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Abstract
A Perceptron is a fundamental building block of a neural network. The flexibility and scalability of perceptron make 
it ubiquitous in building intelligent systems. Studies have shown the efficacy of a single neuron in making intelligent 
decisions. Here, we examined and compared two perceptron’s with distinct mechanisms, and developed a quantum version 
of one of those perceptron’s. As a part of this modelling, we implemented the quantum circuit for an artificial perception, 
generated a dataset, and simulated the training. Through these experiments, we show that there is an exponential growth 
advantage and test different qubit versions. Our findings show that this quantum model of an individual perceptron can 
be used as a pattern classifier. For the second type of model, we provide an understanding to design and simulate a 
spike-dependent quantum perceptron. Our code is available at https://github.com/ashutosh1919/quantum-perceptron
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1. Introduction
A perceptron is an artificial unit of an intelligent system capable of 
making decisions. This artificial unit is inspired by the biological 
neurons found in the human brain. The human brain has a network 
of billions of neurons connected to each other. This connectivity 
leads to the formation of a deep network. Thus, a perceptron is 
used as a fundamental building block in deep learning systems. 
In classical computing, these perceptron’s have two states, 0 
and 1. When the input of the perceptron is sufficient enough to 
generate an output over the threshold limit, the perceptron is said 
to be in ‘ON’ or 1 state. On the other hand, if the output of the 
perceptron is less than its threshold value, then it is in ‘OFF’ 
or 0 state [1]. Decades of research in the field of classical deep 
learning have given rise to state-of-the-art systems that mimic 
human-level intelligence [2,3]. Drawing from recent research 
that suggests the role of quantum entanglement in consciousness, 
there has been growing interest in exploring the potential of 
quantum computing to advance artificial intelligence. However, 
despite this progress, there remains a gap when implementing 
quantum algorithms in AI. In this study, we aim to bridge this 
gap by implementing a quantum model of a perceptron. Here, 

we review the available literature and implement the quantum 
circuit using Qiskit quantum simulator to simulate the training 
of a single perception [4,5].

Almost every advanced deep learning system has artificial neurons 
as the fundamental building block. Inspired by the success in 
the classical machine learning field, we attempt to implement a 
quantum version of a perceptron that mimics the properties of 
a classical perceptron but has the benefits of a quantum system 
and obeys the rules of quantum mechanics. Previous works 
like introduce a novel architecture and quantum algorithm to 
design a quantum version of a perceptron [4]. We examine the 
algorithm and simulate it to test the efficacy of the quantum 
algorithm. For the implementation, we use QisKit quantum 
simulation tool and construct quantum gates as specified in the 
algorithm. We then develop an end-to-end pipeline to generate 
datasets, initialize weights, train the perceptron, and simulate the 
probability behaviour as discussed in [4]. Following the training 
process, we conduct a comprehensive analysis to confirm the 
trained perceptron’s ability to accurately classify patterns.
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Figure 1: A classical perceptron used in deep learning systems. The perceptron takes multiple input values
{i0, i1, . . . , in−1}. Internally, it initializes random weight values {w0, w1, . . . , wn−1} corresponding to each of the
input values. The perceptron computes the dot product of the input and weight vector i.e. i⃗ · w⃗ =

∑n−1
j=0 ijwj . This dot

product result is passed through a non-linear sigmoid [6] function which computes the probability. This probability can
be used to compute the loss using the supervised label. The computed loss can then be used to train the perceptron by
backpropagating gradients [7] and updating the weights.

2 Related Work

The concept of a perceptron was first introduced in [8], which presented the classical mathematical framework for
utilizing a perceptron as a supervised data classifier. Numerous successful examples have demonstrated the effective
application of this mathematical principle in real-world scenarios.

In 2013, Lloyed et. al. [9] introduced a theoretical notion of quantum perceptron for supervised and unsupervised
learning. Such perceptrons require generalized values and use qRAM [10] to store values. This study contributes to
the theoretical literature of quantum computing. In 2014, Schuld et. al. [11] introduced the concept of simulating
perceptrons using tools. They used the same simulation tools used in [4] to implement the quantum circuit of a
perceptron. The terminology and the approach are similar too. However, [11] utilizes QFT to create intermediate oracle
circuits to prepare the input and weight states which operates on an exponential number of gates. On the other hand, [4]
make use of hypergraph states to construct these oracles. This allows them to operate with a polynomial number of
quantum gates. The most recent classical deep learning models, as described in [12], utilize bias vectors in addition to
weight vectors for their perceptrons. As implementing perceptron algorithms in the quantum field is a relatively new
concept, we omit the bias vector and exclusively focus on training the weight vector.

