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Abstract 
Optimizing neural network architectures presents significant challenges due to the vast search spaces and computational 
costs involved. This study explores the integration of evolutionary algorithms (EAs) and mathematical modeling techniques 
to enhance neural network optimization. We propose a novel framework combining EAs with dimensionality reduction, 
surrogate modeling, and hybrid optimization strategies to reduce computational complexity and improve performance. 
Our results demonstrate that the adapted EAs significantly increase accuracy and F1-scores while reducing the number of 
generations required for convergence. The hybrid approach, combining EAs with local search techniques, achieves superior 
performance and robustness across various datasets. These findings provide a foundational basis for future research in 
advanced optimization methods for neural networks.
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1. Introduction
The rapid advancement of artificial intelligence has placed neural 
networks at the forefront of technological innovation. However, 
optimizing their architectures is complex and computationally 
intensive. Evolutionary algorithms (EAs) offer a promising 
alternative due to their robust search capabilities. This paper 
investigates how EAs, integrated with mathematical modeling 
techniques, can optimize neural network architectures, reduce 
computational costs, and enhance performance through hybrid 
optimization strategies.

2. Background
Evolutionary algorithms simulate natural evolution, using selection, 
crossover, and mutation to evolve solutions. These methods have 
shown promise in optimizing deep learning hyper-parameters 
[1]. Mathematical techniques like dimensionality reduction and 
surrogate modeling further enhance EAs by reducing search space 
and computational costs [2]. Comparing various evolutionary 
strategies, including genetic algorithms, differential evolution, 
and particle swarm optimization, helps identify the most effective 
methods [3]. Hybrid approaches that combine EAs with traditional 
optimization methods can leverage the strengths of both [4].

3. Methods
3.1 Adapting Evolutionary Algorithms
To adapt evolutionary algorithms (EAs) for optimizing neural 
network architectures, we implemented a framework that includes 
selection, crossover, and mutation operations. We began with a 
randomly generated population of neural network architectures. 
Each individual in the population represents a potential solution 
with a unique set of hyperparameters and network configurations. 
Tournament selection was employed to choose individuals based 
on their fitness scores, determined by the performance of the 
neural network on a validation dataset. This method ensures that 
higher-performing individuals have a greater chance of being 
selected for reproduction. Selected individuals then underwent 
crossover operations to exchange hyperparameters and network 
configurations, creating offspring with combined characteristics 
of the parent solutions. We used a two-point crossover method 
to maintain diversity in the population. To introduce variability, 
random mutations were applied to the offspring, altering specific 
hyperparameters or network configurations. This helped explore 
new regions of the search space and avoid local optima. The 
offspring were evaluated based on their performance on the 
validation dataset, and the fitness scores were calculated, with 
individuals ranked accordingly. The worst-performing individuals 
in the population were replaced by the new offspring, ensuring 
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continuous improvement in the population's overall fitness.

 
Figure 1: Evolutionary Algorithm Framework 

 

3.2 Mathematical Modeling Techniques 

To reduce the search space and computational costs associated with evolutionary optimization, we 

integrated several mathematical modeling techniques. Principal Component Analysis (PCA) was 

applied to reduce the dimensionality of the search space. PCA transforms the original high-

dimensional data into a lower-dimensional space while preserving the variance, thereby reducing 

the computational complexity of evaluating neural network architectures. We also used surrogate 

models, such as Gaussian Processes (GP) and Radial Basis Function (RBF) networks, to 

approximate the fitness function. Surrogate models are computationally inexpensive and provide a 

quick estimate of the fitness scores, reducing the number of expensive evaluations required during 

the optimization process. Additionally, probabilistic models like Bayesian Optimization were 

employed to guide the search process. Bayesian Optimization constructs a probabilistic model of 

the fitness function and uses this model to select promising hyperparameter configurations, helping 

to focus the search on regions with higher probabilities of improvement’.
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3.2 Mathematical Modeling Techniques
To reduce the search space and computational costs associated 
with evolutionary optimization, we integrated several 
mathematical modeling techniques. Principal Component 
Analysis (PCA) was applied to reduce the dimensionality of the 
search space. PCA transforms the original high-dimensional data 
into a lower-dimensional space while preserving the variance, 
thereby reducing the computational complexity of evaluating 
neural network architectures. We also used surrogate models, 
such as Gaussian Processes (GP) and Radial Basis Function 

(RBF) networks, to approximate the fitness function. Surrogate 
models are computationally inexpensive and provide a quick 
estimate of the fitness scores, reducing the number of expensive 
evaluations required during the optimization process. Additionally, 
probabilistic models like Bayesian Optimization were employed 
to guide the search process. Bayesian Optimization constructs a 
probabilistic model of the fitness function and uses this model to 
select promising hyperparameter configurations, helping to focus 
the search on regions with higher probabilities of improvement’.   

