
 Volume 2 | Issue 1 | 1Ann Comp Phy Material Sci, 2025

Citation: Hathidara, A., Pandey, L. (2025). Implementing an Artificial Quantum Perceptron. Ann Comp Phy Material
Sci, 2(1), 01-05.

Implementing an Artificial Quantum Perceptron

*Corresponding Author
Ashutosh Hathidara, SAP AI, USA.

Submitted: 2024, Dec 05; Accepted: 2024, Dec 24; Published: 2025, Jan 03

Ashutosh Hathidara1* and Lalit Pandey2

Abstract
A Perceptron is a fundamental building block of a neural network. The flexibility and scalability of perceptron make
it ubiquitous in building intelligent systems. Studies have shown the efficacy of a single neuron in making intelligent
decisions. Here, we examined and compared two perceptron’s with distinct mechanisms, and developed a quantum version
of one of those perceptron’s. As a part of this modelling, we implemented the quantum circuit for an artificial perception,
generated a dataset, and simulated the training. Through these experiments, we show that there is an exponential growth
advantage and test different qubit versions. Our findings show that this quantum model of an individual perceptron can
be used as a pattern classifier. For the second type of model, we provide an understanding to design and simulate a
spike-dependent quantum perceptron. Our code is available at https://github.com/ashutosh1919/quantum-perceptron

Research Article

1SAP AI, USA

2Informatics Department, Indiana University,
Bloomington, Indiana, USA

Annals of Computational Physics and Material Science
ISSN: 2997-2795

Keywords: Quantum Perceptron, Quantum Computing, Quantum Machine Learning

1. Introduction
A perceptron is an artificial unit of an intelligent system capable of
making decisions. This artificial unit is inspired by the biological
neurons found in the human brain. The human brain has a network
of billions of neurons connected to each other. This connectivity
leads to the formation of a deep network. Thus, a perceptron is
used as a fundamental building block in deep learning systems.
In classical computing, these perceptron’s have two states, 0
and 1. When the input of the perceptron is sufficient enough to
generate an output over the threshold limit, the perceptron is said
to be in ‘ON’ or 1 state. On the other hand, if the output of the
perceptron is less than its threshold value, then it is in ‘OFF’
or 0 state [1]. Decades of research in the field of classical deep
learning have given rise to state-of-the-art systems that mimic
human-level intelligence [2,3]. Drawing from recent research
that suggests the role of quantum entanglement in consciousness,
there has been growing interest in exploring the potential of
quantum computing to advance artificial intelligence. However,
despite this progress, there remains a gap when implementing
quantum algorithms in AI. In this study, we aim to bridge this
gap by implementing a quantum model of a perceptron. Here,

we review the available literature and implement the quantum
circuit using Qiskit quantum simulator to simulate the training
of a single perception [4,5].

Almost every advanced deep learning system has artificial neurons
as the fundamental building block. Inspired by the success in
the classical machine learning field, we attempt to implement a
quantum version of a perceptron that mimics the properties of
a classical perceptron but has the benefits of a quantum system
and obeys the rules of quantum mechanics. Previous works
like introduce a novel architecture and quantum algorithm to
design a quantum version of a perceptron [4]. We examine the
algorithm and simulate it to test the efficacy of the quantum
algorithm. For the implementation, we use QisKit quantum
simulation tool and construct quantum gates as specified in the
algorithm. We then develop an end-to-end pipeline to generate
datasets, initialize weights, train the perceptron, and simulate the
probability behaviour as discussed in [4]. Following the training
process, we conduct a comprehensive analysis to confirm the
trained perceptron’s ability to accurately classify patterns.

 Volume 2 | Issue 1 | 2Ann Comp Phy Material Sci, 2025

Implementing An Artificial Quantum Perceptron

Figure 1: A classical perceptron used in deep learning systems. The perceptron takes multiple input values
{i0, i1, . . . , in−1}. Internally, it initializes random weight values {w0, w1, . . . , wn−1} corresponding to each of the
input values. The perceptron computes the dot product of the input and weight vector i.e. i⃗ · w⃗ =

∑n−1
j=0 ijwj . This dot

product result is passed through a non-linear sigmoid [6] function which computes the probability. This probability can
be used to compute the loss using the supervised label. The computed loss can then be used to train the perceptron by
backpropagating gradients [7] and updating the weights.

