
Volume 2 | Issue 3 | 1Eng OA, 2024

Implementation of Floating-Point Arithmetic Coding Using x86-64 AVX-256
Assembly Language

Research Article

Mike H.B. Gray*

Department of Chemistry, Occidental College, Los Angeles, CA
90041.

*Corresponding Author
Mike H.B. Gray, Department of Chemistry, Occidental College,
Los Angeles, CA 90041.

Submitted: 2024, Jun 27; Accepted: 2024, Jul 05; Published: 2024, Jul 15

Citation: Mike H.B. Gray. (2024). Implementation of Floating-Point Arithmetic Coding Using x86-64 AVX-256 Assembly
Language. Eng OA, 2(3), 01-18.

Abstract
Bit manipulations, especially those executed on multiple strings in parallel, e.g., on Intel® processors equipped with
Advanced Vector Extensions (AVX), can be a powerful way to speed up unoptimized high-level sequentially executed code.
A case in point is made for floating-point arithmetic coding (FPAC), implemented herein as a non-adaptive, lossless data
compression algorithm using x86 AVX-256 stand-alone assembly language under 64-bit MASM assembler in Visual Studio
2022. Apart from writing and reading bit strings to and from file, FPAC can become fully vectorized and be improved in
performance (relative to unoptimized integer versions) by orders of magnitude by blocking short sequences of symbols
and bypassing interval renormalization. For an alphabet size, up to 53—the limiting case made for 0.474MB Protein Data
Bank entry 4HHB, referred to as oxygen transport file (OTF)—it can also strongly outperform a commercially available,
unoptimized C++ Huffman encoder by over a factor of 10 and beat the decoder by roughly a factor of 2. Disadvantageous
but necessary to this prescription of vectorizations is an additional compressed storage requirement of the length of the
codeword (this binary integer is to encode a block of 5 symbols) in addition to the codeword itself; for size-5 blocks, this
compromises the compression efficiency as follows: the average number of bits per symbol required to compress the input
message is demonstrated to lie in the interval [H(S) + b, H(S) + 0.4 + b], where b = 1.0 for single-precision floating-point
arithmetic coding (SPFPAC), b = 1.2 for a slower but more practical double-precision counterpart (DPFPAC), and H(S) is
the Shannon entropy of symbol frequencies.

Engineering: Open Access

Keywords: Advanced Vector Extensions (AVX), Assembly Language, Arithmetic Coding, Bit Manipulations, Data Compression

The Idea of Arithmetic Coding

We have an alphabet S = {s1:sm} of m symbols that occur with
repetition in a text file containing N total occurrences. The
method is non-adaptive, and so the integer-valued symbol
frequencies f1:fm are required and obtained by a preliminary
file scan. Consecutive sequences of symbols are represented
by intervals of floating-point (FP) values between 0 and 1.
Starting with the full range [0, 1), symbols are added to the
sequence and the interval becomes narrower until we run out
of FP precision required for the representation; in an attempt
to prevent this from occurring, the sequence of collected
symbols is truncated at a selected magic number, say 5, called
the block size. The interval is reset to [0, 1) and the process
starts over.

Having determined the interval between 0 and 1 corresponding

to block w = si1…si5, the encoder chooses a single number t
in the interval, called a tag, and represents w by a truncation
of the binary representation of t. Just enough bits should
be selected so that the decoder, when faced with this
approximate representation of t, can recover the original
sequence. Moreover, when w contains more frequent symbols,
t (i.e., its truncation) should require fewer bits; similarly, when
w contains less frequent symbols, t should require more
bits. In this way, compression can be achieved by removing
redundancies.

For optimal decoder operation, the frequencies are sorted
in non-increasing order: F1 ≥ … ≥ Fm (these are relative
frequencies: Fk = fk/N). Define cumulative distribution function
(CDF) as follows: C0 = 0 and Ck+1 = Ck + Fk+1 (k = 0: m – 1). When
the next block is encountered and before its first symbol is
encoded the entire interval is [0, 1), having length (i.e., range)

Volume 2 | Issue 3 | 2Eng OA, 2024

of L = 1. If [α, β) = [α, α+L) is the “current interval” after having
encountered zero or more symbols and sk is the next symbol
encountered—index k in 1:m does not necessarily coincide
with the iteration number in 1:5—then the next interval [α’, β’)
is obtained by dividing [α, β) into a subinterval whose length is
proportional to Fk as follows:

(*) α’ = α + Ck-1L L’ = LFk

The formula for β is β’ = β + CkL but we only store L as it involves
less arithmetic. From the initialization [0, 1) and division
formulas (*) we see that CDF values are nothing but the m + 1
possible interval endpoints for the first symbol encountered;
and that the current length L is the iterated product of relative
frequencies of symbols encountered so far, which indicates
that blocks having more frequent symbols produce wider
intervals. Inverse correlation of interval width to tag bit width
will be seen when methods for binary tag generation are
explored.