 

 
 

Figure 2: Surrogate Model Approximation Figure 3: PCA Variance Explained 

 

3.3 Comparative Analysis of Evolutionary Strategies 

We compared the performance of various evolutionary strategies, including Genetic Algorithms 

(GA), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The comparison was 

based on convergence speed, solution quality, and computational cost. Convergence speed was 

measured by the number of generations required for each strategy to converge to an optimal or 

near-optimal solution. Solution quality was assessed based on the performance of the optimized 

neural networks on a test dataset, comparing metrics such as accuracy, precision, recall, and F1-

score. The computational cost was analyzed in terms of the number of evaluations, runtime, and 

memory usage, providing insights into the scalability and practicality of the strategies.
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3.3 Comparative Analysis of Evolutionary Strategies
We compared the performance of various evolutionary strategies, 
including Genetic Algorithms (GA), Differential Evolution (DE), 
and Particle Swarm Optimization (PSO). The comparison was 
based on convergence speed, solution quality, and computational 
cost. Convergence speed was measured by the number of 
generations required for each strategy to converge to an optimal 

or near-optimal solution. Solution quality was assessed based 
on the performance of the optimized neural networks on a test 
dataset, comparing metrics such as accuracy, precision, recall, 
and F1-score. The computational cost was analyzed in terms of 
the number of evaluations, runtime, and memory usage, providing 
insights into the scalability and practicality of the strategies. 
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Figure 4: Evolutionary Algorithms Flowchart Figure 5: Hybrid Optimization Approach 

 

3.4 Hybrid Optimization Approach: 

To leverage the strengths of both evolutionary algorithms and traditional optimization methods, we 

developed a hybrid optimization approach. This approach combined EAs with local search 

techniques. The global search phase used EAs to identify promising regions in the search space, 

focusing on exploring diverse solutions and maintaining population diversity. Once the global 

search identified high-potential regions, local search techniques such as Gradient Descent (GD) 

and Nelder-Mead were applied to fine-tune the solutions. These local search methods effectively 

exploited the identified regions, improving the precision of the optimization process. The solutions 

obtained from the local search were re-evaluated, and the best-performing solutions were selected. 

These solutions underwent further evolutionary operations (crossover and mutation) to ensure 

continuous improvement and adaptation.
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3.4 Hybrid Optimization Approach
To leverage the strengths of both evolutionary algorithms 
and traditional optimization methods, we developed a hybrid 
optimization approach. This approach combined EAs with local 
search techniques. The global search phase used EAs to identify 
promising regions in the search space, focusing on exploring 
diverse solutions and maintaining population diversity. Once 
the global search identified high-potential regions, local search 

techniques such as Gradient Descent (GD) and Nelder-Mead were 
applied to fine-tune the solutions. These local search methods 
effectively exploited the identified regions, improving the precision 
of the optimization process. The solutions obtained from the local 
search were re-evaluated, and the best-performing solutions 
were selected. These solutions underwent further evolutionary 
operations (crossover and mutation) to ensure continuous 
improvement and adaptation. 

 
Figure 6: Comparative Analysis of Evolutionary Strategies 

 

4. Results 

4.1 Effectiveness of Adapted Evolutionary Algorithms 

Our first set of experiments evaluated the performance of the adapted evolutionary algorithms in 

optimizing neural network architectures. The adapted EAs demonstrated significant improvements 

in neural network performance metrics compared to baseline models. On average, we observed a 

15% increase in accuracy and a 10% increase in F1-score across various datasets. The best-

performing neural networks were achieved within 50 generations, highlighting the efficiency of the 

adapted EAs in exploring the search space. Figure 7 shows the convergence curves of the adapted 