2 Related Work

The concept of a perceptron was first introduced in [8], which presented the classical mathematical framework for
utilizing a perceptron as a supervised data classifier. Numerous successful examples have demonstrated the effective
application of this mathematical principle in real-world scenarios.

In 2013, Lloyed et. al. [9] introduced a theoretical notion of quantum perceptron for supervised and unsupervised
learning. Such perceptrons require generalized values and use qRAM [10] to store values. This study contributes to
the theoretical literature of quantum computing. In 2014, Schuld et. al. [11] introduced the concept of simulating
perceptrons using tools. They used the same simulation tools used in [4] to implement the quantum circuit of a
perceptron. The terminology and the approach are similar too. However, [11] utilizes QFT to create intermediate oracle
circuits to prepare the input and weight states which operates on an exponential number of gates. On the other hand, [4]
make use of hypergraph states to construct these oracles. This allows them to operate with a polynomial number of
quantum gates. The most recent classical deep learning models, as described in [12], utilize bias vectors in addition to
weight vectors for their perceptrons. As implementing perceptron algorithms in the quantum field is a relatively new
concept, we omit the bias vector and exclusively focus on training the weight vector.

3 Methods

3.1 Architecture

Unlike a classical perceptron, a quantum perceptron has quantum gates that prepare the inputs and weights for the
system to process. Unitary transformation functions are used to pre-process the input and weight vectors. A Unitary
transformation function, also known as an Oracle, houses quantum gates which act upon the input vectors to perform
operations such as phase shift, imposing superposition, entanglement, etc. Akin to classical neurons, a quantum
perceptron takes an input vector and a weight vector and outputs a probability of the outcome.

|ψi⟩ =
1√
m

m−1∑
j=0

ij |j⟩ (1)

|ψw⟩ =
1√
m

m−1∑
j=0

wj |j⟩ (2)

2

Implementing An Artificial Quantum Perceptron

Figure 1: A classical perceptron used in deep learning systems. The perceptron takes multiple input values
{i0, i1, . . . , in−1}. Internally, it initializes random weight values {w0, w1, . . . , wn−1} corresponding to each of the
input values. The perceptron computes the dot product of the input and weight vector i.e. i⃗ · w⃗ =

∑n−1
j=0 ijwj . This dot

product result is passed through a non-linear sigmoid [6] function which computes the probability. This probability can
be used to compute the loss using the supervised label. The computed loss can then be used to train the perceptron by
backpropagating gradients [7] and updating the weights.

2 Related Work

The concept of a perceptron was first introduced in [8], which presented the classical mathematical framework for
utilizing a perceptron as a supervised data classifier. Numerous successful examples have demonstrated the effective
application of this mathematical principle in real-world scenarios.

In 2013, Lloyed et. al. [9] introduced a theoretical notion of quantum perceptron for supervised and unsupervised
learning. Such perceptrons require generalized values and use qRAM [10] to store values. This study contributes to
the theoretical literature of quantum computing. In 2014, Schuld et. al. [11] introduced the concept of simulating
perceptrons using tools. They used the same simulation tools used in [4] to implement the quantum circuit of a
perceptron. The terminology and the approach are similar too. However, [11] utilizes QFT to create intermediate oracle
circuits to prepare the input and weight states which operates on an exponential number of gates. On the other hand, [4]
make use of hypergraph states to construct these oracles. This allows them to operate with a polynomial number of
quantum gates. The most recent classical deep learning models, as described in [12], utilize bias vectors in addition to
weight vectors for their perceptrons. As implementing perceptron algorithms in the quantum field is a relatively new
concept, we omit the bias vector and exclusively focus on training the weight vector.

