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Abstract
There is a need to develop an instrumental mathematical base for new technologies, in particular for a fundamentally new 
type of neural network with parallel computing, in particular for creating artificial intelligence, but this is not the main 
task of a neural network, and not with the usual parallel computing through sequential computing. The task of the work is to 
create new approaches for this by introducing new concepts and methods. Our mathematics is unusual for a mathematician, 
because here the fulcrum is the action, and not the result of the action as in classical mathematics. Therefore, our 
mathematics is adapted not only to obtain results, but also to directly control actions, which will certainly show its benefits 
on a fundamentally new type of neural networks with directly parallel calculations, for which it was created. Any action has 
much greater potential than its result. Significance of the article: in a new qualitatively different approach to the study of 
complex processes through new mathematical, hierarchical, Parallel dynamic structures, in particular those processes that 
are dealt with by Synergetics. Our approach is not based on deterministic equations that generate self-organization, which 
is very difficult to study and gives very small results for a very limited class of problems and does not provide the most 
important thing - the structure of self-organization. We are just starting from the assumed structure of self-organization, 
since we are interested not so much in the numerical calculation of this as in the structure of self-organization itself, its 
formation (construction) for the necessary purposes and its management. Although we are also interested in numerical 
calculations. Nobel laureates in physics 2023 Ferenc Kraus and his colleagues Pierre Agostini and Anna Lhuillier used 
a short-pulse laser to generate attosecond pulses of light to study the dynamics of electrons in matter. According to our 
Theory of singularities of the type synthesizing, its action corresponds to singularity ↑I↓h

q, which allows one to reach the 
upper level of subtle energies to manipulate lower levels. In April 2023 [1], we proposed using a short-pulse laser to 
achieve the desired goals by a directly parallel neural network. We then proposed the fundamental development of this 
directly parallel neural network. In the articles new mathematical structures and operators are constructed through one 
action - “containment” [1-14]. Here, the construction of new mathematical structures and operators is carried out with 
generalization to any actions. The significance of our articles is in the formation of the presumptive mathematical structure 
of subtle energies, this is being done for the first time in science, and the presumptive classification of the mathematical 
structures of subtle energies for the first time. The experiments of the 2022 Nobel laureates Asle Ahlen, John Clauser, Anton 
Zeilinger and the experiments in chemistry Nazhipa Valitov eloquently demonstrate that we are right and that these studies 
are necessary. The purpose of the article is to create new fuzzy fprogram operators for a fundamentally new type of neural 
network with parallel computing, and not with the usual parallel computing through sequential computing. The article 
aims to create new constructive hierarchical mathematical objects for new technologies.
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1. Rprt – Elements, Self-Type Rprt-Structures
We consider dynamic operator
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  (1.1), 

where A acts Q to B, D acts P out from C; A, B, C, D may be fuzzy with corresponding fuzzy measures; Q and P are any   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, in 

particular, fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, simultaneously. The result of this process will be described by the expression 
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1.1 Definition 1.1 

The dynamic operator (1.1) we shall call Rprt – element of the first type or fRprt – element of the first type for fuzzy dynamic operator, 

(1.2) we shall call Rrt – element of the first type or fRrt – element of the first type for fuzzy dynamic operator. 
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.   

We consider the following self-type Rprt-structures of the first type: 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

Rprt 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 (1.3), 

denote     . 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 (1.4), 

denote       . 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  (1.5), 

denote         . 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  (1.6), 

denote       . 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Rprt 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  (1.6.1), 

denote             ⸦ A and structure of A acts Q to   and acts Q out from   simultaneously. 

 
 𝑡𝑡𝑡𝑡𝑡

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 𝑡𝑡𝑡𝑡𝑡

  (1.6.2), 

denote            ⸦ A and acts Q to structure of A and acts Q out from structure of A simultaneously, 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
  (1.1), 

where A acts Q to B, D acts P out from C; A, B, C, D may be fuzzy with corresponding fuzzy measures; Q and P are any   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, in 

particular, fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, simultaneously. The result of this process will be described by the expression 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

Rrt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  (1.2). 

We consider the measure: ** 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  )=                , where (A), (D),    ,     –usual measures or fuzzy measures of 

A, D, Q, P.  

 

1.1 Definition 1.1 

The dynamic operator (1.1) we shall call Rprt – element of the first type or fRprt – element of the first type for fuzzy dynamic operator, 

(1.2) we shall call Rrt – element of the first type or fRrt – element of the first type for fuzzy dynamic operator. 

Remark 1.1 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  - the analogue of  𝑝𝑝𝑝𝑝  
 𝑡𝑡   [14] as a special case of (1.1), where   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   is ―contain‖,   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   is    . 

 

Remark 1.1.1  

Сan consider Rprt – elements use the Banach space.  

It’s allowed to add Rprt – elements: 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

Rprt 
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡    
 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 = 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 (1.2.1), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  
 + 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 = 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
     

 (1.2.2), 

  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 + 

  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 = 

     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 (1.2.3), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 + 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 = 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
     

 Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 (1.2.4). 

Likewise for fuzzy dynamic operator 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

fRprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

.   

We consider the following self-type Rprt-structures of the first type: 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

Rprt 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 (1.3), 

denote     . 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 (1.4), 

denote       . 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  (1.5), 

denote         . 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  (1.6), 

denote       . 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Rprt 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  (1.6.1), 

denote             ⸦ A and structure of A acts Q to   and acts Q out from   simultaneously. 

 
 𝑡𝑡𝑡𝑡𝑡

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 𝑡𝑡𝑡𝑡𝑡

  (1.6.2), 

denote            ⸦ A and acts Q to structure of A and acts Q out from structure of A simultaneously, 

where A acts Q to B, D acts P out from C; A, B, C, D may be fuzzy with corresponding fuzzy measures; Q and P are any actions, in 
particular, fuzzy actions, simultaneously. The result of this process will be described by the expression

1.1 Definition 1.1
The dynamic operator (1.1) we shall call Rprt – element of the first type or fRprt – element of the first type for fuzzy dynamic 
operator, (1.2) we shall call Rrt – element of the first type or fRrt – element of the first type for fuzzy dynamic operator.

Remark 1.1

Remark 1.1.1 
Сan consider Rprt – elements use the Banach space. 
It’s allowed to add Rprt – elements:
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  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
  (1.1), 

where A acts Q to B, D acts P out from C; A, B, C, D may be fuzzy with corresponding fuzzy measures; Q and P are any   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, in 

particular, fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, simultaneously. The result of this process will be described by the expression 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

Rrt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  (1.2). 

We consider the measure: ** 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  )=                , where (A), (D),    ,     –usual measures or fuzzy measures of 

A, D, Q, P.  

 

1.1 Definition 1.1 

The dynamic operator (1.1) we shall call Rprt – element of the first type or fRprt – element of the first type for fuzzy dynamic operator, 

(1.2) we shall call Rrt – element of the first type or fRrt – element of the first type for fuzzy dynamic operator. 

Remark 1.1 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  - the analogue of  𝑝𝑝𝑝𝑝  
 𝑡𝑡   [14] as a special case of (1.1), where   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   is ―contain‖,   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   is    . 

 

Remark 1.1.1  

Сan consider Rprt – elements use the Banach space.  

It’s allowed to add Rprt – elements: 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

Rprt 
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡    
 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 = 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 (1.2.1), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  
 + 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 = 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
     

 (1.2.2), 

  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 + 

  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 = 

     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 (1.2.3), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 + 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 = 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
     

 Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 (1.2.4). 

Likewise for fuzzy dynamic operator 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

fRprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

.   

We consider the following self-type Rprt-structures of the first type: 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

Rprt 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 (1.3), 

denote     . 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 (1.4), 

denote       . 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  (1.5), 

denote         . 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  (1.6), 

denote       . 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Rprt 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  (1.6.1), 

denote             ⸦ A and structure of A acts Q to   and acts Q out from   simultaneously. 

 
 𝑡𝑡𝑡𝑡𝑡

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 𝑡𝑡𝑡𝑡𝑡

  (1.6.2), 

denote            ⸦ A and acts Q to structure of A and acts Q out from structure of A simultaneously, 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  (1.7), 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  (1.8), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 (1.9), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 (1.10), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 (1.11), 

and any other possible options of self for (1.1) etc. 

Likewise for fuzzy dynamic operator 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

fRprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

.   

It can be considered a simpler version of the dynamic operator 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 (1.12), 

where A acts Q to B, Q is any   𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the result of this process will be described by the expression  

Rrt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 (1.13) 

or 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rprt (1.14) 

where D acts P out from C, P is any   𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the result of this process will be described by the expression 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rrt (1.15) 

1.2 Definition 1. 2 

The dynamic operator (1.12) we shall call Rprt – element of the second type or fRprt – element of the second type for fuzzy dynamic 

operator, (1.13) we shall call Rrt – element of the second type or fRrt – element of the second type for fuzzy dynamic operator. 

Remark 1.2. Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

- the analogue of  𝑝𝑝𝑝𝑝𝑝𝑝   [14] as a special case of (1.8), where   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   is ―contain‖.  In this case  

 𝑝𝑝𝑝𝑝𝑝𝑝  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   = Rprt 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 – self-containment and unlike usual self has higher level self(contain): sel 
 
  . That's why self-containment 

can generate, modify and perform other actions with self-capacities, because they have lower level = self. 

It’s allowed to add Rprt – elements of the second type: 

Rprt 
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡    
 

Rprt 
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 = Rprt 
     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 (1.16), 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 + Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 =Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
     

 (1.17). 

Likewise for fuzzy dynamic operator fRprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

.   

We consider the following self-type Rprt-structures of the second t type: 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 (1.18), 

Rprt 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 (1.18.1), 

denote             ⸦ A and structure of A acts Q to  , 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 (1.18.2),  

denote            ⸦ A and acts Q to structure of A, 

1.2 Definition 1. 2
The dynamic operator (1.12) we shall call Rprt – element of the second type or fRprt – element of the second type for fuzzy dynamic 
operator, (1.13) we shall call Rrt – element of the second type or fRrt – element of the second type for fuzzy dynamic operator.
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  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  (1.7), 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  (1.8), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 (1.9), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 (1.10), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
Rprt 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 (1.11), 

and any other possible options of self for (1.1) etc. 

Likewise for fuzzy dynamic operator 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

fRprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

.   

It can be considered a simpler version of the dynamic operator 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 (1.12), 

where A acts Q to B, Q is any   𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the result of this process will be described by the expression  

Rrt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 (1.13) 

or 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rprt (1.14) 

where D acts P out from C, P is any   𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the result of this process will be described by the expression 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rrt (1.15) 

1.2 Definition 1. 2 

The dynamic operator (1.12) we shall call Rprt – element of the second type or fRprt – element of the second type for fuzzy dynamic 

operator, (1.13) we shall call Rrt – element of the second type or fRrt – element of the second type for fuzzy dynamic operator. 

Remark 1.2. Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

- the analogue of  𝑝𝑝𝑝𝑝𝑝𝑝   [14] as a special case of (1.8), where   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   is ―contain‖.  In this case  

 𝑝𝑝𝑝𝑝𝑝𝑝  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   = Rprt 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 – self-containment and unlike usual self has higher level self(contain): sel 
 
  . That's why self-containment 

can generate, modify and perform other actions with self-capacities, because they have lower level = self. 

It’s allowed to add Rprt – elements of the second type: 

Rprt 
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡    
 

Rprt 
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 = Rprt 
     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 (1.16), 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 + Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 =Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
     

 (1.17). 

Likewise for fuzzy dynamic operator fRprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

.   

We consider the following self-type Rprt-structures of the second t type: 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 (1.18), 

Rprt 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 (1.18.1), 

denote             ⸦ A and structure of A acts Q to  , 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 (1.18.2),  

denote            ⸦ A and acts Q to structure of A, 

Rprt 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 (1.19), 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 (1.20), 

and any other possible options of self for (1.12) etc. Likewise for fuzzy dynamic operator fRprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

.   

 

1.3 Definition 1.3 

The dynamic operator (1.14) we shall call tprR – element or ftprR – element for fuzzy dynamic operator, (1.15) we shall call trR – 

element or ftrR – element for fuzzy dynamic operator. 

Remark 1.3 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt - the analogue of    𝑝𝑝𝑝𝑝𝑝𝑝 [14] as a special case of (1.14), where   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   is ―contain‖.   

It’s allowed to add tprR – elements: 
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rprt + 
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rprt = 
     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 Rprt (1.21), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 Rprt + 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 Rprt = 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
     

 Rprt (1.22). 

Likewise for fuzzy dynamic operator 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

fRprt.   

We consider the following self-type tprR-structures: 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rprt (1.23) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 Rprt (1.23.1), 

denote             ⸦ D and d acts Q out from structure of D, 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 Rprt (1.23.2),  

denote              ⸦ D and structure of D acts Q out from d, 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt (1.24) 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

Rprt (1.25) 

 and any other possible options of self for (1.14) etc. Likewise for fuzzy dynamic operator 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

fRprt.   

 

2. Dynamic Rprt – Elements, Self-Type Dynamic Rprt-Structures 

We considered Rprt – elements earlier. Here we consider dynamic Rprt – elements. We consider dynamic operator whose elements 

change over time 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.1), 

where A(t) acts Q(t) to B(t), D(t) acts P(t) out from C(t) simultaneously; A(t), B(t), C(t), D(t) may be fuzzy with corresponding fuzzy 

measures; Q(t), P(t) are any   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , in particular, fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. The result of this process will be described by the expression 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rrt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.2). 

 

2.1 Definition 2.1 

The dynamic operator (2.1) we shall call dynamic Rprt– element of the first type or dynamic fRprt– element of the first type for fuzzy 

dynamic operator, (2.2) we shall call dynamic Rrt– element of the first type or dynamic fRrt– element of the first type for fuzzy dynamic 

operator. 

Rprt 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 (1.19), 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 (1.20), 

and any other possible options of self for (1.12) etc. Likewise for fuzzy dynamic operator fRprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

.   

 

1.3 Definition 1.3 

The dynamic operator (1.14) we shall call tprR – element or ftprR – element for fuzzy dynamic operator, (1.15) we shall call trR – 

element or ftrR – element for fuzzy dynamic operator. 

Remark 1.3 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt - the analogue of    𝑝𝑝𝑝𝑝𝑝𝑝 [14] as a special case of (1.14), where   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   is ―contain‖.   

It’s allowed to add tprR – elements: 
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rprt + 
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rprt = 
     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 Rprt (1.21), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 Rprt + 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 Rprt = 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
     

 Rprt (1.22). 

Likewise for fuzzy dynamic operator 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

fRprt.   

We consider the following self-type tprR-structures: 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rprt (1.23) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 Rprt (1.23.1), 

denote             ⸦ D and d acts Q out from structure of D, 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 Rprt (1.23.2),  

denote              ⸦ D and structure of D acts Q out from d, 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt (1.24) 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

Rprt (1.25) 

 and any other possible options of self for (1.14) etc. Likewise for fuzzy dynamic operator 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

fRprt.   

 

2. Dynamic Rprt – Elements, Self-Type Dynamic Rprt-Structures 

We considered Rprt – elements earlier. Here we consider dynamic Rprt – elements. We consider dynamic operator whose elements 

change over time 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.1), 

where A(t) acts Q(t) to B(t), D(t) acts P(t) out from C(t) simultaneously; A(t), B(t), C(t), D(t) may be fuzzy with corresponding fuzzy 

measures; Q(t), P(t) are any   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , in particular, fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. The result of this process will be described by the expression 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rrt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.2). 

 

2.1 Definition 2.1 

The dynamic operator (2.1) we shall call dynamic Rprt– element of the first type or dynamic fRprt– element of the first type for fuzzy 

dynamic operator, (2.2) we shall call dynamic Rrt– element of the first type or dynamic fRrt– element of the first type for fuzzy dynamic 

operator. 

1.3 Definition 1.3
The dynamic operator (1.14) we shall call tprR – element or ftprR – element for fuzzy dynamic operator, (1.15) we shall call trR – 
element or ftrR – element for fuzzy dynamic operator.

Remark 1.3
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Rprt 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 (1.19), 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 (1.20), 

and any other possible options of self for (1.12) etc. Likewise for fuzzy dynamic operator fRprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

.   

 

1.3 Definition 1.3 

The dynamic operator (1.14) we shall call tprR – element or ftprR – element for fuzzy dynamic operator, (1.15) we shall call trR – 

element or ftrR – element for fuzzy dynamic operator. 

Remark 1.3 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt - the analogue of    𝑝𝑝𝑝𝑝𝑝𝑝 [14] as a special case of (1.14), where   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   is ―contain‖.   

It’s allowed to add tprR – elements: 
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rprt + 
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rprt = 
     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 Rprt (1.21), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 Rprt + 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 Rprt = 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
     

 Rprt (1.22). 

Likewise for fuzzy dynamic operator 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

fRprt.   

We consider the following self-type tprR-structures: 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rprt (1.23) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 Rprt (1.23.1), 

denote             ⸦ D and d acts Q out from structure of D, 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 Rprt (1.23.2),  

denote              ⸦ D and structure of D acts Q out from d, 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt (1.24) 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

Rprt (1.25) 

 and any other possible options of self for (1.14) etc. Likewise for fuzzy dynamic operator 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

fRprt.   

 

2. Dynamic Rprt – Elements, Self-Type Dynamic Rprt-Structures 

We considered Rprt – elements earlier. Here we consider dynamic Rprt – elements. We consider dynamic operator whose elements 

change over time 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.1), 

where A(t) acts Q(t) to B(t), D(t) acts P(t) out from C(t) simultaneously; A(t), B(t), C(t), D(t) may be fuzzy with corresponding fuzzy 

measures; Q(t), P(t) are any   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , in particular, fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. The result of this process will be described by the expression 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rrt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.2). 

 

2.1 Definition 2.1 

The dynamic operator (2.1) we shall call dynamic Rprt– element of the first type or dynamic fRprt– element of the first type for fuzzy 

dynamic operator, (2.2) we shall call dynamic Rrt– element of the first type or dynamic fRrt– element of the first type for fuzzy dynamic 

operator. 

Rprt 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 (1.19), 

Rprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 (1.20), 

and any other possible options of self for (1.12) etc. Likewise for fuzzy dynamic operator fRprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

.   

 

1.3 Definition 1.3 

The dynamic operator (1.14) we shall call tprR – element or ftprR – element for fuzzy dynamic operator, (1.15) we shall call trR – 

element or ftrR – element for fuzzy dynamic operator. 

Remark 1.3 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt - the analogue of    𝑝𝑝𝑝𝑝𝑝𝑝 [14] as a special case of (1.14), where   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   is ―contain‖.   

It’s allowed to add tprR – elements: 
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rprt + 
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rprt = 
     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 Rprt (1.21), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 Rprt + 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  

 Rprt = 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
     

 Rprt (1.22). 

Likewise for fuzzy dynamic operator 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

fRprt.   