EAs, indicating a rapid increase in fitness scores during the initial generations, followed by a 

gradual plateau. This behavior suggests effective exploration followed by exploitation. The 

tournament selection and two-point crossover methods contributed to maintaining population 

diversity and preventing premature convergence. When compared to traditional optimization 

methods such as grid search and random search, the adapted EAs outperformed both in terms of 

solution quality and computational efficiency, aligning with findings from Young et al. [1]. 
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4. Results
4.1 Effectiveness of Adapted Evolutionary Algorithms
Our first set of experiments evaluated the performance of the 
adapted evolutionary algorithms in optimizing neural network 
architectures. The adapted EAs demonstrated significant 
improvements in neural network performance metrics compared 
to baseline models. On average, we observed a 15% increase in 
accuracy and a 10% increase in F1-score across various datasets. 
The best-performing neural networks were achieved within 50 
generations, highlighting the efficiency of the adapted EAs in 
exploring the search space. Figure 7 shows the convergence 

curves of the adapted EAs, indicating a rapid increase in fitness 
scores during the initial generations, followed by a gradual 
plateau. This behavior suggests effective exploration followed by 
exploitation. The tournament selection and two-point crossover 
methods contributed to maintaining population diversity and 
preventing premature convergence. When compared to traditional 
optimization methods such as grid search and random search, the 
adapted EAs outperformed both in terms of solution quality and 
computational efficiency, aligning with findings from Young et al. 
[1].
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Figure 7: Convergence Curves 

 

4.2 Impact of Mathematical Modeling Techniques 

The integration of mathematical modeling techniques significantly enhanced the efficiency of the 

evolutionary optimization process. Applying Principal Component Analysis (PCA) reduced the 

dimensionality of the search space by approximately 50%, without significant loss in information. 

This reduction led to a 30% decrease in computational time for each generation. 

 

Figure 8 illustrates the variance explained by the principal components, demonstrating the 

effectiveness of PCA in preserving essential information. Surrogate models, particularly Gaussian 

Processes (GP) and Radial Basis Function (RBF) networks, provided accurate approximations of 

the fitness function. This accuracy reduced the number of expensive fitness evaluations by 40%, as 

highlighted by Chugh et al. [2]. Figure 9 compares the predicted fitness scores from the surrogate 

models with the actual evaluations, demonstrating high correlation and reliability. Bayesian 

Optimization guided the search process effectively, focusing on promising regions of the search 

space. This approach led to a 25% improvement in convergence speed compared to random search 

strategies. 
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4.2 Impact of Mathematical Modeling Techniques
The integration of mathematical modeling techniques significantly 
enhanced the efficiency of the evolutionary optimization process. 
Applying Principal Component Analysis (PCA) reduced the 
dimensionality of the search space by approximately 50%, without 
significant loss in information. This reduction led to a 30% 
decrease in computational time for each generation.

Figure 8 illustrates the variance explained by the principal 
components, demonstrating the effectiveness of PCA in preserving 
essential information. Surrogate models, particularly Gaussian 

Processes (GP) and Radial Basis Function (RBF) networks, 
provided accurate approximations of the fitness function. This 
accuracy reduced the number of expensive fitness evaluations 
by 40%, as highlighted by Chugh et al. [2]. Figure 9 compares 
the predicted fitness scores from the surrogate models with the 
actual evaluations, demonstrating high correlation and reliability. 
Bayesian Optimization guided the search process effectively, 
focusing on promising regions of the search space. This approach 
led to a 25% improvement in convergence speed compared to 
random search strategies.

  
Figure 8: PCA Variance Explained Figure 9: Surrogate Model Accuracy 

 

 

4.3 Comparative Analysis of Evolutionary Strategies 

We conducted a comprehensive comparison of various evolutionary strategies, including Genetic 

Algorithms (GA), Differential Evolution (DE), and Particle Swarm Optimization (PSO). 

 

Differential Evolution (DE) exhibited the fastest convergence, achieving optimal solutions within 

30 generations on average. GA and PSO required 45 and 50 generations, respectively. Figure 10 

presents the convergence curves for GA, DE, and PSO, highlighting the superior convergence 

speed of DE. All three strategies achieved high-quality solutions, but DE outperformed the others 

in terms of accuracy and F1-score. The average accuracy improvement was 12% for DE, 10% for 

GA, and 8% for PSO. Elbeltagi et al. provided similar insights into the relative performance of 

these strategies [3]. PSO had the lowest computational cost, followed by DE and GA. PSO's simple 

update rules and lack of crossover operations contributed to its efficiency. Figure 11 shows the 

computational cost comparison, measured in terms of runtime and memory usage. 
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4.3 Comparative Analysis of Evolutionary Strategies
We conducted a comprehensive comparison of various evolutionary 
strategies, including Genetic Algorithms (GA), Differential 
Evolution (DE), and Particle Swarm Optimization (PSO).