3 Methods

3.1 Architecture

Unlike a classical perceptron, a quantum perceptron has quantum gates that prepare the inputs and weights for the
system to process. Unitary transformation functions are used to pre-process the input and weight vectors. A Unitary
transformation function, also known as an Oracle, houses quantum gates which act upon the input vectors to perform
operations such as phase shift, imposing superposition, entanglement, etc. Akin to classical neurons, a quantum
perceptron takes an input vector and a weight vector and outputs a probability of the outcome.

|ψi⟩ =
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m
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Figure 1: A classical perceptron used in deep learning systems. The perceptron takes multiple input values {i0, i1 ,...,in−1}. Internally, 
it initializes random weight values {w0, w1, ..., wn−1} corresponding to each of the input values. The perceptron computes the dot 
product of the input and weight vector i.e. 
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. This dot product result is passed through a non-linear sigmoid 
function which computes the probability [6]. This probability can be used to compute the loss using the supervised label. The 
computed loss can then be used to train the perceptron by backpropagating gradients and updating the weights [4].

1.1. Related Work
The concept of a perceptron was first introduced in [7], which 
presented the classical mathematical framework for utilizing a 
perceptron as a supervised data classifier. Numerous successful 
examples have demonstrated the effective application of this 
mathematical principle in real-world scenarios. In 2013, Lloyed 
et al., introduced a theoretical notion of quantum perceptron for 
supervised and unsupervised learning [8]. Such perceptron’s 
require generalized values and use qRAM to store values [9]. 
This study contributes to the theoretical literature of quantum 
computing. In 2014, Schuld, et al., introduced the concept of 
simulating perceptron’s using tools [10]. They used the same 
simulation tools used in to implement the quantum circuit of a 
perceptron [4]. The terminology and the approach are similar 
too. However, [10] utilizes QFT to create intermediate oracle 
circuits to prepare the input and weight states which operates 
on an exponential number of gates. On the other hand, [4] make 
use of hypergraph states to construct these oracles. This allows 

them to operate with a polynomial number of quantum gates. 
The most recent classical deep learning models, as described 
in [11], utilize bias vectors in addition to weight vectors for 
their perceptron’s. As implementing perceptron algorithms in 
the quantum field is a relatively new concept, we omit the bias 
vector and exclusively focus on training the weight vector.

2. Methods
2.1. Architecture
Unlike a classical perceptron, a quantum perceptron has 
quantum gates that prepare the inputs and weights for the system 
to process. Unitary transformation functions are used to pre-
process the input and weight vectors. A Unitary transformation 
function, also known as an Oracle, houses quantum gates 
which act upon the input vectors to perform operations such as 
phase shift, imposing superposition, entanglement, etc. Akin to 
classical neurons, a quantum perceptron takes an input vector 
and a weight vector and outputs a probability of the outcome.
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Figure 2: A Quantum Version of Perceptron.

Figure 2 illustrates the internal structure of a perceptron architecture. Two Unitary transformation functions namely, Ui

and Uf , are used to perform quantum operations. The input vector is transformed into an input state by applying the Ui

function as shown in equation 1, while the Uf function transforms the weight vector into a weighted state as shown in
equation 2. After applying the transformation functions, the dot product is calculated between the input and the weight
state (⟨ψw|ψi⟩). This entire series of operations are carried out until the model converges and we obtain the optimal
weight.

3.2 Dataset Generation

We used the same quantum perceptron to generate the dataset consisting of value-label pairs. Following Mcculloch et.
al. [1], we replaced all the classical bits containing 1 with -1 and 0 bits with 1. For instance, if the input value is 12,
then the transition from classical to quantum vector will look as 12 → [1, 1, 0, 0] → [−1,−1, 1, 1].

Figure 3: Generating dataset using single perceptron

The overall implementation of dataset generation is described in algorithm 1. The algorithm was tested using varying
numbers of qubits, resulting in 16 possible input values when using 2 qubits and 216 possible input values when using 4
qubits.

Algorithm 1 Data Generation

Require: Optimal weight wo, Number of qubits n, Number of iterations N
1: data ← {} ▷ Initializing empty list
2: p ← Perceptron(n) ▷ Initializing perceptron
3: for i ∈ [0, 22

n − 1] do
4: p.input ← i
5: p.weight ← w0

6: p1 ← p.measure(N) ▷ Probability of measuring 1
7: if p1 < 0.5 then
8: data.add((i, 0)) ▷ Assigning label 0
9: else if p1 ≥ 0.5 then

10: data.add((i, 1)) ▷ Assigning label 1
11: end if
12: end for

3
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Figure 2 illustrates the internal structure of a perceptron 
architecture. Two Unitary transformation functions namely, Ui 
and Uf , are used to perform quantum operations. The input vector 
is transformed into an input state by applying the Ui function 
as shown in equation 1, while the Uf function transforms the 
weight vector into a weighted state as shown in equation 2. 
After applying the transformation functions, the dot product 
is calculated between the input and the weight state (⟨ψw|ψi⟩). 
This entire series of operations are carried out until the model 
converges and we obtain the optimal weight.