3 Methods

3.1 Architecture

Unlike a classical perceptron, a quantum perceptron has quantum gates that prepare the inputs and weights for the
system to process. Unitary transformation functions are used to pre-process the input and weight vectors. A Unitary
transformation function, also known as an Oracle, houses quantum gates which act upon the input vectors to perform
operations such as phase shift, imposing superposition, entanglement, etc. Akin to classical neurons, a quantum
perceptron takes an input vector and a weight vector and outputs a probability of the outcome.

|ψi⟩ =
1√
m

m−1∑
j=0

ij |j⟩ (1)

|ψw⟩ =
1√
m

m−1∑
j=0

wj |j⟩ (2)

2

Figure 1: A classical perceptron used in deep learning systems. The perceptron takes multiple input values {i0, i1 ,...,in−1}. Internally,
it initializes random weight values {w0, w1, ..., wn−1} corresponding to each of the input values. The perceptron computes the dot
product of the input and weight vector i.e.

Implementing An Artificial Quantum Perceptron

Figure 1: A classical perceptron used in deep learning systems. The perceptron takes multiple input values
{i0, i1, . . . , in−1}. Internally, it initializes random weight values {w0, w1, . . . , wn−1} corresponding to each of the
input values. The perceptron computes the dot product of the input and weight vector i.e. i⃗ · w⃗ =

∑n−1
j=0 ijwj . This dot

product result is passed through a non-linear sigmoid [6] function which computes the probability. This probability can
be used to compute the loss using the supervised label. The computed loss can then be used to train the perceptron by
backpropagating gradients [7] and updating the weights.

2 Related Work

The concept of a perceptron was first introduced in [8], which presented the classical mathematical framework for
utilizing a perceptron as a supervised data classifier. Numerous successful examples have demonstrated the effective
application of this mathematical principle in real-world scenarios.

In 2013, Lloyed et. al. [9] introduced a theoretical notion of quantum perceptron for supervised and unsupervised
learning. Such perceptrons require generalized values and use qRAM [10] to store values. This study contributes to
the theoretical literature of quantum computing. In 2014, Schuld et. al. [11] introduced the concept of simulating
perceptrons using tools. They used the same simulation tools used in [4] to implement the quantum circuit of a
perceptron. The terminology and the approach are similar too. However, [11] utilizes QFT to create intermediate oracle
circuits to prepare the input and weight states which operates on an exponential number of gates. On the other hand, [4]
make use of hypergraph states to construct these oracles. This allows them to operate with a polynomial number of
quantum gates. The most recent classical deep learning models, as described in [12], utilize bias vectors in addition to
weight vectors for their perceptrons. As implementing perceptron algorithms in the quantum field is a relatively new
concept, we omit the bias vector and exclusively focus on training the weight vector.

3 Methods

3.1 Architecture

Unlike a classical perceptron, a quantum perceptron has quantum gates that prepare the inputs and weights for the
system to process. Unitary transformation functions are used to pre-process the input and weight vectors. A Unitary
transformation function, also known as an Oracle, houses quantum gates which act upon the input vectors to perform
operations such as phase shift, imposing superposition, entanglement, etc. Akin to classical neurons, a quantum
perceptron takes an input vector and a weight vector and outputs a probability of the outcome.

|ψi⟩ =
1√
m

m−1∑
j=0

ij |j⟩ (1)

|ψw⟩ =
1√
m

m−1∑
j=0

wj |j⟩ (2)

2

. This dot product result is passed through a non-linear sigmoid
function which computes the probability [6]. This probability can be used to compute the loss using the supervised label. The
computed loss can then be used to train the perceptron by backpropagating gradients and updating the weights [4].

1.1. Related Work
The concept of a perceptron was first introduced in [7], which
presented the classical mathematical framework for utilizing a
perceptron as a supervised data classifier. Numerous successful
examples have demonstrated the effective application of this
mathematical principle in real-world scenarios. In 2013, Lloyed
et al., introduced a theoretical notion of quantum perceptron for
supervised and unsupervised learning [8]. Such perceptron’s
require generalized values and use qRAM to store values [9].
This study contributes to the theoretical literature of quantum
computing. In 2014, Schuld, et al., introduced the concept of
simulating perceptron’s using tools [10]. They used the same
simulation tools used in to implement the quantum circuit of a
perceptron [4]. The terminology and the approach are similar
too. However, [10] utilizes QFT to create intermediate oracle
circuits to prepare the input and weight states which operates
on an exponential number of gates. On the other hand, [4] make
use of hypergraph states to construct these oracles. This allows

them to operate with a polynomial number of quantum gates.
The most recent classical deep learning models, as described
in [11], utilize bias vectors in addition to weight vectors for
their perceptron’s. As implementing perceptron algorithms in
the quantum field is a relatively new concept, we omit the bias
vector and exclusively focus on training the weight vector.

