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Abstract
In this study we performed a comprehensive numerical investigation of the Marangoni convective flow 
through a Darcy-Forchheimer porous matrix in nanofluids and their hybrid equivalents - hybrid nanofluids. 
Convection occurred predominantly at the liquid-air interface within the porous structure. The governing 
equations were numerically solved using a finite difference approach, Python was used to obtain the solutions 
of the differential equations. In this paper, we discuss different important key parameters that qualitatively 
and quantitatively impact flow and heat transfer properties, respectively. We focused on the effects of porosity 
and thermocapillarity. The present investigation studied the Marangoni convection in (hybrid) nanofluids of 
manganese zinc ferrite (MnZnFe2O4) and nickel zinc ferrite (NiZnFe2O4) with water (H2O) as a base fluid. 
Furthermore, the effects of the parameters involved in the Darcy- Forchheimer model on the convective flow, 
temperature and concentration characteristics are discussed and analyzed methodically. We elucidate the 
specific results and awareness of areas to improve in thermal management systems, providing useful information 
with a high potential for the future development of applications in engineering disciplines crucially impacted 
by heat transfer performance.
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1. Introduction
There is significant research interest in nanofluids (NFs) from a 
theoretical, fundamental and industrial perspective. The elevated 
thermal characteristics of these types of fluids are essential for 
engineering applications. This interest has rapidly increased in 
recent years due to the combination of different nanofluids with 
hybrid nanofluids (HNFs). Marangoni convection is prominent 
among all the transport phenomena governing the motion of 
advanced, complex fluids and their thermal properties and 
could noticeably influence the process where the surface tension 
becomes responsive to temperature or concentration gradients 
[1]. Thermal transport analysis of nanofluids has received 
significant attention due to the importance of the effective cooling 
of electronic equipment. The main focus has been the analysis 
of the buoyant motion and thermal dissipation of nanofluids 
due to their promising prospects in enhancing heat transport 
[2-6]. Kashyap and Das numerically investigated the entropy 
production generated by the thermal transport of a nanofluid‐
filled porous domain subjected to different nonuniform boundary 
conditions[7]. Nevertheless, the quantitative and numerical 

studies on Marangoni convective flow in nanofluids and hybrid-
nanofluids are limited, especially regarding Darcy-Forchheimer 
matrix porous media.

This work aimed to fill this gap in the research. To the best 
of our knowledge this study presents the first Python-based 
comparative numerical investigation of the Marangoni 
convective flow in nanofluids and their hybrid systems in a 
Darcy-Forchheimer porous channel. This research is necessary 
to enhance heat transfer efficiency and learn about the complex 
flow dynamics in advanced fluids. Therefore, this research 
important in developing the best industrial processes involving 
cooling, filtration, and energy systems to ensure efficiency 
better designs. Moreover, it offers basic scientific insight and 
will help develop predictive models for various engineering 
applications. The flow details, heat transfer and concentration 
in a given system modeled using non-linear mathematics and 
numerical simulations. The thermocapillary force and porosity 
were considered for the equations. We utilized Python aided 
computational methods while considering the conducive flow 
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characteristics and heat transfer rates. The numerical solutions 
of the governing equations were obtained by applying the solve-
bvp algorithm and importing the SciPy, NumPy and Matplotlib 
environments.

This research focused on the Marangoni convection in 
NiZnFe2O4 and MnZnFe2O4 Nano-solutes with water H2O as 
the base liquid. We believe that this work offers new insights 
and meaningful numeric data via the detailed examination of 
the influences of different parameters in the combined Darcy-
Forchheimer model on convective flow, temperature and 
concentration fields [8]. This research may enhance optimum 
thermal control configurations and foster the advancement of 
engineering disciplines in which heat transfer plays a significant 
role.

The high potential for industrial engineering applications is 
key motivation for this increasing interest. Heat convection and 
heat transfer across extended surfaces have crucial practical 
importance in engineering and industry including glass paper 
manufacturing, radioactive wastes, case involving chemical 
reactions that produce heat energy that is absorbed into a system, 
and blood rheology. The continuously increasing interest in 
nanofluids especially regarding thermal conductivity, has 
resulted in works on this topic, which are predicted to grow [9]. It 
is impossible to name them all here, but we intend to provide an 
overview of relevant works in this study. Buongiorno analyzed 
the heat transfer of a micropolar nanofluid above a permeable 
stretchable/flexible boundary layer and found that it can either 
contract or expand [10]. Many other works have provided key 
studies concerning heat conduction, entropy production, the slip 
behavior in the steady stagnation point flow of different types of 
nanofluids, and the magneto hydrodynamics (MHD) flow of NFs 
and HNFs [11-13]. In addition, the peristalsis-like movement of 
HNFs, entropy optimization, and dusty fluids, which include 
several particles have been studied [14,15].

