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Abstract 
The influence of the secondary process of evaporation of the reaction product on the kinetics of interaction of gases (O2, Cl2, 
NH3, H2O and N2H4 vapors) with the surface of some metals (Cr, Pb, Si, Ge) and compounds (BN, SiO2, SiC) is discussed.  
Also is considered the case when the growth of the scale is preceded by the process of gas etching of the metal surface. A 
general equation is given that describes the scale growth-evaporation kinetic (sample mass change - time) curves during the 
interaction of gases with the surface of metals and compounds. Special cases of parabolic, cubic and fourth degree processes 
are discussed. The kinetics of nitridation of the surface of single-crystaline germanium by ammonia and hydrazine vapors was 
studied in detail. By evaporating the nitride formed on the germanium surface, a film of germanium oxyntride is deposited on 
a substrate located in the cold zone of the reactor. The optical characteristics of these films are studied.
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1. Introduction
This work is a continuation of where the role of reduction of 
the reaction surface and evaporation of scale in the process of 
oxidation of chromium-containing alloys is considered [1]. Here 
we will consider in more detail the influence of the secondary 
process of evaporation (sublimation) on the formal kinetics 
(mass change - time) of the interaction of gases (O2, Cl2, NH3, 
H2O and N2H4 vapors) with some metals and compounds. 
We used data from various works collected, the results of the 
indicated author, as well as your data [2].

The process of scale formation with its simultaneous evaporation 
significantly changes the kinetics of the process. When the overall 

kinetics is determined not by the rate of the chemical reaction 
itself, but by the diffusion of ions in the scale (volume diffusion), 
then the kinetics is parabolic and is called the Tedmon’s process 
(although a similar case was discussed somewhat earlier [3-12]. 
In the case of short-circuit diffusion, cubic kinetics takes place, 
and in the case of local electric fields and volume charges, the 
kinetic law of the fourth degree is realized [13-17].

All of the above is clearly shown in the kinetic dependences of 
the mass gain, which are presented in the figure 1. Here M is 
total mass change per unit area at the time t and m is a specific 
mass gain of oxidized object due to reacted oxigen.
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Figure 1. Kinetic curves: (1) for reaction Cr+2HCl=CrCl2+H2 at 750oC [18] and (2) 
4Cr+3O2=2CrO3 at 1200oC [19]; 1',2' – dependences m – t  

 

    The slopes of the straight lines in Fig.1 corresponds to the rate of the mass decrease of the 
sample (vm) due to the metallic component of the reaction product (Here we consider the 
coordinate systems t - m and t - M; another coordinate system tW – W is considered in section 
1.2.) To determine of reaction order (n), we can use the formula [20]: 

                                                            n=  [(    )( ̅    ̅)      ]   [( ̅    ̅)     ]
 ,                                               (1)     

where q=vm/vg, p=(vm+vg)/vg=q+1 (vm is the speed of the system mass reduction due to the metal 
component of the evaporating part of the scale, vg is the evaporation rate of reaction products by 
the gaseous component), kr is rectilinear constant (dm/dt at the origin of coordinate system) and 
k=vg/(kr-vg). The tangents of the curves in Fig. 1 virtually coincide with ordinate axis at the 
origin of the coordinates:         . In this case formula (1) is simplified as follows:    
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The slopes of the straight lines in Fig.1 corresponds to the rate 
of the mass decrease of the sample (vm) due to the metallic 
component of the reaction product (Here we consider the 

coordinate systems t - m and t - M; another coordinate system tW 
– W is considered in section 1.2.) To determine of reaction order 
(n), we can use the formula [20]:

where q = vm / vg, p = (vm+vg) / vg = q+1 (vm is the speed of the 
system mass reduction due to the metal component of the evap-
orating part of the scale, vg is the evaporation rate of reaction 
products by the gaseous component), kr is rectilinear constant 