We consider the following self-type tprR-structures: 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 Rprt (1.23) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 Rprt (1.23.1), 

denote             ⸦ D and d acts Q out from structure of D, 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 Rprt (1.23.2),  

denote              ⸦ D and structure of D acts Q out from d, 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

Rprt (1.24) 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

Rprt (1.25) 

 and any other possible options of self for (1.14) etc. Likewise for fuzzy dynamic operator 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
 

fRprt.   

 

2. Dynamic Rprt – Elements, Self-Type Dynamic Rprt-Structures 

We considered Rprt – elements earlier. Here we consider dynamic Rprt – elements. We consider dynamic operator whose elements 

change over time 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.1), 

where A(t) acts Q(t) to B(t), D(t) acts P(t) out from C(t) simultaneously; A(t), B(t), C(t), D(t) may be fuzzy with corresponding fuzzy 

measures; Q(t), P(t) are any   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , in particular, fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. The result of this process will be described by the expression 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rrt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.2). 

 

2.1 Definition 2.1 

The dynamic operator (2.1) we shall call dynamic Rprt– element of the first type or dynamic fRprt– element of the first type for fuzzy 

dynamic operator, (2.2) we shall call dynamic Rrt– element of the first type or dynamic fRrt– element of the first type for fuzzy dynamic 

operator. 

2. Dynamic Rprt – Elements, Self-Type Dynamic Rprt-Structures
We considered Rprt – elements earlier. Here we consider dynamic Rprt – elements. We consider dynamic operator whose elements 
change over time

2.1 Definition 2.1
The dynamic operator (2.1) we shall call dynamic Rprt– element of the first type or dynamic fRprt– element of the first type for 
fuzzy dynamic operator, (2.2) we shall call dynamic Rrt– element of the first type or dynamic fRrt– element of the first type for 
fuzzy dynamic operator.

Remark 2.1

 

Remark 2.1 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  - the analogue of  𝑝𝑝𝑝𝑝   𝑡𝑡 
  𝑡𝑡 𝑡𝑡 𝑡𝑡   𝑡𝑡 

  𝑡𝑡  [14] as a special case of (2.1), where   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  is ―contain‖, 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  is   𝑡𝑡   . 

It’s allowed to add dynamic Rprt – elements: 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  prt t  
   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡   
  𝑡𝑡 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 =  

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t)  

   𝑡𝑡     𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  

  𝑡𝑡 
 (2.2.1), 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t)  

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

   𝑡𝑡 
 + 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  prt t  

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 = 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  prt t 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡     𝑡𝑡 

 (2.2.2), 

   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  

  𝑡𝑡 
  

   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 =  
   𝑡𝑡     𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 (2.2.3), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

   
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 =   
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡     𝑡𝑡 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 (2.2.4). 

Likewise for fuzzy dynamic operator 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

.   

We consider the following self-type dynamic Rprt-structures of the first type: 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

Rprt(t) 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

 (2.3), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Dprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  (2.4), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Drt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.5), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Drt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.6), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

Drt(t) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.6.1),  

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡     𝑡𝑡  ⸦ A(t) and structure of A(t) acts Q(t) to   𝑡𝑡  and acts Q(t) out from   𝑡𝑡  simultaneously. 

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Drt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

  (2.6.2), 

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡  ⸦ A(t) and acts Q(t) to structure of A(t) and acts Q(t) out from structure of A(t) simultaneously. 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Drt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.7), 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.8), 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.9), 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.10), 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.11), 

and any other possible options of self for (2.1) etc. Likewise for fuzzy dynamic operator 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

.   

It can be considered a simpler version of the dynamic operator 
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Remark 2.1 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  - the analogue of  𝑝𝑝𝑝𝑝   𝑡𝑡 
  𝑡𝑡 𝑡𝑡 𝑡𝑡   𝑡𝑡 

  𝑡𝑡  [14] as a special case of (2.1), where   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  is ―contain‖, 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  is   𝑡𝑡   . 

It’s allowed to add dynamic Rprt – elements: 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  prt t  
   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡   
  𝑡𝑡 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 =  

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t)  

   𝑡𝑡     𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  

  𝑡𝑡 
 (2.2.1), 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t)  

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

   𝑡𝑡 
 + 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  prt t  

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 = 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  prt t 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡     𝑡𝑡 

 (2.2.2), 

   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  

  𝑡𝑡 
  

   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 =  
   𝑡𝑡     𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 (2.2.3), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

   
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 =   
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡     𝑡𝑡 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 (2.2.4). 

Likewise for fuzzy dynamic operator 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

.   

We consider the following self-type dynamic Rprt-structures of the first type: 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

Rprt(t) 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

 (2.3), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Dprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  (2.4), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Drt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.5), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Drt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.6), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

Drt(t) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.6.1),  

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡     𝑡𝑡  ⸦ A(t) and structure of A(t) acts Q(t) to   𝑡𝑡  and acts Q(t) out from   𝑡𝑡  simultaneously. 

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Drt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

  (2.6.2), 

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡  ⸦ A(t) and acts Q(t) to structure of A(t) and acts Q(t) out from structure of A(t) simultaneously. 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Drt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.7), 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.8), 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.9), 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.10), 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.11), 

and any other possible options of self for (2.1) etc. Likewise for fuzzy dynamic operator 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

.   

It can be considered a simpler version of the dynamic operator 

 

Remark 2.1 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  - the analogue of  𝑝𝑝𝑝𝑝   𝑡𝑡 
  𝑡𝑡 𝑡𝑡 𝑡𝑡   𝑡𝑡 

  𝑡𝑡  [14] as a special case of (2.1), where   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  is ―contain‖, 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  is   𝑡𝑡   . 

It’s allowed to add dynamic Rprt – elements: 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  prt t  
   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡   
  𝑡𝑡 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 =  

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t)  

   𝑡𝑡     𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  

  𝑡𝑡 
 (2.2.1), 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t)  

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

   𝑡𝑡 
 + 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  prt t  

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 = 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  prt t 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡     𝑡𝑡 

 (2.2.2), 

   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  

  𝑡𝑡 
  

   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 =  
   𝑡𝑡     𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 (2.2.3), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

   
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 =   
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡     𝑡𝑡 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 (2.2.4). 

Likewise for fuzzy dynamic operator 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

.   

We consider the following self-type dynamic Rprt-structures of the first type: 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

Rprt(t) 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

 (2.3), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Dprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  (2.4), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Drt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.5), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Drt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.6), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

Drt(t) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.6.1),  

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡     𝑡𝑡  ⸦ A(t) and structure of A(t) acts Q(t) to   𝑡𝑡  and acts Q(t) out from   𝑡𝑡  simultaneously. 

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Drt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

  (2.6.2), 

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡  ⸦ A(t) and acts Q(t) to structure of A(t) and acts Q(t) out from structure of A(t) simultaneously. 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Drt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

  (2.7), 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.8), 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.9), 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.10), 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rprt(t) 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
  (2.11), 

and any other possible options of self for (2.1) etc. Likewise for fuzzy dynamic operator 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

.   

It can be considered a simpler version of the dynamic operator 

We consider the following self-type dynamic Rprt-structures of the first type:

It can be considered a simpler version of the dynamic operator

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 , (2.12) 

where A(t) acts Q(t) to B(t), the result of this process will be described by the expression  

Rrt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 (2.13), 

or 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) (2.14), 

where D(t) acts Q(t) out from C(t), Q(t) is any   𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the result of this process will be described by the expression 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rrt(t) (2.15), 

 

2.2 Definition 2.2 

The dynamic operator (2.12) we shall call dynamic Rprt – element of the second type or dynamic fRprt – element of the second type for 

fuzzy dynamic operator, (2.13) we shall call dynamic Rrt – element of the second type or dynamic fRrt – element of the second type for 

fuzzy dynamic operator. 

Remark 2.2. Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

- the analogue of  𝑡𝑡 𝑡𝑡   𝑡𝑡 
  𝑡𝑡  [1], [6], [12] as a special case of (2.12), where   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  is ―contain‖.  In 

this case  

 𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  = Rprt(t) 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  – self-containment and unlike usual self has higher level self(contain) sel 
 
  . That's why self-

containment can generate, modify and perform other actions with self-capacities, because they have lower level = self. 

It’s allowed to add dynamic Rprt – elements of the second type: 

Rprt(t) 
   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡   
  𝑡𝑡 

Rprt(t) 
   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 = Rprt(t) 
   𝑡𝑡     𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  

  𝑡𝑡 
 (2.16), 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 + Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 = Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡     𝑡𝑡 

 (2.17). 

Likewise for fuzzy dynamic operator Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

.   

We consider the following self-type dynamic Dprt-structures of the second t type: 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 (2.18), 

Rprt(t) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 (2.18.1),  

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡     𝑡𝑡  ⸦ A(t) and structure of A(t) acts Q(t) to   𝑡𝑡 , 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

 (2.18.2),  

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡  ⸦ A(t) and acts Q(t) to structure of A(t), 

Rprt(t) 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

 (2.19), 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

 (2.20), 

and any other possible options of self for (2.12) etc. Likewise for fuzzy dynamic operator Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

.   

2.3 Definition 2.3 

The dynamic operator (2.14) we shall call dynamic tprR – element or dynamic ftprR – element for fuzzy dynamic operator, (2.15) we 

shall call dynamic trR – element or dynamic ftprR – element for fuzzy dynamic operator. 
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2.2 Definition 2.2
The dynamic operator (2.12) we shall call dynamic Rprt – element of the second type or dynamic fRprt – element of the second type 
for fuzzy dynamic operator, (2.13) we shall call dynamic Rrt – element of the second type or dynamic fRrt – element of the second 
type for fuzzy dynamic operator.

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 , (2.12) 

where A(t) acts Q(t) to B(t), the result of this process will be described by the expression  

Rrt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 (2.13), 

or 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) (2.14), 

where D(t) acts Q(t) out from C(t), Q(t) is any   𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the result of this process will be described by the expression 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rrt(t) (2.15), 

 

2.2 Definition 2.2 

The dynamic operator (2.12) we shall call dynamic Rprt – element of the second type or dynamic fRprt – element of the second type for 

fuzzy dynamic operator, (2.13) we shall call dynamic Rrt – element of the second type or dynamic fRrt – element of the second type for 

fuzzy dynamic operator. 

Remark 2.2. Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

- the analogue of  𝑡𝑡 𝑡𝑡   𝑡𝑡 
  𝑡𝑡  [1], [6], [12] as a special case of (2.12), where   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  is ―contain‖.  In 

this case  

 𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  = Rprt(t) 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  – self-containment and unlike usual self has higher level self(contain) sel 
 
  . That's why self-

containment can generate, modify and perform other actions with self-capacities, because they have lower level = self. 

It’s allowed to add dynamic Rprt – elements of the second type: 

Rprt(t) 
   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡   
  𝑡𝑡 

Rprt(t) 
   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 = Rprt(t) 
   𝑡𝑡     𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  

  𝑡𝑡 
 (2.16), 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 + Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 = Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡     𝑡𝑡 

 (2.17). 

Likewise for fuzzy dynamic operator Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

.   

We consider the following self-type dynamic Dprt-structures of the second t type: 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 (2.18), 

Rprt(t) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 (2.18.1),  

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡     𝑡𝑡  ⸦ A(t) and structure of A(t) acts Q(t) to   𝑡𝑡 , 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

 (2.18.2),  

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡  ⸦ A(t) and acts Q(t) to structure of A(t), 

Rprt(t) 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

 (2.19), 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

 (2.20), 

and any other possible options of self for (2.12) etc. Likewise for fuzzy dynamic operator Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

.   

2.3 Definition 2.3 

The dynamic operator (2.14) we shall call dynamic tprR – element or dynamic ftprR – element for fuzzy dynamic operator, (2.15) we 

shall call dynamic trR – element or dynamic ftprR – element for fuzzy dynamic operator. 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 , (2.12) 

where A(t) acts Q(t) to B(t), the result of this process will be described by the expression  

Rrt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 (2.13), 

or 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) (2.14), 

where D(t) acts Q(t) out from C(t), Q(t) is any   𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the result of this process will be described by the expression 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rrt(t) (2.15), 

 

2.2 Definition 2.2 

The dynamic operator (2.12) we shall call dynamic Rprt – element of the second type or dynamic fRprt – element of the second type for 

fuzzy dynamic operator, (2.13) we shall call dynamic Rrt – element of the second type or dynamic fRrt – element of the second type for 

fuzzy dynamic operator. 

Remark 2.2. Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

- the analogue of  𝑡𝑡 𝑡𝑡   𝑡𝑡 
  𝑡𝑡  [1], [6], [12] as a special case of (2.12), where   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  is ―contain‖.  In 

this case  

 𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  = Rprt(t) 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  – self-containment and unlike usual self has higher level self(contain) sel 
 
  . That's why self-

containment can generate, modify and perform other actions with self-capacities, because they have lower level = self. 

It’s allowed to add dynamic Rprt – elements of the second type: 

Rprt(t) 
   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡   
  𝑡𝑡 

Rprt(t) 
   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 = Rprt(t) 
   𝑡𝑡     𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  

  𝑡𝑡 
 (2.16), 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 + Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 = Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡     𝑡𝑡 

 (2.17). 

Likewise for fuzzy dynamic operator Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

.   

We consider the following self-type dynamic Dprt-structures of the second t type: 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 (2.18), 

Rprt(t) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 (2.18.1),  

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡     𝑡𝑡  ⸦ A(t) and structure of A(t) acts Q(t) to   𝑡𝑡 , 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

 (2.18.2),  

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡  ⸦ A(t) and acts Q(t) to structure of A(t), 

Rprt(t) 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

 (2.19), 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

 (2.20), 

and any other possible options of self for (2.12) etc. Likewise for fuzzy dynamic operator Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

.   

2.3 Definition 2.3 

The dynamic operator (2.14) we shall call dynamic tprR – element or dynamic ftprR – element for fuzzy dynamic operator, (2.15) we 

shall call dynamic trR – element or dynamic ftprR – element for fuzzy dynamic operator. 
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Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 , (2.12) 

where A(t) acts Q(t) to B(t), the result of this process will be described by the expression  

Rrt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 (2.13), 

or 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) (2.14), 

where D(t) acts Q(t) out from C(t), Q(t) is any   𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the result of this process will be described by the expression 

  𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
 Rrt(t) (2.15), 

 

2.2 Definition 2.2 

The dynamic operator (2.12) we shall call dynamic Rprt – element of the second type or dynamic fRprt – element of the second type for 

fuzzy dynamic operator, (2.13) we shall call dynamic Rrt – element of the second type or dynamic fRrt – element of the second type for 

fuzzy dynamic operator. 

Remark 2.2. Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

- the analogue of  𝑡𝑡 𝑡𝑡   𝑡𝑡 
  𝑡𝑡  [1], [6], [12] as a special case of (2.12), where   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  is ―contain‖.  In 

this case  

 𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  = Rprt(t) 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  – self-containment and unlike usual self has higher level self(contain) sel 
 
  . That's why self-

containment can generate, modify and perform other actions with self-capacities, because they have lower level = self. 

It’s allowed to add dynamic Rprt – elements of the second type: 

Rprt(t) 
   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡   
  𝑡𝑡 

Rprt(t) 
   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 = Rprt(t) 
   𝑡𝑡     𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  

  𝑡𝑡 
 (2.16), 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 + Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 = Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡     𝑡𝑡 

 (2.17). 

Likewise for fuzzy dynamic operator Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

.   

We consider the following self-type dynamic Dprt-structures of the second t type: 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 (2.18), 

Rprt(t) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 (2.18.1),  

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡     𝑡𝑡  ⸦ A(t) and structure of A(t) acts Q(t) to   𝑡𝑡 , 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

 (2.18.2),  

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡  ⸦ A(t) and acts Q(t) to structure of A(t), 

Rprt(t) 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

 (2.19), 

Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

 (2.20), 

and any other possible options of self for (2.12) etc. Likewise for fuzzy dynamic operator Rprt(t) 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

.   

2.3 Definition 2.3 

The dynamic operator (2.14) we shall call dynamic tprR – element or dynamic ftprR – element for fuzzy dynamic operator, (2.15) we 

shall call dynamic trR – element or dynamic ftprR – element for fuzzy dynamic operator. 

2.3 Definition 2.3
The dynamic operator (2.14) we shall call dynamic tprR – element or dynamic ftprR – element for fuzzy dynamic operator, (2.15) 
we shall call dynamic trR – element or dynamic ftprR – element for fuzzy dynamic operator.

Remark 2.3
 

Remark 2.3 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) - the analogue of    𝑡𝑡 
  𝑡𝑡 𝑡𝑡 𝑡𝑡  [1,6,12] as a special case of (2.14),   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  is   𝑡𝑡   , where   𝑡𝑡  is ―contain‖.   

It’s allowed to add dynamic tprR – elements: 
   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) + 
   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) =  
   𝑡𝑡     𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
Rprt(t) (2.21), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 Rprt(t) + 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 Rprt(t) =   
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡     𝑡𝑡 

Rprt(t) (2.22). 

Likewise for fuzzy dynamic operator 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t).   

We consider the following self-type dynamic tprR-structures: 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Rprt(t) (2.15)  

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Rprt(t) (2.15.1),  

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡     𝑡𝑡  ⸦ D(t) and d(t) acts Q(t) out from structure of D(t), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

Rprt(t) (2.15.2) 

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡     𝑡𝑡  ⸦ D(t) and structure of D(t) acts Q(t) out from d(t), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Rprt(t) (2.16) 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

Rprt(t) (2.17) 

 and any other possible options of self for (2.14) etc. Likewise for fuzzy dynamic operator 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t).   

New mathematical structures and operators is carried out with generalization it to any structures with any actions. For example,  

1) 

   
…

…
…

  𝑘𝑘
…

 𝑞𝑞𝑗𝑗    …  𝑞𝑞𝑗𝑗𝑗𝑗   …
 𝑙𝑙 

…
…

…
 𝑙𝑙𝑙𝑙

DDprt
𝑞𝑞  … 𝑞𝑞 𝑛𝑛

…
𝑞𝑞𝑚𝑚 … 𝑞𝑞𝑚𝑚𝑚𝑚

 (*), 

  𝑗𝑗  𝑞𝑞 𝑗𝑗 – any objects, actions etc. 

2) 

   
…

…
…

  𝑘𝑘
…

 𝑞𝑞𝑗𝑗    …  𝑞𝑞𝑗𝑗𝑗𝑗   …
 𝑙𝑙 

…
…

…
 𝑙𝑙𝑙𝑙

fDDprt
𝑞𝑞  … 𝑞𝑞 𝑛𝑛

…
𝑞𝑞𝑚𝑚 … 𝑞𝑞𝑚𝑚𝑚𝑚

 (*), 

  𝑗𝑗  𝑞𝑞 𝑗𝑗 – any fuzzy objects, fuzzy actions etc. 