2.2. Dataset Generation
We used the same quantum perceptron to generate the dataset 
consisting of value-label pairs. Following Mcculloch et al., we 
replaced all the classical bits containing 1 with -1 and 0 bits with 
1 [1]. For instance, if the input value is 12, then the transition 
from classical to quantum vector will look as 12 → [1,1,0,0] → 
[−1,−1,1,1].

Figure 3: Generating Dataset using Single Perceptron

The overall implementation of dataset generation is described in 
algorithm 1. The algorithm was tested using varying numbers of 

qubits, resulting in 16 possible input values when using 2 qubits 
and 216 possible input values when using 4 qubits.

A neural network requires a dataset to operate upon and to 
update the network’s parameters. To generate the dataset, first, 
we take a fixed optimal weight w0 = 626 as shown in Figure 
3. Second, we passed sequential input values and weight wo to 
the perceptron. Finally, we compute the output probability and 
based on that label the data. If the probability was less than 0.5, 
the input value was classified as 0, and if it was 0.5 or greater, the 
input value was classified as 1. The weight was constant and did 

not update throughout the data collection process. This approach 
is similar to supervised learning in the case of classical deep 
learning systems.

2.3. Training
Classical deep learning systems need an enormous amount of 
training to achieve convergence. In contrast, quantum computing 
offers the advantage of rapidly converging models. The quantum 
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A neural network requires a dataset to operate upon and to update the network’s parameters. To generate the dataset, first,
we take a fixed optimal weight w0 = 626 as shown in figure 3. Second, we passed sequential input values and weight
wo to the perceptron. Finally, we compute the output probability and based on that label the data. If the probability was
less than 0.5, the input value was classified as 0, and if it was 0.5 or greater, the input value was classified as 1. The
weight was constant and did not update throughout the data collection process. This approach is similar to supervised
learning in the case of classical deep learning systems.

3.3 Training

Classical deep learning systems need an enormous amount of training to achieve convergence. In contrast, quantum
computing offers the advantage of rapidly converging models. The quantum perceptron training is described in the
algorithm 2.

Algorithm 2 Training Perceptron

Require: Optimal weight wo, Number of qubits n, Number of iterations N , data
1: wt ← U(0, 22

n − 1) ▷ Randomly initialize weight for training
2: p ← Perceptron(n) ▷ Initializing perceptron
3: for i, l ← data do
4: p.input ← i
5: p.weight ← wt

6: p1 ← p.measure(N) ▷ Probability of measuring 1
7: if p1 < 0.5 and l = 1 then
8: FLIP-NON-MATCHING-BITS(wt, i) ▷ Flip non-matching bits of wt w.r.t i
9: else if p1 ≥ 0.5 and l = 0 then

10: FLIP-MATCHING-BITS(wt, i) ▷ Flip matching bits of wt w.r.t i
11: end if
12: converged if wt = wo

13: end for

During the training phase, each perceptron is initialized with a random weight which is updated after each training
iteration. Here, for a system with 4 qubits, we initialize a random weight wt. The goal of training the perceptron is to
update its weights, such that it can correctly classify the input values as per their labels. In case when the misprediction
happens, we need to penalize the loss such that the weights are updated. Here, we have two cases of misprediction.
Below, we describe the details to handle the misprediction to update weights.

Case 1: Predicted label = 0, Actual label = 1. In this case, we first find the number of non-matching bits between the
input and weight sequence. Next, we multiply the learning rate by the number of non-matching bits and round down
to obtain a product. Finally, we randomly flip the resulting number (product obtained in the above step) of bits in the
weight, bringing it closer to the input sequence and facilitating faster convergence of the model.

Case 2: Predicted label = 1, Actual label = 0. In this case, instead of finding non-matching bits, we look for the
matching bits between the input and weight sequence. The rest of the steps remain the same as in case 1.

The weight of the perceptron is updated after each training iteration (epoch) based on the above two cases. Note that we
do not need to update the weights when the prediction is correct since the loss in such cases would be zero. Finally, we
check if wt = wo and stop the training if satisfied.

4 Results

Pattern Classification: We trained a quantum perceptron and visualized its optimal weights after training. Figure 4
shows the training steps and the transformation of randomly initialized weight into a complete pattern. Through our
experiments, we found that a single quantum perceptron can successfully classify simple patterns of horizontal and
vertical lines. Here, we report one such pattern after training the perceptron.