(dm/dt at the origin of coordinate system) and k = vg / (kr-vg). The 
tangents of the curves in Fig. 1 virtually coincide with ordinate 
axis at the origin of the coordinates: kr → ∞ ⇒ k → 0. In this case 
formula (1) is simplified as follows:  
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    According to formula (2) for [18] it turns out n 2.02, and for [19] n 3.75, that are 
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0.554m) 8.693m and t 28.885{[0.577arctg((1.424m)/(0.822m+2)]  [0.167ln((1-
0.822m)2 (  +0.822m+1))]}   23.75m, where m is in mg/cm2 and t is in hours. The curves 
constructed using these equations on the scale used in Fig.1 practically coincide with the 
experimental curves. 
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respectively [20]. For the total mass change will be: 
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According to formula (2) for it turns out n≅2.02, and for 
n≅3.75, that are approaching to 2 and [18,19]. Corresponding 
empirical expressions are: t ≅-15.707ln(1-0.554m)-8.693m 
and t≅28.885{[0.577arctg((1.424m)/(0.822m+2)]-[0.167ln((1-
0.822m)2/(m2+0.822m+1))]} - 23.75m, where m is in mg/cm2 

and t is in hours. The curves constructed using these equations 
on the scale used in Fig.1 practically coincide with the experi-
mental curves.

The rate of mass increase due to the reacted gas in the general 
case is:

where n=2, 3 or 4; kr ≡ dm/dt (at point t=0,m=0) is rectilinear constant; kn is the power-law constant. Its integral form is as follows:

where k = vg / (kr - vg), and mmax = (kn / nkr k)1/(n-1) is the maximum 
mass gain of the system at the expense of active gas. Boundary 
condition for solving of Eq. (2) for different n is t=0, m=0.

The Tedmon-Wajsel equation (n=2) in our notation will be:

 For n=3 and 4 we will have:
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respectively [20]. For the total mass change will be:

Such containing maxima curves were obtained in a number of 
works, in works collected, and others [2,18-28]. Here we will 
look at graphs in which this maximum is clearly expressed and 
from which reliable information can be obtained (some graphs, 
which are not considered here, give unrealistic values of kinetic 
parameters).

2. Experimental
In the experiments, we used plates of single-crystalline 
germanium of N-type conductivity and with concentration of 
charge carriers n=2∙1020 m-3. They were successively degreased 
in boiling toluene, dried in the air, etched in a liquid etchant 
CP-4A (HF:HNO3: CH3COOH = 1:15:1) for (4-5) min and, 
washed in running distilled water, followed by drying. Ammonia 
(freezing point -33.4°C) was dried by slowly passing it through 
a trap cooled with a mixture of liquid nitrogen and alcohol or ice 
with NaCl. The pressure of ammonia was PNH3=2.7∙103Pa, and 
pressure of hydrazine PN2H4=2∙103Pa (saturated vapor pressure 
of N2H4 at room temperature). In the case of ammonia, water 
vapor was deliberately introduced into the reactor: P≡PH2O/
PNH3≅2 and 5%. The nitridation temperature was (680-820)
oC. The temperature of the electric heater was regulated using 

a high-precision regulator ვრტ (VRT)-3 with an accuracy of 
±0.5 oC. Kinetic measurements were carried out by continuously 
weighing the samples during the oxidation process. For this 
purpose, a homemade microbalance built into a vacuum unit 
was used (sensitivity≅10-6g). Electromagnetic compensation for 
changes in the sample mass was carried out automatically.
                                                                                                                              
3. Results and Discussion
3.1. Analysis of kinetic curves of mass change during the 
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compounds with simultaneous evaporation of the products of 
reaction.
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Maximum
As mentioned above, kinetic curves containing a maximum are 
presented in many works. Most of them are curves corresponding 
to parabolic kinetics (n=2); there is little data for n=4; but for 
n=3 we did not find such data, although cubic processes (with 
curves without maxima) are considered in a fairly large number 
of works.
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Figure 2: Dependence M̅ – kp / vg for Different Samples in Logarithmic Coordinates