3)  
𝑔𝑔  

𝑤𝑤𝑗𝑗    
𝑔𝑔  

 

𝑔𝑔  
𝑔𝑔  
𝑤𝑤𝑗𝑗    …
𝑔𝑔𝑘𝑘 

𝑔𝑔  
 𝑤𝑤𝑗𝑗     DGprt

𝑤𝑤  𝑤𝑤  𝑤𝑤 𝑛𝑛
… … 𝑤𝑤 𝑛𝑛
𝑤𝑤𝑚𝑚 𝑤𝑤𝑚𝑚 …

…
…
𝑤𝑤𝑠𝑠𝑠𝑠

𝑤𝑤𝑚𝑚𝑚𝑚
 (*1), 

𝑤𝑤 𝑗𝑗  𝑔𝑔 𝑗𝑗 – any objects, actions etc. 

4)  
𝑔𝑔  

𝑤𝑤𝑗𝑗    
𝑔𝑔  

 

𝑔𝑔  
𝑔𝑔  
𝑤𝑤𝑗𝑗    …
𝑔𝑔𝑘𝑘 

𝑔𝑔  
 𝑤𝑤𝑗𝑗     fDGprt

𝑤𝑤  𝑤𝑤  𝑤𝑤 𝑛𝑛
… … 𝑤𝑤 𝑛𝑛
𝑤𝑤𝑚𝑚 𝑤𝑤𝑚𝑚 …

…
…
𝑤𝑤𝑠𝑠𝑠𝑠

𝑤𝑤𝑚𝑚𝑚𝑚
 (*1), 

𝑤𝑤 𝑗𝑗  𝑔𝑔 𝑗𝑗 – any fuzzy objects, fuzzy actions etc. 

5) 
 𝑏𝑏 𝑔𝑔
   𝑟𝑟𝑟𝑟 µ 𝑤𝑤
 𝑞𝑞 𝑟𝑟

  (*2),  

where   𝑟𝑟𝑟𝑟 is virtual structure or virtual operator, which can take any form of action; a, c, d, q, r, w, g, b, µ – any objects, actions etc. 

New mathematical structures and operators is carried out with generalization it to any structures with any actions. For example,
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Remark 2.3 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) - the analogue of    𝑡𝑡 
  𝑡𝑡 𝑡𝑡 𝑡𝑡  [1,6,12] as a special case of (2.14),   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  is   𝑡𝑡   , where   𝑡𝑡  is ―contain‖.   

It’s allowed to add dynamic tprR – elements: 
   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) + 
   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t) =  
   𝑡𝑡     𝑡𝑡 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡 
Rprt(t) (2.21), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 Rprt(t) + 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡 

 Rprt(t) =   
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
   𝑡𝑡     𝑡𝑡 

Rprt(t) (2.22). 

Likewise for fuzzy dynamic operator 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t).   

We consider the following self-type dynamic tprR-structures: 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Rprt(t) (2.15)  

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Rprt(t) (2.15.1),  

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡     𝑡𝑡  ⸦ D(t) and d(t) acts Q(t) out from structure of D(t), 

 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

Rprt(t) (2.15.2) 

denote     𝑡𝑡    𝑡𝑡    𝑡𝑡    𝑡𝑡     𝑡𝑡  ⸦ D(t) and structure of D(t) acts Q(t) out from d(t), 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡 

Rprt(t) (2.16) 

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡    
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 

Rprt(t) (2.17) 

 and any other possible options of self for (2.14) etc. Likewise for fuzzy dynamic operator 
  𝑡𝑡 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡 
  𝑡𝑡 

 Rprt(t).   

New mathematical structures and operators is carried out with generalization it to any structures with any actions. For example,  

1) 

   
…

…
…

  𝑘𝑘
…

 𝑞𝑞𝑗𝑗    …  𝑞𝑞𝑗𝑗𝑗𝑗   …
 𝑙𝑙 

…
…

…
 𝑙𝑙𝑙𝑙

DDprt
𝑞𝑞  … 𝑞𝑞 𝑛𝑛

…
𝑞𝑞𝑚𝑚 … 𝑞𝑞𝑚𝑚𝑚𝑚

 (*), 

  𝑗𝑗  𝑞𝑞 𝑗𝑗 – any objects, actions etc. 

2) 

   
…

…
…

  𝑘𝑘
…

 𝑞𝑞𝑗𝑗    …  𝑞𝑞𝑗𝑗𝑗𝑗   …
 𝑙𝑙 

…
…

…
 𝑙𝑙𝑙𝑙

fDDprt
𝑞𝑞  … 𝑞𝑞 𝑛𝑛

…
𝑞𝑞𝑚𝑚 … 𝑞𝑞𝑚𝑚𝑚𝑚

 (*), 

  𝑗𝑗  𝑞𝑞 𝑗𝑗 – any fuzzy objects, fuzzy actions etc. 

3)  
𝑔𝑔  

𝑤𝑤𝑗𝑗    
𝑔𝑔  

 

𝑔𝑔  
𝑔𝑔  
𝑤𝑤𝑗𝑗    …
𝑔𝑔𝑘𝑘 

𝑔𝑔  
 𝑤𝑤𝑗𝑗     DGprt

𝑤𝑤  𝑤𝑤  𝑤𝑤 𝑛𝑛
… … 𝑤𝑤 𝑛𝑛
𝑤𝑤𝑚𝑚 𝑤𝑤𝑚𝑚 …

…
…
𝑤𝑤𝑠𝑠𝑠𝑠

𝑤𝑤𝑚𝑚𝑚𝑚
 (*1), 

𝑤𝑤 𝑗𝑗  𝑔𝑔 𝑗𝑗 – any objects, actions etc. 

4)  
𝑔𝑔  

𝑤𝑤𝑗𝑗    
𝑔𝑔  

 

𝑔𝑔  
𝑔𝑔  
𝑤𝑤𝑗𝑗    …
𝑔𝑔𝑘𝑘 

𝑔𝑔  
 𝑤𝑤𝑗𝑗     fDGprt

𝑤𝑤  𝑤𝑤  𝑤𝑤 𝑛𝑛
… … 𝑤𝑤 𝑛𝑛
𝑤𝑤𝑚𝑚 𝑤𝑤𝑚𝑚 …

…
…
𝑤𝑤𝑠𝑠𝑠𝑠

𝑤𝑤𝑚𝑚𝑚𝑚
 (*1), 

𝑤𝑤 𝑗𝑗  𝑔𝑔 𝑗𝑗 – any fuzzy objects, fuzzy actions etc. 

5) 
 𝑏𝑏 𝑔𝑔
   𝑟𝑟𝑟𝑟 µ 𝑤𝑤
 𝑞𝑞 𝑟𝑟

  (*2),  

where   𝑟𝑟𝑟𝑟 is virtual structure or virtual operator, which can take any form of action; a, c, d, q, r, w, g, b, µ – any objects, actions etc. where ASrq is virtual structure or virtual operator, which can take any form of action; a, c, d, q, r, w, g, b, µ – any objects, actions etc.

6) 
 𝑏𝑏 𝑔𝑔
    𝑟𝑟𝑟𝑟 µ 𝑤𝑤
 𝑞𝑞 𝑟𝑟

  (*2),  

where    𝑟𝑟𝑟𝑟 is fuzzy virtual fuzzy structure or fuzzy virtual operator, which can take any fuzzy form of action; a, c, d, q, r, w, g, b, µ – 

any fuzzy objects, fuzzy actions etc. 

Accordingly, we can consider all sorts of self-structures for 1) – 6).  And any other possible structures and operators etc. 

 

3. Generalization of Variables of Fuzzy Hierarchical Dynamic Fuzzy Operators 

In contrast to the classical one-attribute fuzzy set theory where only its contents are taken as a set, we consider a two-attribute fuzzy set 

theory with a fuzzy set as a fuzzy capacity and separately with its contents [15,16]. We simply use a convenient form to represent the 

singularity of a fuzzy set. Articles use the following methodology for permanent structures [1-14]:  

1. Cancellation of the axiom of regularity. 

2. 2 attributes for the fuzzy set: fuzzy capacity and its content. 

3. Fuzzy compression of a fuzzy set, for example, to a point. 

4. ―turning out‖ from one another, particularly from a fuzzy capacity, we pull out another fuzzy capacity, for example, itself, as its 

element. 

5. The simultaneity of one (fuzzy compression) and the other (―eversion‖). 

6. Own fuzzy capacities. 

7. Qualitatively new fuzzy programming and fuzzy Networks. 

Here we will consider variable fuzzy structures (models), both discrete and continuous: a) with variable connections, b) with the variable 

backbone for links, c) generalized version; in particular, in variable fuzzy structures (models), for example, 

 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 fRprt(t)
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
   

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
fDprt  𝑞𝑞 ≥ 𝑡𝑡 ≥ 𝑞𝑞  |µ 

  
 
𝜇𝜇 
 
ffS prt

 
𝜇𝜇 
 
      q ≥  t > q  |µ 

  
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 f prt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

     q ≥   t > q  |µ 

  fDprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

   q ≥  𝑡𝑡 > 𝑞𝑞  |µ 

 
{ }

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     

 
fDprt    𝑡𝑡 > 𝑞𝑞  |µ 

…

   (*D.1), 

µ - measures of fuzziness, i = 1, ..., 5. In particular, 
 
𝜇𝜇 
 
ffS prt

 
𝜇𝜇 
 
    can be interpreted as a fuzzy game: player 1 fuzzy with measures of 

fuzziness 𝜇𝜇  fits fuzzy A into fuzzy B, and the other fuzzy with measures of fuzziness 𝜇𝜇  pushes fuzzy D out of fuzzy B at the same time. 

In what follows, we will denote variable fuzzy structure (model) through fVR(t), qself-variable fuzzy structures (models) through 

RqfFVS(t), qself is self for   𝑡𝑡𝑡𝑡𝑡𝑡𝑡  , and oqself-variable fuzzy structures (models) through OqfVR(t), qoself is oself for   𝑡𝑡𝑡𝑡𝑡𝑡𝑡  . 

Singular fuzzy structures (models) are not confused with fuzzy structures (models) with singularities. 
 
𝜇𝜇 
 
ffS prt

 
𝜇𝜇 
 
     -2-hierarchical fuzzy 

structure: 1-level - elements A, B, C, D; level 2 - connections between them. 2- 

Examples: a) discrete variable fuzzy structure with µ - measures of fuzziness, i = 1, ..., 8. 
 |µ 𝑏𝑏|µ 𝑔𝑔|µ 
 |µ   𝑉𝑉𝑉 𝑡𝑡 𝑤𝑤|µ 
 |µ 𝑞𝑞|µ 𝑟𝑟|µ 

 

Figure 1: 

 

c) continuous variable fuzzy structure 

 

                                                   ffVR(t) 

                                                  

                                                 Figure 2: 

Where a continuous fuzzy set represents the rim of the Figure 2. 

 

where fASrq is fuzzy virtual fuzzy structure or fuzzy virtual operator, which can take any fuzzy form of action; a, c, d, q, r, w, g, b, 
µ – any fuzzy objects, fuzzy actions etc.
Accordingly, we can consider all sorts of self-structures for 1) – 6).  And any other possible structures and operators etc.

3. Generalization of Variables of Fuzzy Hierarchical Dynamic Fuzzy Operators
In contrast to the classical one-attribute fuzzy set theory where only its contents are taken as a set, we consider a two-attribute fuzzy 
set theory with a fuzzy set as a fuzzy capacity and separately with its contents [15,16]. We simply use a convenient form to represent 
the singularity of a fuzzy set. Articles use the following methodology for permanent structures [1-14]: 
1. Cancellation of the axiom of regularity.
2. 2 attributes for the fuzzy set: fuzzy capacity and its content.
3. Fuzzy compression of a fuzzy set, for example, to a point.
4. “turning out” from one another, particularly from a fuzzy capacity, we pull out another fuzzy capacity, for example, itself, as its 
element.
5. The simultaneity of one (fuzzy compression) and the other (“eversion”).
6. Own fuzzy capacities.
7. Qualitatively new fuzzy programming and fuzzy Networks.
Here we will consider variable fuzzy structures (models), both discrete and continuous: a) with variable connections, b) with the 
variable backbone for links, c) generalized version; in particular, in variable fuzzy structures (models), for example,
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6) 
 𝑏𝑏 𝑔𝑔
    𝑟𝑟𝑟𝑟 µ 𝑤𝑤
 𝑞𝑞 𝑟𝑟

  (*2),  

where    𝑟𝑟𝑟𝑟 is fuzzy virtual fuzzy structure or fuzzy virtual operator, which can take any fuzzy form of action; a, c, d, q, r, w, g, b, µ – 

any fuzzy objects, fuzzy actions etc. 

Accordingly, we can consider all sorts of self-structures for 1) – 6).  And any other possible structures and operators etc. 

 

3. Generalization of Variables of Fuzzy Hierarchical Dynamic Fuzzy Operators 

In contrast to the classical one-attribute fuzzy set theory where only its contents are taken as a set, we consider a two-attribute fuzzy set 

theory with a fuzzy set as a fuzzy capacity and separately with its contents [15,16]. We simply use a convenient form to represent the 

singularity of a fuzzy set. Articles use the following methodology for permanent structures [1-14]:  

1. Cancellation of the axiom of regularity. 

2. 2 attributes for the fuzzy set: fuzzy capacity and its content. 

3. Fuzzy compression of a fuzzy set, for example, to a point. 

4. ―turning out‖ from one another, particularly from a fuzzy capacity, we pull out another fuzzy capacity, for example, itself, as its 

element. 

5. The simultaneity of one (fuzzy compression) and the other (―eversion‖). 

6. Own fuzzy capacities. 

7. Qualitatively new fuzzy programming and fuzzy Networks. 

Here we will consider variable fuzzy structures (models), both discrete and continuous: a) with variable connections, b) with the variable 

backbone for links, c) generalized version; in particular, in variable fuzzy structures (models), for example, 

 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 fRprt(t)
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
   

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   

 
fDprt  𝑞𝑞 ≥ 𝑡𝑡 ≥ 𝑞𝑞  |µ 

  
 
𝜇𝜇 
 
ffS prt

 
𝜇𝜇 
 
      q ≥  t > q  |µ 

  
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 f prt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

     q ≥   t > q  |µ 

  fDprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

   q ≥  𝑡𝑡 > 𝑞𝑞  |µ 

 
{ }

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     

 
fDprt    𝑡𝑡 > 𝑞𝑞  |µ 

…

   (*D.1), 

µ - measures of fuzziness, i = 1, ..., 5. In particular, 
 
𝜇𝜇 
 
ffS prt

 
𝜇𝜇 
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We introduce the notation 𝑚𝑚    – the number of elements, N - the number of connections between them in the discrete variable 2-

hierarchical fuzzy structure fVR(t). We introduce the notation 𝑞𝑞    – any, R - connections in 𝑞𝑞     in the variable 2-hierarchical fuzzy 

structure fVR(t), in particular, 𝑞𝑞    , R can be fuzzy sets both discrete and continuous and discrete-continuous. We consider the 

functional c(Q), which gives a numerical value for the fuzzy structurability of Q from the interval [0,1], where 0 corresponds to "no fuzzy 

structure"," and 1 corresponds to the value " fuzzy structure". Then for joint A, B: c(A+B)=c(A)+c(B)-c(A*B)+cS(D), D- self-(fuzzy 

structure) from A*B, cS(x)- the value of self-(fuzzy structure) for self-(fuzzy structure) x; for dependent fuzzy structures: 

c(A*B)=ca(A)*c(B/A)=c(B)*c(A/B), where c(B/A)- conditional fuzzy structurability of the fuzzy structure B at the fuzzy structure A, 

c(A/B)- conditional fuzzy structure of the fuzzy structure A at the fuzzy structure B. Adding inconsistent fuzzy structures: c(A+B) 

=c(A)+c(B). The formula of complete fuzzy structure: c(A)=∑    𝑘𝑘       𝑘𝑘 𝑛𝑛
𝑘𝑘  , B1, B2.,.., Bn-full group of fuzzy hypotheses- actions: 

∑    𝑘𝑘 𝑛𝑛
𝑘𝑘  =1(―fuzzy structure‖). Fuzzy Rprt- structure for fuzzy set of fuzzy structures 𝑥̃𝑥=(x1|µ ̃(x1), x2|µ ̃(x2), …, xn|µ ̃(xn)):    

 fRprt 
 x |µ ̃ x   x |µ ̃ x   …  x𝑛𝑛|µ ̃ x𝑛𝑛  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

                           

fRprt 
{  x  |µ    ̃  x  |µ    ̃  x   …    x𝑛𝑛 |µ    ̃  x𝑛𝑛 }

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 - fuzzy Rprt-  

structurability for these fuzzy structures. It is possible to consider the self-(fuzzy structure)     𝑥𝑥 ̃   𝑥̃𝑥 , 𝑥𝑥 ̃⸦ 𝑥̃𝑥 . The same for self-

(fuzzy structurability):        𝑥̃𝑥      𝑥𝑥 ̃, where   𝑥𝑥 ̃ =  {   𝑥𝑥  |µ    ̃  x     x  |µ    ̃  x   …    x𝑛𝑛 |µ    ̃  x𝑛𝑛 },    𝑥̃𝑥 ⸦  𝑥𝑥 ̃. 
Can be considered N-hierarchical fuzzy structure: 1-level - elements; level 2 - connections between them, level 3 - relationships between 

elements of level 2, etc. up to level N+1. N-hierarchical fuzzy structure: 1-level - A; 2-level -B, 3-level - C, etc. up to (N+!)- level, where 

A, B, C, … can be any in particular, by fuzzy actions, fuzzy sets, and others. 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

fRprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  : ⟨ →  
   | ←  

   ⟩→( 𝑠𝑠𝑠𝑠𝑠𝑠𝑠  →   𝜇𝜇  
   ) 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

fRprt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  : ⟨ →  
   | ←  

   ⟩→( 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  ←   𝜇𝜇  
   ) 

Can be considered discrete fuzzy hierarchical fuzzy structure, continuous fuzzy hierarchical fuzzy structure, and discrete-continuous 

hierarchical fuzzy structure, fRprt 
N− hierar hi al fuzzy stru ture

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  . 

The example 

Let f prt 
i− level of hierar hi al stru ture

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 , then fQHR= fHRprt
⟦

 f prt 
N− level of hierar hi al stru ture

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 𝜇𝜇𝑁𝑁
…

 f prt 
i− level of hierar hi al stru ture

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 𝜇𝜇 
…

 f prt 
1 − level of hierar hi al stru ture

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 𝜇𝜇 

⟧

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 - fuzzy N-

hierarchical fuzzy  

structure compression into B, µ - measures of fuzziness, i = 1, ..., N. 

Let frg(N, fQHR)=   H 
f HR𝑓𝑓QHR…fQHR}-N levels 

It can be considered self- fQHR, frg(y, fQHR) for any y, frg( fQHR, fQHR). 