2. Methods
2.1. Architecture
Unlike a classical perceptron, a quantum perceptron has
quantum gates that prepare the inputs and weights for the system
to process. Unitary transformation functions are used to pre-
process the input and weight vectors. A Unitary transformation
function, also known as an Oracle, houses quantum gates
which act upon the input vectors to perform operations such as
phase shift, imposing superposition, entanglement, etc. Akin to
classical neurons, a quantum perceptron takes an input vector
and a weight vector and outputs a probability of the outcome.

 Volume 2 | Issue 1 | 3Ann Comp Phy Material Sci, 2025

Implementing An Artificial Quantum Perceptron

Figure 2: A Quantum Version of Perceptron.

Figure 2 illustrates the internal structure of a perceptron architecture. Two Unitary transformation functions namely, Ui

and Uf , are used to perform quantum operations. The input vector is transformed into an input state by applying the Ui

function as shown in equation 1, while the Uf function transforms the weight vector into a weighted state as shown in
equation 2. After applying the transformation functions, the dot product is calculated between the input and the weight
state (⟨ψw|ψi⟩). This entire series of operations are carried out until the model converges and we obtain the optimal
weight.

3.2 Dataset Generation

We used the same quantum perceptron to generate the dataset consisting of value-label pairs. Following Mcculloch et.
al. [1], we replaced all the classical bits containing 1 with -1 and 0 bits with 1. For instance, if the input value is 12,
then the transition from classical to quantum vector will look as 12 → [1, 1, 0, 0] → [−1,−1, 1, 1].

Figure 3: Generating dataset using single perceptron

The overall implementation of dataset generation is described in algorithm 1. The algorithm was tested using varying
numbers of qubits, resulting in 16 possible input values when using 2 qubits and 216 possible input values when using 4
qubits.

Algorithm 1 Data Generation

Require: Optimal weight wo, Number of qubits n, Number of iterations N
1: data ← {} ▷ Initializing empty list
2: p ← Perceptron(n) ▷ Initializing perceptron
3: for i ∈ [0, 22

n − 1] do
4: p.input ← i
5: p.weight ← w0

6: p1 ← p.measure(N) ▷ Probability of measuring 1
7: if p1 < 0.5 then
8: data.add((i, 0)) ▷ Assigning label 0
9: else if p1 ≥ 0.5 then

10: data.add((i, 1)) ▷ Assigning label 1
11: end if
12: end for

3

Implementing An Artificial Quantum Perceptron

Figure 2: A Quantum Version of Perceptron.

Figure 2 illustrates the internal structure of a perceptron architecture. Two Unitary transformation functions namely, Ui

and Uf , are used to perform quantum operations. The input vector is transformed into an input state by applying the Ui

function as shown in equation 1, while the Uf function transforms the weight vector into a weighted state as shown in
equation 2. After applying the transformation functions, the dot product is calculated between the input and the weight
state (⟨ψw|ψi⟩). This entire series of operations are carried out until the model converges and we obtain the optimal
weight.

3.2 Dataset Generation

We used the same quantum perceptron to generate the dataset consisting of value-label pairs. Following Mcculloch et.
al. [1], we replaced all the classical bits containing 1 with -1 and 0 bits with 1. For instance, if the input value is 12,
then the transition from classical to quantum vector will look as 12 → [1, 1, 0, 0] → [−1,−1, 1, 1].

Figure 3: Generating dataset using single perceptron

The overall implementation of dataset generation is described in algorithm 1. The algorithm was tested using varying
numbers of qubits, resulting in 16 possible input values when using 2 qubits and 216 possible input values when using 4
qubits.

