGS) stress, 𝜏𝜏�, can be 

determined as described in Table 1. 

Table 1 Different residual (or SGS) models and their equations. 
Residual (or SGS) Stress Model’s Name Tag 

Equation 
 

 
(7) 𝜏𝜏�,�� � �2�𝐶𝐶��∆𝑓𝑓�� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �

𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� CS [46] C1 

(8) 𝜏𝜏�,�� � �2𝐶𝐶��∆𝑓𝑓� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �
𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� DS [46] C2 

(9) 𝜏𝜏�,��� � �2𝐶𝐶���∆𝑓𝑓�/� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� DWL [47, 48] C3 

(10) 𝜏𝜏�,���� � �2𝐾𝐾𝑇𝑇𝐾𝐾𝑇𝑇𝐷𝐷 �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �
𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� 

TKED [49-51] C4 

(11) 𝜏𝜏�,�� � �2𝐶𝐶��∆𝑓𝑓� �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� �
𝜕𝜕𝜕𝜕�
𝜕𝜕𝑥𝑥� 

EH [52, 53] C5 

(12) 𝜏𝜏�,�� � �2𝐾𝐾𝐷𝐷𝐻𝐻 �𝜕𝜕𝜕𝜕�𝜕𝜕𝑥𝑥� 
DH [52, 53] C6 

In equation (7), the value of 𝐶𝐶�� typically ranges from 0.1 to 0.2. Here, this coefficient is set to 

0.17 as Pope [43] suggested based on the results obtained by Lilly [48]. The CS model is 
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Table 1: Different residual (or SGS) models and their equations.

In equation (7), the value of CCS typically ranges from 0.1 to 0.2. 
Here, this coefficient is set to 0.17 as Pope suggested based on the 
results obtained by Lilly [43,48]. The CS model is straightforward 
and easy to implement, offering a reasonable approximation for 
many flows. However, it can be overly dissipative, particularly in 
regions with low turbulence. Additionally, assuming a constant 
coefficient like CCS may not be appropriate for all flow conditions. 
To address certain limitations, the DS model has been modified. 
Its strengths include adaptive eddy viscosity, reduced numerical 
dissipation, improved accuracy in complex flows, and robustness 
across various conditions. However, its implementation can 
be complex, it is sensitive to filter choice, and may require 
calibration for specific flow conditions. Additionally, the model 
may struggle in very low Reynolds number flows and carries the 
risk of overfitting, which could lead to unphysical behavior in 
certain regions [44]. In equation (8), the DS coefficient, CDS, is 
locally adjusted based on the resolved scales of turbulence. Its 
formulation can be represented as follows [46]:

Where L11 and M11 refer to the resolved stress (also known as 
the Germano identity) and the scaled composite rate-of-strain, 
respectively [54]. These quantities can be defined as follows:

In equations (14) and (15), the tilde symbol indicates that test 
filtering is performed at a scale of Δt = 2Δf. Thus, L11 represents 
the SGS stresses occurring between Δf and Δt, as described by 
Basu [41].

The DWL model excels in simulating turbulent flows due to its 
ability to adaptively adjust model coefficient, CDWL in equation 
(9), based on local flow conditions, enhancing accuracy. It 

effectively captures a wide range of turbulence scales and 
handles complex geometries well. However, its computational 
demands can be high, making simulations resource-intensive. 
Additionally, it may face challenges in highly anisotropic or 
non-equilibrium flows, potentially leading to inaccuracies under 
such conditions [44]. The coefficient of DWL model, CDWL, can 
be obtained by [47]:

Here, N11 signifies the scaled gradient of velocity and can be 
expressed as follows (Basu [40]):

In both equations (13) and (16) the angular brackets indicate 
averaging across the entire one-dimensional domain. To prevent 
numerical instabilities, the dynamic coefficients of CDS

2 and 
CDWL are assigned a value of zero whenever equations (13) and 
(16) produce a negative result. This widely adopted practice is 
referred to as "clipping" [40,45].

