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Abstract
This article addresses and corrects a major misconception about the energy density of electromagnetic wave that has 
become prevalent in electromagnetic wave theory. The author derives and proves the correct formula for energy density 
based on principles of energy conservation and the corpuscular theory of radiation. The article also demonstrates the 
impossibility of determining the electric field strength of electromagnetic radiation without first determining the area of 
individual photons. 
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1. Introduction 
Electromagnetic (EM) radiation is a fundamental form of 
energy that pervades various aspects of life and technology. EM 
radiation can be perceived either as electromagnetic waves or as 
individual particles of energy (photons), as manifests due to the 
particle-wave duality of matter. 

Despite significant achievements in the fields of photonics, optics, 
photophysics and quantum computing, our understanding of 
light remains incomplete. Various models have been developed 
to describe light [1,2], yet most are either incomplete or fail 
to consistently align with experimental data. Consequently, a 
comprehensive and universally accepted model of light has yet 
to be established. 

One of the most pressing questions in the field of photonics is 
the nature of the photon itself: its shape and size [3], how it is 
formed, and its interactions with matter. Understanding these 
characteristics is crucial for advancing our knowledge of light, 

impacting broad areas ranging from fundamental physics to 
practical applications in communication technologies and optics. 

In this paper, I focus on the Electric field strength (E0) property 
of EM waves and single photons. I will show the challenges 
and issues related to this model of describing light, aiming to 
contribute to the broader understanding of electromagnetic 
radiation and its fundamental properties.

2. State of Problem 
The primary objective of this paper is to demonstrate the 
impossibility of determining the electric field strength (E0) of 
an EM wave. 

The most common and generally accepted representation of 
light, as a possible solution to Maxwell's equations, involves 
sinusoidal, orthogonal in-phase (harmonic) oscillations of 
electric and magnetic fields [4] (Figure 1).
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Fig. 1. Most common presentation of EM radiation as sinusoidal EM wave. 

Such a description of light highlights a major feature: its sinusoidal nature, which leads to phenomena such as 
interference and defines the wavelength of radiation. 

The energy density of EM wave in such model is determined by Eq. (1) [4]: 

Figure 1: Most Common Presentation of EM Radiation as Sinusoidal EM Wave
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Photons are coherent, and electric and magnetic field vectors are 
additive, so: 

According to the standard Equation (1), the energy densities of 
EM waves for one and two photons should be equal:

We see, that increasing energy of EM wave by factor of 2, 
standard Equation (1) leads in increase of energy density of 
factor of 4. This discrepancy is inconsistent with theoretical 
expectations. If we consider particle point of view, energy 
density of such EM wave should just increase by factor of 2 
(because we are working with 2 coherent photons instead of just 
one): 

Such a description of light highlights a major feature: its 
sinusoidal nature, which leads to phenomena such as interference 
and defines the wavelength of radiation. 

The energy density of EM wave in such model is determined by 
Equation (1) [4]:

where E0 is the amplitude of the electric field strength, 𝜀0 is the 
permittivity of free space, 𝑤 is radial frequency of EM wave, 𝑡 is 
time, 𝑘 is wavenumber, 𝑥 is the position. 

The energy flow of such EM radiation is characterized by the 
Poynting vector [4, 5]: 

Although this concept is highly visual and useful, I have found 
out that it is not possible to determine the electric field strength 
(E0) of such oscillations in an EM wave. 

Indeed, there is no data or literature that provides the electric field 
strength for different types of EM radiation across the spectrum. 

It is peculiar that this widely used representation lacks specific 
quantities and values of Electric field strength (E0), which is the 
fundamental property of such model. 

Initially, I was both surprised and intrigued by this discrepancy. 
However, I eventually discovered the underlying reason. This 
article aims to explain it. 

3. Problem of Energy Density of Electromagnetic Radiation 
and Its Solution 
The only way to determine the electric field strength (E0) of an 
EM wave is by using the concept of energy density. As mentioned 
before, the energy density of an EM wave is determined by 
Equation (1). 

To highlight and prove that this equation is incomplete, let 
us examine the energy density for EM radiation from two 
perspectives: wave and particle. Suppose we are working with 
two coherent photons. Since photons are bosons, from the EM 
wave point of view, the model will appear to us as identical 
EM wave (phase and wavelength), but with the field vectors 
multiplied by a factor of two (Figure 2).
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Now if we compare both Equation (8) and (9), we see that the 
equality is only possible, if we introduce a factor of 2 (some N) 
in Equation (1), the factor of amount of photons in EM wave: 

where N is amount of photon in EM wave, and E0 is electric field 
strength of individual photon. 