Algorithm 1 Data Generation

Require: Optimal weight wo, Number of qubits n, Number of iterations N
1: data ← {} ▷ Initializing empty list
2: p ← Perceptron(n) ▷ Initializing perceptron
3: for i ∈ [0, 22

n − 1] do
4: p.input ← i
5: p.weight ← w0

6: p1 ← p.measure(N) ▷ Probability of measuring 1
7: if p1 < 0.5 then
8: data.add((i, 0)) ▷ Assigning label 0
9: else if p1 ≥ 0.5 then

10: data.add((i, 1)) ▷ Assigning label 1
11: end if
12: end for

3

Implementing An Artificial Quantum Perceptron

Figure 2: A Quantum Version of Perceptron.

Figure 2 illustrates the internal structure of a perceptron architecture. Two Unitary transformation functions namely, Ui

and Uf , are used to perform quantum operations. The input vector is transformed into an input state by applying the Ui

function as shown in equation 1, while the Uf function transforms the weight vector into a weighted state as shown in
equation 2. After applying the transformation functions, the dot product is calculated between the input and the weight
state (⟨ψw|ψi⟩). This entire series of operations are carried out until the model converges and we obtain the optimal
weight.

3.2 Dataset Generation

We used the same quantum perceptron to generate the dataset consisting of value-label pairs. Following Mcculloch et.
al. [1], we replaced all the classical bits containing 1 with -1 and 0 bits with 1. For instance, if the input value is 12,
then the transition from classical to quantum vector will look as 12 → [1, 1, 0, 0] → [−1,−1, 1, 1].

Figure 3: Generating dataset using single perceptron

The overall implementation of dataset generation is described in algorithm 1. The algorithm was tested using varying
numbers of qubits, resulting in 16 possible input values when using 2 qubits and 216 possible input values when using 4
qubits.

Algorithm 1 Data Generation

Require: Optimal weight wo, Number of qubits n, Number of iterations N
1: data ← {} ▷ Initializing empty list
2: p ← Perceptron(n) ▷ Initializing perceptron
3: for i ∈ [0, 22

n − 1] do
4: p.input ← i
5: p.weight ← w0

6: p1 ← p.measure(N) ▷ Probability of measuring 1
7: if p1 < 0.5 then
8: data.add((i, 0)) ▷ Assigning label 0
9: else if p1 ≥ 0.5 then

10: data.add((i, 1)) ▷ Assigning label 1
11: end if
12: end for

3

Figure 2: A Quantum Version of Perceptron

Figure 2 illustrates the internal structure of a perceptron
architecture. Two Unitary transformation functions namely, Ui
and Uf , are used to perform quantum operations. The input vector
is transformed into an input state by applying the Ui function
as shown in equation 1, while the Uf function transforms the
weight vector into a weighted state as shown in equation 2.
After applying the transformation functions, the dot product
is calculated between the input and the weight state (⟨ψw|ψi⟩).
This entire series of operations are carried out until the model
converges and we obtain the optimal weight.

2.2. Dataset Generation
We used the same quantum perceptron to generate the dataset
consisting of value-label pairs. Following Mcculloch et al., we
replaced all the classical bits containing 1 with -1 and 0 bits with
1 [1]. For instance, if the input value is 12, then the transition
from classical to quantum vector will look as 12 → [1,1,0,0] →
[−1,−1,1,1].

Figure 3: Generating Dataset using Single Perceptron

The overall implementation of dataset generation is described in
algorithm 1. The algorithm was tested using varying numbers of

qubits, resulting in 16 possible input values when using 2 qubits
and 216 possible input values when using 4 qubits.

A neural network requires a dataset to operate upon and to
update the network’s parameters. To generate the dataset, first,
we take a fixed optimal weight w0 = 626 as shown in Figure
3. Second, we passed sequential input values and weight wo to
the perceptron. Finally, we compute the output probability and
based on that label the data. If the probability was less than 0.5,
the input value was classified as 0, and if it was 0.5 or greater, the
input value was classified as 1. The weight was constant and did

not update throughout the data collection process. This approach
is similar to supervised learning in the case of classical deep
learning systems.

2.3. Training
Classical deep learning systems need an enormous amount of
training to achieve convergence. In contrast, quantum computing
offers the advantage of rapidly converging models. The quantum

 Volume 2 | Issue 1 | 4Ann Comp Phy Material Sci, 2025

perceptron training is described in the algorithm 2.