The 1.5 TKED model is efficient and straightforward, effectively 
simulating buoyancy-driven turbulence in atmospheric and 
oceanic flows. Its strengths include robust performance across 
various applications. However, it simplifies turbulence physics, 
may struggle with rapidly changing conditions, and can be 
sensitive to parameter choices, which may require careful 
calibration for accurate results [44]. The coefficient of this 
model in equation (10), denoted as KTKED, can be computed as 
follows [51]:

According to equation (18), the value of SGS turbulent kinetic 
energy, k, is needed. To determine this, the following equation 
is used [51]:
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in certain regions (Amani [44]). In equation (8), the DS coefficient, 𝐶𝐶��, is locally adjusted based 

on the resolved scales of turbulence. Its formulation can be represented as follows (Smagorinsky 
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captures a wide range of turbulence scales and handles complex geometries well. However, its 
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Here, 𝑁𝑁�� signifies the scaled gradient of velocity and can be expressed as follows (Basu [40]): 
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In both equations (13) and (16) the angular brackets indicate averaging across the entire one-

dimensional domain. To prevent numerical instabilities, the dynamic coefficients of 𝐶𝐶��� and 𝐶𝐶��� 

are assigned a value of zero whenever equations (13) and (16) produce a negative result. This 

widely adopted practice is referred to as "clipping" (Basu [40] and Geurts [45]). 

The 1.5 TKED model is efficient and straightforward, effectively simulating buoyancy-driven 

turbulence in atmospheric and oceanic flows. Its strengths include robust performance across 

various applications. However, it simplifies turbulence physics, may struggle with rapidly 

changing conditions, and can be sensitive to parameter choices, which may require careful 

calibration for accurate results (Amani [44]). The coefficient of this model in equation (10), 

denoted as 𝐾𝐾����, can be computed as follows (Moeng and Wyngaard [51]): 

𝐾𝐾���� � 0.1Δ�𝑘𝑘�/� (18) 

According to equation (18), the value of SGS turbulent kinetic energy, 𝑘𝑘, is needed. To determine 
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The Heinz SGS model in LES offers notable strengths. Its 
key strength lies in its improved stability due to realizability 
constraints, which ensure the physical plausibility of the 
SGS stress tensor, reducing numerical instabilities. The 
dynamic adjustment of model coefficients based on local flow 
conditions enhances adaptability and accuracy without the 
need for empirical damping functions. However, the model 
has limitations. The increased computational complexity due 
to dynamic adjustments results in higher computational costs. 
Sensitivity to model parameters and initial conditions can affect 
robustness, necessitating careful calibration. Implementation 
can be challenging due to its unique approach, and further 
validation is needed across a broader range of turbulent flows 
to fully establish its reliability and generalizability [44]. The 
EH model, as described in equation (11), features a dynamic 
coefficient, CEH. This coefficient can be determined by [53]:

Where M*
11 is essentially M11, excluding the first term,  

and replacing Δf with Δt.

The coefficient of DH model in equation (12), denoted as KDH, 
can be computed as follows [53]:

By comparing relations (18) and (21), it is evident that in DH 
model, the coefficient of 0.1 is no longer present. Instead, the 
coefficient of CDH is dynamically calculated using equation (22). 
Thus, this approach (DH model) is effectively a generalization 
of TKED model.

Here, O11 can be expressed as follows:

According to equation (21), the value of SGS turbulent kinetic 
energy, k, is needed. To determine this, the following equation 
is used [53]:

2.3 Numerical Solution
The schematic of computational grid is shown in Figure 1. All 
quantities, including filtered velocity and SGS turbulent kinetic 
energy, are stored at the cell centers. According to Amani and 
Morinishi et al. two fully conservative, higher-order Finite 
Difference Methods (FEMs) can be applied to the spatial terms 
outlined in sections 2.1 and 2.2 [44,55]. These discretization 
schemes, as summarized in Table 2, can be used for a general 
variable such as ϕ, which could be replaced with quantities 
like filtered velocity, u̅, or SGS turbulent kinetic energy, k. 
Additionally, Table 3 presents three different discretization 
methods for the time derivative term [56-59]. 
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The Heinz SGS model in LES offers notable strengths. Its key strength lies in its improved stability 

due to realizability constraints, which ensure the physical plausibility of the SGS stress tensor, 

reducing numerical instabilities. The dynamic adjustment of model coefficients based on local flow 

conditions enhances adaptability and accuracy without the need for empirical damping functions. 