Another way to represent energy density is depicted in Figure 3. 
Area of square in case a represents energy density of individual 
photon. Two coherent photons should have twice large energy 
density, depicted in case b. 
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where N is amount of photon in EM wave, and E0 is electric field strength of individual photon.  

Another way to represent energy density is depicted in Fig. 3. Area of square in case a represents energy 
density of individual photon. Two coherent photons should have twice large energy density, depicted in case b. 

 

Fig. 3. Simplified presentation of energy density of EM wave containing: a) One photon. b) Two coherent photons. 
C) Four coherent photons. 

In other words, we have discovered that the energy density of an EM wave is actually the sum of the energies of 
individual photons that share the same volume and each have its own electric field strength (E0). In such case of 
matter, it is pointless to work with electric field strength of EM wave as entity of photons. Whenever someone 
measures energy density, they are actually measuring the sum of the energy densities of individual photons that 
constitute the radiation, rather than energy density of entire radiation. This is a novel finding that has not been 

previously reported or observed. 

 

4 Impossibility of determination of electric field strength of 
electromagnetic radiation 

Now we address the main problem: how can one find and derive the electric field strength (E0) of an EM 
wave? The energy in an EM wave is described through the energy density concept, as given by Eq. (1). Energy 
density has the units of energy per volume (J/m³). We need to define the volume in which a packet of individual 
radiation is stored (the volume of a photon). Suppose that photons are located in a cylindrical volume with a length 
equal to the wavelength and a cross-sectional area corresponding to the circular area of the photon (Fig. 4). Photons 
are bosons, allowing any number of them to occupy the same cylindrical space. 
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In other words, we have discovered that the energy density of 
an EM wave is actually the sum of the energies of individual 
photons that share the same volume and each have its own 
electric field strength (E0). In such case of matter, it is pointless 
to work with electric field strength of EM wave as entity of 
photons. Whenever someone measures energy density, they are 
actually measuring the sum of the energy densities of individual 
photons that constitute the radiation, rather than energy density 
of entire radiation. This is a novel finding that has not been 
previously reported or observed. 

4. Impossibility ff Determination of Electric Field Strength 
of Electromagnetic Radiation 
Now we address the main problem: how can one find and derive 
the electric field strength (E0) of an EM wave? The energy in an 
EM wave is described through the energy density concept, as 
given by Equation (1). Energy density has the units of energy 
per volume (J/m³). We need to define the volume in which a 
packet of individual radiation is stored (the volume of a photon). 
Suppose that photons are located in a cylindrical volume with 
a length equal to the wavelength and a cross-sectional area 
corresponding to the circular area of the photon (Figure 4). 
Photons are bosons, allowing any number of them to occupy the 
same cylindrical space. 

6 
 

 

Fig. 4. Supposed volume of individual photon. 

In this case, from derived Eq. 10 we can obtain the following equations: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸 = 𝑉𝑉𝐸𝐸𝐸𝐸 = 𝑁𝑁𝜀𝜀0𝐸𝐸02 𝑐𝑐𝑉𝑉𝑐𝑐2(𝑤𝑤𝑤𝑤 − 𝑘𝑘𝑘𝑘) = 𝑁𝑁ℎ𝑣𝑣

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸 =
𝑁𝑁ℎ𝑣𝑣

𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴 ∗ 𝜆𝜆 = 𝑁𝑁ℎ𝑣𝑣2
𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴 ∗ 𝑐𝑐 (11) 

𝑐𝑐𝜀𝜀0𝐸𝐸02 𝑐𝑐𝑉𝑉𝑐𝑐2(𝑤𝑤𝑤𝑤 − 𝑘𝑘𝑘𝑘) = ℎ𝑣𝑣2
𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴 (12) 

From which we can find E0: 

𝐸𝐸0 = √ ℎ𝑣𝑣2
𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴 ∗ 𝑐𝑐𝜀𝜀0 𝑐𝑐𝑉𝑉𝑐𝑐2(𝑤𝑤𝑤𝑤 − 𝑘𝑘𝑘𝑘) (13) 

We see, that to determine the electric field strength (E0) of EM wave, the missing parameter is the area of the 
photons (Area, Eq. (13)). Until we find a way to determine the shape and area of photons, it is impossible to 
determine E0 for any EM wave or photon. 

One obvious point is that shorter wavelength photons should carry more energy, encapsulated in a shorter path. 
However, the function of the area of these photons remains unknown. It is still possible that shorter wavelength 
photons have a larger area. Without a definitive understanding of the photon's area and shape, determination of the 
electric field strength (E0) remains unresolved. 

