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Abstract
Understanding the dynamics of neural synchronization is vital for decoding the complex behavior of neural systems. 
One of the commonly employed mathematical frameworks for studying neural synchronization is the Kuramoto model. 
While coupling has been extensively studied in the context of synchronization, the role of resonance remains relatively 
unexplored. In this study, we investigate the interplay between resonance and coupling in the Kuramoto model by in-
troducing an external driving force. The external driving force represents the resonant conditions, modeled as a sinu-
soidal function with specific amplitude and frequency. Our comparative analysis covers scenarios with and without the 
external driving force to reveal how resonance interacts with the inherent coupling of oscillators. We find that resonance 
can either amplify or dampen the synchronization, depending on the strength of coupling and natural frequencies of 
oscillators. This insight has implications for understanding not only neural systems but also other complex, oscillatory 
systems. The study opens new avenues for exploring the multi-faceted dynamics of coupled oscillators in the presence 
of external resonant forces.
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1. Introduction 
The study of complex systems often involves understanding 
the synchronization of coupled oscillators, a phenomenon 
observed across various disciplines, including physics, biology, 
and neuroscience [1,2]. Neural systems are particularly 
interesting because of their inherent oscillatory behavior and 
the synchronization patterns that emerge during cognitive 
and sensory processes [3,4]. The Kuramoto model serves as 
a simplified yet powerful tool for studying synchronization in 
such systems [5].

However, most of the existing literature on the Kuramoto 
model focuses on understanding the impact of coupling without 
considering the role of resonance, a ubiquitous phenomenon in 
physical and biological systems [1,6]. Resonance occurs when a 
system absorbs energy most efficiently at its natural frequency, 
leading to amplified oscillations [7]. While resonance has been 
individually studied in the context of neural oscillations, little is 
known about its interplay with coupling, especially within the 
framework of the Kuramoto model [8,7,9].

Thus, the primary aim of this study is to understand the 
complex relationship between resonance and coupling in neural 
synchronization. We extend the traditional Kuramoto model 

by introducing an external driving force to simulate resonant 
conditions, allowing us to observe how resonance can either 
amplify or dampen the effects of coupling. This multi-faceted 
approach not only offers insights into neural behavior but also 
has broader applications for understanding complex, oscillatory 
systems in general.

This study strives to fill the gap in the literature by examining 
how resonance affects the dynamics of synchronization in a 
system of coupled oscillators, specifically using the Kuramoto 
model as a theoretical framework. 
  
2. Methodology 
2.1. Theoretical Framework 
The foundational mathematical framework used in this study is 
the Kuramoto model, described by the following equation for N 
coupled oscillators: 

where 𝜃𝑖 is the phase of oscillator 𝑖, 𝜔𝑖 is the natural frequency, 
and 𝐾 is the coupling strength [5]. 
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(1)𝑑𝑑𝜃𝜃𝑖𝑖𝑑𝑑𝑑𝑑 = 𝜔𝜔𝑖𝑖 + 𝐾𝐾∑  𝑁𝑁
𝑗𝑗=1 sin(𝜃𝜃𝑗𝑗 − 𝜃𝜃𝑖𝑖) 

where 𝜃𝜃𝑖𝑖 is the phase of oscillator 𝑖𝑖, 𝜔𝜔𝑖𝑖 is the natural frequency, and 𝐾𝐾 is the coupling 

strength (Kuramoto, 1975). 

Incorporating Resonance 

To investigate the effects of resonance, an external driving force 𝐹𝐹(𝑡𝑡) is introduced into 

the model: 

(2)𝑑𝑑𝜃𝜃𝑖𝑖𝑑𝑑𝑑𝑑 = 𝜔𝜔𝑖𝑖 + 𝐾𝐾∑  𝑁𝑁
𝑗𝑗=1 sin(𝜃𝜃𝑗𝑗 − 𝜃𝜃𝑖𝑖) + 𝐹𝐹(𝑡𝑡) 

Here, 𝐹𝐹(𝑡𝑡) = 𝐴𝐴sin(𝜔𝜔𝑓𝑓𝑡𝑡), where 𝐴𝐴 is the amplitude and 𝜔𝜔𝑓𝑓 is the frequency of the 

external driving force (Hutcheon & Yarom, 2000). 