However, the model has limitations. The increased computational complexity due to dynamic 

adjustments results in higher computational costs. Sensitivity to model parameters and initial 

conditions can affect robustness, necessitating careful calibration. Implementation can be 

challenging due to its unique approach, and further validation is needed across a broader range of 

turbulent flows to fully establish its reliability and generalizability (Amani [44]). The EH model, 

as described in equation (11), features a dynamic coefficient, 𝐶𝐶��. This coefficient can be 

determined by (Mokhtarpoor and Heinz [53]): 

𝐶𝐶�� � � 𝐿𝐿��𝑀𝑀��∗
𝑀𝑀��∗ 𝑀𝑀��∗

 (20) 

Where 𝑀𝑀��∗  is essentially 𝑀𝑀��, excluding the first term, 4 �������
� �������

�, and replacing Δ� with  Δ�. 

The coefficient of DH model in equation (12),  denoted as 𝐾𝐾��, can be computed as follows 

(Mokhtarpoor and Heinz [53]): 

𝐾𝐾�� � 𝐶𝐶��Δ�𝑘𝑘�/� (21) 

By comparing relations (18) and (21), it is evident that in DH model, the coefficient of 0.1 is no 

longer present. Instead, the coefficient of 𝐶𝐶�� is dynamically calculated using equation (22). Thus, 

this approach (DH model) is effectively a generalization of TKED model. 

𝐶𝐶�� � � 𝐿𝐿��𝑂𝑂��
𝑂𝑂��𝑂𝑂�� (22) 
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Here, 𝑂𝑂�� can be expressed as follows: 

𝑂𝑂�� � √2Δ�𝐿𝐿���/� �𝜕𝜕𝜕𝜕�𝜕𝜕𝜕𝜕�
�

 
(23) 

According to equation (21), the value of SGS turbulent kinetic energy, 𝑘𝑘, is needed. To determine 

this, the following equation is used (Mokhtarpoor and Heinz [53]): 

𝜕𝜕𝑘𝑘
𝜕𝜕𝜕𝜕 � �𝜕𝜕�𝜕𝜕�𝑘𝑘�𝜕𝜕𝜕𝜕 � √2𝐾𝐾�� �𝜕𝜕𝜕𝜕�𝜕𝜕𝜕𝜕� �

𝜕𝜕
𝜕𝜕𝜕𝜕 ��� � 𝐾𝐾��� 𝜕𝜕𝑘𝑘𝜕𝜕𝜕𝜕� �

𝑘𝑘�/�
Δ�  

(24) 

2.3. Numerical Solution 

The schematic of computational grid is shown in Figure 1. All quantities, including filtered 

velocity and SGS turbulent kinetic energy, are stored at the cell centers. According to Amani [44] 

and Morinishi et al. [55], two fully conservative, higher-order Finite Difference Methods (FEMs) 

can be applied to the spatial terms outlined in sections 2.1 and 2.2. These discretization schemes, 

as summarized in Table 2, can be used for a general variable such as 𝜙𝜙, which could be replaced 

with quantities like filtered velocity, 𝜕𝜕�, or SGS turbulent kinetic energy, 𝑘𝑘. Additionally, Table 3 

presents three different discretization methods for the time derivative term [56-59].  

 

Figure 1 The computational grid; cell centers and faces highlighted with green line and blue 
symbol, respectively. 
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presents three different discretization methods for the time derivative term [56-59].  
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Table 2 Two fully conservative, higher-order FEMs for spatial terms [44, 55]. 
Second-Order Discretization Schemes Term 

Equation 
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�� �

���������
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�� �
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���
�� � �

� �
���������������������
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��� �

�������������
�����   Diffusion 

Fourth-Order Discretization Schemes Term 
Equation 
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� �
�
� �

���������������������
��� � � �

� �
���������������������

��� ��    Convection 

(30) ���
��� �

�
� �

�������������
����� � � �

� �
�������������

������ �  Diffusion 

Table 3 Three different discretization methods for the time derivative term. 
Three Different Discretization Schemes Order (Name) 