Moreover, the heat transfer in convective MHD flow in an elliptic 
permeable skin involving hybrid-nanofluid has been of particular 
interest [16-18]. Alsabery et al. investigated MHD flow with the 
convective boundary of a low polarity liquid at the microscopic 
level over an extending surface[19]. Other works have presented 
a new Casson fluid model and discussed the Jeffery fluid flow 
over a porous extending surface [20-22]. Hayat et al. discussed 
the flow of carbon nanotubes (CNTs) with thermal conductivity 
in entropy generation with a surface curvature over an 
expanding arc [23]. From a theoretical perspective studying and 

understanding the influence of Arrhenius activation energy in a 
non-Newtonian Nano liquid with MHD radiative and Brownian 
movement flow is particular interesting [24,25].

Additionally, Hayat et al. described the Ree-Eyring non-
Newtonian Nano liquid flow between spinning disks with 
entropy optimization and the effects of the activation energy on 
those Nano liquids [26]. Ijaz et al. analyzed the physical effects 
of Joule heating and chemical reactions on Walter-B Nano 
liquid and discussed the heat exchange without a mechanical 
connection [27].

Several works have studied the entropy generation in non-
Newtonian liquids under the influence of a magnetic field [28-
31]. S. Qayyum et al. carried out theoretical research on the MHD 
flow of a parabolic shaped surface. Recent developments in the 
field have considered nanofluids embedded in porous media 
[32]. The result of torrential and numerical works regarding 
chemical reactions within Darcy- Forchheimer flow through a 
porous matrix have indicated the great potential of this setup 
[33-35]. Khan et al. discussed the second order velocity slip flow 
scenario of a colloidal fluid dispersed in a base fluid based on, 
which Shafiq et al. examined the impacts of the slip condition 
and the Arrhenius activation energy on the flow of a rotating 
nanofluid [36,37].

Surface or Marangoni convection signifies the combination 
of heat and mass transfer processes that occur in the higher-
pressure regions within a fluid and here transferred to the low-
pressure regions within the same fluid [1]. The importance lies in 
the movements of the near-surface convection flow in nanofluids 
as observed in different works [38-40]. Later works discussed 
some stochastic computational findings concerning with NFs 
and HNFs [41-43].

This article used numerical analysis to provides information 
about nanofluids (NFs) and their hybrid counterparts (HNFs) 
composed of both nanoparticles alongside a comprehensive 
comparison of both types of fluids. This could be useful for 
researchers working in the thermal management domain. A 
diagram of the various applications of such thermal hybrid 
nanofluids (THNFs) is illustrated in Figure 1. We advanced the 
study of Marangoni convective flows in multi-phase, complex 
porous structures using the noval and latest computational 
environment of the Python advanced numerical solver algorithm 
(Solve-bvp), which will benefit current and future work in this 
field.
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These equations address the continuity (Eq. 1), momentum (Eq. 2), energy (Eq. 3), concentration (Eq. 4),
and surface tension gradient (Eq. 5). Impermeable surface and infinity boundary conditions (Eq. 6-8) were
assigned  with  temperature  and  concentration  dependencies  (Eqs.  8-9)  for  the  fluid  behavior  at  the
surface.            

                           
Figure 2. Spatial structure of geometry.

4

2. Materials and Methods
In this study, we considered the incompressible, steady hybrid nanofluid flow of   MnZnFe2O4 and

NiZnFe2O4 with water as the base fluid to gain inside into the heat and mass transfer at the higher vs
lower pressure surface areas within hybrid nanofluids.  Additional effects such as entropy generation,
viscous dissipation, and the effect of Darcy Forchheimer porous media were incorporated. The equations
modeled based on the previously mentioned assumptions were as follows [41]; 

∂u

∂x
+
∂ v

∂ y
=0                                                                                                                                   (1)

u( ∂u∂ x )+v (
∂v

∂ y )+
υHNF

P
*

+F u2=(μHNFρHNF )(
∂u

2

∂ y
2 )                    (2)

u( ∂T∂ x )+v (∂C∂ y )− kHNF

( ρC p )HNF

∂
2
T

∂ y
2
=( μHNF

(ρCp )HNF )(
∂u

∂ y )
2

                                                             (3)

u( ∂C∂x )+v ( ∂C∂ y )+k0

2 (C−C∞ ) ( TT∞ )
n

e
−Ea /KT=D( ∂

2
C

∂ y
2 )                                                                   (4)

μHNF( ∂u∂ y )=( ∂σ∂x )=σ 0(γ c ( ∂C∂ x )
y=0

+γT ( ∂T∂x )
y=0

)                                                                           (5)

with the following boundary conditions
v=0 , T −T∞=T0 X

2
 when y=0,                                                                                                                         (6)

u=0 ,T −T∞=0 ,C−C∞=0 , if y→∞                                                                                                              (7)

σ=σ 0 (1−γT (T −T∞ )−γC (C−C∞ ))                                                                                                (8)

γT=
−1

σ0

∂σ

∂T
  at T=∞ and γC=

−1

σ0

∂σ

∂C
 at C=∞                                                                           (9)

These equations address the continuity (Eq. 1), momentum (Eq. 2), energy (Eq. 3), concentration (Eq. 4),
and surface tension gradient (Eq. 5). Impermeable surface and infinity boundary conditions (Eq. 6-8) were
assigned  with  temperature  and  concentration  dependencies  (Eqs.  8-9)  for  the  fluid  behavior  at  the
surface.            