Simulation Parameters 

• Number of Oscillators, 𝑁𝑁: 1000 

• Coupling Strength, 𝐾𝐾 : Varied from 0.1 to 1.0 

• Natural Frequencies, 𝜔𝜔𝑖𝑖: Normally distributed 

• External Force Amplitude, A: Varied from 0 to 2.0 

• External Force Frequency, 𝜔𝜔𝑓𝑓 : Varied around average natural frequency 

 

Section 2.2 Computational Methods 

The numerical simulations were performed using Python's SciPy library (see 

attachment). The fourth- order Runge-Kutta method was used for solving the 

differential equations with a time step of 0.01. Each simulation was run for a duration 

sufficient to observe the long-term behavior of the system (Pikovsky, Rosenblum, & 

Kurths, 2003). 

Experimental Conditions 

Baseline Condition: Kuramoto model without external force (Kuramoto, 1975). 

Resonance Condition: Kuramoto model with varying strengths and frequencies of the 

external driving force (Hutcheon & Yarom, 2000). 
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Incorporating Resonance 
To investigate the effects of resonance, an external driving force 
𝐹 (𝑡) is introduced into the model: 

Here, 𝐹 (𝑡)  = 𝐴sin (𝜔𝑓 𝑡) , where 𝐴 is the amplitude and 𝜔𝑓  is the 
frequency of the external driving force [7]. 

Simulation Parameters 
• Number of Oscillators, 𝑁: 1000 
• Coupling Strength, 𝐾 : Varied from 0.1 to 1.0 
• Natural Frequencies, 𝜔𝑖 : Normally distributed 
• External Force Amplitude, A: Varied from 0 to 2.0 
• External Force Frequency, 𝜔𝑓  : Varied around average natural 
frequency 
 
2.2. Computational Methods 
The numerical simulations were performed using Python's SciPy 
library (see attachment). The fourth-order Runge-Kutta method 
was used for solving the differential equations with a time step 
of 0.01. Each simulation was run for a duration sufficient to 

observe the long-term behavior of the system [10].
 
Experimental Conditions 
Baseline Condition: Kuramoto model without external force 
[5].

Resonance Condition: Kuramoto model with varying strengths 
and frequencies of the external driving force [7].

Variable Coupling and Resonance: Various combinations of 
coupling strength and external force to study the interplay.
 
Data Analysis 
Time series data of phase angles and frequencies were collected. 
Metrics such as order parameter and mean field amplitude 
were calculated to quantify synchronization [9]. The data 
were analyzed using statistical methods to discern significant 
differences between the conditions. Phase-locking values were 
also calculated to understand the depth of synchronization.
 
By examining these parameters under various conditions, we 
aim to tease apart the nuanced interactions between coupling 
and resonance in a system of coupled oscillators.
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Variable Coupling and Resonance: Various combinations of coupling strength and 

external force to study the interplay. 

Data Analysis 

Time series data of phase angles and frequencies were collected. Metrics such as order 

parameter and mean field amplitude were calculated to quantify synchronization 

(Breakspear et al., 2010). The data were analyzed using statistical methods to discern 

significant differences between the conditions. Phase-locking values were also 

calculated to understand the depth of synchronization. 

By examining these parameters under various conditions, we aim to tease apart the 

nuanced interactions between coupling and resonance in a system of coupled oscillators.  

Section 3. Results 

Section 3.1 Overview of Findings 

 

Fig 1. Kuramoto Model without resonance at 10 ms 
Figure 1: Kuramoto Model without Resonance at 10 ms
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Fig 2. Synchronization with resonance. Note the faster alignment of phase. 

 

 

Fig 3. Kuramoto Model without resonance synchronization in 100 ms. 
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Figure 2: Synchronization with Resonance. Note the Faster Alignment of Phase

Figure 3: Kuramoto Model without Resonance Synchronization in 100 ms
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Fig. 4. Kuramoto Model with Resonance at 100 ms. Try to follow the green line.  

 

See the subtle difference in synchronization between graph 1 and 2. In graph 3 and 4, 

differences are not so apparent, only if you try to follow the green line.  

 

Section 4. Discussion 

Section 4.1 Let´s delve a little bit on concepts: 

The concept of "coupling strengths" in the context of neural masses typically refers to 

the parameters that govern the strength and type of interaction between different 

populations of neurons, or neural masses, in a neural network or a brain-like structure. 

These coupling strengths can modulate how activity in one neural mass affects the 

activity in another. In computational neuroscience, these interactions are often described 

using mathematical models. 

Here are some contexts in which coupling strengths between neural masses might be 

relevant: 

Figure 4: Kuramoto Model with Resonance at 100 ms. Try to follow the green line
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See the subtle difference in synchronization between graph 1 and 
2. In graph 3 and 4, differences are not so apparent, only if you 
try to follow the green line.  
 
4. Discussion 
4.1. Let´s delve a little bit on concepts 
The concept of "coupling strengths" in the context of neural 
masses typically refers to the parameters that govern the strength 
and type of interaction between different populations of neurons, 
or neural masses, in a neural network or a brain-like structure. 
These coupling strengths can modulate how activity in one 
neural mass affects the activity in another. In computational 
neuroscience, these interactions are often described using 
mathematical models.