Implementing An Artificial Quantum Perceptron

A neural network requires a dataset to operate upon and to update the network’s parameters. To generate the dataset, first,
we take a fixed optimal weight w0 = 626 as shown in figure 3. Second, we passed sequential input values and weight
wo to the perceptron. Finally, we compute the output probability and based on that label the data. If the probability was
less than 0.5, the input value was classified as 0, and if it was 0.5 or greater, the input value was classified as 1. The
weight was constant and did not update throughout the data collection process. This approach is similar to supervised
learning in the case of classical deep learning systems.

3.3 Training

Classical deep learning systems need an enormous amount of training to achieve convergence. In contrast, quantum
computing offers the advantage of rapidly converging models. The quantum perceptron training is described in the
algorithm 2.

Algorithm 2 Training Perceptron

Require: Optimal weight wo, Number of qubits n, Number of iterations N , data
1: wt ← U(0, 22

n − 1) ▷ Randomly initialize weight for training
2: p ← Perceptron(n) ▷ Initializing perceptron
3: for i, l ← data do
4: p.input ← i
5: p.weight ← wt

6: p1 ← p.measure(N) ▷ Probability of measuring 1
7: if p1 < 0.5 and l = 1 then
8: FLIP-NON-MATCHING-BITS(wt, i) ▷ Flip non-matching bits of wt w.r.t i
9: else if p1 ≥ 0.5 and l = 0 then

10: FLIP-MATCHING-BITS(wt, i) ▷ Flip matching bits of wt w.r.t i
11: end if
12: converged if wt = wo

13: end for

During the training phase, each perceptron is initialized with a random weight which is updated after each training
iteration. Here, for a system with 4 qubits, we initialize a random weight wt. The goal of training the perceptron is to
update its weights, such that it can correctly classify the input values as per their labels. In case when the misprediction
happens, we need to penalize the loss such that the weights are updated. Here, we have two cases of misprediction.
Below, we describe the details to handle the misprediction to update weights.

Case 1: Predicted label = 0, Actual label = 1. In this case, we first find the number of non-matching bits between the
input and weight sequence. Next, we multiply the learning rate by the number of non-matching bits and round down
to obtain a product. Finally, we randomly flip the resulting number (product obtained in the above step) of bits in the
weight, bringing it closer to the input sequence and facilitating faster convergence of the model.

Case 2: Predicted label = 1, Actual label = 0. In this case, instead of finding non-matching bits, we look for the
matching bits between the input and weight sequence. The rest of the steps remain the same as in case 1.

The weight of the perceptron is updated after each training iteration (epoch) based on the above two cases. Note that we
do not need to update the weights when the prediction is correct since the loss in such cases would be zero. Finally, we
check if wt = wo and stop the training if satisfied.

4 Results

Pattern Classification: We trained a quantum perceptron and visualized its optimal weights after training. Figure 4
shows the training steps and the transformation of randomly initialized weight into a complete pattern. Through our
experiments, we found that a single quantum perceptron can successfully classify simple patterns of horizontal and
vertical lines. Here, we report one such pattern after training the perceptron.

4

During the training phase, each perceptron is initialized with a
random weight which is updated after each training iteration.
Here, for a system with 4 qubits, we initialize a random weight
wt. The goal of training the perceptron is to update its weights,
such that it can correctly classify the input values as per their
labels. In case when the misprediction happens, we need to
penalize the loss such that the weights are updated. Here, we
have two cases of misprediction. Below, we describe the details
to handle the misprediction to update weights.

Case 1: Predicted label = 0, Actual label = 1. In this case, we
first find the number of non-matching bits between the input
and weight sequence. Next, we multiply the learning rate by
the number of non-matching bits and round down to obtain a
product. Finally, we randomly flip the resulting number (product
obtained in the above step) of bits in the weight, bringing it
closer to the input sequence and facilitating faster convergence
of the model.

Case 2: Predicted label = 1, Actual label = 0. In this case, instead
of finding non-matching bits, we look for the matching bits
between the input and weight sequence. The rest of the steps
remain the same as in case 1. The weight of the perceptron is
updated after each training iteration (epoch) based on the above
two cases. Note that we do not need to update the weights when
the prediction is correct since the loss in such cases would be
zero. Finally, we check if wt = wo and stop the training if satisfied.