Compression fuzzy Hierarchy Examples: 

 1) f prt

f prt 
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡   
  

 

  

f prt 
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Compression fuzzy Hierarchy Examples:

We introduce the notation 𝑚𝑚    – the number of elements, N - the number of connections between them in the discrete variable 2-

hierarchical fuzzy structure fVR(t). We introduce the notation 𝑞𝑞    – any, R - connections in 𝑞𝑞     in the variable 2-hierarchical fuzzy 

structure fVR(t), in particular, 𝑞𝑞    , R can be fuzzy sets both discrete and continuous and discrete-continuous. We consider the 

functional c(Q), which gives a numerical value for the fuzzy structurability of Q from the interval [0,1], where 0 corresponds to "no fuzzy 

structure"," and 1 corresponds to the value " fuzzy structure". Then for joint A, B: c(A+B)=c(A)+c(B)-c(A*B)+cS(D), D- self-(fuzzy 

structure) from A*B, cS(x)- the value of self-(fuzzy structure) for self-(fuzzy structure) x; for dependent fuzzy structures: 

c(A*B)=ca(A)*c(B/A)=c(B)*c(A/B), where c(B/A)- conditional fuzzy structurability of the fuzzy structure B at the fuzzy structure A, 

c(A/B)- conditional fuzzy structure of the fuzzy structure A at the fuzzy structure B. Adding inconsistent fuzzy structures: c(A+B) 

=c(A)+c(B). The formula of complete fuzzy structure: c(A)=∑    𝑘𝑘       𝑘𝑘 𝑛𝑛
𝑘𝑘  , B1, B2.,.., Bn-full group of fuzzy hypotheses- actions: 

∑    𝑘𝑘 𝑛𝑛
𝑘𝑘  =1(―fuzzy structure‖). Fuzzy Rprt- structure for fuzzy set of fuzzy structures 𝑥̃𝑥=(x1|µ ̃(x1), x2|µ ̃(x2), …, xn|µ ̃(xn)):    

 fRprt 
 x |µ ̃ x   x |µ ̃ x   …  x𝑛𝑛|µ ̃ x𝑛𝑛  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

                           

fRprt 
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 - fuzzy Rprt-  

structurability for these fuzzy structures. It is possible to consider the self-(fuzzy structure)     𝑥𝑥 ̃   𝑥̃𝑥 , 𝑥𝑥 ̃⸦ 𝑥̃𝑥 . The same for self-

(fuzzy structurability):        𝑥̃𝑥      𝑥𝑥 ̃, where   𝑥𝑥 ̃ =  {   𝑥𝑥  |µ    ̃  x     x  |µ    ̃  x   …    x𝑛𝑛 |µ    ̃  x𝑛𝑛 },    𝑥̃𝑥 ⸦  𝑥𝑥 ̃. 
Can be considered N-hierarchical fuzzy structure: 1-level - elements; level 2 - connections between them, level 3 - relationships between 

elements of level 2, etc. up to level N+1. N-hierarchical fuzzy structure: 1-level - A; 2-level -B, 3-level - C, etc. up to (N+!)- level, where 

A, B, C, … can be any in particular, by fuzzy actions, fuzzy sets, and others. 
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The example 
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 - fuzzy N-

hierarchical fuzzy  

structure compression into B, µ - measures of fuzziness, i = 1, ..., N. 

Let frg(N, fQHR)=   H 
f HR𝑓𝑓QHR…fQHR}-N levels 

It can be considered self- fQHR, frg(y, fQHR) for any y, frg( fQHR, fQHR). 

Compression fuzzy Hierarchy Examples: 
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, 

Where µ - measures of fuzziness, i = 1, 2. 

Let's consider two versions: 1) fuzzy containment is interpreted through the concept of fuzzy containment, and 2) fuzzy capacity is 

interpreted through the concept of fuzzy containment as a rest point of fuzzy containment. Self-(fuzzy containment) is interpreted as a rest 

point of self-(fuzzy containment). Let A self-(fuzzy compress) into B, D self-(fuzzy displace) from C in  
 
𝜇𝜇 
 
ffVS prt

 
𝜇𝜇 
 

. 

 We consider the functional ca(Q), which gives a numerical value for the accommodation of fuzzy Q from the interval [0,1], where 0 

corresponds to " fuzzy action" and one corresponds to the value " fuzzy result of action". Then for joint fuzzy A, B: 

ca(A+B)=ca(A)+ca(B)-ca(A*B)+caS(D), D- self-(fuzzy action) for  A*B, caS(x)- the value of self-( fuzzy result of action) for self-(fuzzy 

action) of  x; for dependent fuzzy actions: ca(A*B)=ca(A)*ca(B/A)=ca(B)*ca(A/B), where ca(B/A)- conditional accommodation of the 

fuzzy action B at the fuzzy action A, ca(A/B)- conditional fuzzy result of action of the fuzzy action A at the fuzzy action B. Adding the 

fuzzy capacity values of inconsistent fuzzy action s: ca(A+B)=ca(A)+ca(B). The formula of complete fuzzy result of action: 

ca(A)=∑     𝑘𝑘        𝑘𝑘 𝑛𝑛
𝑘𝑘  , B1, B2, .., Bn-full group of fuzzy hypotheses- action s: ∑     𝑘𝑘 𝑛𝑛

𝑘𝑘  =1(―fuzzy result of action‖). Rprt-

(fuzzy action) for  

 𝑥̃𝑥=(x1|µ ̃(x1), x2|µ ̃(x2), …, xn|µ ̃(xn)): f prt 
 x |µ ̃ x   x |µ ̃ x   …  x𝑛𝑛|µ ̃ x𝑛𝑛  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑤𝑤

, 

𝑥̃𝑥 - fuzzy set of fuzzy actions. f prt 
{  a x  |µ     ̃ a x  |µ     ̃ a x   …   a x𝑛𝑛 |µ     ̃ a x𝑛𝑛 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑤𝑤

 - fRprt- accommodation for these fuzzy 

actions xi, i = 1, ..., n. It is possible to consider the self-(fuzzy action)     𝑥𝑥 ̃   𝑥̃𝑥 , 𝑥𝑥 ̃⸦ 𝑥̃𝑥 . The same for self-(fuzzy accommodation): 

        𝑥̃𝑥       𝑥𝑥 ̃ , where     𝑥̃𝑥 = {  a 𝑥𝑥  |µ     ̃ a x    a x  |µ     ̃ a x   …   a x𝑛𝑛 |µ     ̃ a x𝑛𝑛 }⸦   𝑥𝑥 ̃ . 

Consider a variable fuzzy hierarchy (we will denote it by frVH). 

The example of variable fuzzy hierarchy  

 

    
 𝑡𝑡 𝑡𝑡   =

{
 
 
 
 
 
 

 
 
 
 
 
  {         

{ } 𝑡𝑡
    −     

}     𝑞𝑞 ≥ 𝑡𝑡 ≥ 𝑞𝑞  |µ 

     
 
 
    
      

 𝑡𝑡    
  q ≥  t > q  |µ 

   
     𝑡𝑡  
      

   𝑡𝑡    
        

   𝑡𝑡    
       q ≥   t > q  |µ 

 (  
   −    )  q ≥  𝑡𝑡 > 𝑞𝑞  |µ 

    
{ } 𝑡𝑡    𝑡𝑡 > 𝑞𝑞  |µ …

   (*D.2), 

where Q is oself-(fuzzy set) for fuzzy       [4], R is self-(fuzzy set) for fuzzy     [14],      𝑡𝑡  ,      
   𝑡𝑡    ,         

   𝑡𝑡     are 

considered in [4], µ - measures of fuzziness, i = 1, ..., 5 . Variable compression (designation fVS) of fuzzy  ̃  into 𝑥̃𝑥(t):   𝑡𝑡 ̃ 𝑡𝑡  ̃ , where 

𝑥̃𝑥(t)- any dynamical fuzzy object at time t.  

 

We consider the functional h(Q), which gives a numerical value for the hierarchization of fuzzy Q from the interval [0,1], where 0 

corresponds to "no fuzzy hierarchy," and 1 corresponds to the value " fuzzy hierarchy. " Then for joint fuzzy hierarchies A, B: 

h(A+B)=h(A)+h(B)-h(A*B)+hS(D), D- self-(fuzzy hierarchy) from A*B, hS(x)- the value of self-(fuzzy hierarchy) for self-(fuzzy 

hierarchy) x; for dependent fuzzy hierarchies: h(A*B)=ha(A)*h(B/A)=h(B)*h(A/B), where h(B/A)- conditional hierarchization of the 

fuzzy hierarchy B at the fuzzy hierarchy A, h(A/B)- conditional fuzzy hierarchy of the fuzzy hierarchy A at the fuzzy hierarchy B. Adding 

the fuzzy hierarchy values of inconsistent fuzzy hierarchies: h(A+B)=h(A)+h(B). The formula of complete fuzzy hierarchy: 

h(A)=∑    𝑘𝑘       𝑘𝑘 𝑛𝑛
𝑘𝑘  , B1, B2,..,Bn-full group of fuzzy hypotheses- hierarches: ∑    𝑘𝑘 𝑛𝑛

𝑘𝑘  =1(―fuzzy hierarchy‖).  

 Rprt- structure for fuzzy set of hierarches  𝑥̃𝑥=(x1|µ ̃(x1), x2|µ ̃(x2), …, xn|µ ̃(xn)): fRprt 
 x |µ ̃ x   x |µ ̃ x   …  x𝑛𝑛|µ ̃ x𝑛𝑛  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  .   
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, 

Where µ - measures of fuzziness, i = 1, 2. 

Let's consider two versions: 1) fuzzy containment is interpreted through the concept of fuzzy containment, and 2) fuzzy capacity is 

interpreted through the concept of fuzzy containment as a rest point of fuzzy containment. Self-(fuzzy containment) is interpreted as a rest 

point of self-(fuzzy containment). Let A self-(fuzzy compress) into B, D self-(fuzzy displace) from C in  
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ffVS prt
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. 

 We consider the functional ca(Q), which gives a numerical value for the accommodation of fuzzy Q from the interval [0,1], where 0 

corresponds to " fuzzy action" and one corresponds to the value " fuzzy result of action". Then for joint fuzzy A, B: 

ca(A+B)=ca(A)+ca(B)-ca(A*B)+caS(D), D- self-(fuzzy action) for  A*B, caS(x)- the value of self-( fuzzy result of action) for self-(fuzzy 

action) of  x; for dependent fuzzy actions: ca(A*B)=ca(A)*ca(B/A)=ca(B)*ca(A/B), where ca(B/A)- conditional accommodation of the 

fuzzy action B at the fuzzy action A, ca(A/B)- conditional fuzzy result of action of the fuzzy action A at the fuzzy action B. Adding the 

fuzzy capacity values of inconsistent fuzzy action s: ca(A+B)=ca(A)+ca(B). The formula of complete fuzzy result of action: 

ca(A)=∑     𝑘𝑘        𝑘𝑘 𝑛𝑛
𝑘𝑘  , B1, B2, .., Bn-full group of fuzzy hypotheses- action s: ∑     𝑘𝑘 𝑛𝑛

𝑘𝑘  =1(―fuzzy result of action‖). Rprt-

(fuzzy action) for  

 𝑥̃𝑥=(x1|µ ̃(x1), x2|µ ̃(x2), …, xn|µ ̃(xn)): f prt 
 x |µ ̃ x   x |µ ̃ x   …  x𝑛𝑛|µ ̃ x𝑛𝑛  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑤𝑤

, 

𝑥̃𝑥 - fuzzy set of fuzzy actions. f prt 
{  a x  |µ     ̃ a x  |µ     ̃ a x   …   a x𝑛𝑛 |µ     ̃ a x𝑛𝑛 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑤𝑤

 - fRprt- accommodation for these fuzzy 

actions xi, i = 1, ..., n. It is possible to consider the self-(fuzzy action)     𝑥𝑥 ̃   𝑥̃𝑥 , 𝑥𝑥 ̃⸦ 𝑥̃𝑥 . The same for self-(fuzzy accommodation): 

        𝑥̃𝑥       𝑥𝑥 ̃ , where     𝑥̃𝑥 = {  a 𝑥𝑥  |µ     ̃ a x    a x  |µ     ̃ a x   …   a x𝑛𝑛 |µ     ̃ a x𝑛𝑛 }⸦   𝑥𝑥 ̃ . 

Consider a variable fuzzy hierarchy (we will denote it by frVH). 

The example of variable fuzzy hierarchy  
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   −    )  q ≥  𝑡𝑡 > 𝑞𝑞  |µ 

    
{ } 𝑡𝑡    𝑡𝑡 > 𝑞𝑞  |µ …

   (*D.2), 

where Q is oself-(fuzzy set) for fuzzy       [4], R is self-(fuzzy set) for fuzzy     [14],      𝑡𝑡  ,      
   𝑡𝑡    ,         

   𝑡𝑡     are 

considered in [4], µ - measures of fuzziness, i = 1, ..., 5 . Variable compression (designation fVS) of fuzzy  ̃  into 𝑥̃𝑥(t):   𝑡𝑡 ̃ 𝑡𝑡  ̃ , where 

𝑥̃𝑥(t)- any dynamical fuzzy object at time t.  

 

We consider the functional h(Q), which gives a numerical value for the hierarchization of fuzzy Q from the interval [0,1], where 0 

corresponds to "no fuzzy hierarchy," and 1 corresponds to the value " fuzzy hierarchy. " Then for joint fuzzy hierarchies A, B: 

h(A+B)=h(A)+h(B)-h(A*B)+hS(D), D- self-(fuzzy hierarchy) from A*B, hS(x)- the value of self-(fuzzy hierarchy) for self-(fuzzy 

hierarchy) x; for dependent fuzzy hierarchies: h(A*B)=ha(A)*h(B/A)=h(B)*h(A/B), where h(B/A)- conditional hierarchization of the 

fuzzy hierarchy B at the fuzzy hierarchy A, h(A/B)- conditional fuzzy hierarchy of the fuzzy hierarchy A at the fuzzy hierarchy B. Adding 

the fuzzy hierarchy values of inconsistent fuzzy hierarchies: h(A+B)=h(A)+h(B). The formula of complete fuzzy hierarchy: 

h(A)=∑    𝑘𝑘       𝑘𝑘 𝑛𝑛
𝑘𝑘  , B1, B2,..,Bn-full group of fuzzy hypotheses- hierarches: ∑    𝑘𝑘 𝑛𝑛

𝑘𝑘  =1(―fuzzy hierarchy‖).  

 Rprt- structure for fuzzy set of hierarches  𝑥̃𝑥=(x1|µ ̃(x1), x2|µ ̃(x2), …, xn|µ ̃(xn)): fRprt 
 x |µ ̃ x   x |µ ̃ x   …  x𝑛𝑛|µ ̃ x𝑛𝑛  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  .   

Where µi - measures of fuzziness, i = 1, 2.

Consider a variable fuzzy hierarchy (we will denote it by frVH).
The example of variable fuzzy hierarchy 
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Where µ - measures of fuzziness, i = 1, 2. 

Let's consider two versions: 1) fuzzy containment is interpreted through the concept of fuzzy containment, and 2) fuzzy capacity is 

interpreted through the concept of fuzzy containment as a rest point of fuzzy containment. Self-(fuzzy containment) is interpreted as a rest 

point of self-(fuzzy containment). Let A self-(fuzzy compress) into B, D self-(fuzzy displace) from C in  
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 We consider the functional ca(Q), which gives a numerical value for the accommodation of fuzzy Q from the interval [0,1], where 0 

corresponds to " fuzzy action" and one corresponds to the value " fuzzy result of action". Then for joint fuzzy A, B: 

ca(A+B)=ca(A)+ca(B)-ca(A*B)+caS(D), D- self-(fuzzy action) for  A*B, caS(x)- the value of self-( fuzzy result of action) for self-(fuzzy 

action) of  x; for dependent fuzzy actions: ca(A*B)=ca(A)*ca(B/A)=ca(B)*ca(A/B), where ca(B/A)- conditional accommodation of the 

fuzzy action B at the fuzzy action A, ca(A/B)- conditional fuzzy result of action of the fuzzy action A at the fuzzy action B. Adding the 

fuzzy capacity values of inconsistent fuzzy action s: ca(A+B)=ca(A)+ca(B). The formula of complete fuzzy result of action: 

ca(A)=∑     𝑘𝑘        𝑘𝑘 𝑛𝑛
𝑘𝑘  , B1, B2, .., Bn-full group of fuzzy hypotheses- action s: ∑     𝑘𝑘 𝑛𝑛

𝑘𝑘  =1(―fuzzy result of action‖). Rprt-

(fuzzy action) for  

 𝑥̃𝑥=(x1|µ ̃(x1), x2|µ ̃(x2), …, xn|µ ̃(xn)): f prt 
 x |µ ̃ x   x |µ ̃ x   …  x𝑛𝑛|µ ̃ x𝑛𝑛  
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𝑤𝑤

, 

𝑥̃𝑥 - fuzzy set of fuzzy actions. f prt 
{  a x  |µ     ̃ a x  |µ     ̃ a x   …   a x𝑛𝑛 |µ     ̃ a x𝑛𝑛 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑤𝑤

 - fRprt- accommodation for these fuzzy 

actions xi, i = 1, ..., n. It is possible to consider the self-(fuzzy action)     𝑥𝑥 ̃   𝑥̃𝑥 , 𝑥𝑥 ̃⸦ 𝑥̃𝑥 . The same for self-(fuzzy accommodation): 

        𝑥̃𝑥       𝑥𝑥 ̃ , where     𝑥̃𝑥 = {  a 𝑥𝑥  |µ     ̃ a x    a x  |µ     ̃ a x   …   a x𝑛𝑛 |µ     ̃ a x𝑛𝑛 }⸦   𝑥𝑥 ̃ . 

Consider a variable fuzzy hierarchy (we will denote it by frVH). 

The example of variable fuzzy hierarchy  

 

    
 𝑡𝑡 𝑡𝑡   =
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{ } 𝑡𝑡
    −     
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       q ≥   t > q  |µ 

 (  
   −    )  q ≥  𝑡𝑡 > 𝑞𝑞  |µ 

    
{ } 𝑡𝑡    𝑡𝑡 > 𝑞𝑞  |µ …

   (*D.2), 

where Q is oself-(fuzzy set) for fuzzy       [4], R is self-(fuzzy set) for fuzzy     [14],      𝑡𝑡  ,      
   𝑡𝑡    ,         

   𝑡𝑡     are 

considered in [4], µ - measures of fuzziness, i = 1, ..., 5 . Variable compression (designation fVS) of fuzzy  ̃  into 𝑥̃𝑥(t):   𝑡𝑡 ̃ 𝑡𝑡  ̃ , where 

𝑥̃𝑥(t)- any dynamical fuzzy object at time t.  