                           
Figure 2. Spatial structure of geometry.

4

with the following boundary conditions

These equations address the continuity (Eq. 1), momentum (Eq. 
2), energy (Eq. 3), concentration (Eq. 4), and surface tension 
gradient (Eq. 5). Impermeable surface and infinity boundary 

conditions (Eq. 6-8) were assigned with temperature and 
concentration dependencies (Eqs. 8-9) for the fluid behavior at 
the surface.



 Volume 8 | Issue 4 | 4J App Mat Sci & Engg Res, 2024

2. Materials and Methods
In this study, we considered the incompressible, steady hybrid nanofluid flow of   MnZnFe2O4 and

NiZnFe2O4 with water as the base fluid to gain inside into the heat and mass transfer at the higher vs
lower pressure surface areas within hybrid nanofluids.  Additional effects such as entropy generation,
viscous dissipation, and the effect of Darcy Forchheimer porous media were incorporated. The equations
modeled based on the previously mentioned assumptions were as follows [41]; 

∂u

∂x
+
∂ v

∂ y
=0                                                                                                                                   (1)

u( ∂u∂ x )+v (
∂v

∂ y )+
υHNF

P
*

+F u2=(μHNFρHNF )(
∂u

2

∂ y
2 )                    (2)

u( ∂T∂ x )+v (∂C∂ y )− kHNF

( ρC p )HNF

∂
2
T

∂ y
2
=( μHNF

(ρCp )HNF )(
∂u

∂ y )
2

                                                             (3)

u( ∂C∂x )+v ( ∂C∂ y )+k0

2 (C−C∞ ) ( TT∞ )
n

e
−Ea /KT=D( ∂

2
C

∂ y
2 )                                                                   (4)

μHNF( ∂u∂ y )=( ∂σ∂x )=σ 0(γ c ( ∂C∂ x )
y=0

+γT ( ∂T∂x )
y=0

)                                                                           (5)

with the following boundary conditions
v=0 , T −T∞=T0 X

2
 when y=0,                                                                                                                         (6)

u=0 ,T −T∞=0 ,C−C∞=0 , if y→∞                                                                                                              (7)

σ=σ 0 (1−γT (T −T∞ )−γC (C−C∞ ))                                                                                                (8)

γT=
−1

σ0

∂σ

∂T
  at T=∞ and γC=

−1

σ0

∂σ

∂C
 at C=∞                                                                           (9)

These equations address the continuity (Eq. 1), momentum (Eq. 2), energy (Eq. 3), concentration (Eq. 4),
and surface tension gradient (Eq. 5). Impermeable surface and infinity boundary conditions (Eq. 6-8) were
assigned  with  temperature  and  concentration  dependencies  (Eqs.  8-9)  for  the  fluid  behavior  at  the
surface.            

                           
Figure 2. Spatial structure of geometry.

4

Figure 2: Spatial Structure of Geometry

For y → ∞, the flow regularities of the hybrid nanofluid 
demonstrates that the flow velocity u=0, which means that it 
gives an impression that as one is far away from the source of the 
boundary conditions, the effects of the boundary layer is almost 
insignificant. At the same time, the temperature difference T −
T∞ and the concentration difference C −C∞ decrease and go to 
zero, consequently, temperature and concentration of nanofluid 
approach to the values of T∞ and C∞, respectively. Such behavioral 
patterns show that the distal reactions are extinguished to the 
state of the system and therefore the heat and mass transfer 
become negligibly insignificant. The asymptotic behavior of the 
present hybrid nanofluid and consequences of this phenomenon 

offers insights into the long-run efficiency of this technology.

The geometric structure of the extending surface is shown 
in Figure 2, describing the boundary constraints for the 
momentum, temperature, and concentration. C∞ and T∞ represent 
the concentration and temperature away from the sheet surface, 
respectively. Cw and Tw denote the concentration and temperature 
on the surface boundary, respectively. The surface is porous, like 
stone or ground soil. These pores are connected and significantly 
affect the flow. Petroleum engineering, ground-water flow, and 
chemical engineering are major users of such a model.

Table 1: Thermal Properties and Characteristics of NF and HNF [44].

The y-axis is horizontal, and the x-axis is vertical. The convection 
occurs along the y-axis, following a convenient natural flow 
direction. γs and γc are the temperature and concentration 
constants.   is the Boltzmann number, the surface tension is 
represented by σ, and the activation energy is presented by Ea. 
T0 and T∞, and C0 and C , represent the reference and ambient 
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HNF denote the heat capacitance and thermal conductivity of the 

hybrid nanofluid. Cp is the specific heat capacity. The chemical 
reaction rate is k1, and the permeability of the porous medium 
is P *. The mass diffusivity is symbolized with D, the dynamic 
viscosity is denoted by μHNF, and the density is denoted by ρ (x, 
y) are the axis coordinates.
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Using Eq. (10), Eqs. (6) and (7) took the following form to synchronize with Eq. (11)–(13). The boundary conditions given in (6 - 
9) thus became

The thermal properties and characteristics of the NF and HNF [39] are presented in Table 1. Moreover, the pre-eminent parameters 
involved in Eqs. (11)–(13) and the boundary conditions in (14) are listed in Table 2.