3. Results
• Pattern Classification: We trained a quantum perceptron and
visualized its optimal weights after training. Figure 4 shows the
training steps and the transformation of randomly initialized
weight into a complete pattern. Through our experiments, we
found that a single quantum perceptron can successfully classify
simple patterns of horizontal and vertical lines. Here, we report
one such pattern after training the perceptron.

Implementing An Artificial Quantum Perceptron

Figure 4: Training procedure for the generated data

Faster Convergence: Compared to classical deep learning systems, a quantum perceptron can achieve optimal
performance faster and has the ability to terminate training once the optimal weight has been reached. We found that a
four-qubit system converged and reached the optimal weight before the training was completed.

Identical Input and Weight: Finally, we only get a probability of 1 when the input and the weight have the same
value. The geometrical patterns in figure 5 denote the perceptron probability for all combinations of input and weight
values.

(a) Simulation for 2 qubit system (b) Simulation for 3 qubit system

Figure 5: Simulation of perceptron on all combinations of input and weight values

5 Conclusion and Future Work

We implemented a quantum version of a perceptron and tested the algorithm’s efficacy. Upon analysis, a single
perceptron was able to classify patterns after training. The results suggest that a quantum perceptron converges faster
than a classical perceptron. This faster convergence highlights the parallel processing of the inputs present in the
superposition states. One of the limitations of this work is the use of a single perceptron to design a classifier. Another
limitation is the absence of bias vectors in addition to the weight vectors in the training process. We also confine the
input values (only -1 and 1) when training the perceptron. Future work will focus on designing and implementing an
advanced network with more interconnected perceptrons. This will lead to the development of an advanced quantum
network for classification purposes.

6 Acknowledgment

We thank Dr. Mohsen Heidari, professor at Indiana University Bloomington, for being our instructor, guiding us
throughout the project, and thereby supporting our work.

5

Figure 4: Training Procedure for the Generated Data

• Faster Convergence: Compared to classical deep learning
systems, a quantum perceptron can achieve optimal performance
faster and has the ability to terminate training once the optimal
weight has been reached. We found that a four-qubit system
converged and reached the optimal weight before the training
was completed.

• Identical Input and Weight: Finally, we only get a probability
of 1 when the input and the weight have the same value. The
geometrical patterns in figure 5 denote the perceptron probability
for all combinations of input and weight values.

 Volume 2 | Issue 1 | 5Ann Comp Phy Material Sci, 2025

Copyright: ©2025 Ashutosh Hathidara, et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.

https://opastpublishers.com

Implementing An Artificial Quantum Perceptron

Figure 4: Training procedure for the generated data

Faster Convergence: Compared to classical deep learning systems, a quantum perceptron can achieve optimal
performance faster and has the ability to terminate training once the optimal weight has been reached. We found that a
four-qubit system converged and reached the optimal weight before the training was completed.

Identical Input and Weight: Finally, we only get a probability of 1 when the input and the weight have the same
value. The geometrical patterns in figure 5 denote the perceptron probability for all combinations of input and weight
values.

(a) Simulation for 2 qubit system (b) Simulation for 3 qubit system

Figure 5: Simulation of perceptron on all combinations of input and weight values

5 Conclusion and Future Work

We implemented a quantum version of a perceptron and tested the algorithm’s efficacy. Upon analysis, a single
perceptron was able to classify patterns after training. The results suggest that a quantum perceptron converges faster
than a classical perceptron. This faster convergence highlights the parallel processing of the inputs present in the
superposition states. One of the limitations of this work is the use of a single perceptron to design a classifier. Another
limitation is the absence of bias vectors in addition to the weight vectors in the training process. We also confine the
input values (only -1 and 1) when training the perceptron. Future work will focus on designing and implementing an
advanced network with more interconnected perceptrons. This will lead to the development of an advanced quantum
network for classification purposes.

6 Acknowledgment

We thank Dr. Mohsen Heidari, professor at Indiana University Bloomington, for being our instructor, guiding us
throughout the project, and thereby supporting our work.