One might think that the simplest experiment to determine the electric field strength and area of a photon 
would involve recording a beam profile using a laser pulse of known power and calculating the area of an individual 
photon. 

Let's suppose we have a rectangular beam profile with the same intensity across the detector, for simplicity, not 
varying with time (Fig. 5).  

Figure 4: Supposed Volume of Individual Photon
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The detector measures the number of photons (𝑁) that hit each 
pixel area across the detector (Equation 14). Intensity is constant 
across the detector for our model, so we can write next: 

The detector counts the number of photons per pixel, not per area 
of photon [6]. Both the area of an individual photon (𝐴ℎ𝑣) and 
the number of photons per that area (𝑁1) are unknown values. 
Consequently, the area of a single photon cannot be determined 
from such an experiment when working with a collection of 
photons. 

This fundamental challenge of measuring the area of an 
individual photon underscores the difficulty in pinpointing the 
electric field strength and area of single photons. The result is 
clear: to obtain values of E0, one must find a way to determine 

the shape and area of photons. However, determining the area 
of an individual photon, which should be precisely located in 
space and time, presents a formidable task. Most experiments 
involving light entail working with a high number of particles. 
Nevertheless, there remains hope that someone will develop a 
method to overcome this challenge, leading to a breakthrough 
in determining the electric field strength of individual photons. 

5. Conclusion 
In summary, through this investigation, I explored the feasibility 
of determining the electric field strength of individual photons. 
I started by employing the commonly accepted sinusoidal 
representation of light, which lacked specific values for electric 
field strength. Despite conducting theoretical analysis and 
considering photon characteristics, I concluded that determining 
the electric field strength (E0) of EM radiation is impossible 
without determining the area of individual photons. Unless 
a convenient method for determining the area of individual 

In this case, from derived Equation 10 we can obtain the 
following equations: 

From which we can find E0:

We see, that to determine the electric field strength (E0) of EM 
wave, the missing parameter is the area of the photons (Area, 
Equation (13)). Until we find a way to determine the shape and 

area of photons, it is impossible to determine E0 for any EM 
wave or photon. 

One obvious point is that shorter wavelength photons should 
carry more energy, encapsulated in a shorter path. However, 
the function of the area of these photons remains unknown. It 
is still possible that shorter wavelength photons have a larger 
area. Without a definitive understanding of the photon's area and 
shape, determination of the electric field strength (E0) remains 
unresolved. 

One might think that the simplest experiment to determine 
the electric field strength and area of a photon would involve 
recording a beam profile using a laser pulse of known power and 
calculating the area of an individual photon. 

Let's suppose we have a rectangular beam profile with the same 
intensity across the detector, for simplicity, not varying with 
time (Figure 5). 
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Fig. 5. Supposed beam profile experiment for determining 𝐴𝐴ℎ𝑣𝑣. 

The detector measures the number of photons (𝑁𝑁) that hit each pixel area across the detector (Eq. 14). Intensity 
is constant across the detector for our model, so we can write next: 

I = 𝑁𝑁ℎ𝑣𝑣
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑁𝑁1ℎ𝑣𝑣

𝐴𝐴ℎ𝑣𝑣
= 𝑁𝑁2ℎ𝑣𝑣
𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝑁𝑁ℎ𝑣𝑣
𝐴𝐴𝑑𝑑𝑝𝑝𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

(14) 

The detector counts the number of photons per pixel, not per area of photon [6]. Both the area of an individual 
photon (𝐴𝐴ℎ𝑣𝑣) and the number of photons per that area (𝑁𝑁1) are unknown values. Consequently, the area of a single 
photon cannot be determined from such an experiment when working with a collection of photons.  

This fundamental challenge of measuring the area of an individual photon underscores the difficulty in 
pinpointing the electric field strength and area of single photons. The result is clear: to obtain values of E0, one must 
find a way to determine the shape and area of photons. However, determining the area of an individual photon, 
which should be precisely located in space and time, presents a formidable task. Most experiments involving light 
entail working with a high number of particles. Nevertheless, there remains hope that someone will develop a 
method to overcome this challenge, leading to a breakthrough in determining the electric field strength of individual 
photons. 

5 Conclusion 
In summary, through this investigation, I explored the feasibility of determining the electric field strength of 

individual photons. I started by employing the commonly accepted sinusoidal representation of light, which lacked 
specific values for electric field strength. Despite conducting theoretical analysis and considering photon 
characteristics, I concluded that determining the electric field strength (E0) of EM radiation is impossible without 
determining the area of individual photons. Unless a convenient method for determining the area of individual 
photons is developed, the values of electric field strength (E0) of EM radiation remain unknown.  
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photons is developed, the values of electric field strength (E0) of 
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