Equation 
 

(31) ��
�� � RHS  →𝜙𝜙��� � 𝜙𝜙� � Δ𝑡𝑡�RHS��  First-Order  

(Explicit Euler) [56] 
(32) ��

�� � RHS  →𝜙𝜙��� � 𝜙𝜙��� � Δ𝑡𝑡 ��� �RHS���� � �
� �RHS���  Second-Order 

(Adams-Bashforth) [57] 
(33) ��

�� � RHS  →𝜙𝜙��� � 𝜙𝜙� � �
� Δ𝑡𝑡�𝐶𝐶� � 2𝐶𝐶� � 2𝐶𝐶� � 𝐶𝐶��  

where:

⎩
⎪⎪
⎨
⎪⎪
⎧𝐶𝐶� � �RHS��                
𝐶𝐶� � �RHS � ��

� �
�����  

𝐶𝐶� � �RHS � ��
� �

�����  
𝐶𝐶� � �RHS � 𝐶𝐶������

  

Fourth-Order  
(Runge-Kutta) [58] 

3. Validation 

Before analyzing the LES solution, it is essential to validate the accuracy of the Python code and 

discretization schemes. To achieve this, two validation cases, as referenced in Moin [60], are first 

considered. The validation cases include the Linear Advection-Diffusion (LAD) equation and the 

Non-Linear Burgers (NLB) equation, both of which possess analytical solutions under laminar 

flow conditions. For both cases, Table 4 presents the governing equations along with the 

corresponding boundary and initial conditions. 

Table 4 The validation cases: governing equations along with the boundary and initial conditions 
[60]. 
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3. Validation
Before analyzing the LES solution, it is essential to validate 
the accuracy of the Python code and discretization schemes. 
To achieve this, two validation cases, as referenced in Moin are 
first considered [60]. The validation cases include the Linear 

Advection-Diffusion (LAD) equation and the Non-Linear 
Burgers (NLB) equation, both of which possess analytical 
solutions under laminar flow conditions. For both cases, Table 4 
presents the governing equations along with the corresponding 
boundary and initial conditions.
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Validation Cases Under Laminar Flow Conditions Name 
Equation, Boundary Condition (B.C.), and Initial Condition (I.C.) 

 

(34) ��
�� �
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�� � 0.05 ���

���   on   0 𝑚𝑚 � 𝑥𝑥 � 1 𝑚𝑚   for   𝑡𝑡 � 0.75𝑠𝑠 Linear Advection-Diffusion 
(LAD) [60] 

B.C.: 𝑢𝑢�0, 𝑡𝑡� � 𝑢𝑢�1, 𝑡𝑡� 
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0                                   ; otherwise              
(35) ��

�� � 𝑢𝑢 ��
�� �

���
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(NLB) [60] 
B.C.: 𝑢𝑢�0, 𝑡𝑡� � 𝑢𝑢�2𝜋𝜋, 𝑡𝑡� 
I.C.:  𝑢𝑢�𝑥𝑥, 0� � 10 sin�𝑥𝑥� 

It is important to note that in both cases, the time step size, ∆𝑡𝑡, is set to 0.005𝑠𝑠. Additionally, the 

value of 16 is used for the number of grid points, 𝑁𝑁. The velocity profiles for both cases at various 

time points are compared with the analytical results (Moin [60]) and are presented in Figure 2a-d. 
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It is important to note that in both cases, the time step size, ∆t, is 
set to 0.005s. Additionally, the value of 16 is used for the number 
of grid points, N. The velocity profiles for both cases at various 

time points are compared with the analytical results and are 
presented in Figure 2a-d [60].
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Figure 2: Velocity profiles at different time points versus x, (a) LAD using a second-order scheme, (b) LAD using a fourth-order 
scheme, (c) NLB using a second-order scheme, and (d) NLB using a fourth-order scheme. The legend includes AR NR (Numerical 
Results), and I.C. (Initial Condition) [60].