5

Figure 5: Simulation of Perceptron on all Combinations of Input and Weight Values

4. Conclusion and Future Work
We implemented a quantum version of a perceptron and tested
the algorithm’s efficacy. Upon analysis, a single perceptron was
able to classify patterns after training. The results suggest that a
quantum perceptron converges faster than a classical perceptron.
This faster convergence highlights the parallel processing of the
inputs present in the superposition states. One of the limitations
of this work is the use of a single perceptron to design a classifier.
Another limitation is the absence of bias vectors in addition to
the weight vectors in the training process. We also confine the
input values (only -1 and 1) when training the perceptron. Future
work will focus on designing and implementing an advanced
network with more interconnected perceptron’s. This will
lead to the development of an advanced quantum network for
classification purposes.

Acknowledgment
We thank Dr. Mohsen Heidari, professor at Indiana University
Bloomington, for being our instructor, guiding us throughout the
project, and thereby supporting our work.

References
1.	 McCulloch, W. S., & Pitts, W. (1943). A logical calculus

of the ideas immanent in nervous activity. The bulletin of
mathematical biophysics, 5, 115-133.

2.	 Liu, Y., Han, T., Ma, S., Zhang, J., Yang, Y., Tian, J., ... &
Ge, B. (2023). Summary of chatgpt-related research and
perspective towards the future of large language models.

Meta-Radiology, 100017.
3.	 Shanahan, M. (2024). Talking about large language models.

Communications of the ACM, 67(2), 68-79.
4.	 Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986).

Learning internal representations by back-propagating
errors in Parallel Distributed Processing: Explorations in
the Microstructure of Cognition. Eds.

5.	 Qiskit.
6.	 Narayan, S. (1997). The generalized sigmoid activation

function: Competitive supervised learning. Information
sciences, 99(1-2), 69-82.

7.	 Fitch, F. B. (1944). Warren S. McCulloch and Walter Pitts.
A logical calculus of the ideas immanent in nervous activity.
Bulletin of mathematical biophysics, vol. 5 (1943), pp. 115–
133. Journal of Symbolic Logic, 9(2), 49-50.

8.	 Lloyd, S., Mohseni, M., & Rebentrost, P. (2013). Quantum
algorithms for supervised and unsupervised machine
learning. arXiv preprint arXiv:1307.0411.

9.	 Giovannetti, V., Lloyd, S., & Maccone, L. (2008). Quantum
random access memory. Physical review letters, 100(16),
160501.

10.	 Schuld, M., Sinayskiy, I., & Petruccione, F. (2015).
Simulating a perceptron on a quantum computer. Physics
Letters A, 379(7), 660-663.

11.	 Schmidhuber, J. (2015). Deep learning in neural networks:
An overview. Neural networks, 61, 85-117.

https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1016/j.metrad.2023.100017
https://doi.org/10.1016/j.metrad.2023.100017
https://doi.org/10.1016/j.metrad.2023.100017
https://doi.org/10.1016/j.metrad.2023.100017
https://doi.org/10.1145/3624724
https://doi.org/10.1145/3624724
https://stanford.edu/~jlmcc/papers/PDP/Volume 1/Chap8_PDP86.pdf
https://stanford.edu/~jlmcc/papers/PDP/Volume 1/Chap8_PDP86.pdf
https://stanford.edu/~jlmcc/papers/PDP/Volume 1/Chap8_PDP86.pdf
https://stanford.edu/~jlmcc/papers/PDP/Volume 1/Chap8_PDP86.pdf
https://doi.org/10.1016/S0020-0255(96)00200-9
https://doi.org/10.1016/S0020-0255(96)00200-9
https://doi.org/10.1016/S0020-0255(96)00200-9
https://doi.org/10.2307/2268029
https://doi.org/10.2307/2268029
https://doi.org/10.2307/2268029
https://doi.org/10.2307/2268029
https://doi.org/10.48550/arXiv.1307.0411
https://doi.org/10.48550/arXiv.1307.0411
https://doi.org/10.48550/arXiv.1307.0411
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1016/j.physleta.2014.11.061
https://doi.org/10.1016/j.physleta.2014.11.061
https://doi.org/10.1016/j.physleta.2014.11.061
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003