The dimensionless Skin Friction and Nusselt numbers [45] are,

The relations of the Entropy and Bejan numbers [43] in dimensionless form are,

where

μHNF

μf
=

1

((1−σ 1) (1−σ2 ))
2.5                                                                                                   (23)

An  empirical  correlation  was  used  to  express  the  effective  viscosity  of  the  mono  and  hybrid
nanofluids  as  a  function  of  the  volume  fraction  and interaction  between  the  two  different  types  of
nanoparticles. The mono and hybrid nanofluids, with regard to their thermal properties, were computed
using the Maxwell–Garnett models for their effective thermal conductivity.

The most significant parameters and their formulas are listed in Table 2. We considered the following
parameters:

 The inverse Darcy coefficient [45], related to heat loss due to friction;
 The Marangoni number [46], indicating how crucial or significant surface tension forces are compared 

with viscous forces;
 The Darcy number [47], denoted as P*/l2, where k is the permeability, and l is the characteristic 

length;
 The Forchheimer number (Fr) [48], explaining the reasons for obtaining the nonlinear drag 

consequences in the porous media;
 The Reynolds number (Re) [49], determining whether the flow of a fluid is smooth or turbulent;
 The Prandtl number (Pr) [50], the C1 momentum diffusivity divided by the thermal diffusivity;
 The Nusselt number (Nu) [51], describing the conduction of heat across the surface.

These  parameters  characterize  the  fluid  flow,  heat  transfer,  porosity  effects,  nonlinear  drag,  and
hybrid  nanofluid  parameters  and  are  the  principal  parameters  underlining  the  forces  and  transport
processes. The inverse Darcy coefficient, B, measures the resistance to the flow of a fluid through porous
structures; the permeability is its reciprocal value. Schmidt's parameter links the rates of momentum and
mass diffusion in fluids, which might be connected to mass transfer problems. k1 is the chemical reaction
rate, which is generally temperature-dependent. Ea is the activation energy, namely, the energy a reaction
needs. The temperature coefficient δ is frequently applied in material sciences to express alterations in
physical properties with temperature variations. Br, the Brinkmann number, compares the viscous and
inertial forces in fluid flow, similar to the Reynolds number. L is the diffusion constant, which indicates
the ease with which substances spread in a material. The Eckert ratio, Ec, is the ratio of kinetic energy to
enthalpy and is important in high-velocity flows. The concentration coefficient δ1 measures a substance's
rate  of  passage  through  a  phase  proportional  to  the  variation  in  physical  properties  with  the
concentration. These are all key parameters (Table 2) used in various fields, including fluid dynamics,
heat  transfer,  mass  transport,  and  chemical  reactions,  to  describe  and  analyze  different  physical
phenomena. 

Table 2. Thermophysical parameters and formulas [44].

Parameter Relation

Inverse Darcy coefficient B=( vfα f )
L

2

K

Forchheimer parameter Fr=
Cb

√K

7

An empirical correlation was used to express the effective 
viscosity of the mono and hybrid nanofluids as a function of the 
volume fraction and interaction between the two different types 
of nanoparticles. The mono and hybrid nanofluids, with regard 

to their thermal properties, were computed using the Maxwell–
Garnett models for their effective thermal conductivity.

The most significant parameters and their formulas are listed in 
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Table 2. We considered the following parameters:
• The inverse Darcy coefficient [45], related to heat loss due to 
friction;
• The Marangoni number indicating how crucial or significant 
surface tension forces are compared with viscous forces [46];
• The Darcy number denoted as P* / l2, where k is the permeability, 
and l is the characteristic length [47];
• The Forchheimer number (Fr) explaining the reasons for 
obtaining the nonlinear drag consequences in the porous media 
[48];
• The Reynolds number (Re) determining whether the flow of a 
fluid is smooth or turbulent [49];
• The Prandtl number (Pr) the C1 momentum diffusivity divided 
by the thermal diffusivity[50];
• The Nusselt number (Nu) describing the conduction of heat 
across the surface [51].
These parameters characterize the fluid flow, heat transfer, 
porosity effects, nonlinear drag, and hybrid nanofluid parameters 
and are the principal parameters underlining the forces and 
transport processes. The inverse Darcy coefficient, B, measures 