 

We consider the functional h(Q), which gives a numerical value for the hierarchization of fuzzy Q from the interval [0,1], where 0 

corresponds to "no fuzzy hierarchy," and 1 corresponds to the value " fuzzy hierarchy. " Then for joint fuzzy hierarchies A, B: 

h(A+B)=h(A)+h(B)-h(A*B)+hS(D), D- self-(fuzzy hierarchy) from A*B, hS(x)- the value of self-(fuzzy hierarchy) for self-(fuzzy 

hierarchy) x; for dependent fuzzy hierarchies: h(A*B)=ha(A)*h(B/A)=h(B)*h(A/B), where h(B/A)- conditional hierarchization of the 

fuzzy hierarchy B at the fuzzy hierarchy A, h(A/B)- conditional fuzzy hierarchy of the fuzzy hierarchy A at the fuzzy hierarchy B. Adding 

the fuzzy hierarchy values of inconsistent fuzzy hierarchies: h(A+B)=h(A)+h(B). The formula of complete fuzzy hierarchy: 

h(A)=∑    𝑘𝑘       𝑘𝑘 𝑛𝑛
𝑘𝑘  , B1, B2,..,Bn-full group of fuzzy hypotheses- hierarches: ∑    𝑘𝑘 𝑛𝑛

𝑘𝑘  =1(―fuzzy hierarchy‖).  

 Rprt- structure for fuzzy set of hierarches  𝑥̃𝑥=(x1|µ ̃(x1), x2|µ ̃(x2), …, xn|µ ̃(xn)): fRprt 
 x |µ ̃ x   x |µ ̃ x   …  x𝑛𝑛|µ ̃ x𝑛𝑛  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  .   
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fRprt 
{ h x  |µ    ̃h x  |µ    ̃h x   …  h x𝑛𝑛 |µ    ̃h x𝑛𝑛 }

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 - fRprt- hierarchization for these fuzzy hierarches. It is possible to consider 

the self-(fuzzy hierarchy)     𝑥𝑥 ̃   𝑥̃𝑥 , 𝑥𝑥 ̃⸦ 𝑥̃𝑥. The same for self- hierarchization       𝑥𝑥 ̃    𝑥̃𝑥 ,  𝑥𝑥 ̃⸦  𝑥̃𝑥, 

 𝑥̃𝑥 = { h 𝑥𝑥  |µ    ̃h x   h x  |µ    ̃h x   …  h x𝑛𝑛 |µ    ̃h x𝑛𝑛 }. Can be considered   fRprt 
{  a x    x  h x }

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

.  

Very interesting next fuzzy hierarchy type: 

  
fuzzy hierar hy  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     

fuzzy hierar hy  
fRprt 

fuzzy hierar hy  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

fuzzy hierar hy  
  . You can enter special operator fCprt to work with fuzzy structures: 

 
fuzzy stru ture  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     

fuzzy stru ture  
fCprt 

fuzzy stru ture  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

fuzzy stru ture  
   , fuzzy structures R by fuzzy Q with the fuzzy structure from C, unstructures fuzzy A by 

fuzzy action Q-1 by the fuzzy structure D simultaneously. 

 

Very interesting next fuzzy structure type:  

 
fuzzy stru ture  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     

fuzzy stru ture  
fCprt 

fuzzy stru ture  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

fuzzy stru ture  
  . 

You can enter special operator fHt to work with fuzzy hierarches:  
fuzzy hierar hy  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     

fuzzy hierar hy  
fCprt 

fuzzy hierar hy D
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

fuzzy hierar hy  
   fuzzy hierarchizes R by 

fuzzy Q with the fuzzy hierarchy from D, unhierarchizes fuzzy A by fuzzy action Q-1 by the fuzzy hierarchy B simultaneously. 

 

4. Introduction to Fuzzy Program Operators fRprt, ftprR, fR1epr, fReprt1 

Here it is supposed to use a symbiosis of parallel actions and conventional calculations through sequential actions. This must be done 

through fRprt-Networks - fuzzy analogue of Sprt-Networks in one of the central departments of which a conventional computer system is 

located [14]. The parallel processor is itself freprogram - fuzzy analogue of eprogram with direct parallel computing not through serial 

computing [14].   

 Using conventional coding by a computer system, through a Target-block with a fuzzy Rprt -program operator - fRprt 
 𝑔𝑔

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 , 

where fuzzy A with measure of fuzziness 𝜇𝜇  fuzzy acts Q with measure of fuzziness 𝜇𝜇  to fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 with measure of fuzziness 

𝜇𝜇  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, Q is any fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡, it will be possible to obtain the fuzzy execution with measure of fuzziness 𝜇𝜇  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 of a parallel 

fuzzy action A with the desired target weight g or the execution with measure of fuzziness 𝜇𝜇  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 of a parallel action A with the 

desired fuzzy target weight g with measure of fuzziness 𝜇𝜇   or both. Each code for a neural network from a conventional computer we 

"bind" (match) to the corresponding value of current (or voltage). For fRprt-coding and fRprt-translation may be use alternating current of 

ultrahigh frequency or high-intensity ultra-short optical pulses laser of Nobel laureates 2018 year Gerard Mourou, Donna Strickland, or a 

combination of them. For the desired action, for example, using the direct parallel frprogram of operator  fRprt 
{ H       }

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 with the 

specified measures of fuzziness, we simultaneously enter the desired fuzzy set of codes D with measure of fuzziness µR using a 

microwave current or high-intensity ultra-short optical pulses laser in Target-block.  

 In a conventional computer, the process of sequential calculation takes a certain time interval, in a directly parallel calculation by a neural 

network, the calculation is instantaneous, but it occupies a certain region of the space of calculation objects.  

Consider the types of direct parallel fuzzy fprogram operators: 

1) fuzzy Rprt-program operators (designation fRprt-program operators) 

2) fuzzy tprR-program operators (designation ftprR-program operators) 

3) fuzzy R1epr - program operators (designation fR1epr -program operators) 

4) fuzzy Reprt1- program operators (designation fReprt1-program operators) 

fRprt-algorithm Example: 

fRprt 
{ h x  |µ    ̃h x  |µ    ̃h x   …  h x𝑛𝑛 |µ    ̃h x𝑛𝑛 }
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fuzzy Q with the fuzzy hierarchy from D, unhierarchizes fuzzy A by fuzzy action Q-1 by the fuzzy hierarchy B simultaneously. 

 

4. Introduction to Fuzzy Program Operators fRprt, ftprR, fR1epr, fReprt1 

Here it is supposed to use a symbiosis of parallel actions and conventional calculations through sequential actions. This must be done 

through fRprt-Networks - fuzzy analogue of Sprt-Networks in one of the central departments of which a conventional computer system is 

located [14]. The parallel processor is itself freprogram - fuzzy analogue of eprogram with direct parallel computing not through serial 
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Consider the types of direct parallel fuzzy fprogram operators: 
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fRprt-algorithm Example: 

4. Introduction to Fuzzy Program Operators fRprt, ftprR, fR1epr, fReprt1
Here it is supposed to use a symbiosis of parallel actions and conventional calculations through sequential actions. This must be done 
through fRprt-Networks - fuzzy analogue of Sprt-Networks in one of the central departments of which a conventional computer 
system is located [14]. The parallel processor is itself freprogram - fuzzy analogue of eprogram with direct parallel computing not 
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 In a conventional computer, the process of sequential calculation takes a certain time interval, in a directly parallel calculation by a 
neural network, the calculation is instantaneous, but it occupies a certain region of the space of calculation objects. 
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3) fuzzy R1epr - program operators (designation fR1epr -program operators)
4) fuzzy Reprt1- program operators (designation fReprt1-program operators)
fRprt-algorithm Example:

Simultaneous multiplication Q with measure of fuzziness 𝜇𝜇 : fRprt
𝑥̃𝑥

multipli ation  
𝑦̃𝑦

,   the notation of the fuzzy set B with elements  

𝑏𝑏 1      𝑛𝑛𝑗𝑗1𝑗𝑗    𝑗𝑗𝑛𝑛 =  f prt

 ffSprt
{𝑥𝑥 𝑖𝑖1  µ ̃ (𝑥𝑥 𝑖𝑖1)   𝑥𝑥 𝑖𝑖  µ ̃ (𝑥𝑥 𝑖𝑖 )       𝑥𝑥𝑛𝑛𝑖𝑖𝑛𝑛  µ ̃ (𝑥𝑥𝑛𝑛𝑖𝑖𝑛𝑛)}

µ
𝑞𝑞

 𝑅𝑅

multipli ation  

 ffSprt
{𝑦𝑦 𝑗𝑗1  µ𝑦̃𝑦 (𝑦𝑦 𝑗𝑗1)  𝑦𝑦 𝑗𝑗  µ𝑦̃𝑦 (𝑦𝑦 𝑗𝑗 )      𝑦𝑦𝑛𝑛𝑗𝑗𝑚𝑚  µ𝑦̃𝑦 (𝑦𝑦𝑛𝑛𝑗𝑗𝑚𝑚)}}

µ
 

 𝐺𝐺    

     

for any {           𝑛𝑛} {𝑗𝑗  𝑗𝑗     𝑗𝑗𝑛𝑛}  without repetitions q = ffSprt
𝐾𝐾
µ
𝑤𝑤

, K-set of any {𝑘𝑘   𝑘𝑘       𝑘𝑘𝑛𝑛  } without repeating them, ki-any 

digit, i=1,2,…,n, R= ffSprt
{             𝑛𝑛}

µ
𝑤𝑤

 , R is the index of the lower discharge, h = ffSprt
𝐿𝐿
µ
𝑤𝑤

, L-set of any {𝑙𝑙   𝑙𝑙       𝑙𝑙𝑚𝑚  } without 

repeating them, li-any digit, i=1,2,…,m, G= ffSprt
{𝑗𝑗   𝑗𝑗       𝑗𝑗𝑚𝑚}

µ
𝑤𝑤

 , G is the index of the lower discharge, V = 

ffSprt
{             𝑛𝑛  𝑗𝑗   𝑗𝑗       𝑗𝑗𝑚𝑚}

µ
𝑤𝑤

 (we choose an index on the scale of discharges): 

 

Insert Table 1 

Table 1: Index on the Scale of Discharges 

 

Then ffSprt
  
µ
𝑤𝑤

 gives the final result of simultaneous multiplication. Any system of calculus can be chosen, in particular binary. Here, in 

fact, sets of digits in the corresponding digits, representing numbers, are multiplied together simultaneously. The simplest functional 

scheme of the assumed arithmetic-logical device for fRprt-multiplication: 

 

 

 

 

 

Figure 3: The Straightforward Functional Scheme of the Assumed Arithmetic-Logical Device for fRprt-Multiplication. 

 

4.1 Remark 1 

The algorithm for simultaneously fuzzy multiplication a fuzzy set of numbers can also be implemented as the simultaneous addition of 

elements of a simultaneously formed composite matrix: a triangular matrix in which the elements of the first row are represented by fuzzy 

multiplying the first number from the fuzzy set by the rest: each multiplication is represented by a matrix of multiplying the digits of 2 

numbers, taking into account the bit depth, the elements of the second rows are represented by multiplying the second number from the 

fuzzy set by the ones following it, etc. 

One example is pattern recognition:  fRprt
if ffSprt

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑟𝑟𝑟  𝑣𝑣𝑣𝑣
µ
 

    ffSprt
𝑞𝑞
µ
 
 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
  𝑚𝑚𝑚𝑚 𝑜𝑜𝑜 𝑞𝑞

 

The example of frprt-program is   fRprt
{ f prt

{{𝑝𝑝}}
 

{  𝑥𝑥 }
   f prt

  {{ }{ }} 
𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 
   fprt

 
   𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 }

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑥𝑥

 . 

Consider a third type of fuzzy fRprt-self structure - fuzzy analogue of fRprt-self structure [1]. For example, based on fRprt 
𝑦̃𝑦

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑥̃𝑥

, 

where 𝑦̃𝑦=(y1|µ ̃(y1), y2|µ ̃(y2), …, ym|µ ̃(ym)) ⸦ 𝑥̃𝑥=(x1|µ ̃(x1), x2|µ ̃(x2), …, xn|µ ̃(xn)), we can consider the fRprt-self structure -     𝑦̃𝑦   𝑦̃𝑦  

with m elements from 𝑥̃𝑥, m<n, which is formed according to the form: 

wmn=(m,(n,1))    (4.1). 

 Form (4.1) can be generalized into the following forms: 

Simultaneous multiplication Q with measure of fuzziness 𝜇𝜇 : fRprt
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𝐾𝐾
µ
𝑤𝑤
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Then ffSprt
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Figure 3: The Straightforward Functional Scheme of the Assumed Arithmetic-Logical Device for fRprt-Multiplication. 
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The algorithm for simultaneously fuzzy multiplication a fuzzy set of numbers can also be implemented as the simultaneous addition of 

elements of a simultaneously formed composite matrix: a triangular matrix in which the elements of the first row are represented by fuzzy 

multiplying the first number from the fuzzy set by the rest: each multiplication is represented by a matrix of multiplying the digits of 2 

numbers, taking into account the bit depth, the elements of the second rows are represented by multiplying the second number from the 

fuzzy set by the ones following it, etc. 
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 𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑟𝑟𝑟  𝑣𝑣𝑣𝑣
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  𝑚𝑚𝑚𝑚 𝑜𝑜𝑜 𝑞𝑞

 

The example of frprt-program is   fRprt
{ f prt

{{𝑝𝑝}}
 

{  𝑥𝑥 }
   f prt

  {{ }{ }} 
𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 
   fprt

 
   𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
 }

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑥𝑥

 . 

Consider a third type of fuzzy fRprt-self structure - fuzzy analogue of fRprt-self structure [1]. For example, based on fRprt 
𝑦̃𝑦

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑥̃𝑥

, 

where 𝑦̃𝑦=(y1|µ ̃(y1), y2|µ ̃(y2), …, ym|µ ̃(ym)) ⸦ 𝑥̃𝑥=(x1|µ ̃(x1), x2|µ ̃(x2), …, xn|µ ̃(xn)), we can consider the fRprt-self structure -     𝑦̃𝑦   𝑦̃𝑦  

with m elements from 𝑥̃𝑥, m<n, which is formed according to the form: 

wmn=(m,(n,1))    (4.1). 

 Form (4.1) can be generalized into the following forms: 

index discharge
n n
… …
1 1
, 0
-1 1st digit to the right of the point
-2 2nd digit to the right of the point
... ...

Table 1: Index on the Scale of Discharges
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Register of entering a fuzzy set of numbers to multiply

fRprt-block of simultaneous multiplication in all chains 
of digits of the levels of these numbers

ffSprt-block of simultaneous addition of the values 
of these products

Register of saving the final result

Figure 3: The Straightforward Functional Scheme of the Assumed Arithmetic-Logical Device for fRprt-Multiplication.

4.1 Remark 1
The algorithm for simultaneously fuzzy multiplication a fuzzy set of numbers can also be implemented as the simultaneous addition 
of elements of a simultaneously formed composite matrix: a triangular matrix in which the elements of the first row are represented 
by fuzzy multiplying the first number from the fuzzy set by the rest: each multiplication is represented by a matrix of multiplying 
the digits of 2 numbers, taking into account the bit depth, the elements of the second rows are represented by multiplying the second 
number from the fuzzy set by the ones following it, etc.
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Consider a third type of fuzzy fRprt-self structure - fuzzy analogue of fRprt-self structure [1]. For example, based on fRprt 
𝑦̃𝑦

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑥̃𝑥

, 
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 Form (4.1) can be generalized into the following forms: Form (4.1) can be generalized into the following forms:

 𝑤𝑤𝑚𝑚 𝑛𝑛 𝑘𝑘
  = (k,  

 𝑛𝑛  1 
 …  

 𝑛𝑛𝑚𝑚 1 
 )  (4.1.1)  

or  

𝑤𝑤𝑚𝑚 𝑛𝑛 𝑘𝑘
  = (k,  𝑙𝑙 

 𝑛𝑛  
 …  
 𝑛𝑛𝑚𝑚 

 )  (4.1.2) 

𝑤𝑤𝑚𝑚 𝑛𝑛 𝑘𝑘 𝑙𝑙
  = Q((

  
…
 𝑙𝑙

),  
 𝑛𝑛  1 
 …  

 𝑛𝑛𝑚𝑚 1 
 ) (4.1.3), 

where Q(x, y) – any operator, which makes a match between set (
  
…
 𝑙𝑙

) and set (
 𝑛𝑛  1 
 …  

 𝑛𝑛𝑚𝑚 1 
  or  

𝑤𝑤𝑚𝑚 𝑚𝑚1 𝑛𝑛1 𝑚𝑚  𝑛𝑛  𝑚𝑚  𝑛𝑛 
  = (m, ((𝑚𝑚  𝑛𝑛 ), ((𝑚𝑚  𝑛𝑛 ), (𝑚𝑚  𝑛𝑛 )))) (4.1.4),  

or 

(Q, R) (4.1.5), 

where Q – any, R – any structure, R could be anything can be anything, not just structure. In this case, (4.1.5) can be used as another type 

of transformation from Q to R. fRprt-self structures in themselves of the eighth type can be formed for any other structure, not necessarily 

fRprt, only by necessarily reducing the number of elements in the structure, in particular, using form 

𝑤𝑤𝑚𝑚1    𝑚𝑚𝑛𝑛 =  𝑚𝑚   𝑚𝑚       𝑚𝑚𝑛𝑛 1          (4.2) 

Structures more complex than    𝑦̃𝑦   𝑥̃𝑥  can be introduced. For example, through a forms that generalizes (1): 

𝑤𝑤   =            (4.3) 

 

Insert Figure: 

 

where A is fuzzy compressed (fuzzy fits) in C in the fuzzy compression fuzzy structure B in C (i.e. in the fuzzy structure fDprt
 
µ
 

     or 

through the more general forms that generalizes (4.2): 

𝑤𝑤 1  … 𝑛𝑛 =               𝑛𝑛            (4.8) 

and corresponding generalizations of (4.8) on (4.4) - (4.7), etc. 

(4.3), (4.8) are represented through the usual 2-bond. Science is the discipline of 2-connections, since everything in science is carried out 

through 2-connected logic, quantum logic is also a projection of 3-connected logic onto 2-connected logic. (4.4) - (4.7) schematically 

interpret the fuzzy formation of fuzzy fRprt-self structure through a pseudo 3-connected form with a 2-connected form. The ideology of 

fRprt and     𝑦̃𝑦   𝑥̃𝑥   can be used for programming. 

 

4.2 Remark 2 

Fuzzy self, in particular, according to a fuzzy form- fuzzy analogue of the form of type (1) [1]: 

(1| 1, (2| 2 ,1| 3 )), (1*) 

 i (i=1,2,3)– the fuzziness of the indicated positions. For example 

1) fuzzy forming from element with fuzziness  in the form (2,1): (1| , (2 ,1 ))  

2) fuzzy forming from element in the form (2,1) with fuzziness : (1, (2 ,1)|  )  

3) fuzzy formation of partial self in the form (1) [1] with fuzziness : (1, (2 ,1))|   

4) It is also possible to generalize the other remaining forms (4.1.1) – (4.8) to fuzzy forms 

5) etc. 

Here are some of the fuzzy fRprt-program operators. 

1. Simultaneous fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   of the expression𝑠𝑠 𝑝̃𝑝=(p1|µ𝑝̃𝑝(p1), p2|µ𝑝̃𝑝(p2), …, pn|µ𝑝̃𝑝(pn)) to the variables 𝑥̃𝑥=(x1|µ ̃(x1), x2|µ ̃(x2), …, 

xn|µ ̃(xn)). This is implemented via fRprt
𝑝̃𝑝
 

{𝑥̃𝑥}
. 