According to Figure 2a-d, the numerical results from the fourth-
order scheme align perfectly with the analytical solutions. 
However, in both validation cases, the second-order scheme 
shows slight deviations from the analytical results. When 
comparing spatial fourth-order discretization scheme to second-
order discretization scheme in the context of solving PDEs like 
the LAD equation and the NLB equation, several factors come 
into play:

Firstly, in numerical discretization, the accuracy and convergence 
rate of a scheme are closely tied to its order. For second-order 
discretization, the truncation error is O (∆x2). This means that 
when the grid spacing, ∆x, is halved, the error decreases by a 
factor of 4, but the error remains relatively large compared to 
higher-order schemes. In contrast, fourth-order discretization 
has a truncation error of O (∆x4). Halving the grid spacing in this 
case reduces the error by a factor of 16, resulting in a significantly 
more accurate solution for the same grid size (see Table 2). 
Secondly, LAD equation often models the transport of a quantity 
like heat or pollutants. For advection-dominated problems (where 
the advection term is much stronger than the diffusion term), 
numerical schemes with lower-order discretization can introduce 
artificial dispersion (phase errors) and dissipation (amplitude 
damping) as shown in Figure 2a. A fourth-order scheme reduces 

both these effects significantly compared to a second-order 
scheme, leading to more accurate wave propagation and sharper 
gradients in the solution (refer to Figure 2b). Furthermore, NLB 
equation is used to model shock waves and turbulence, where 
nonlinear effects dominate. Higher-order discretization can 
better capture the steep gradients and complex structures typical 
of such solutions. Fourth-order methods reduce numerical 
dissipation, preserving sharper discontinuities (shocks) and 
yielding a more accurate representation of the solution (refer 
to Figure 2c-d). Thirdly, second-order discretization generally 
necessitates a finer grid to achieve the same level of accuracy 
as a fourth-order scheme (refer to Figure 2a-d). This finer 
grid increases the number of grid points, thereby raising the 
computational cost. Although fourth-order schemes offer greater 
accuracy, they involve a wider stencil, incorporating more grid 
points in the derivative approximation (see Table 2). While this 
broader stencil can slightly elevate computational complexity, 
the enhanced accuracy typically justifies the additional expense.

4. Results and Discussion
4.1 Dynamic Coefficients 
This section investigates the effects of higher-order spatial 
discretization schemes on the dynamic coefficients of various 
SGS models within the framework of LES. Figure 3a-d 
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illustrates the time evolution of the dynamic coefficients for the 
DS, DWL, EH, and DH models. Notably, as indicated in Figure 
3a-b, the dynamic SGS coefficients for the DS and DWL models 
exhibit qualitatively similar patterns over time, as described by 
Basu [40]. The most significant variations in the coefficients 
occur during five specific intervals: 35-40 s, 65-70 s, 135-140 
s, 160-165 s, and 175-180 s. The second-order discretization 
scheme amplifies these changes considerably more than the 
fourth-order scheme. For example, the maximum values of the 
coefficients within the specified intervals, as detailed in Table 5, 
underscore the differences between the two numerical methods. 
The second-order scheme typically introduces more numerical 
dissipation than the fourth-order scheme, which tends to dampen 
high-frequency components (small scales) in the solution. In the 

context of LES, this additional dissipation can influence the 
resolved scales, leading to a greater dependence on the SGS 
model to represent energy transfer between the resolved and 
subgrid scales. Consequently, the dynamic coefficients may 
increase to compensate for this effect, resulting in the observed 
rise. Moreover, the dynamic models adapt their coefficients 
based on local flow characteristics and the interaction between 
resolved and subgrid scales. With a higher-order scheme, the 
resolved scales are represented more accurately, potentially 
leading to a smaller SGS coefficient. It is noteworthy that the 
results for the DS and DWL coefficients using the fourth-order 
scheme align perfectly with those obtained by the spectral 
method [41].
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Figure 3: Time evolution of dynamic coefficient distributions for various SGS models: (a) DS, (b) DWL, (c) EH, and (d) DH. The 
legend includes Numerical Results (NR) for both numerical schemes.
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Table 5 The comparison of two spatial discretization schemes across four SGS model 
coefficients over five time intervals. 