the resistance to the flow of a fluid through porous structures; the 
permeability is its reciprocal value. Schmidt's parameter links 
the rates of momentum and mass diffusion in fluids, which might 
be connected to mass transfer problems. k1 is the chemical 
reaction rate, which is generally temperature-dependent. Ea 
is the activation energy, namely, the energy a reaction needs. 
The temperature coefficient δ is frequently applied in material 
sciences to express alterations in physical properties with 
temperature variations. Br, the Brinkmann number, compares the 
viscous and inertial forces in fluid flow, similar to the Reynolds 
number. L is the diffusion constant, which indicates the ease 
with which substances spread in a material. The Eckert ratio, 
Ec, is the ratio of kinetic energy to enthalpy and is important in 
high-velocity flows. The concentration coefficient δ1 measures 
a substance's rate of passage through a phase proportional to the 
variation in physical properties with the concentration. These 
are all key parameters (Table 2) used in various fields, including 
fluid dynamics, heat transfer, mass transport, and chemical 
reactions, to describe and analyze different physical phenomena.
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3. Solution Methodology
The governing equations were solved using the advanced Python 
bvp-solver, using the mean variability in the description of the 
solution. This provided a fused setting for computing nonlinear 
PDEs while creating a new fluid flow model to enhance the 
HNF's capability in a Darcy–Forchheimer medium operating in 
a porous phase. First, the set of expressions with splines made 
up for the addressed group of transforms with the exactification 
of the fine-tuning parameters. Subsequently, the obtained set 
of ODEs was used to generate numerical solutions employing 
the Python computational environment and systematically 
incorporating the finite difference algorithm for the velocity, 
temperature, and concentration of the HNF (Mn Zn Fe2O4 + Ni 
Zn Fe2O4 + H2O) and NF (Mn Zn Fe2O4 + H2O).
 
The Python code, which solved the boundary value problem 
using ̀ solve_bvp`, took a mesh of 100 equidistant nodes between 
the bounds 0 and 3 to obtain a balance between computational 
efficiency and accuracy. A mesh independence study needed to 
be carried out to ensure the solution's robustness. This could be 
achieved by running different mesh sizes, e.g., 50, 100, and 200 
nodes, and checking whether refining the mesh size generated 
stable results. Furthermore, it needed to provide a detailed 
sensitivity analysis of the key parameters and how they might 
influence the solution—e.g., thermal conductivity and porosity 
factors—while estimating the numerical error to ensure the 
approach's accuracy.

This study described the flow velocities, temperature fluctuations, 
and concentration changes and considered eight key principal 
parameters. The corresponding values of the three analyses for 
each parameter are provided to investigate the effects of the 
changes in both caloric and momentum at the modified wall 
boundaries.

The parametric integrated values for the model's computational 
procedure are presented in Table 3, and other extensive variables 
and coefficients have been omitted based on this assumption. 
The chosen parameters based on their properties relevant to the 
thermocapillary characteristic were as follows:
• Porous media effects (Darcy-Forchheimer)
• Surface tension forces (Marangoni)
• Nonlinear drag effects (Forchheimer)
• Thermal and momentum transport (Eckert and Prandtl)
• Mass transport and diffusion (Schmidt)
• Chemical reactions and activation energy
• Reaction kinetics (chemical reaction rate)

The variations in these parameters were aligned with the analysis 
of their individual and combined impacts on the temperature, 
momentum, and mass transport in the HNF and NF. The 
coefficients, like the Reynolds and Nusselt numbers, were not 
varied as they were related to the flow regime and buoyancy.
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Table 2: Thermophysical Parameters and Formulas [44]

Scenarios Cases Parameters 

B r Fr Ec Pr Sc E k1 

S-1 
B for f ' (η) profile 

1 0.2 0.3 0.2 0.2 2.0 0.8 0.2 0.2 

2 0.6 0.3 0.2 0.2 2.0 0.8 0.2 0.2 

3 1.0 0.3 0.2 0.2 2.0 0.8 0.2 0.2 

S-2 
r for f ' (η) profile 

1 0.3 0.2 0.2 0.2 2.0 0.8 0.2 0.2 

2 0.3 0.6 0.2 0.2 2.0 0.8 0.2 0.2 

3 0.3 1.0 0.2 0.2 2.0 0.8 0.2 0.2 

S-3 
Fr for f ' ( η) profile 

1 0.3 0.2 0.2 0.2 2.0 0.8 0.2 0.2 

2 0.3 0.2 0.6 0.2 2.0 0.8 0.2 0.2 

3 0.3 0.2 1.0 0.2 2.0 0.8 0.2 0.2 

S-4 
Ec for θ(η) profile 

1 0.3 0.2 0.2 0.0 2.0 0.8 0.2 0.2 

2 0.3 0.2 0.2 0.5 2.0 0.8 0.2 0.2 

3 0.3 0.2 0.2 1.0 2.0 0.8 0.2 0.2 

            S-5 
Pr for θ(η) profile 

1 0.3 0.2 0.2 0.3 0.1 0.8 0.2 0.2 

2 0.3 0.2 0.2 0.3 0.6 0.8 0.2 0.2 

0 0.3 0.2 0.2 0.3 1.0 0.8 0.2 0.2 

Table 3: Numerical Parameters of Darcy Forchheimer THNF Flow for Velocity f’(η) and 
Temperature θ(η). 
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Table 3: Numerical Parameters of Darcy Forchheimer THNF Flow for Velocity f’(η) and Temperature θ(η).

Table 4: Numerical Parameters of Darcy Forchheimer THNF Flow for Concentration φ(η).