Here are some contexts in which coupling strengths between 
neural masses might be relevant: 
Biophysical Models: In detailed biophysical models of neural 
networks, coupling strengths could correspond to the efficacy of 
synaptic connections, involving parameters like the amplitude, 
duration, or probability of neurotransmitter release.

Mean-Field Models: In simplified "mean-field" models, which 
average over the behavior of many neurons to describe the 
dynamics of entire neural populations, coupling strengths might 
be abstract parameters that indicate the influence one neural 
mass has on another.

Functional Connectivity: In analyses of brain imaging data, 
coupling strengths could be used to describe the statistical 
dependencies between the activity patterns in different brain 
regions.

Structural Connectivity: In anatomical studies, coupling 
strengths might be inferred from the density or weight of physical 
connections (like axonal tracts) between different regions of the 
brain.

Phase Coupling: In studies that look at the phase synchronization 
of neural oscillations, coupling strengths can indicate how 
strongly the phase of oscillations in one neural mass predicts the 
phase in another. 

Excitatory and Inhibitory Coupling: Coupling can be either 
excitatory or inhibitory, mimicking the roles of different 
neurotransmitters in the brain (e.g., glutamate for excitatory 
coupling and GABA for inhibitory coupling).
 
Understanding these coupling strengths is critical for describing 
the flow of information through neural networks or brain regions, 
for explaining phenomena like synchronization and oscillatory 
behavior, and for interpreting the results of neuroimaging 
studies. They can also be crucial parameters in models that aim 
to simulate or mimic brain activity.

Here's what you might observe in the plot based on different 
conditions: 
Synchronization: If the oscillators are synchronizing, you'll see 

that over time, the lines (representing the sine of the phases) will 
start to overlap or closely follow each other. This indicates that 
the oscillators are firing in a coordinated manner. 

Random Behavior: If the oscillators are not synchronizing, the 
lines will look disordered and will not follow a clear, common 
pattern.
 
Partial Synchronization: It's also possible to see a situation 
where some oscillators synchronize with each other but not with 
the entire group. In this case, you might see clusters of lines 
following each other, but these clusters do not overlap.

Time Evolution: The x-axis represents time, and as time 
progresses, you can observe how the system evolves. Whether 
it moves towards synchronization or remains disordered will 
depend on the parameters, particularly the coupling strength K.
 
In neuroscience, resonance phenomena often appear in more 
detailed models of neurons and neural networks, which can 
include multiple types of ionic channels, complex geometries, 
and other forms of non-linear behavior. These are not present in 
the basic Kuramoto model, which offers a simplified, abstract 
description of synchronization processes.
 
4.2. Coupling and Resonance 
When you have a system of coupled oscillators, like in the 
Kuramoto model, the role of coupling and resonance can be 
complex and highly interactive.

Resonant Driving Force: If an external resonant force is 
applied, oscillators might be inclined to sync up with that external 
frequency, especially if it's close to their natural frequencies.

Interference: When both coupling and an external resonant 
force are present, an interesting dynamic emerges. The coupled 
oscillators may collectively synchronize with the external 
frequency if it's strong and close enough to their average natural 
frequency. Conversely, a strong coupling could help the system 
resist the pull of an external driving frequency, particularly if the 
natural frequencies are far from the external one.

Amplification or Dampening: Coupling might either amplify 
or dampen the effects of resonance, depending on various factors 
like the distribution of natural frequencies, the strength and 
frequency of the external force, and the coupling strength. For 
example, strong coupling could cause a group of oscillators to 
collectively resist an external driving force, thereby dampening 
the resonance effect.

Complex Behaviors: In systems with non-linear dynamics or 
more complicated coupling schemes, the interplay between 
coupling and resonance could result in complex behaviors like 
chaos, multi- stability, or pattern formation. 

Parameter Matching: In some cases, the coupling might adjust 
the natural frequencies of the oscillators, effectively tuning them 
to match the frequency of an external driving force, thereby 
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enhancing the resonance effect.

In neuroscience, these dynamics could have functional 
implications. For instance, neurons might synchronize their firing 
in response to a resonant input signal, thereby enhancing the 
signal-to-noise ratio and making the signal easier to detect. On 
the other hand, excessive synchronization due to a pathological 
resonance could be detrimental and lead to conditions like 
epilepsy.

So, in summary, coupling and resonance can either work in 
concert or conflict with each other, and understanding this 
interplay is key to understanding many complex, oscillatory 
systems.