DH Model 
(Order) 

 EH Model 
(Order) 

 DWL Model 
(Order) 

 DS Model 
(Order) 

Time Interval  
(s) 

(4th)  (2nd)  (4th)  (2nd)  (4th)  (2nd)  (4th)  (2nd) 
0.088 0.170  0.079 0.152  0.008 0.012  0.104 0.196 35-40 
0.049 0.122  0.045 0.109  0.012 0.015  0.059 0.131 65-70 
0.065 0.162  0.059 0.144  0.009 0.011  0.087 0.118 135-140 
0.149 0.165  0.136 0.149  0.006 0.038  0.169 0.234 160-165 
0.097 0.179  0.082 0.191  0.006 0.016  0.119 0.239 175-180 

In LES, turbulence is divided into large-scale motions that are resolved explicitly and small-scale 

motions that are modeled. SGS models typically assume forward scatter, where energy transfers 

from large to small scales. However, under specific conditions, such as highly anisotropic flows 

or organized structures, backscatter can occur. When SGS coefficients turn negative, as seen in 

Figure 3c-d, it indicates backscatter, where small-scale energy feeds back into large scales. This 

phenomenon often manifests in regions with organized turbulence like shear layers or coherent 

structures (Amani [44]). Comparing Figure 3c-d with Figure 3a-b reveals that EH and DH models 

excel in accurately predicting energy exchange in scenarios involving backscatter. Moreover, the 

coefficients of the DS and DWL methods have never been negative (refer to Figure 3a-b), due to 

the clipping method employed in section 2.2 to enhance stability in the numerical solution. 

Consequently, these methods lack the capability to predict any backscatter in this study. 

4.2. Distributions of velocity 

This section explores two key impacts on the distribution of turbulent flow velocity: the effects of 

various SGS modeling approaches and the influence of spatial discretization schemes. Figure 4a-

f presents the velocity distributions as a function of 𝑥𝑥 at the final time of � � 200𝑠𝑠 for various SGS 

models. Figure 4a-f demonstrates that, despite the variety of SGS models used, they all produced 

similar velocity distributions in the context of the one-dimensional SBE simulation which is 

Table 5: The comparison of two spatial discretization schemes across four SGS model coefficients over five time intervals.

In LES, turbulence is divided into large-scale motions that are 
resolved explicitly and small-scale motions that are modeled. 
SGS models typically assume forward scatter, where energy 
transfers from large to small scales. However, under specific 
conditions, such as highly anisotropic flows or organized 
structures, backscatter can occur. When SGS coefficients turn 
negative, as seen in Figure 3c-d, it indicates backscatter, where 
small-scale energy feeds back into large scales. This phenomenon 
often manifests in regions with organized turbulence like shear 
layers or coherent structures [44]. Comparing Figure 3c-d with 
Figure 3a-b reveals that EH and DH models excel in accurately 
predicting energy exchange in scenarios involving backscatter. 
Moreover, the coefficients of the DS and DWL methods have 
never been negative (refer to Figure 3a-b), due to the clipping 
method employed in section 2.2 to enhance stability in the 
numerical solution. Consequently, these methods lack the 
capability to predict any backscatter in this study.

4.2 Distributions of Velocity
This section explores two key impacts on the distribution of 
turbulent flow velocity: the effects of various SGS modeling 
approaches and the influence of spatial discretization schemes. 
Figure 4a-f presents the velocity distributions as a function of 
x at the final time of t=200s for various SGS models. Figure 
4a-f demonstrates that, despite the variety of SGS models used, 

they all produced similar velocity distributions in the context of 
the one-dimensional SBE simulation which is consistent with 
the findings of Basu [41]. This consistency can be attributed to 
several factors. In one-dimensional turbulence, the flow dynamics 
are significantly simplified compared to higher dimensions. This 
reduction in complexity can diminish the differences between 
SGS models, particularly when the main role of these models 
is to represent the effects of smaller scales in more complex, 
multi-dimensional turbulence. In one-dimensional, the role of 
SGS models might be less critical, leading to similar outcomes. 
Additionally, the Burgers equation includes a dissipative 
term (the viscosity term) that inherently influences the 
dynamics, particularly at longer timescales (for example, at a 
final time of t=200s). This term smooths out variations in the 
velocity field, as all the SGS models employed are designed 
to represent dissipation at smaller scales. Consequently, they 
may converge on similar dissipation characteristics over time, 
leading to comparable velocity distributions (refer to Figure 
4a-f). Moreover, if the turbulence has reached a state where 
energy input and dissipation are balanced, the specific details 
of the SGS model may exert minimal influence on the large-
scale velocity distribution. In such scenarios, the different SGS 
models may yield similar energy dissipation rates, resulting in 
nearly identical outcomes.
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(the viscosity term) that inherently influences the dynamics, particularly at longer timescales (for 