Differential Evolution (DE) exhibited the fastest convergence, 

achieving optimal solutions within 30 generations on average. GA 
and PSO required 45 and 50 generations, respectively. Figure 10 
presents the convergence curves for GA, DE, and PSO, highlighting 
the superior convergence speed of DE. All three strategies achieved 
high-quality solutions, but DE outperformed the others in terms 
of accuracy and F1-score. The average accuracy improvement 
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was 12% for DE, 10% for GA, and 8% for PSO. Elbeltagi et al. 
provided similar insights into the relative performance of these 
strategies [3]. PSO had the lowest computational cost, followed 
by DE and GA. PSO's simple update rules and lack of crossover 

operations contributed to its efficiency. Figure 11 shows the 
computational cost comparison, measured in terms of runtime and 
memory usage.

  
Figure 10: Convergence Speed Comparison Figure 11: Computational Cost Comparison 

 

4.4 Performance of Hybrid Optimization Approach 

The hybrid optimization approach, which combined evolutionary algorithms with local search 

techniques, demonstrated significant improvements in optimization efficiency, solution quality, and 

robustness. The hybrid approach achieved optimal solutions faster than standalone EAs or local 

search methods. By leveraging the global search capabilities of EAs and the precision of local 

search techniques, the hybrid approach reduced the number of generations required for 

convergence by 20%. Figure 12 illustrates the convergence curve of the hybrid approach, 

demonstrating improved convergence speed and solution quality. The hybrid approach yielded the 

highest-quality solutions, with an average accuracy improvement of 18% compared to the best-

performing standalone strategy (DE). This significant enhancement underscores the potential of 

hybrid methods to achieve superior optimization results. The hybrid approach exhibited robust 

performance across different datasets and neural network architectures, indicating its versatility 

and generalizability. 

 

 

5. Discussion 

The integration of EAs with mathematical modeling techniques and hybrid optimization strategies 

significantly enhances neural network optimization. The rapid convergence and improved 

performance of adapted EAs demonstrates their effectiveness. Dimensionality reduction and 

surrogate modeling techniques efficiently manage computational costs, while Bayesian 

Optimization guides the search process effectively. Comparative analysis identifies DE as the most 

effective strategy, and the hybrid approach further boosts performance and robustness across 

datasets. The proposed methods offer a powerful framework for neural network optimization, 
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4.4 Performance of Hybrid Optimization Approach
The hybrid optimization approach, which combined evolutionary 
algorithms with local search techniques, demonstrated significant 
improvements in optimization efficiency, solution quality, and 
robustness. The hybrid approach achieved optimal solutions faster 
than standalone EAs or local search methods. By leveraging 
the global search capabilities of EAs and the precision of local 
search techniques, the hybrid approach reduced the number of 
generations required for convergence by 20%. Figure 12 illustrates 
the convergence curve of the hybrid approach, demonstrating 
improved convergence speed and solution quality. The hybrid 
approach yielded the highest-quality solutions, with an average 
accuracy improvement of 18% compared to the best-performing 
standalone strategy (DE). This significant enhancement underscores 
the potential of hybrid methods to achieve superior optimization 
results. The hybrid approach exhibited robust performance across 
different datasets and neural network architectures, indicating its 
versatility and generalizability.

5. Discussion
The integration of EAs with mathematical modeling techniques 
and hybrid optimization strategies significantly enhances neural 
network optimization. The rapid convergence and improved 
performance of adapted EAs demonstrates their effectiveness. 
Dimensionality reduction and surrogate modeling techniques 
efficiently manage computational costs, while Bayesian 
Optimization guides the search process effectively. Comparative 
analysis identifies DE as the most effective strategy, and the 
hybrid approach further boosts performance and robustness across 
datasets. The proposed methods offer a powerful framework for 
neural network optimization, applicable to various real-world 

problems. Future research should focus on scalability, developing 
sophisticated hybrid methods, and validating generalizability 
across different architectures.

6. Conclusion
This study demonstrates the efficacy of integrating evolutionary 
algorithms and mathematical modeling techniques to optimize 
neural network architectures. By reducing computational costs and 
improving performance through hybrid optimization strategies, we 
provide a comprehensive framework for addressing key challenges 
in neural network optimization. These findings lay the groundwork 
for future advancements in optimization techniques [5,6].
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