4

During the training phase, each perceptron is initialized with a 
random weight which is updated after each training iteration. 
Here, for a system with 4 qubits, we initialize a random weight 
wt. The goal of training the perceptron is to update its weights, 
such that it can correctly classify the input values as per their 
labels. In case when the misprediction happens, we need to 
penalize the loss such that the weights are updated. Here, we 
have two cases of misprediction. Below, we describe the details 
to handle the misprediction to update weights.

Case 1: Predicted label = 0, Actual label = 1. In this case, we 
first find the number of non-matching bits between the input 
and weight sequence. Next, we multiply the learning rate by 
the number of non-matching bits and round down to obtain a 
product. Finally, we randomly flip the resulting number (product 
obtained in the above step) of bits in the weight, bringing it 
closer to the input sequence and facilitating faster convergence 
of the model.

Case 2: Predicted label = 1, Actual label = 0. In this case, instead 
of finding non-matching bits, we look for the matching bits 
between the input and weight sequence. The rest of the steps 
remain the same as in case 1. The weight of the perceptron is 
updated after each training iteration (epoch) based on the above 
two cases. Note that we do not need to update the weights when 
the prediction is correct since the loss in such cases would be 
zero. Finally, we check if wt = wo and stop the training if satisfied.

3. Results
• Pattern Classification: We trained a quantum perceptron and 
visualized its optimal weights after training. Figure 4 shows the 
training steps and the transformation of randomly initialized 
weight into a complete pattern. Through our experiments, we 
found that a single quantum perceptron can successfully classify 
simple patterns of horizontal and vertical lines. Here, we report 
one such pattern after training the perceptron.
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Figure 4: Training procedure for the generated data

Faster Convergence: Compared to classical deep learning systems, a quantum perceptron can achieve optimal
performance faster and has the ability to terminate training once the optimal weight has been reached. We found that a
four-qubit system converged and reached the optimal weight before the training was completed.

Identical Input and Weight: Finally, we only get a probability of 1 when the input and the weight have the same
value. The geometrical patterns in figure 5 denote the perceptron probability for all combinations of input and weight
values.

(a) Simulation for 2 qubit system (b) Simulation for 3 qubit system

Figure 5: Simulation of perceptron on all combinations of input and weight values

5 Conclusion and Future Work

We implemented a quantum version of a perceptron and tested the algorithm’s efficacy. Upon analysis, a single
perceptron was able to classify patterns after training. The results suggest that a quantum perceptron converges faster
than a classical perceptron. This faster convergence highlights the parallel processing of the inputs present in the
superposition states. One of the limitations of this work is the use of a single perceptron to design a classifier. Another
limitation is the absence of bias vectors in addition to the weight vectors in the training process. We also confine the
input values (only -1 and 1) when training the perceptron. Future work will focus on designing and implementing an
advanced network with more interconnected perceptrons. This will lead to the development of an advanced quantum
network for classification purposes.
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Figure 4: Training Procedure for the Generated Data

• Faster Convergence: Compared to classical deep learning 
systems, a quantum perceptron can achieve optimal performance 
faster and has the ability to terminate training once the optimal 
weight has been reached. We found that a four-qubit system 
converged and reached the optimal weight before the training 
was completed.

• Identical Input and Weight: Finally, we only get a probability 
of 1 when the input and the weight have the same value. The 
geometrical patterns in figure 5 denote the perceptron probability 
for all combinations of input and weight values.
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perceptron was able to classify patterns after training. The results suggest that a quantum perceptron converges faster
than a classical perceptron. This faster convergence highlights the parallel processing of the inputs present in the
superposition states. One of the limitations of this work is the use of a single perceptron to design a classifier. Another
limitation is the absence of bias vectors in addition to the weight vectors in the training process. We also confine the
input values (only -1 and 1) when training the perceptron. Future work will focus on designing and implementing an
advanced network with more interconnected perceptrons. This will lead to the development of an advanced quantum
network for classification purposes.
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4. Conclusion and Future Work
We implemented a quantum version of a perceptron and tested 
the algorithm’s efficacy. Upon analysis, a single perceptron was 
able to classify patterns after training. The results suggest that a 
quantum perceptron converges faster than a classical perceptron. 
This faster convergence highlights the parallel processing of the 
inputs present in the superposition states. One of the limitations 
of this work is the use of a single perceptron to design a classifier. 
Another limitation is the absence of bias vectors in addition to 
the weight vectors in the training process. We also confine the 
input values (only -1 and 1) when training the perceptron. Future 
work will focus on designing and implementing an advanced 
network with more interconnected perceptron’s. This will 
lead to the development of an advanced quantum network for 
classification purposes.
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