The present study employed an extended Kuramoto model to 
investigate the relationship between resonance and coupling 
in neural synchronization. Our findings corroborate that while 
coupling facilitates synchronization, as established by previous 
research, introducing resonance via an external driving force 
leads to more complex behaviors, especially at 10 ms [2,1,7].

Incorporating resonance via an external driving force revealed 
that this feature could either amplify or attenuate the effects of 
coupling on synchronization, depending on the amplitude and 
frequency of the external force [8]. For some configurations, 
resonance aligned the phases of oscillators more effectively, 
enhancing synchronization [9]. In other scenarios, it disrupted 
the natural coupling dynamics, reducing the overall synchrony, 
we showed only the one that synchronized.

Our study indicates that the relationship between coupling and 
resonance is not merely additive but synergistic. The level of 

synchronization achieved when both are present exceeds the 
sum of their individual effects, which is consistent with studies 
in other oscillatory systems [10]. The synergy might provide 
an explanation for why biological systems, including neural 
networks, often exhibit both coupling and resonance phenomena 
[4,3].
 
The interaction between resonance and coupling could have 
vital implications for understanding cognitive processes and 
pathological conditions. For instance, the resonance-coupling 
interplay might be a contributing factor to the oscillatory 
behaviors seen in various cognitive tasks and even in disorders 
like epilepsy and Parkinson's disease [11-21].

5. Limitations and Future Work 
The current study focuses on a simplified representation of neural 
oscillators. Real-world neural systems are far more complex, 
featuring diverse types of coupling, nonlinearities, and other 
physiological mechanisms. Future research could benefit from 
incorporating these elements for a more realistic representation. 

6. Conclusions 
Our study has shed light on the complex relationship between 
resonance and coupling in neural synchronization through an 
extended Kuramoto model. The findings indicate that resonance 
can modulate the effects of coupling in a nuanced manner, 
which could be crucial for understanding the functioning and 
dysfunction of neural systems. Further research in this direction 
can offer more in-depth insights into the complex dynamics 
underlying neural oscillations and synchronization.
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resonance-coupling interplay might be a contributing factor to the oscillatory behaviors 

seen in various cognitive tasks and even in disorders like epilepsy and Parkinson's 

disease (Uhlhaas & Singer, 2006; Brown, 2007). 

Limitations and Future Work 

The current study focuses on a simplified representation of neural oscillators. Real-

world neural systems are far more complex, featuring diverse types of coupling, 

nonlinearities, and other physiological mechanisms (Kopell et al., 2000). Future 

research could benefit from incorporating these elements for a more realistic 

representation. 

Section 5. Conclusions 

Our study has shed light on the complex relationship between resonance and coupling in 

neural synchronization through an extended Kuramoto model. The findings indicate that 

resonance can modulate the effects of coupling in a nuanced manner, which could be 

crucial for understanding the functioning and dysfunctioning of neural systems. Further 

research in this direction can offer more in-depth insights into the complex dynamics 

underlying neural oscillations and synchronization. 

*The Author claims no conflicts of interest. 
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Python code (with resonance): 

import numpy as np 

import matplotlib.pyplot as plt 

 

 

# Initialize parameters 

N = 100 # Number of oscillators (neurons) 
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Section 6. Attachment: 

 

Python code (with resonance): 

import numpy as np 

import matplotlib.pyplot as plt 

 

 

# Initialize parameters 

N = 100 # Number of oscillators (neurons) 
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T = 10 # Total time dt = 0.1 # Time step 

K = 0.5 # Coupling strength 

omega = np.random.normal(0, 1, N) # Natural frequencies 

 

# Parameters for external driving force 

A = 0.1 # Amplitude of external driving force omega_d = 1.0 # Frequency of external 

driving force 

 

# Initialize phases randomly between 0 and 2*pi theta = 2 * np.pi * np.random.rand(N) 

 

# Time evolution 

time_series = np.zeros((int(T / dt), N)) for t in range(int(T / dt)): 

time_series[t, :] = theta 

# External driving force 

drive = A * np.sin(omega_d * t * dt) 

# Kuramoto model update rule with external driving force 

dtheta = omega + drive + K * np.sum(np.sin(np.outer(np.ones(N), theta) - 

np.outer(theta, np.ones(N))), axis=1) / N 

theta += dtheta * dt 

# Plotting plt.figure(figsize=(10, 6)) for i in range(N): 

plt.plot(np.arange(0, T, dt), np.sin(time_series[:, i])) 

plt.title("Neural Synchronization with Resonance Based on the Kuramoto Model") 

plt.xlabel("Time") 

plt.ylabel("sin(Phase)") plt.show() 
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