example, at a final time of � � 200𝑠𝑠). This term smooths out variations in the velocity field, as all 

the SGS models employed are designed to represent dissipation at smaller scales. Consequently, 

they may converge on similar dissipation characteristics over time, leading to comparable velocity 

distributions (refer to Figure 4a-f). Moreover, if the turbulence has reached a state where energy 

input and dissipation are balanced, the specific details of the SGS model may exert minimal 

influence on the large-scale velocity distribution. In such scenarios, the different SGS models may 

yield similar energy dissipation rates, resulting in nearly identical outcomes. 
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Figure 4: Velocity profiles versus x at the final time of t=200s for various SGS models: (a) CS, (b) DS, (c) DWL, (d) TKED, (e) EH, 
and (f) DH. The legend also includes Numerical Results (NR) representing different numerical schemes.

Both the CS and DS models utilize a similar eddy viscosity 
mechanism, with the dynamic version adapting based on 
the flow conditions. However, in a one-dimensional context, 
such adjustments might be less significant, as indicated in 
Figure 4a-b, consistent with the findings of Basu [41]. The 
DWL model, another eddy viscosity approach, incorporates 
modifications aimed at improving the handling of anisotropic 
turbulence. Yet, these enhancements may have limited impact 
in a one-dimensional setting, as illustrated in Figure 4c, as 
described by Basu [41]. The TKED model, which involves a 
prognostic equation for turbulent kinetic energy, may not differ 
significantly from other models in a one-dimensional scenario, 
as seen in Figure 4d. The added complexity of this model could 
be superfluous in such a simplified case. Lastly, the EH and 
DH models, grounded in the statistical theory of Probability 
Density Functions (PDFs), exhibit greater realizability. This is 
particularly evident in Figure 4e-f, where they more accurately 
capture the fluctuations in velocity distribution. In LES, the 
choice of SGS model can sometimes overshadow the effects 
of numerical discretization, especially in more complex flows. 
However, according to Figure 4a-f, where different SGS models 
already produced similar results, it suggests that the SGS effects 
might be well-represented even with the lower-order scheme, 

making the difference between the second-order and fourth-
order schemes less noticeable. Therefore, in the following 
section, only the results from the fourth-order discretization 
scheme will be presented.

4.3 Distributions of Resolved-Scale Kinetic Energy
This section examines the impact of different SGS modeling 
approaches on resolved-scale kinetic energy within the 
framework of LES. Figure 5 depicts the time evolution of 
resolved-scale kinetic energy for several SGS models, including 
DS, DWL, and DH. Additionally, a specific scenario is considered 
in which equation (4) is solved by setting τR=0, as reflected in the 
"No Model" results shown in Figure 5. The simulation without 
any SGS model exhibits significantly higher levels of random 
fluctuations, as is evident in Figure 5. The resolved-scale kinetic 
energy is markedly elevated in the "No Model" simulation. This 
increase results from the accumulation of energy due to the 
absence of SGS dissipation which is consistent with the findings 
of Basu [40]. This undesirable effect becomes more pronounced 
in LES simulations with coarser resolutions (not shown here). 
In section 4.2, it is observed that the velocity distribution shows 
similar results across different SGS models. However, when 
comparing the resolved-scale kinetic energy to DNS results in 
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Figure 5, the DS and DWL models perform better than the DH 
model. The differences between SGS models in this regard arise 
from several factors. First, DS model adjusts the Smagorinsky 
coefficient dynamically based on the local flow conditions. It 
tends to be more adaptable and can better match the dissipation 
rates in regions of high and low turbulence, leading to a more 
accurate energy cascade and better alignment with DNS results. 
Similar to the DS model, this model dynamically adjusts 
parameters but with different assumptions and modifications 
in the formulation as stated in section 2.2, which might lead 
to different responses to the local turbulence structure. The 
DH model focuses on reproducing the correct dissipation and 