2. Simultaneous R = fuzzy checking with fuzziness   by the fuzzy set of conditions 𝑔̃𝑔=(g1|µ ̃(g1), g2|µ ̃(g2), …, gn|µ ̃(gn)) for the 

fuzzy set of expressions  ̃=(B1|µ ̃(B1), B2|µ ̃(B2), …, Bn|µ ̃(Bn)). Implemented via  fRprt
 ̃
 
 ̃

 , where  ̃ can be anything. 

3. Similarly for fuzzy loop operators and others.  
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(4.3), (4.8) are represented through the usual 2-bond. Science is the discipline of 2-connections, since everything in science is carried out 
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(Q, R) (4.1.5),
where Q – any, R – any structure, R could be anything can be anything, not just structure. In this case, (4.1.5) can be used as another 
type of transformation from Q to R. fRprt-self structures in themselves of the eighth type can be formed for any other structure, not 
necessarily fRprt, only by necessarily reducing the number of elements in the structure, in particular, using form

Structures more complex than fRf y ̃;Q; x ̃  can be introduced. For example, through a forms that generalizes (1):
wABC = (A,(B,C))  (4.3)

 
 

or  

𝑤𝑤𝑚𝑚 𝑛𝑛 𝑘𝑘
  = (k,  𝑙𝑙 
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 …  
 𝑛𝑛𝑚𝑚 

 )  (4.1.2) 

𝑤𝑤𝑚𝑚 𝑛𝑛 𝑘𝑘 𝑙𝑙
  = Q((

  
…
 𝑙𝑙

),  
 𝑛𝑛  1 
 …  

 𝑛𝑛𝑚𝑚 1 
 ) (4.1.3), 

where Q(x, y) – any operator, which makes a match between set (
  
…
 𝑙𝑙
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  = (m, ((𝑚𝑚  𝑛𝑛 ), ((𝑚𝑚  𝑛𝑛 ), (𝑚𝑚  𝑛𝑛 )))) (4.1.4),  

or 

(Q, R) (4.1.5), 

where Q – any, R – any structure, R could be anything can be anything, not just 

structure. In this case, (4.1.5) can be used as another type of transformation from Q 

to R. fRprt-self structures in themselves of the eighth type can be formed for any 

other structure, not necessarily fRprt, only by necessarily reducing the number of 

elements in the structure, in particular, using form 

𝑤𝑤𝑚𝑚1    𝑚𝑚𝑛𝑛 =  𝑚𝑚   𝑚𝑚       𝑚𝑚𝑛𝑛 1          (4.2) 

Structures more complex than    𝑦̃𝑦   𝑥̃𝑥  can be introduced. For example, 

through a forms that generalizes (1): 

𝑤𝑤   =            (4.3) 

 

                         B 

                          𝑤𝑤   =            C    (4.4) 

 

       A               (B,C) 

    G              (4.5) 

Q 

 
 

        A                R        Q 

                                            V       (4.6) 

     S  

 

 

         A                           L     

             q        r          r       (4.7) 

S 

where A is fuzzy compressed (fuzzy fits) in C in the fuzzy compression fuzzy 

structure B in C (i.e. in the fuzzy structure fDprt
 
µ
 
     or through the more general 

forms that generalizes (4.2): 

𝑤𝑤 1  … 𝑛𝑛 =               𝑛𝑛            (4.8) 

and corresponding generalizations of (4.8) on (4.4) - (4.7), etc. 

(4.3), (4.8) are represented through the usual 2-bond. Science is the discipline of 2-

connections, since everything in science is carried out through 2-connected logic, 

quantum logic is also a projection of 3-connected logic onto 2-connected logic. 

(4.4) - (4.7) schematically interpret the fuzzy formation of fuzzy fRprt-self 

structure through a pseudo 3-connected form with a 2-connected form. The 

ideology of fRprt and     𝑦̃𝑦   𝑥̃𝑥   can be used for programming. 

Remark 2. Fuzzy self, in particular, according to a fuzzy form- fuzzy analogue of 
the form of type (1) [1]: 

(1| 1, (2| 2 ,1| 3 )), (1*) 

 i (i=1,2,3)– the fuzziness of the indicated positions. For example 

1) fuzzy forming from element with fuzziness  in the form (2,1): (1| , (2 ,1 ))  

2) fuzzy forming from element in the form (2,1) with fuzziness : (1, (2 ,1)|  )  

3) fuzzy formation of partial self in the form (1) [1] with fuzziness : (1, (2 

,1))|   

4) It is also possible to generalize the other remaining forms (4.1.1) – (4.8) to 

fuzzy forms 

and corresponding generalizations of (4.8) on (4.4) - (4.7), etc.
(4.3), (4.8) are represented through the usual 2-bond. Science is the discipline of 2-connections, since everything in science is 
carried out through 2-connected logic, quantum logic is also a projection of 3-connected logic onto 2-connected logic. (4.4) - (4.7) 
schematically interpret the fuzzy formation of fuzzy fRprt-self structure through a pseudo 3-connected form with a 2-connected 
form. The ideology of fRprt and fD8 fy

 ̃;Q;x ̃   can be used for programming.

4.2 Remark 2
Fuzzy self, in particular, according to a fuzzy form- fuzzy analogue of the form of type (1) [1]:



   Volume 3 | Issue 9 | 18J Math Techniques Comput Math, 2024

 𝑤𝑤𝑚𝑚 𝑛𝑛 𝑘𝑘
  = (k,  

 𝑛𝑛  1 
 …  

 𝑛𝑛𝑚𝑚 1 
 )  (4.1.1)  

or  

𝑤𝑤𝑚𝑚 𝑛𝑛 𝑘𝑘
  = (k,  𝑙𝑙 

 𝑛𝑛  
 …  
 𝑛𝑛𝑚𝑚 

 )  (4.1.2) 

𝑤𝑤𝑚𝑚 𝑛𝑛 𝑘𝑘 𝑙𝑙
  = Q((

  
…
 𝑙𝑙

),  
 𝑛𝑛  1 
 …  

 𝑛𝑛𝑚𝑚 1 
 ) (4.1.3), 

where Q(x, y) – any operator, which makes a match between set (
  
…
 𝑙𝑙

) and set (
 𝑛𝑛  1 
 …  

 𝑛𝑛𝑚𝑚 1 
  or  

𝑤𝑤𝑚𝑚 𝑚𝑚1 𝑛𝑛1 𝑚𝑚  𝑛𝑛  𝑚𝑚  𝑛𝑛 
  = (m, ((𝑚𝑚  𝑛𝑛 ), ((𝑚𝑚  𝑛𝑛 ), (𝑚𝑚  𝑛𝑛 )))) (4.1.4),  

or 

(Q, R) (4.1.5), 

where Q – any, R – any structure, R could be anything can be anything, not just structure. In this case, (4.1.5) can be used as another type 

of transformation from Q to R. fRprt-self structures in themselves of the eighth type can be formed for any other structure, not necessarily 

fRprt, only by necessarily reducing the number of elements in the structure, in particular, using form 

𝑤𝑤𝑚𝑚1    𝑚𝑚𝑛𝑛 =  𝑚𝑚   𝑚𝑚       𝑚𝑚𝑛𝑛 1          (4.2) 

Structures more complex than    𝑦̃𝑦   𝑥̃𝑥  can be introduced. For example, through a forms that generalizes (1): 

𝑤𝑤   =            (4.3) 

 

Insert Figure: 

 

where A is fuzzy compressed (fuzzy fits) in C in the fuzzy compression fuzzy structure B in C (i.e. in the fuzzy structure fDprt
 
µ
 

     or 

through the more general forms that generalizes (4.2): 

𝑤𝑤 1  … 𝑛𝑛 =               𝑛𝑛            (4.8) 

and corresponding generalizations of (4.8) on (4.4) - (4.7), etc. 

(4.3), (4.8) are represented through the usual 2-bond. Science is the discipline of 2-connections, since everything in science is carried out 

through 2-connected logic, quantum logic is also a projection of 3-connected logic onto 2-connected logic. (4.4) - (4.7) schematically 

interpret the fuzzy formation of fuzzy fRprt-self structure through a pseudo 3-connected form with a 2-connected form. The ideology of 

fRprt and     𝑦̃𝑦   𝑥̃𝑥   can be used for programming. 

 

4.2 Remark 2 

Fuzzy self, in particular, according to a fuzzy form- fuzzy analogue of the form of type (1) [1]: 

(1| 1, (2| 2 ,1| 3 )), (1*) 

 i (i=1,2,3)– the fuzziness of the indicated positions. For example 

1) fuzzy forming from element with fuzziness  in the form (2,1): (1| , (2 ,1 ))  

2) fuzzy forming from element in the form (2,1) with fuzziness : (1, (2 ,1)|  )  

3) fuzzy formation of partial self in the form (1) [1] with fuzziness : (1, (2 ,1))|   

4) It is also possible to generalize the other remaining forms (4.1.1) – (4.8) to fuzzy forms 

5) etc. 

Here are some of the fuzzy fRprt-program operators. 

1. Simultaneous fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   of the expression𝑠𝑠 𝑝̃𝑝=(p1|µ𝑝̃𝑝(p1), p2|µ𝑝̃𝑝(p2), …, pn|µ𝑝̃𝑝(pn)) to the variables 𝑥̃𝑥=(x1|µ ̃(x1), x2|µ ̃(x2), …, 

xn|µ ̃(xn)). This is implemented via fRprt
𝑝̃𝑝
 

{𝑥̃𝑥}
. 

2. Simultaneous R = fuzzy checking with fuzziness   by the fuzzy set of conditions 𝑔̃𝑔=(g1|µ ̃(g1), g2|µ ̃(g2), …, gn|µ ̃(gn)) for the 

fuzzy set of expressions  ̃=(B1|µ ̃(B1), B2|µ ̃(B2), …, Bn|µ ̃(Bn)). Implemented via  fRprt
 ̃
 
 ̃

 , where  ̃ can be anything. 

3. Similarly for fuzzy loop operators and others.  

     – fuzzy software operators will differ only just because aggregates 𝑥̃𝑥 𝑝̃𝑝   ̃ 𝑔̃𝑔 will be formed from corresponding fRprt-program 

operators in form (1), for more complex operators in forms (4.2) - (4.8), (1*) and analogs of forms (4.2) - (4.8) by type (1*).  

For example, fRprt
 

𝑔𝑔{   }
 

  is the fuzzy fRprt-self structure with measure of fuzziness µ of the second type if 𝑔𝑔{   } is a frprogram 

capable of fuzzy generating R with measure of fuzziness µ from S. 

 The example of self-frprogram of the first type is  

fRprt
{ f prt

𝑝̃𝑝
 
{𝑥̃𝑥}

 f prt
 ̃
 
 ̃
    f prt

 
 
 
 }

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑤𝑤

. 

The example of frprt-program for fRmnsprt- fuzzy analogue of SmnSprt [14]: 

f prt
𝑝̃𝑝
 
{𝑥̃𝑥}

 - fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   of 𝑝̃𝑝 to 𝑥̃𝑥  

fRprt
𝑡𝑡𝑡𝑡
 
𝑔𝑔

 , where P - fuzzy assigning target weight 𝑡𝑡𝑡𝑡 to fuzzy g with measure of fuzziness µ. 

fRprt
{𝑞𝑞}𝑤𝑤
 

   mnsprt   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
  , where S - fRmnsprt   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 for fuzzy {𝑞𝑞}𝑤𝑤 with measure of fuzziness µ. 

 

4.3 fRprt- Coding 

fRprt-coding with measure of fuzziness µ: 1) fuzzy set A to fuzzy set B, 2) fuzzy set A to a point q, where the elements of the fuzzy sets 

A, B can be continuous. For example, fRprt
 
 
 

, where Q - fRprt-coding. 

There are fRprt-coding, fRprt-translation, fRprt-realize of freprograms and fprograms from the archives without extraction theirs 

 

4.4 fRelf- Coding 

fRelf-coding with measure of fuzziness µ: 1) fuzzy set A to set fuzzy A, i.e. fuzzy A on itself 2) fuzzy set A to a point q in form (1), 

where the elements of the fuzzy sets A, B can be continuous. For example, fRprt
 
 
 

, 

One of the central departments of the control system should be a computer system of the usual type of the desired level. In symbiosis with 

fRprt-Networks, it will provide a holistic operation of the control system in three modes: conventional serial through a conventional type 

computer system, direct parallel through fRprt-Networks and series-parallel. Codes from a conventional type computer system will be 

used via fRprt -connectors in fRprt - coding, for example: fRprt
{ H     }
  

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
. UHF AC field activation is used.  

 

4.5 Dynamic fRprt and         Programming  

The ideology of dynamic fRprt and     𝑡𝑡   can be used for programming:  
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4.4 fRelf- Coding

    – fuzzy software operators will differ only just because aggregates 𝑥̃𝑥 𝑝̃𝑝   ̃ 𝑔̃𝑔 will be formed from corresponding fRprt-program 

operators in form (1), for more complex operators in forms (4.2) - (4.8), (1*) and analogs of forms (4.2) - (4.8) by type (1*).  

For example, fRprt
 

𝑔𝑔{   }
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capable of fuzzy generating R with measure of fuzziness µ from S. 

 The example of self-frprogram of the first type is  

fRprt
{ f prt

𝑝̃𝑝
 
{𝑥̃𝑥}

 f prt
 ̃
 
 ̃
    f prt

 
 
 
 }

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑤𝑤

. 

The example of frprt-program for fRmnsprt- fuzzy analogue of SmnSprt [14]: 

f prt
𝑝̃𝑝
 
{𝑥̃𝑥}

 - fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   of 𝑝̃𝑝 to 𝑥̃𝑥  

fRprt
𝑡𝑡𝑡𝑡
 
𝑔𝑔

 , where P - fuzzy assigning target weight 𝑡𝑡𝑡𝑡 to fuzzy g with measure of fuzziness µ. 

fRprt
{𝑞𝑞}𝑤𝑤
 

   mnsprt   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
  , where S - fRmnsprt   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 for fuzzy {𝑞𝑞}𝑤𝑤 with measure of fuzziness µ. 
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fRprt-coding with measure of fuzziness µ: 1) fuzzy set A to fuzzy set B, 2) fuzzy set A to a point q, where the elements of the fuzzy sets 

A, B can be continuous. For example, fRprt
 
 
 

, where Q - fRprt-coding. 
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fRprt-Networks, it will provide a holistic operation of the control system in three modes: conventional serial through a conventional type 

computer system, direct parallel through fRprt-Networks and series-parallel. Codes from a conventional type computer system will be 

used via fRprt -connectors in fRprt - coding, for example: fRprt
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4.5 Dynamic fRprt and         Programming  

The ideology of dynamic fRprt and     𝑡𝑡   can be used for programming:  
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The ideology of ftprR and      - fuzzy analogues of tS and 𝑡𝑡    from [8] can be used for programming. Here are some of the ftprR-

program operators. 

1. Simultaneous expelling fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   of the expression𝑠𝑠 𝑝̃𝑝=(p1|µ𝑝̃𝑝(p1), p2|µ𝑝̃𝑝(p2), …, pn|µ𝑝̃𝑝(pn)) from the variables 𝑥̃𝑥=(x1|µ ̃(x1), 

x2|µ ̃(x2), …, xn|µ ̃(xn)). This is implemented via  
𝑥̃𝑥
 
{𝑝̃𝑝}

fRprt. 

2. Simultaneous expelling R = fuzzy checking with fuzziness   by the fuzzy set of conditions 𝑔̃𝑔=(g1|µ ̃(g1), g2|µ ̃(g2), …, gn|µ ̃(gn)) 

for the fuzzy set of expressions  ̃=(B1|µ ̃(B1), B2|µ ̃(B2), …, Bn|µ ̃(Bn)).   It’s implemented through 
 ̃
 
 ̃

 fRprt, where  ̃ can be anything. 

3. Similarly for loop operators and others.  

      – fuzzy software operators will differ only just because aggregates 𝑥̃𝑥 𝑝̃𝑝   ̃ 𝑔̃𝑔 will be formed from corresponding ftprD program 

operators in form (4.1), for more complex operators in forms (4.2) - (4.8), (1*) and analogs of forms (4.2) - (4.8) by type (1*).  

Consider hierarchical ftprR-program operator 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

 prt = {  
{ }
µ

 −    
ffSprt

    −     
}, where D is oself-(fuzzy set) for fuzzy      , where action Q- contain. 

 

4.7 Dynamic ftprR and          Programming at Time q 

The ideology of ftprR and f   f can be used for dynamic programming. Here are some of the ftprR-dynamic programming operators. 

1. The process of simultaneous expelling fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  of the expressions 𝑝𝑝 𝑡𝑡 ̃=(p1(t)|µ𝑝𝑝 𝑡𝑡 ̃(p1(t)), p2(t)|µ𝑝𝑝 𝑡𝑡 ̃(p2(t)), …, 

pn(t)|µ𝑝𝑝 𝑡𝑡 ̃(pn(t))) from the variables 𝑥𝑥 𝑡𝑡 ̃=(x1(t)|µ  𝑡𝑡 ̃(x1(t)), x2(t)|µ ̃ 𝑡𝑡 (x2(t)), …, xn(t)|µ  𝑡𝑡 ̃(xn(t))). This is implemented via  
𝑥𝑥 𝑡𝑡 ̃
  𝑡𝑡 
{𝑝𝑝 𝑡𝑡 ̃}

fRprt(t). 

2. The process of simultaneous expelling R(t) = fuzzy checking with fuzziness (t)  by the fuzzy set of conditions  

𝑔𝑔 𝑡𝑡 ̃=(g1(t)|µ  𝑡𝑡 ̃(g1(t)), g2(t)|µ ̃ 𝑡𝑡 (g2(t)), …, gn(t)|µ  𝑡𝑡 ̃(gn(t))) for the fuzzy set of expressions   𝑡𝑡 ̃=(B1(t)|µ  𝑡𝑡 ̃(B1(t)), B2(t)|µ ̃ 𝑡𝑡 (B2(t)), …, 

Bn(t)|µ  𝑡𝑡 ̃(Bn(t)))  is implemented through 
  𝑡𝑡 ̃
  𝑡𝑡 
  𝑡𝑡 ̃

fRprt(t), where   𝑡𝑡 ̃ can be anything. 

3.Similarly for loop operators and others.  

f    t f – fuzzy software operators will differ only just because aggregates 𝑥𝑥 𝑡𝑡 ̃ 𝑝𝑝 𝑡𝑡 ̃   𝑡𝑡  ̃𝑔𝑔 𝑡𝑡 ̃ will be formed from corresponding 

processes ftprR(t) for above mentioned programming operators through form (4.1) or form (4.2) - (4.8), (1*) and analogs of forms (4.2) - 

(4.8) by type (1*) for more complex operators. 