Figure 2 shows the dependence in coordinates lg(kp/vg) - lgM̅ 
for different samples from [2]. The following reactions are 
considered here: 2Cr+3O2=Cr2O3, Pb+Cl2 = PbCl2, Si+O2 = SiO2, 
SiC+2O2 = SiO2 + CO2, Si3N4+3O2 = 3SiO2+2N2 and 4BN+3O2 
= 2B2O3 +2N2 (for all reactions the kinetics are parabolic: kp - 
power-law constant at n=2). We have added data for reactions 
Cr+2HCl=CrCl2+H2 and 3Ge+4NH3=Ge3N4+6H2 (also with 
parabolic kinetics). This data fit well into this dependence.

3.1.2.  Consideration of Preliminary Mass Reduction
In some cases, the growth of scale is preceded by other processes, 
for example, gas etching of the surface of the metal or alloy 
(initial section of curve 1 in coordinate system t-W). In this case, 
to describe the m – t dependence, it is necessary to solve the 
differential equation (1) with the boundary condition t = 0, m = 
m0. For n=2, 3 and 4 these solutions have the form:



       Volume 2 | Issue 2 | 4J Applied Surf Sci, 2024

Cr+2HCl=CrCl2+H2 and 3Ge+4NH3=Ge3N4+6H2 (also with parabolic kinetics). This data fit 
well into this dependence. 

 

1.2.  Consideration of preliminary mass reduction 

    In some cases the growth of scale is preceded by other processes, for example, gas etching of 
the surface of the metal or alloy (initial section of curve 1 in coordinate system t-W). In this case, 
to describe the m – t dependence, it is necessary to solve the differential equation (1) with the 
boundary condition t = 0, m = m0. For n=2, 3 and 4 these solutions have the form: 

                                     t= (   )     
  

ln      
       

     
  

 ,                                                      (9)                                                                                                     

                                 t=(1+k)    
   

ln(      )(       )
(      )(       )      

  
 ,                                              (10)  

      t=(   )     
  

[  
√      √  (    )

       
  

   (      ) (  
              )

(       ) (               )]      
  

 ,          (11)                                                                                                                                                                                                                        

respectively. To demonstrate, we present  data on the interaction of single-crystalline Ge with 
NH3+H2O and N2H4 vapors. 
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Figure 3: Kinetic Dependences of Interaction of Ge: with NH3+H2O at (a) P=2%, 820oC, (b) P=5%, 800oC, (P≡PH2O/PNH3); and (c) 
with N2H4 (PN2H4=2∙103Pa) at 720oC – (1) dependences W – t, (2) – dependences m – t; 2’ – calculated curves (in the scale of the 
figure (c), the experimental and calculated curves practically coincide with each other) 

On these curves, the initial decrease of mass is due to the etching 
of the germanium surface by water vapor, which is contained in 
small quantities also in concentrated hydrazine (volatile GeO is 
formed here [29,30]: GeO+H2O=GeO+H2). Also, it is obvious 
that the formation of nitride on the germanium surface will begin 

before the zero point in the t - m coordinate system. But from the 
presented model it follows that the m - t dependences are convex 
in the positive direction. Time shifts betveen equations (3) and 
(9), (4) and (10), (5) and 11) are:
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respectively. Thus, the values of m0 can be estimated by solving of  transcendental equations 
(9')-(11') by substituting the values of  k, mmax, vg, and t0 determined from experimental data. The 
main difficulty is the accurate determination of t0 in the initial section of the curves - conducting 
an additional experiment of short duration would lead to even larger errors.   

     According to the experimental data presented in Fig.3, one can estimate t0≈ 3 min,  0.14 h,  
and  0.33 h, respectively with Figs(a), (b) and (c). Then the values of m0 will be ≈0.3, 0.05 and 
0.03 mg/cm2. As you can see, m0 makes up (20-34)% of corresponding mmax (0.145, 1.42, 0.092 
mg/cm2, respectively) and this cannot be ignored when conducting an experiment using the 
gravimetric  method. 