Scenarios Cases Parameters 

B r Fr Ec Pr Sc E k1 

S-6 
Sc for φ(η) profile 

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 

2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.01 

3 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.01 

S-7 
E for φ (η ) profile 

1 0.5 0.9 0.3 0.3 1.6 1.3 0.1 0.1 

2 0.5 0.9 0.3 0.3 1.6 1.3 0.6 0.1 

3 0.5 0.9 0.3 0.3 1.6 1.3 1.0 0.1 

S-8 
k for φ (η ) profile 

1 0.9 0.2 0.3 0.3 1.6 0.9 0.5 0.01 

2 0.9 0.2 0.3 0.3 1.6 0.9 0.5 0.06 

3 0.9 0.2 0.3 0.3 1.6 0.9 0.5 0.10 

Table 4: Numerical Parameters of Darcy Forchheimer THNF Flow for Concentration φ(η). 

 

Fr σ1 σ2 Python-Generated Velocity 

f ' ( 0) 

0.1 5% - 1.4213395 

0.2 5% - 1.3942365 

0.3 5% - 1.3690062 

0.1 5% 5% 1.3163499 

0.2 5% 5% 1.2912994 

0.3 5% 5% 1.2679778 

Table 5: Validation of results for initiating velocity with σ1 and σ2 as volumetric 
concentrations of each type of Nano-solute. 
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S-4 
Ec for θ(η) profile 

1 0.3 0.2 0.2 0.0 2.0 0.8 0.2 0.2 

2 0.3 0.2 0.2 0.5 2.0 0.8 0.2 0.2 

3 0.3 0.2 0.2 1.0 2.0 0.8 0.2 0.2 
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Pr for θ(η) profile 

1 0.3 0.2 0.2 0.3 0.1 0.8 0.2 0.2 

2 0.3 0.2 0.2 0.3 0.6 0.8 0.2 0.2 

0 0.3 0.2 0.2 0.3 1.0 0.8 0.2 0.2 

Table 3: Numerical Parameters of Darcy Forchheimer THNF Flow for Velocity f’(η) and 
Temperature θ(η). 

 

 

 

 

 

 

4. Results and Discussion
This section explores the novel aspects of the key parameters for 
the flow of the NF (Mn Zn Fe2O4 + H2O) and HNF (Mn Zn Fe2O4 
+ Ni Zn Fe2O4 + H2O). As such, the features of both the pure 
and hybrid nanofluids are covered to directly compare the two 
competitive fluids regarding the impact of the thermophysical 
parameters on their performances. Finally, we elucidate why 

HNFs must be preferred over classical NFs. Algebraic setups 
were used to obtain results by making all the influencers 
inoperant, leaving only Pr and Sc equal to (0.1). The initiating 
flow rate, which was based on the equations, is displayed in 
Table 4. We chose Fr ⩽ 0.3 to avoid a higher nonlinear drag 
effect and to focus on common and practical scenarios.
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Figure 3.  Python-generated velocity  f ' (η ) profiles of HNF and NF in 2D (1) and 3D (2). Changes in f ' (η ) with (a)
Inverse Darcy coefficient B, (b) Marangoni coefficient r, and (c) Forchheimer parameter Fr (see Table 3 for further
parameters). Arrows in (1) highlight the direction of increase in the corresponding parameter.

Figure 3 (b) shows the inclination in the flow rate by enhancing the Marangoni ratio r. This boost in
the flow rate was initially more pronounced in the HNF than in the NF. This resulted from the HNF's
enhanced surface  tension  gradient,  thermocapillary  effect,  and wettability.  Boosting  the  Forchheimer
number  Fr  (Figure  3(c))  resulted  in  a  similar  declining  trend in the  velocity  to  that  observed when
increasing B. This declining trend was higher in the HNF than in the NF due to the increased viscidity
and volumetric mass. The differences in the velocity profiles f ' (η ) between the HNF and NF were largest
at small (η ) values and decreased with increasing η values as the different curves tended to collapse.
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Figure 3:  Python-generated velocity f ' (η) profiles of HNF and NF in 2D (1) and 3D (2). Changes in f ' (η) with (a) Inverse 
Darcy coefficient B, (b) Marangoni coefficient r, and (c) Forchheimer parameter Fr (see Table 3 for further parameters). 
Arrows in (1) highlight the direction of increase in the corresponding parameter.

Table 5 demonstrate the convergence of the numerical scheme for 
the velocity at η=0 for two different volumetric concentrations 
σ1 and σ2, of each type of Nano-solute.

Figures 3-5 illustrate the dependence of the velocity f ' (η), 
temperature θ(η), and concentration profiles (as a function of η) 
for distinct values of the selected parameters, as listed in Table 3. 
We validated our results via comparison with the initial velocity 
(Table 4).

The impact of heat loss due to friction is portrayed in Figure 
3(a), which describes the variations in the velocity and inverse 
Darcy coefficient B of the pure NF and HNF. Increasing the 
inverse Darcy coefficient B decreased the flow rates. This effect 
was stronger for the HNF than for the NF. The introduction of a 
second nanoparticle and increased density caused this decline.

Table 5: Validation of results for initiating velocity with σ1 and σ2 as volumetric concentrations of each type of Nano-solute.