Consider hierarchical dynamic ftprR-program operator:  

  𝑞𝑞 
   𝑡𝑡𝑡𝑡𝑡𝑡𝑡     

  𝑞𝑞 
f prt q =

{
 

   𝑡𝑡 𝑞𝑞  1    𝑞𝑞    𝑞𝑞   
{ }
µ

  𝑞𝑞 −   𝑞𝑞    𝑞𝑞 
ffSprt q 

 (  𝑞𝑞 −   𝑞𝑞    𝑞𝑞 ) }
 

 
, where action Q- contain. 

fR1epr -program operators (form 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 fR1prt
 

   𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

     - fuzzy analogue of    
 𝑡𝑡   [3])) 

For example, 
𝑥̃𝑥
 
{𝑝̃𝑝}

fR1prt
 ̃
 
 ̃

, where simultaneous expelling fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   of the expression𝑠𝑠 𝑝̃𝑝=(p1|µ𝑝̃𝑝(p1), p2|µ𝑝̃𝑝(p2), …, pn|µ𝑝̃𝑝(pn)) from the 

variables 𝑥̃𝑥=(x1|µ ̃(x1), x2|µ ̃(x2), …, xn|µ ̃(xn)) and simultaneous R = fuzzy checking with fuzziness   by the fuzzy set of conditions 

𝑔̃𝑔=(g1|µ ̃(g1), g2|µ ̃(g2), …, gn|µ ̃(gn)) for the fuzzy set of expressions  ̃=(B1|µ ̃(B1), B2|µ ̃(B2), …, Bn|µ ̃(Bn)),  ̃ can be anything. 

The examples:   

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

fR1prt
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 can be interpreted as a ( 𝑠𝑠
 𝑒𝑒𝑒𝑒𝑒

𝑜𝑜𝑠𝑠 𝑒𝑒𝑒𝑒𝑒)-fdprogram operator.   
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

fR1prt
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 sample ( 𝑠𝑠
 𝑒𝑒𝑒𝑒𝑒

𝑜𝑜𝑠𝑠 𝑒𝑒𝑒𝑒𝑒)-

frprogram structure example. 

Consider hierarchical dynamic fR1epr-program operator: (form 

  
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

f  prt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

     

  
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 −  

f  prt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

     
 .     

fReprt1- program operators (form  
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

fR1prt
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

   - fuzzy analogue of    
 𝑡𝑡   [4])) 



   Volume 3 | Issue 9 | 20J Math Techniques Comput Math, 2024

The ideology of ftprR and      - fuzzy analogues of tS and 𝑡𝑡    from [8] can be used for programming. Here are some of the ftprR-

program operators. 

1. Simultaneous expelling fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   of the expression𝑠𝑠 𝑝̃𝑝=(p1|µ𝑝̃𝑝(p1), p2|µ𝑝̃𝑝(p2), …, pn|µ𝑝̃𝑝(pn)) from the variables 𝑥̃𝑥=(x1|µ ̃(x1), 

x2|µ ̃(x2), …, xn|µ ̃(xn)). This is implemented via  
𝑥̃𝑥
 
{𝑝̃𝑝}

fRprt. 

2. Simultaneous expelling R = fuzzy checking with fuzziness   by the fuzzy set of conditions 𝑔̃𝑔=(g1|µ ̃(g1), g2|µ ̃(g2), …, gn|µ ̃(gn)) 

for the fuzzy set of expressions  ̃=(B1|µ ̃(B1), B2|µ ̃(B2), …, Bn|µ ̃(Bn)).   It’s implemented through 
 ̃
 
 ̃

 fRprt, where  ̃ can be anything. 

3. Similarly for loop operators and others.  

      – fuzzy software operators will differ only just because aggregates 𝑥̃𝑥 𝑝̃𝑝   ̃ 𝑔̃𝑔 will be formed from corresponding ftprD program 

operators in form (4.1), for more complex operators in forms (4.2) - (4.8), (1*) and analogs of forms (4.2) - (4.8) by type (1*).  

Consider hierarchical ftprR-program operator 

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

 prt = {  
{ }
µ

 −    
ffSprt

    −     
}, where D is oself-(fuzzy set) for fuzzy      , where action Q- contain. 

 

4.7 Dynamic ftprR and          Programming at Time q 

The ideology of ftprR and f   f can be used for dynamic programming. Here are some of the ftprR-dynamic programming operators. 

1. The process of simultaneous expelling fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡  of the expressions 𝑝𝑝 𝑡𝑡 ̃=(p1(t)|µ𝑝𝑝 𝑡𝑡 ̃(p1(t)), p2(t)|µ𝑝𝑝 𝑡𝑡 ̃(p2(t)), …, 

pn(t)|µ𝑝𝑝 𝑡𝑡 ̃(pn(t))) from the variables 𝑥𝑥 𝑡𝑡 ̃=(x1(t)|µ  𝑡𝑡 ̃(x1(t)), x2(t)|µ ̃ 𝑡𝑡 (x2(t)), …, xn(t)|µ  𝑡𝑡 ̃(xn(t))). This is implemented via  
𝑥𝑥 𝑡𝑡 ̃
  𝑡𝑡 
{𝑝𝑝 𝑡𝑡 ̃}

fRprt(t). 

2. The process of simultaneous expelling R(t) = fuzzy checking with fuzziness (t)  by the fuzzy set of conditions  

𝑔𝑔 𝑡𝑡 ̃=(g1(t)|µ  𝑡𝑡 ̃(g1(t)), g2(t)|µ ̃ 𝑡𝑡 (g2(t)), …, gn(t)|µ  𝑡𝑡 ̃(gn(t))) for the fuzzy set of expressions   𝑡𝑡 ̃=(B1(t)|µ  𝑡𝑡 ̃(B1(t)), B2(t)|µ ̃ 𝑡𝑡 (B2(t)), …, 

Bn(t)|µ  𝑡𝑡 ̃(Bn(t)))  is implemented through 
  𝑡𝑡 ̃
  𝑡𝑡 
  𝑡𝑡 ̃

fRprt(t), where   𝑡𝑡 ̃ can be anything. 

3.Similarly for loop operators and others.  

f    t f – fuzzy software operators will differ only just because aggregates 𝑥𝑥 𝑡𝑡 ̃ 𝑝𝑝 𝑡𝑡 ̃   𝑡𝑡  ̃𝑔𝑔 𝑡𝑡 ̃ will be formed from corresponding 

processes ftprR(t) for above mentioned programming operators through form (4.1) or form (4.2) - (4.8), (1*) and analogs of forms (4.2) - 

(4.8) by type (1*) for more complex operators. 

Consider hierarchical dynamic ftprR-program operator:  

  𝑞𝑞 
   𝑡𝑡𝑡𝑡𝑡𝑡𝑡     

  𝑞𝑞 
f prt q =

{
 

   𝑡𝑡 𝑞𝑞  1    𝑞𝑞    𝑞𝑞   
{ }
µ

  𝑞𝑞 −   𝑞𝑞    𝑞𝑞 
ffSprt q 

 (  𝑞𝑞 −   𝑞𝑞    𝑞𝑞 ) }
 

 
, where action Q- contain. 

fR1epr -program operators (form 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 fR1prt
 

   𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

     - fuzzy analogue of    
 𝑡𝑡   [3])) 

For example, 
𝑥̃𝑥
 
{𝑝̃𝑝}

fR1prt
 ̃
 
 ̃

, where simultaneous expelling fuzzy   𝑡𝑡𝑡𝑡𝑡𝑡𝑡   of the expression𝑠𝑠 𝑝̃𝑝=(p1|µ𝑝̃𝑝(p1), p2|µ𝑝̃𝑝(p2), …, pn|µ𝑝̃𝑝(pn)) from the 

variables 𝑥̃𝑥=(x1|µ ̃(x1), x2|µ ̃(x2), …, xn|µ ̃(xn)) and simultaneous R = fuzzy checking with fuzziness   by the fuzzy set of conditions 

𝑔̃𝑔=(g1|µ ̃(g1), g2|µ ̃(g2), …, gn|µ ̃(gn)) for the fuzzy set of expressions  ̃=(B1|µ ̃(B1), B2|µ ̃(B2), …, Bn|µ ̃(Bn)),  ̃ can be anything. 

The examples:   

 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

fR1prt
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 can be interpreted as a ( 𝑠𝑠
 𝑒𝑒𝑒𝑒𝑒

𝑜𝑜𝑠𝑠 𝑒𝑒𝑒𝑒𝑒)-fdprogram operator.   
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

fR1prt
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 sample ( 𝑠𝑠
 𝑒𝑒𝑒𝑒𝑒

𝑜𝑜𝑠𝑠 𝑒𝑒𝑒𝑒𝑒)-

frprogram structure example. 

Consider hierarchical dynamic fR1epr-program operator: (form 

  
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

f  prt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

     

  
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 −  

f  prt 
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

     
 .     

fReprt1- program operators (form  
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

fR1prt
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

   - fuzzy analogue of    
 𝑡𝑡   [4])) 

4.7 Dynamic ftprR and fR16 (t)f Programming at Time q
The ideology of ftprR and fR16 f can be used for dynamic programming. Here are some of the ftprR-dynamic programming operators.

1.  
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

fR1prt
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 - sample ( 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)
-frprogram structure example. 

  𝑡𝑡𝑡𝑡 
{     𝑞𝑞

𝑞𝑞( 𝑓𝑓𝑓1   𝑡𝑡  ) 𝑡𝑡𝑞𝑞( 𝑓𝑓𝑓1   𝑡𝑡  )
 𝑞𝑞       𝑡𝑡 𝑟𝑟

{ 𝑙𝑙 𝑟𝑟}
}
 can be interpreted as a fprogram operator.  

     
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

fR1prt
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  can be interpreted as  ( 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)
-frprogram operator,   

hierarchical fuzzy Set1-program operators: 

1.        𝑡𝑡  
      

𝑅𝑅  𝑡𝑡    
       

2. (     
 𝑡𝑡   
      

𝑅𝑅  𝑡𝑡  
)  

frprogram structure example, where the assemblage point  𝑟𝑟 is the cursor, it is quite complex self—frprogram: 

3.   fR1prt
{    𝑝𝑝𝑝𝑝 𝑊𝑊𝑞𝑞

𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 )

𝑡𝑡𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 − )

𝐸𝐸𝑞𝑞  f  prt
{𝐸𝐸  𝑙𝑙𝑑𝑑𝑟𝑟}
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 𝑟𝑟(𝐸𝐸𝑖𝑖𝑖𝑖𝑙𝑙 𝑟𝑟)

 }

 
𝑉𝑉

  

4. fR1prt
{    𝑝𝑝𝑝𝑝 𝑊𝑊𝑞𝑞

𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
  )

𝑡𝑡𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 − )

𝐸𝐸𝑞𝑞  f  prt
{𝐸𝐸  𝑙𝑙𝑑𝑑𝑟𝑟}
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 𝑟𝑟(𝐸𝐸𝑖𝑖𝑖𝑖𝑙𝑙 𝑟𝑟)

 }

 
𝑉𝑉

  can be interpreted as a fRpt program 

operator.  

Appendix 

Remark. Energy of a living organism: 

 fr1g(r, a(𝐸𝐸𝑞𝑞)) = fR1prt
{    𝑝𝑝𝑝𝑝 𝑊𝑊𝑞𝑞

𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 )

𝑡𝑡𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 − )

𝐸𝐸𝑞𝑞  f  prt
{𝐸𝐸  𝑙𝑙𝑑𝑑𝑟𝑟}
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 𝑟𝑟(𝐸𝐸𝑖𝑖𝑖𝑖𝑙𝑙 𝑟𝑟)

 }

 
𝑉𝑉

  (**) 

Energy of a living organism of a person: 

fR1prt
{    𝑝𝑝𝑝𝑝 𝑊𝑊𝑞𝑞

𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 )

𝑡𝑡𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 − )

𝐸𝐸𝑞𝑞  f  prt
{𝐸𝐸  𝑙𝑙𝑑𝑑𝑟𝑟}
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠(𝐸𝐸𝑖𝑖𝑖𝑖𝑙𝑙 𝑟𝑟) 
 }

 
𝑉𝑉

 (***) 

 
   𝑡𝑡𝑡𝑡𝑡𝑡𝑡     

 
f  prt

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
     -internal energy of a living organism, q- a gap in the energy cocoon of a living organism, r-the position 

of the assemblage point dr on the energy cocoon of a living organism, Wq- energy prominences from the gap in the cocoon of a living 

organism, Eq-external energy entering the gap in the cocoon of a living organism, 𝐸𝐸  𝑙𝑙𝑑𝑑𝑟𝑟 - a bundle of fibers of external energy self-

capacities from outside the cocoon, collected at the point of assembly of the cocoon of a living organism, 𝐸𝐸 𝑛𝑛𝑙𝑙𝑑𝑑𝑟𝑟- a bundle of fibers of 

external energy self-capacities from inside the cocoon, collected at the point of assembly of the cocoon of a living organism in the same 

position r of the assemblage point dr. dr  is the subject of identifying the energy fibers of the subtle energy of the Universe in position r 

both outside and inside the cocoon. 

(**), (***) can be interpreted as the program operators.  

 

Entire neural network as instantaneous simultaneous ffRAM in ffSprt-elements and fself- elements. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠…
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

, 

ff1  I          ff  I −1
1     …

ff1 I −11 𝑓𝑓𝑓𝑓  
,  𝑠𝑠𝑠𝑠𝑠∞ 𝑠𝑠𝑠𝑠𝑠∞…𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∞  When activated in a neural network, the entire neural network becomes a working 

memory. Use of fself-energy as fuzzy activation or from outside. fdQ0= fRprt

ffSprt
   𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

µ
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 

 

ffSprt
   𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

µ
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

  → self-ffRAM, 
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1.  
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

fR1prt
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 - sample ( 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)
-frprogram structure example. 

  𝑡𝑡𝑡𝑡 
{     𝑞𝑞

𝑞𝑞( 𝑓𝑓𝑓1   𝑡𝑡  ) 𝑡𝑡𝑞𝑞( 𝑓𝑓𝑓1   𝑡𝑡  )
 𝑞𝑞       𝑡𝑡 𝑟𝑟

{ 𝑙𝑙 𝑟𝑟}
}
 can be interpreted as a fprogram operator.  

     
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

fR1prt
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  can be interpreted as  ( 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)
-frprogram operator,   

hierarchical fuzzy Set1-program operators: 

1.        𝑡𝑡  
      

𝑅𝑅  𝑡𝑡    
       

2. (     
 𝑡𝑡   
      

𝑅𝑅  𝑡𝑡  
)  

frprogram structure example, where the assemblage point  𝑟𝑟 is the cursor, it is quite complex self—frprogram: 

3.   fR1prt
{    𝑝𝑝𝑝𝑝 𝑊𝑊𝑞𝑞

𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 )

𝑡𝑡𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 − )

𝐸𝐸𝑞𝑞  f  prt
{𝐸𝐸  𝑙𝑙𝑑𝑑𝑟𝑟}
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 𝑟𝑟(𝐸𝐸𝑖𝑖𝑖𝑖𝑙𝑙 𝑟𝑟)

 }

 
𝑉𝑉

  

4. fR1prt
{    𝑝𝑝𝑝𝑝 𝑊𝑊𝑞𝑞

𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
  )

𝑡𝑡𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 − )

𝐸𝐸𝑞𝑞  f  prt
{𝐸𝐸  𝑙𝑙𝑑𝑑𝑟𝑟}
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 𝑟𝑟(𝐸𝐸𝑖𝑖𝑖𝑖𝑙𝑙 𝑟𝑟)

 }

 
𝑉𝑉

  can be interpreted as a fRpt program 

operator.  

Appendix 

Remark. Energy of a living organism: 

 fr1g(r, a(𝐸𝐸𝑞𝑞)) = fR1prt
{    𝑝𝑝𝑝𝑝 𝑊𝑊𝑞𝑞

𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 )

𝑡𝑡𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 − )

𝐸𝐸𝑞𝑞  f  prt
{𝐸𝐸  𝑙𝑙𝑑𝑑𝑟𝑟}
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 𝑟𝑟(𝐸𝐸𝑖𝑖𝑖𝑖𝑙𝑙 𝑟𝑟)

 }

 
𝑉𝑉

  (**) 

Energy of a living organism of a person: 

fR1prt
{    𝑝𝑝𝑝𝑝 𝑊𝑊𝑞𝑞

𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 )

𝑡𝑡𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 − )

𝐸𝐸𝑞𝑞  f  prt
{𝐸𝐸  𝑙𝑙𝑑𝑑𝑟𝑟}
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠(𝐸𝐸𝑖𝑖𝑖𝑖𝑙𝑙 𝑟𝑟) 
 }

 
𝑉𝑉

 (***) 

 
   𝑡𝑡𝑡𝑡𝑡𝑡𝑡     

 
f  prt

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
     -internal energy of a living organism, q- a gap in the energy cocoon of a living organism, r-the position 

of the assemblage point dr on the energy cocoon of a living organism, Wq- energy prominences from the gap in the cocoon of a living 

organism, Eq-external energy entering the gap in the cocoon of a living organism, 𝐸𝐸  𝑙𝑙𝑑𝑑𝑟𝑟 - a bundle of fibers of external energy self-

capacities from outside the cocoon, collected at the point of assembly of the cocoon of a living organism, 𝐸𝐸 𝑛𝑛𝑙𝑙𝑑𝑑𝑟𝑟- a bundle of fibers of 

external energy self-capacities from inside the cocoon, collected at the point of assembly of the cocoon of a living organism in the same 

position r of the assemblage point dr. dr  is the subject of identifying the energy fibers of the subtle energy of the Universe in position r 

both outside and inside the cocoon. 

(**), (***) can be interpreted as the program operators.  

 

Entire neural network as instantaneous simultaneous ffRAM in ffSprt-elements and fself- elements. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠…
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

, 

ff1  I          ff  I −1
1     …

ff1 I −11 𝑓𝑓𝑓𝑓  
,  𝑠𝑠𝑠𝑠𝑠∞ 𝑠𝑠𝑠𝑠𝑠∞…𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∞  When activated in a neural network, the entire neural network becomes a working 

memory. Use of fself-energy as fuzzy activation or from outside. fdQ0= fRprt

ffSprt
   𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

µ
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 

 

ffSprt
   𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

µ
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

  → self-ffRAM, 
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1.  
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

fR1prt
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

 - sample ( 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)
-frprogram structure example. 

  𝑡𝑡𝑡𝑡 
{     𝑞𝑞

𝑞𝑞( 𝑓𝑓𝑓1   𝑡𝑡  ) 𝑡𝑡𝑞𝑞( 𝑓𝑓𝑓1   𝑡𝑡  )
 𝑞𝑞       𝑡𝑡 𝑟𝑟

{ 𝑙𝑙 𝑟𝑟}
}
 can be interpreted as a fprogram operator.  