 

Footnote 

    When active gases interact with metal or alloy surface, processes often occur in which 
compounds of doping impurities are formed. These compounds can create diffusion barriers that 
prevent the main reaction from occurring. This is equivalent to a decrease in the area of the 
reaction surface. The corresponding kinetic equations have been derived for such processes. The 
situation is complicated by the simultaneous occurrence of the processes of evaporation of the 
main compound and a decrease in the reaction surface. In paper 1, it is indicated that the solution 
of the corresponding differential equation cannot be expressed using elementary functions. It 
would be possible to compile tables similar to some known functions, but this would be of 
interest only for the problem under consideration. Moreover, at present it is possible to construct 
the necessary graphs using computer programs without considering mathematical formulas. 
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formed. These compounds can create diffusion barriers that 
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at present it is possible to construct the necessary graphs using 
computer programs without considering mathematical formulas.
  
3.2. Optical Properties of Germanium Oxynitride Films   
As indicated above, when ammonia or hydrazine vapor interacts 
with the germanium surface, its nitride and monoxide are formed 
and evaporate. They are deposited in the “cold” (300-350)°C 
zone of the reactor, where the sapphire substrates were located. 
An amorphous film of germanium oxynitride was deposited on 
them.

In this section, we investigate the optical properties of germanium 
oxynitride films, which are of interest to many areas of science 
and technology [31-42]. Below we present data for germanium 
oxynitride film obtained by nitridation of germanium with 
ammonia.

The studied samples were obtained according to the method 
described in [43]. Infrared (IR) absorption spectra of the samples 
were recorded using a spectrometer Nicolet-740-FTIR. Electronic 
absorption spectra were recorded on a spectrophotometer SF-
26-A.  

The study of the IR spectra of the films (Figure 4) showed the 
appearance of one intense band. Its position changes in the 
region of (780-820) cm-1 depending on the temperature of their 
preparation. As is known, the IR absorption band of the valence 
vibration of the Ge - N bond, located about 750 cm-1, shifts to the 
short-wave region of the spectrum as a result of the substitution 
of nitrogen atoms by oxygen atoms in the Ge(N4) tetrahedra. 
Therefore, the bands in Fig.4 can be attributed to Ge(N4-xOx) type 
tetrahedra with a random distribution of oxygen atoms in the 
structural network of the nitride. The only band located between 
the Ge3N4 (~750 cm-1) and GeO2 (~890 cm-1) bands excludes 
the existence of separate nitride and oxide phases. It indicates 
the presence of germanium oxynitride. The shift of the IR band 
towards lower frequencies is associated with a decrease in the 
oxygen content in the film with an increase in the temperature of 
their preparation.

The deposition of oxynitride was also mentioned earlier during 
vacuum evaporation of Ge3N4 in the temperature range of (700-
750)°C [44].
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Figure 5. Electronic absorption spectra of oxynitride films obtained by nitridation of germanium 
at temperatures 600 (1), 700 (2) and 800oC (3) in coordinates: 

α – E (a), αE – E (b) and lnα – E (c). 

 

     It should be noted that, despite the similarity of these spectra with the spectra of amorphous 
elementary semiconductors (C, Si, Ge), they are characterized by somewhat elevated values of α 
below the fundamental absorption edge, which is determined by the degree of disorder of the 
amorphous network of the material. 

    The dependence of α on E is divided into three characteristic regions: 

1) region of strong absorption (α>104 cm-1), which corresponds to interband transitions [26-
28] and is described by the equation E=B(E - Eopt)2, where B is a coefficient inversely 
proportional to the density of states near the conduction band and valence band, and Eopt 
is the optical width of the forbidden band. The value of the coefficient B corresponds to 
the square of the slope (tan) of the dependence of the absorption coefficient on the photon 
energy in the coordinates (αE)1/2-E (Fig. 2b). For the considered temperatures of film 
production, these values are 9.7∙104, 1.24∙105 and 7.1∙104 eV∙cm-1, respectively. For 
comparison, we indicate that in amorphous hydrogenated silicon B=4.5∙105 eV∙cm-1 [45]. 
The comparatively low values of B in our samples can be associated with a high density 
of states near the edges of the allowed bands. From this point of view, the most favorable 
temperature for film production is 700°C. 
 