backscatter behavior (refer to Figure 3d), which might not align 
as well with the specific energy distribution observed in DNS. 
According to Figure 5, it might over- or under-estimate certain 
contributions to the kinetic energy, leading to a deviation from 
DNS results. Second, the DS and DWL models might be more 
sensitive to small-scale structures in the flow, which are crucial 
for accurately capturing the energy dissipation rates and ensuring 
that the energy at the resolved scales matches DNS results, as 
described by Basu [40]. On the other hand, the DH model might 
not capture these small-scale structures as effectively, leading to 
a less accurate prediction of the resolved-scale kinetic energy, as 
depicted in Figure 5.
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Figure 5 Time evolution of resolved-scale kinetic energy distributions for various SGS models. 

The legend includes Numerical Results (NR) for numerical modeling. 
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modeling.

5. Conclusion
In this study, fully conservative higher-order schemes were 
implemented for LES of stochastic Burgers turbulence, rigorously 
validated against analytical solutions for the linear advection-
diffusion equation and the nonlinear Burgers equation under 
laminar conditions. These validated schemes were then used to 
investigate the impact of different spatial discretization schemes 
on the dynamic coefficients of SGS models. The findings reveal 
that the choice of spatial discretization significantly affects the 
behavior of dynamic coefficients in various SGS models within 
LES. The study highlights that second-order discretization 
amplifies fluctuations in dynamic SGS coefficients more 
than fourth-order discretization, particularly during key time 
intervals. This amplification is attributed to the higher numerical 
dissipation introduced by the second-order scheme, which 
affects the resolved scales and requires greater contribution 
from the SGS model to represent energy transfer between 
scales. Conversely, the fourth-order scheme, with its ability 
to more accurately capture resolved scales, results in smaller 
dynamic coefficients. The DS and DWL models exhibit similar 
temporal patterns in their coefficients, indicating the robustness 
of these methods when employing a higher-order scheme. The 
study also explores the effects of various SGS models and 
spatial discretization schemes on the turbulent flow velocity 
distribution in a one-dimensional SBE simulation. Despite using 

different SGS models—CS, DS, DWL, TKED, EH, and DH—
the results show similar velocity distributions at the final time. 
This consistency is likely due to the simplified dynamics of one-
dimensional turbulence, where differences between SGS models 
diminish, especially since their primary function is to model the 
effects of smaller scales in more complex, multi-dimensional 
turbulence. The inherent dissipative term in the Burgers equation 
further smooths out variations in the velocity field, leading to 
convergence in dissipation characteristics across different SGS 
models over time. 

The analysis suggests that in a one-dimensional turbulence 
scenario, the choice of SGS model has minimal influence on the 
large-scale velocity distribution, as energy input and dissipation 
reach a balance. This is evident in the similar outcomes 
produced by various SGS models, which rely on different eddy 
viscosity mechanisms and statistical theories. While numerical 
discretization can significantly influence LES outcomes in more 
complex flows, in this one-dimensional case, the effects of SGS 
modeling may be well-represented even with a lower-order 
scheme, making the difference between second-order and fourth-
order schemes less pronounced. Additionally, the study reveals 
notable differences in how various SGS models impact resolved-
scale kinetic energy. Simulations without any SGS model show 
a significant increase in resolved-scale kinetic energy due to 
the lack of SGS dissipation, which allows unchecked energy 
accumulation, especially at coarser resolutions. The DS and 
DWL models, which adapt their parameters based on local flow 
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conditions, align more closely with DNS results compared to 
the DH model. The adaptability of the DS and DWL models 
enables them to match dissipation rates more accurately 
across different turbulence intensities, ensuring a more precise 
energy cascade. In contrast, the DH model, despite its focus on 
reproducing correct dissipation and backscatter behavior, may 
struggle to capture small-scale structures effectively, leading 
to discrepancies in resolved-scale kinetic energy compared to 
DNS results. These differences underscore the importance of 
capturing small-scale turbulence structures in LES for accurate 
energy dissipation predictions, with the DS and DWL models 
demonstrating superior performance in this regard.
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