Scenarios Cases Parameters 

B r Fr Ec Pr Sc E k1 

S-6 
Sc for φ(η) profile 

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 

2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.01 

3 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.01 

S-7 
E for φ (η ) profile 

1 0.5 0.9 0.3 0.3 1.6 1.3 0.1 0.1 

2 0.5 0.9 0.3 0.3 1.6 1.3 0.6 0.1 

3 0.5 0.9 0.3 0.3 1.6 1.3 1.0 0.1 

S-8 
k for φ (η ) profile 

1 0.9 0.2 0.3 0.3 1.6 0.9 0.5 0.01 

2 0.9 0.2 0.3 0.3 1.6 0.9 0.5 0.06 

3 0.9 0.2 0.3 0.3 1.6 0.9 0.5 0.10 

Table 4: Numerical Parameters of Darcy Forchheimer THNF Flow for Concentration φ(η). 

 

Fr σ1 σ2 Python-Generated Velocity 

f ' ( 0) 

0.1 5% - 1.4213395 

0.2 5% - 1.3942365 

0.3 5% - 1.3690062 

0.1 5% 5% 1.3163499 

0.2 5% 5% 1.2912994 

0.3 5% 5% 1.2679778 

Table 5: Validation of results for initiating velocity with σ1 and σ2 as volumetric 
concentrations of each type of Nano-solute. 
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Figure 4: Python-generated temperature profiles θ(η ) of HNF and NF in 2D (1) and 3D (2). Changes in θ(η ) with (a)
Eckert ratio Ec, and (b) Prandtl number Pr (see Table 3 for further parameters). Arrows in (1) highlight the direction
of increase in corresponding parameter.

Figure 4 demonstrates the dependence of the temperature profile θ(η ) with modifications in the
(a) Eckert Ec and (b) Prandtl ratio Pr. We commonly observed that the temperature profiles  θ(η ) were
more strongly affected than the velocity profiles f ' (η ) (the curves were more separated). Increasing the Ec
or Pr raised the temperature profiles for the HNF and NF similarly. The fluids tended toward reduction
in either case (whether pure or hybrid). Meanwhile, qualitatively comparing the curves for the HNF and
NF revealed different shapes. The profiles for the HNF were more concave and decreased much faster for
small  values  (η ).  This  was a combined effect  of viscous dissipation and reduced thermal transfer.  In
general, the temperature profile θ(η ) significantly differed between the HNF and NF. 

We observed an increase in the concentration profile φ (η ) (Figure 5) with increasing Schmidt value
Sc and activation energy Ec. Conversely, we observed a decline in the concentration with a rise in the
chemical reaction rate k1, accounting for species generation/consumption and heat effects. The reaction
terms introduced other source terms into the momentum and energy equations, pressure gradients, and
temperature distributions, thus affecting the overall flow dynamics. The latter was caused by the larger
k1 accelerating the consumption of reactants. Although the HNF and NF exhibited similar differences in
the concentration profile φ (η ) the curves for the HNF were always above those for the NF.
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Figure 4: Python-generated temperature profiles θ(η) of HNF and NF in 2D (1) and 3D (2). Changes in θ(η) with (a) Eckert 
ratio Ec, and (b) Prandtl number Pr (see Table 3 for further parameters). Arrows in (1) highlight the direction of increase 
in corresponding parameter.

Figure 4 demonstrates the dependence of the temperature profile 
θ(η) with modifications in the (a) Eckert Ec and (b) Prandtl 
ratio Pr. We commonly observed that the temperature profiles 
θ(η) were more strongly affected than the velocity profiles f ' 
(η) (the curves were more separated). Increasing the Ec or Pr 
raised the temperature profiles for the HNF and NF similarly. 
The fluids tended toward reduction in either case (whether pure 
or hybrid). Meanwhile, qualitatively comparing the curves for 
the HNF and NF revealed different shapes. The profiles for the 
HNF were more concave and decreased much faster for small 
values (η). This was a combined effect of viscous dissipation 
and reduced thermal transfer. In general, the temperature profile 
θ(η) significantly differed between the HNF and NF.

We observed an increase in the concentration profile φ (η ) (Figure 
5) with increasing Schmidt value Sc and activation energy Ec. 
Conversely, we observed a decline in the concentration with 
a rise in the chemical reaction rate k1, accounting for species 

generation/consumption and heat effects. The reaction terms 
introduced other source terms into the momentum and energy 
equations, pressure gradients, and temperature distributions, 
thus affecting the overall flow dynamics. The latter was caused 
by the larger k1 accelerating the consumption of reactants. 
Although the HNF and NF exhibited similar differences in the 
concentration profile φ (η ) the curves for the HNF were always 
above those for the NF.
 
The HNF's performance for thermo-material transferring 
applications was always superior to that of the classical NF. The 
enhanced flow, heat retention, and concentration change of the 
HNF suggest its potential for enhanced efficiency in thermal 
management systems, reactors, and other engineering devices 
where heat and mass transfer are crucial. This detailed insight 
into the influencing parameters will aid in the development and 
refinement of advanced thermal management units for diverse 
industrial applications.