2) region of exponential dependence of α on E, called the Urbach's edge [46,47] and which 
is described by the equation α=α0exp(E/E0), where α0 is the pre-exponent, E0 is the 
Urbach's energy. E0 can be determined by linearization of the given equation in lnα-E 
coordinates (Fig. 2 c, its value corresponds to the cotangent of the slope). The  values of 
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It should be noted that, despite the similarity of these spectra 
with the spectra of amorphous elementary semiconductors (C, 
Si, Ge), they are characterized by somewhat elevated values of α 
below the fundamental absorption edge, which is determined by 
the degree of disorder of the amorphous network of the material.

The dependence of α on E is divided into three characteristic 
regions:
1) region of strong absorption (α>104 cm-1), which corresponds 
to interband transitions and is described by the equation E=B(E 
- Eopt)

2, where B is a coefficient inversely proportional to the 
density of states near the conduction band and valence band, 
and Eopt is the optical width of the forbidden band [26-28]. 
The value of the coefficient B corresponds to the square of the 
slope (tan) of the dependence of the absorption coefficient on 
the photon energy in the coordinates (αE)1/2-E (Fig. 2b). For 
the considered temperatures of film production, these values 
are 9.7∙104, 1.24∙105 and 7.1∙104 eV∙cm-1, respectively. For 
comparison, we indicate that in amorphous hydrogenated silicon 
B=4.5∙105 eV∙cm-1 [45]. The comparatively low values of B in 
our samples can be associated with a high density of states near 
the edges of the allowed bands. From this point of view, the most 

favorable temperature for film production is 700°C.
2)  region of exponential dependence of α on E, called the 
Urbach’s edge and which is described by the equation α=α0exp(E/
E0), where α0 is the pre-exponent, E0 is the Urbach’s energy 
[46,47]. E0 can be determined by linearization of the given 
equation in lnα-E coordinates (Fig. 2 c, its value corresponds 
to the cotangent of the slope). The values of Urbach’s energy 
for the considered modes of obtaining germanium oxynitride 
films are 0.38, 0.35, and 0.29 eV, respectively. The presence of 
the Urbach’s “tail of states” is associated with defects caused 
by the violation of the long-range ordering of the structure in 
amorphous materials [48,49]. A decrease of E0 with an increase 
of the film production temperature indicates relaxation of the 
structural network, which causes a decrease of the absorption 
caused by defects [50].
3) region characterized by the appearance of tails of the density 
of states caused by dangling bonds. This effect is associated 
with additional absorption at α˂103 cm-1 [50]. In this region, the 
dependence of α on E is weaker than exponential.

In conclusion, we note that the study of the electrophysical 
characteristics of these films determines the prospects for their 
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use in the creation of MIS (metal-insulator-semiconductor) 
devices and integrated circuits. The authors also plan to study 
the possibility of using germanium oxynitride films (along with 
crystalline Ge3N4) for photocatalytic applications [32,51-53].