     
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
 

fR1prt
 

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

  can be interpreted as  ( 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)
-frprogram operator,   

hierarchical fuzzy Set1-program operators: 

1.        𝑡𝑡  
      

𝑅𝑅  𝑡𝑡    
       

2. (     
 𝑡𝑡   
      

𝑅𝑅  𝑡𝑡  
)  

frprogram structure example, where the assemblage point  𝑟𝑟 is the cursor, it is quite complex self—frprogram: 

3.   fR1prt
{    𝑝𝑝𝑝𝑝 𝑊𝑊𝑞𝑞

𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 )

𝑡𝑡𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 − )

𝐸𝐸𝑞𝑞  f  prt
{𝐸𝐸  𝑙𝑙𝑑𝑑𝑟𝑟}
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 𝑟𝑟(𝐸𝐸𝑖𝑖𝑖𝑖𝑙𝑙 𝑟𝑟)

 }

 
𝑉𝑉

  

4. fR1prt
{    𝑝𝑝𝑝𝑝 𝑊𝑊𝑞𝑞

𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
  )

𝑡𝑡𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 − )

𝐸𝐸𝑞𝑞  f  prt
{𝐸𝐸  𝑙𝑙𝑑𝑑𝑟𝑟}
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 𝑟𝑟(𝐸𝐸𝑖𝑖𝑖𝑖𝑙𝑙 𝑟𝑟)

 }

 
𝑉𝑉

  can be interpreted as a fRpt program 

operator.  

Appendix 

Remark. Energy of a living organism: 

 fr1g(r, a(𝐸𝐸𝑞𝑞)) = fR1prt
{    𝑝𝑝𝑝𝑝 𝑊𝑊𝑞𝑞

𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 )

𝑡𝑡𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 − )

𝐸𝐸𝑞𝑞  f  prt
{𝐸𝐸  𝑙𝑙𝑑𝑑𝑟𝑟}
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 𝑟𝑟(𝐸𝐸𝑖𝑖𝑖𝑖𝑙𝑙 𝑟𝑟)

 }

 
𝑉𝑉

  (**) 

Energy of a living organism of a person: 

fR1prt
{    𝑝𝑝𝑝𝑝 𝑊𝑊𝑞𝑞

𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 )

𝑡𝑡𝑞𝑞
( 

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄 −1

𝐴𝐴
f 1prt

𝐴𝐴
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑄𝑄

𝐴𝐴
 − )

𝐸𝐸𝑞𝑞  f  prt
{𝐸𝐸  𝑙𝑙𝑑𝑑𝑟𝑟}
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠(𝐸𝐸𝑖𝑖𝑖𝑖𝑙𝑙 𝑟𝑟) 
 }

 
𝑉𝑉

 (***) 

 
   𝑡𝑡𝑡𝑡𝑡𝑡𝑡     

 
f  prt

 
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
     -internal energy of a living organism, q- a gap in the energy cocoon of a living organism, r-the position 
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5. Rprt- Networks  

A. Galushkin's comprehensive monograph covers all aspects of networks, but traditional approaches go through classical mathematics, 

mainly through the usual correspondence operators [17]. Here we consider a different approach - through a new mathematical process 

with containment operators, which, although they can be interpreted as the result of some correspondence operators, are not themselves 

correspondence operators. Containment operators are more convenient for networks. Also, the main emphasis was placed on using 

processors operating using triodes, which are generally not used in Rprt-networks. Rprt networks (SmnRprt) are a Rprt structure that can 

be built for the required weights, the implementation of which will be carried out using a short-pulse laser to generate attosecond pulses 

of light. Rprt-OS (Rprt operating system) uses Rprt-coding and Rprt-translation. In the first one, coding is carried out through a 2-

dimensional matrix-row (a, b), where the number b is the code of the action, and the number a is the code of the object of this action. 

Rprt-coding (or self-coding) is implemented through a matrix consisting of 2 columns (in the continuous case, two intervals of numbers). 

Here, the source encoding is used for all matrix rows simultaneously. Rprt-translation is carried out by inversion. In this case, self-type 

coding and self- type translation by (1.6) or (1.11), (1.18) will be more stable. The set of the target weights f = (f1, f2, …, fn) in Rprt 
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optimization. They are described in detail by Galushkin [17]. We will touch on the difference of this only for hierarchical complex 
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     - Rprt2- node of mnRprt in range D, thus D becomes capacity of itself in itself as an element for mnRprt. For 

our networks, it is sufficient to use Rprt2- nodes of mnRprt, but self-level is higher in living organisms, particularly Rprtn-, n≥3. The target 

structure or the corresponding program enters the target unit using a short-pulse laser to generate attosecond pulses of light.. After that, all 

networks or parts of them are activated according to the indicative goal. It may appear that we are leaving the network ideology, but these 

networks are a complex hierarchy of different levels, like living organisms. 

 

5.1 Remark 

Traditional scientific approaches through classical mathematics make it possible to describe only at the usual energy level. Here we 

consider an approach that makes describing processes with finer energies possible. mnRprt contains  
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, 𝑟𝑟eprogram−executing program in Rprt-OS. Rprt-OS (or Self-type of Rprt OS) is based on Rprt-assembly language 

(or Self-type of Rprt assembly language), which is based on assembly language through Rprt-approach in turn, if the base of elements of 

Rprt-networks is sufficient. The reprograms are in Rprt-programming environments (or Self-type of Rprt programming environments), 

but this question and Rprt-networks base will be considered in the following articles.  In particular, reprograms may contain Rprt- 

programming operators. In mnRprt cores, the constant memory Rprt with correspondent reprograms depending on mnRprt. 

The OS (operating system) and the principles and modes of operation of the Rprt-networks for this programming are interesting. But this 

is already the material for the next publications. 
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networks. The same simple executing programs are in the cores of simple artificial neurons of type Rprt (designation -   mnRprt) for 

simple information processing. More complex executing programs are used for mnRprt nodes. Rprt-threshold element –
𝑏𝑏

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡     
{𝑞𝑞𝑞𝑞}

Rprt 𝑡𝑡  
{ 𝑥𝑥}

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑏𝑏

  , Q there is a containment operation there is a containment operation, b- artificial neurons of type Rprt 

(designation -   mnRprt), x= (x1, x2,  …, xn)  are the values of the initial signals, a=(a1,a2,…,an) are the weights of Rprt-synapses and the 

values of the output signals The first level of mnRprt consists of simple mnRprt. The second level of mnRprt consists of Rprt 
{mn prt}
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
    

– Rprt-node of mnRprt in range D, D- capacity for mnRprt node. The third level of mnRprt consists of  

Rprt 
{ prt 

{mn prt}
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
    }

  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

     - Rprt2- node of mnRprt in range D, thus D becomes capacity of itself in itself as an element for mnRprt. For 

our networks, it is sufficient to use Rprt2- nodes of mnRprt, but self-level is higher in living organisms, particularly Rprtn-, n≥3. The target 

structure or the corresponding program enters the target unit using a short-pulse laser to generate attosecond pulses of light.. After that, all 

networks or parts of them are activated according to the indicative goal. It may appear that we are leaving the network ideology, but these 

networks are a complex hierarchy of different levels, like living organisms. 

 

5.1 Remark 

Traditional scientific approaches through classical mathematics make it possible to describe only at the usual energy level. Here we 

consider an approach that makes describing processes with finer energies possible. mnRprt contains  

Rprt 
{𝑟𝑟eprogram   }
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
mn prt

, 𝑟𝑟eprogram−executing program in Rprt-OS. Rprt-OS (or Self-type of Rprt OS) is based on Rprt-assembly language 

(or Self-type of Rprt assembly language), which is based on assembly language through Rprt-approach in turn, if the base of elements of 

Rprt-networks is sufficient. The reprograms are in Rprt-programming environments (or Self-type of Rprt programming environments), 

but this question and Rprt-networks base will be considered in the following articles.  In particular, reprograms may contain Rprt- 

programming operators. In mnRprt cores, the constant memory Rprt with correspondent reprograms depending on mnRprt. 

The OS (operating system) and the principles and modes of operation of the Rprt-networks for this programming are interesting. But this 

is already the material for the next publications. 
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consider an approach that makes describing processes with finer energies possible. mnRprt contains 

(or Self-type of Rprt assembly language), which is based on assembly language through Rprt-approach in turn, if the base of 
elements of Rprt-networks is sufficient. The reprograms are in Rprt-programming environments (or Self-type of Rprt programming 
environments), but this question and Rprt-networks base will be considered in the following articles.  In particular, reprograms may 
contain Rprt- programming operators. In mnRprt cores, the constant memory Rprt with correspondent reprograms depending on 
mnRprt.
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this is already the material for the next publications.

Here is developed a helicopter model without a main and tail rotors based on Rprt – physics and special neural networks with artificial 

neurons operating in normal and Rprt-modes. Let's denote this model through SmnRprt.  To do this, it’s proposed to use mnRprt of 

different levels; for example, for the usual mode, mnRprt serves for the initial processing of signals and the transfer of information to the 

second level, etc., to the nodal center, then checked. In case of an anomaly - local Rprt–mode with the desired "target weight" is realized 

in this section, etc., to the center. In the case of a monster during the test, SmnRprt is activated with the desired "target weight" using a 

short-pulse laser to generate attosecond pulses of light.  Here are realized other tasks also. To reach the self-energy level, the mode Rprt 
Smn prt
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
Smn prt

,   is used. In normal mode, it’s planned to carry out the movement of SmnRprt on jet propulsion by converting the energy of the 

emitted gases into a vortex to obtain additional thrust upwards. For this purpose, a spiral-shaped chute (with "pockets") is arranged at the 

bottom of the SmnRprt for the gases emitted by the jet engine, which first exit through a straight chute connected to the spiral one. There 

is drainage of exhaust gases outside the SmnRprt. SmnRprt is represented by a neural network that extends from the center of one of the 

main clusters of Rprt - artificial neurons to the shell, turning into the body itself. Above the operator's cabin is the central core of the 

neural network and the target block, responsible for performing the "target weights" and auxiliary blocks, the functions and roles of which 

we will discuss further. Next is the space for the movement of the local vortex. The unit responsible for SmnRprt's actions is below the 

operator's cab.  In Rprt – mode, the entire network or its sections are Rprt – activated to perform specific tasks, in particular, with "target 

weights" using a short-pulse laser to generate attosecond pulses of light. In the target, block used Rprt -coding, Rprt-translation for 

activation of all networks to "target weights" simultaneously, then –the reset of this Rprt-coding after activation using a short-pulse laser 

to generate attosecond pulses of light. 

 

Unfortunately, triodes are not suitable for Rprt -neural networks. In the most primitive case, usual separators with corresponding 

resistances and cores for reprograms may be used instead triodes since there is no necessity to unbend the alternating current to direct. 

The Rprt-operative memory belt is disposed around a central core of SmnRprt. There are Rprt-coding, Rprt-translation, and Rprt-realize 

of reprograms and the programs from the archives without extraction, Rprt-coding and Rprt-translation may be used in high-intensity, 

ultra-short optical pulses laser of Nobel laureates 2018-year Gerard Mourou, Donna, Strickland. Rprt – structure or an reprogram if one is 

present of needed «target weight» are taken in target block at Rprt – activation of the networks. Rprt 
Smn prt f
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

  derives SmnRprt to the 

self-level boundary with target weight f. Activation of the entire network is implemented to perform ―target weights‖ using a short-pulse 

laser to generate attosecond pulses of light. 

 You can also try to use higher frequency alternating current and ultraviolet light, which can work with Rprt– structures in Rprt–modes by 

its nature to activate the networks or some of its parts in Rprt–modes and locally using Rprt–mode to perform local tasks. Above high 

frequently alternating current go through mercury bearers. That’s why overheating does not occur. 

 

5.2 Remark 

Hypothesis 1 

Equations for real processes in a non-trivial form can be used to fully or partially interpret the self-level of the process, replacing the equal 

signs with identification signs, and solutions to these equations as a manifestation of this level on the level of objectivity and ordinary 

energies. That is, equations for real processes serve as a definition of the self-level of the process, the definition of self-values (self-

characteristics) of the process through the identification sign, i.e., they are defined (expressed) through themselves. In particular, forms 

(4.1) - (4.8) can be used as forms of identification. Each such singularity creates its own field, the process, the object etc. Much more 

effective than science for working with these singularities will be special Dynamic programming, which we are currently working on to 

create. If we represent an amorphous body with a mathematical structure of self-object  𝑝𝑝𝑝𝑝𝑝𝑝   𝐸𝐸𝑠𝑠
   𝐸𝐸𝑠𝑠, where  𝑝𝑝𝑝𝑝𝑝𝑝  

   - level of objectivity of 

an amorphous object,    𝑝𝑝𝑝𝑝𝑝𝑝   𝐸𝐸𝑠𝑠
  +  𝑝𝑝𝑝𝑝𝑝𝑝  

   𝐸𝐸𝑠𝑠  - the energy of connections between the level of subtle energy  𝑝𝑝𝑝𝑝𝑝𝑝𝐸𝐸𝑠𝑠
𝐸𝐸𝑠𝑠 and the level of 

objectivity. 

Thus, one can try to conventionally represent the mathematical model of the energy structure of an amorphous object as a hierarchical 

dynamic operator  
 𝑝𝑝𝑝𝑝𝑝𝑝𝐸𝐸𝑠𝑠

𝐸𝐸𝑠𝑠

  𝑝𝑝𝑝𝑝𝑝𝑝   𝐸𝐸𝑠𝑠
     𝑝𝑝𝑝𝑝𝑝𝑝  

   𝐸𝐸𝑠𝑠

 𝑝𝑝𝑝𝑝𝑝𝑝  
  

  (5.1)  

Identification at the lower levels of a hierarchical dynamic structure of type (5.1) will lead to the upper level. Let us denote the upper level 

of A by  , the upper level of P by  . Then singularity   →    is the setting for the transformation of A into P. The field of the given 

structure tw is used for the activation of networks. The field can remain in effect until it is executed tw. Here all stages of the structure tw 

can be executed directly in parallel, in particular, an algorithm for solving the desired problem. We will call this field the operational 

activation field. This field will be created according to the structure tw. The pulse structure of a short-pulse laser for generating 
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dynamic operator  
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𝐸𝐸𝑠𝑠

  𝑝𝑝𝑝𝑝𝑝𝑝   𝐸𝐸𝑠𝑠
     𝑝𝑝𝑝𝑝𝑝𝑝  

   𝐸𝐸𝑠𝑠
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  (5.1)  

Identification at the lower levels of a hierarchical dynamic structure of type (5.1) will lead to the upper level. Let us denote the upper level 

of A by  , the upper level of P by  . Then singularity   →    is the setting for the transformation of A into P. The field of the given 

structure tw is used for the activation of networks. The field can remain in effect until it is executed tw. Here all stages of the structure tw 

can be executed directly in parallel, in particular, an algorithm for solving the desired problem. We will call this field the operational 

activation field. This field will be created according to the structure tw. The pulse structure of a short-pulse laser for generating 

You can also try to use higher frequency alternating current and ultraviolet light, which can work with Rprt– structures in Rprt–
modes by its nature to activate the networks or some of its parts in Rprt–modes and locally using Rprt–mode to perform local tasks. 
Above high frequently alternating current go through mercury bearers. That’s why overheating does not occur.

5.2 Remark
Hypothesis 1

attosecond light pulses is close to    I     I      I    , i.e., type    
 𝑡𝑡  , and upon activation it will be induction of same type self, 

which is necessary for the formation of a local assembly point  𝑟𝑟 of external energy fibers 𝐸𝐸𝐸𝐸𝑑𝑑𝑟𝑟. Its locality (position of the assembly 

point r) will be determined by the structure of the magnetic induction of the short-pulse laser pulse for generating attosecond light 

generation through Targetblock SmnSprt [1 - 3], [8].Execution tw will be achieved through setting the assemblage point in the desired 

position r1 to engage the appropriate external energy:  𝑡𝑡
  𝑟𝑟 
𝑟𝑟 𝑡𝑡r1

 𝑟𝑟
  𝑟𝑟 
𝑟𝑟 𝑡𝑡r1

 𝑟𝑟
 . 
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Appendix 

Let us introduce the following notations: 

 A*B= Sp𝑟𝑟𝑟𝑟  , A2 = Self A = 𝑟𝑟𝑟𝑟  ,  
 
  = Rrt 

 
 
 

 = sel 
 
  (A), A3 = Self2A, …, 

 𝑛𝑛
  = Rrt 

 𝑛𝑛
 𝑛𝑛
 𝑛𝑛

 = sel 
 𝑛𝑛
  (A),  An+1 = SelfnA, sel      𝑛𝑛 𝑚𝑚 (A) є 

 𝑟𝑟𝑟𝑟 𝑚𝑚 
𝑛𝑛

 = sel 
𝑛𝑛
𝑚𝑚 (A), sel      𝑛𝑛 𝑚𝑚 𝑘𝑘 (A) є Rrt 

 𝑛𝑛
 𝑚𝑚
 𝑘𝑘

 = sel 
𝑛𝑛 𝑚𝑚 𝑘𝑘

 𝑘𝑘  (A), … etc.  

There is no commutativity here: A*B ≠ B*A. We can consider operator functions: 𝑒𝑒 = 1   
     

     
    , 

     𝑛𝑛 = ∑ (𝑛𝑛𝑘𝑘) 𝑘𝑘 𝑛𝑛 𝑘𝑘
𝑛𝑛

𝑘𝑘  
 ,  1    𝑛𝑛 = 1    

   𝑛𝑛 𝑛𝑛     
     , etc. 

You can consider a more ―hard‖ option: A*B=  𝑝𝑝𝑝𝑝𝑝𝑝  , where   𝑝𝑝𝑝𝑝𝑝𝑝   – operator, containing A in every element of B, A2 = PSelf A 

=  𝑟𝑟𝑟𝑟  , A3 = PSelf2A, …, An+1 = PSelfnA, PSel      𝑛𝑛 𝑚𝑚 (A) є   𝑟𝑟𝑟𝑟 𝑚𝑚 
𝑛𝑛

 = PSel 
𝑛𝑛
𝑚𝑚 (A), …etc. There is no commutativity here: A*B ≠ 

B*A. We can consider operator functions: 𝑒𝑒 = 1   
     

     
    ,      𝑛𝑛 = ∑ (𝑛𝑛𝑘𝑘) 𝑘𝑘 𝑛𝑛 𝑘𝑘

𝑛𝑛

𝑘𝑘  
 ,  1    𝑛𝑛 = 1    

   𝑛𝑛 𝑛𝑛     
   

  , etc. 

Let's introduce √𝑠𝑠𝑠𝑠𝑠𝑠𝑠 as the result of the decision of the equation  𝑟𝑟𝑟𝑟  = self, that is x = √𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , √𝑠𝑠𝑒𝑒𝑙𝑙𝑙  as the result of the decision of 

the equation Rprt 
𝑥𝑥
𝑥𝑥
𝑥𝑥

 = self, that is x = √𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , √self𝑚𝑚𝑛𝑛  as the result of the decision of the equation 𝑥𝑥
𝑛𝑛
𝑚𝑚 = self, self  as the result of the 

decision of the equation 𝑥𝑥
1
  = self, where α is any number , in particular, a negative number etc. The following equality is true: 

 self  (self  ) =self (self   ) = G. In this way one can introduce self-level space. 

 