Figure 3 (b) shows the inclination in the flow rate by enhancing 
the Marangoni ratio r. This boost in the flow rate was initially 
more pronounced in the HNF than in the NF. This resulted from 
the HNF's enhanced surface tension gradient, thermocapillary 
effect, and wettability. Boosting the Forchheimer number Fr 
(Figure 3(c)) resulted in a similar declining trend in the velocity 

to that observed when increasing B. This declining trend was 
higher in the HNF than in the NF due to the increased viscidity 
and volumetric mass. The differences in the velocity profiles f 
' (η) between the HNF and NF were largest at small (η) values 
and decreased with increasing η values as the different curves 
tended to collapse.
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The HNF's performance for thermo-material transferring applications was always superior to that of
the classical NF. The enhanced flow, heat retention, and concentration change of the HNF suggest its
potential  for  enhanced  efficiency  in  thermal  management  systems,  reactors,  and  other  engineering
devices where heat and mass transfer are crucial. This detailed insight into the influencing parameters
will aid in the development and refinement of advanced thermal management units for diverse industrial
applications.

Figure 5. Python-generated concentration profiles φ(η) of HNF and NF in 2D (1) and 3D (2). Changes in
φ(η) with (a) Schmidt parameter Sc, (b) Activation energy E, and (c) chemical reaction rate k1 (see Table 4
for further parameters). Arrows in (1) highlight the direction of increase in the corresponding parameter.
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Figure 5: Python-generated concentration profiles φ(η) of HNF and NF in 2D (1) and 3D (2). Changes in φ(η) with (a) 
Schmidt parameter Sc, (b) Activation energy E, and (c) chemical reaction rate k1 (see Table 4 for further parameters). 
Arrows in (1) highlight the direction of increase in the corresponding parameter.

The hybrid nanofluid performed better than its classical 
nanofluid counterpart due to its higher thermal conductivity, 
which improved its heat transfer efficiency and reduced its 
thermal resistance, with better control over temperature. 
The improved flow dynamics were attributed to a decreased 
effective viscosity, while the enhanced mass transfer rates 
were due to more pronounced concentration gradients and 
higher effective diffusivities. The entropy generation analysis 
showed that viscous dissipation may locally increase due to 
improved flow, while the enhancement of heat and mass transfer 
reduces irreversibility’s. Interactions with porous media further 
optimize thermal performance by enhancing heat transfer and 
changes in the flow patterns, making the HNF highly effective 
for application in advanced thermal management systems and 
chemical processing.

5. Conclusions
In this study, we analyzed the Marangoni convective flow through 
a Darcy–Forchheimer porous matrix using novel theoretical and 
computational modeling methods for the Marangoni convective 
flow over a porous surface with a mono nanofluid (NF) and 
a hybrid nanofluid (HNF) considering modified Darcy–

Forchheimer equations. The numerical investigation utilized 
the modern Python bvp-solver algorithm, which generated 
optimized outputs. In particular, we investigated the thermal and 
flow features of the NF (Mn Zn Fe2O4 + H2O) and HNF (Mn Zn 
Fe2O4 + Ni Zn Fe2O4 + H2O).

This study's results indicate that the flow rate and temperature of 
HNFs are considerably more pronounced than those of classical 
NFs. This mainly results from the differences in viscosity and 
the specific gradient of the surface tension characteristic of 
HNFs. The prime findings of the problem under consideration 
are as follows:
• The Marangoni coefficient substantially reduces the velocity f ' 
(η) for both NFs and HNFs.
• Both the inverse Darcy coefficient and Forchheimer parameter 
tend to reduce the velocity profile f ' (η)
in NFs and HNFs.
• The temperature is increased with the effects of the Eckert ratio 
and Prandtl number in usual and hybrid nanofluids.
• The concentration increases due to the effect of the Schmidt 
parameter and activation energy, whereas it decreases with the 
chemical reaction rate k1. The effect is similar for NFs and 
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HNFs.
The main conclusion drawn from this study is that HNFs are 
generally superior to classical NFs in many ways. HNFs' higher 
profiles and reaction rates make them highly suitable and 
favored for thermal control and mass transfer. This is meaningful 
for future theoretical studies as fundamental research and to 

improve thermal management in various industrial applications. 
The presented results will advance the study of Marangoni 
convective flows in multi-phase, complex porous structures. We 
hope this research will motivate other researchers to perform 
additional work in this field

                                                                            Nomenclature 

                         

 

 

 

 

 

 

 

 

 

 

 

u, v Flow rate components ρ Density 

L* Diffusion constant σ 1 , σ2 Volume ratios 

T Temperature η Similarity parameter 

c p Specific thermal capacity σ0 Surface tension boundary 

k Thermal conductivity δ 1 Concentration coefficient 

r Marangoni coefficient Br Brinkmann number 

E Activation energy δ Temperature coefficient 

Sc Schmidt number k1 Chemical reaction coefficient 

Pr Prandtl ratio Ec Eckert number 

σ Surface tension Fr Forchheimer number 

B Invers Darcy coefficient K* Mass diffusivity 

Re Reynold coefficient Me Melting parameter 

λ Porosity parameter κ Boltzmann characteristic 

HNF Hybrid nanofluid NF Nanofluid 
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