4. Conclusion 
A general equation is given that describes the scale growth-
evaporation kinetic (sample mass change - time) curves during 
the interaction of gases with the surface of metals and compounds. 
Special cases of parabolic, cubic and fourth degree processes 
are discussed. Equations are also given for the case when scale 
formation is preceded by the process of gas etching of the metal 
surface. By evaporating the nitride formed on the germanium 
surface (along with the formation of volatile monoxide), a film 
of germanium oxyntride is deposited on a substrate located in the 
cold zone of the reactor. The optical characteristics of these films 
are studied. The dependence of the absorption coefficient on the 
energy of photons is divided into three characteristic regions: 
region of strong absorption (α>104 cm-1), which corresponds 
to interband transitions, region of exponential dependence of 
α on E (the Urbach’s edge) and region characterized by the 
appearance of tails of the density of states caused by dangling 
bonds (α˂103 cm-1). 
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50. Holovský, J., Ridzoňová, K., Peter Amalathas, A., Conrad, 
B., Sharma, R. K., Chin, X. Y., ... & De Wolf, S. (2023). 
Below the Urbach Edge: Solar Cell Loss Analysis Based 
on Full External Quantum Efficiency Spectra. ACS Energy 
Letters, 8(7), 3221-3227. 

51. Sato, J., Saito, N., Yamada, Y., Maeda, K., Takata, T., Kondo, 
J. N., ... & Inoue, Y. (2005). RuO2-loaded β-Ge3N4 as a non-
oxide photocatalyst for overall water splitting. Journal of the 
American Chemical Society, 127(12), 4150-4151. 

52. Lee, Y., Watanabe, T., Takata, T., Hara, M., Yoshimura, M., 
& Domen, K. (2006). Effect of high-pressure ammonia 
treatment on the activity of Ge3N4 photocatalyst for overall 
water splitting. The Journal of Physical Chemistry B, 110(35), 
17563-17569. 

53. Maeda, K., & Domen, K. (2007). New non-oxide 
photocatalysts designed for overall water splitting under 
visible light. The journal of physical chemistry C, 111(22), 
7851-7861. 

https://doi.org/10.3389/fmats.2015.00055
https://doi.org/10.1038/s41529-021-00188-z
https://doi.org/10.1038/s41529-021-00188-z
https://doi.org/10.1038/s41529-021-00188-z
https://doi.org/10.1038/s41529-021-00188-z
https://doi.org/10.1038/s41529-021-00188-z
https://doi.org/10.31578/jtst.v5i1.99
https://doi.org/10.31578/jtst.v5i1.99
https://doi.org/10.31578/jtst.v5i1.99
https://www.wecmelive.com/peer-review/formationevaporation-of-germanium-monoxide-in-water-vapor-and-preparation-of-gegeo2-films-389.html
https://www.wecmelive.com/peer-review/formationevaporation-of-germanium-monoxide-in-water-vapor-and-preparation-of-gegeo2-films-389.html
https://www.wecmelive.com/peer-review/formationevaporation-of-germanium-monoxide-in-water-vapor-and-preparation-of-gegeo2-films-389.html
https://www.wecmelive.com/peer-review/formationevaporation-of-germanium-monoxide-in-water-vapor-and-preparation-of-gegeo2-films-389.html
https://doi.org/10.1166/jnn.2020.16934
https://doi.org/10.1166/jnn.2020.16934
https://doi.org/10.1166/jnn.2020.16934
https://doi.org/10.1166/jnn.2020.16934
https://doi.org/10.1166/jnn.2020.16934
https://doi.org/10.1166/jnn.2020.16934
https://doi.org/10.1016/j.jechem.2019.09.013
https://doi.org/10.1016/j.jechem.2019.09.013
https://doi.org/10.1016/j.jechem.2019.09.013
https://doi.org/10.1016/j.jechem.2019.09.013
https://doi.org/10.1016/j.ceramint.2018.03.137
https://doi.org/10.1016/j.ceramint.2018.03.137
https://doi.org/10.1016/j.ceramint.2018.03.137
https://doi.org/10.1016/j.ceramint.2018.03.137
https://doi.org/10.1002/adfm.201605975
https://doi.org/10.1002/adfm.201605975
https://doi.org/10.1002/adfm.201605975
https://doi.org/10.1002/adfm.201605975
https://doi.org/10.1002/adfm.201605975
https://doi.org/10.1016/j.apsusc.2016.10.006
https://doi.org/10.1016/j.apsusc.2016.10.006
https://doi.org/10.1016/j.apsusc.2016.10.006
https://doi.org/10.1016/j.apsusc.2016.10.006
https://doi.org/10.1016/j.apsusc.2016.10.006
https://doi.org/10.1016/j.apsusc.2021.151361
https://doi.org/10.1016/j.apsusc.2021.151361
https://doi.org/10.1016/j.apsusc.2021.151361
https://doi.org/10.1016/j.apsusc.2021.151361
https://doi.org/10.1016/0040-6090(79)90205-0
https://doi.org/10.1016/0040-6090(79)90205-0
https://doi.org/10.1109/LED.2004.831969
https://doi.org/10.1109/LED.2004.831969
https://doi.org/10.1109/LED.2004.831969
https://doi.org/10.1109/LED.2004.831969
https://doi.org/10.1143/JJAP.45.7351
https://doi.org/10.1143/JJAP.45.7351
https://doi.org/10.1143/JJAP.45.7351
https://doi.org/10.1143/JJAP.45.7351
https://doi.org/10.1143/JJAP.45.7351
https://doi.org/10.1063/1.3171938
https://doi.org/10.1063/1.3171938
https://doi.org/10.1063/1.3171938
https://doi.org/10.1063/1.3171938
https://doi.org/10.1016/j.jhazmat.2020.122709
https://doi.org/10.1016/j.jhazmat.2020.122709
https://doi.org/10.1016/j.jhazmat.2020.122709
https://doi.org/10.1016/j.jhazmat.2020.122709
https://doi.org/10.1016/j.jhazmat.2020.122709
https://doi.org/10.1016/j.jhazmat.2020.122709
https://doi.org/10.1007/s41365-024-01398-1
https://doi.org/10.1007/s41365-024-01398-1
https://doi.org/10.1007/s41365-024-01398-1
https://doi.org/10.1007/s41365-024-01398-1
https://doi.org/10.1007/s41365-024-01398-1
https://doi.org/10.6000/2369-3355.2024.11.01
https://doi.org/10.6000/2369-3355.2024.11.01
https://doi.org/10.6000/2369-3355.2024.11.01
https://doi.org/10.6000/2369-3355.2024.11.01
https://doi.org/10.1364/OME.7.002299
https://doi.org/10.1364/OME.7.002299
https://doi.org/10.1364/OME.7.002299
https://doi.org/10.1364/OME.7.002299
https://doi.org/10.1134/S0021364023130076
https://doi.org/10.1134/S0021364023130076
https://doi.org/10.1134/S0021364023130076
https://doi.org/10.1016/j.ijleo.2019.02.074
https://doi.org/10.1016/j.ijleo.2019.02.074
https://doi.org/10.1016/j.ijleo.2019.02.074
https://doi.org/10.1063/1.329267
https://doi.org/10.1063/1.329267
https://doi.org/10.1063/1.329267
https://doi.org/10.1021/acs.jpclett.2c01812
https://doi.org/10.1021/acs.jpclett.2c01812
https://doi.org/10.1021/acs.jpclett.2c01812
https://pubs.acs.org/doi/10.1021/acsenergylett.3c00951
https://pubs.acs.org/doi/10.1021/acsenergylett.3c00951
https://pubs.acs.org/doi/10.1021/acsenergylett.3c00951
https://pubs.acs.org/doi/10.1021/acsenergylett.3c00951
https://pubs.acs.org/doi/10.1021/acsenergylett.3c00951
https://doi.org/10.1021/ja042973v
https://doi.org/10.1021/ja042973v
https://doi.org/10.1021/ja042973v
https://doi.org/10.1021/ja042973v
https://doi.org/10.1021/jp063068v
https://doi.org/10.1021/jp063068v
https://doi.org/10.1021/jp063068v
https://doi.org/10.1021/jp063068v
https://doi.org/10.1021/jp063068v
https://doi.org/10.1021/jp070911w
https://doi.org/10.1021/jp070911w
https://doi.org/10.1021/jp070911w
https://doi.org/10.1021/jp070911w