The process of subdivision is illustrated in Figure 1 with S = {a,
b, c, d}, Fa = .4, Fb = .3, Fc = .2, and Fd = .1, whence Ca = .4, Cb =
.7, Cc = .9, and Cd = 1.0. The sequence badac is encoded (only
up to bad schematically) and taken from a larger anonymous
message having given frequency distribution. If we stop at bad,
the interval is [.508, .52); if we complete the 5-symbol block,
the final interval becomes [.51136, .51232) having length L = .3
× .4 × .1 × .4 × .2 = .00096, the product of relative frequencies.

Figure 1: Interval Division

Each successive interval is a subinterval of the former, so if
we provide decoder with the final interval [.51136, .51232), it
can deduce the first symbol as b, since b is assigned to [.4, .7),
which contains [.51136, .51232). The decoder can then divide
[0, 1) into [.4, .7). The next symbol is decoded as a, since ba
is assigned to [.4, .52), which is the only 2-symbol subinterval
containing [.51136, .51232). Continuing like this, the decoder
will correctly recover the sequence badac. But providing the
decoder with two floating-point values, totaling 64 or 128 bits
(for single or double precision) does not reduce the ASCII
size of 40 bits per block, which explains why only a single

number t (any value belonging to the final interval suffices) in
binary format and hopefully fewer than 40 bits, is used for the
compressed form of the interval.

Exploring Two Methods for Generating a Binary Tag

The first method explored is optimal from a standpoint of
compression efficiency and involves calculating the dyadic
fraction with least denominator (dfld)—see for a detailed
treatment [1]. To summarize, the dfld t in (α, β]—note the
interval is now open at left end—is the binary fraction of
shortest bit length that belongs to (α, β]. To demonstrate its
determination for (.51136, .51232] we first convert these
endpoints (as decimal fractions) into binary fractions (they are
continued fractions in this case), which gives:

.51136 = (0.10000010 . . .)2

.51232 = (0.10000011 . . .)2

These expansions are carried out until disagreement occurs; at
this location we write bit 1 and truncate giving t = 0.10000011 =
2-1 + 128-1 + 256-1 = .51171875 = dfld in (.51136, .51232]. We can
equally write t as a rational number, an odd number divided by
a power of two, as t = 131/28. Note that t requires 8 bits and
no other number in said interval could have fewer. Moreover,
as an interval widens, the location of disagreement in the
endpoints heads toward the binary point, which establishes
the inverse correlation of interval width to bit width and
explains how compression occurs in context of FPAC. But
the dfld tag method is prone to unwelcome precision errors.
Consider this statistical model and block:

Encoding this block using Texas Instruments™ calculator Ti83
(accurate to 14 digits of precision, with a home screen display
of 10) gives the indicated endpoints and tag (note 129603 =
1FA43h requires 17 bits). If we perform this calculation using
single-precision floating point (SPFP), known to give just under
7 reliable digits of precision, we might observe a C++ program
(this test was done) producing β = .98880005. The dfld in
(.98879, .98880005] is shown, using Ti83, to be t = 32401/215 =
.9888000488 . . ., which requires only 15 bits, but does not lie
in (.98879, .9888], the correct interval in exact arithmetic. The
decoder is now at risk of incorrectly decoding the block, even
though α, β, and L are all within the SPFP limit of precision.
The problem is that there could be another dyadic fraction of
shorter bit width in an adjacent interval, as we have shown,
dangerously close to an interval endpoint.

Experimenting with SPFPAC using dfld and observing errors of
this nature led to its abandonment as a viable computational
strategy. If, instead, we choose the interval midpoint and

Implementation of Floating-Point Arithmetic
Coding using x86-64 AVX-256 Assembly
Language

Mike H.B. Gray Occidental College, Chemistry Department
Los Angeles, CA 90041

Abstract—Bit manipulations, especially those executed on
multiple strings in parallel, e.g., on Intel® processors equipped
with Advanced Vector Extensions (AVX), can be a powerful way
to speed up unoptimized high-level sequentially executed code. A
case in point is made for floating-point arithmetic coding (FPAC),
implemented herein as a non-adaptive, lossless data
compression algorithm using x86 AVX-256 stand-alone assembly
language under 64-bit MASM assembler in Visual Studio 2022.
Apart from writing and reading bit strings to and from file, FPAC
can become fully vectorized and be improved in performance
(relative to unoptimized integer versions) by orders of magnitude
by blocking short sequences of symbols and bypassing interval
renormalization. For an alphabet size up to 53—the limiting case
made for 0.474MB Protein Data Bank entry 4HHB, referred to as
oxygen transport file (OTF)—it can also strongly outperform a
commercially available, unoptimized C++ Huffman encoder by
over a factor of 10 and beat the decoder by roughly a factor of 2.
Disadvantageous but necessary to this prescription of
vectorizations is an additional compressed storage requirement of
the length of the codeword (this binary integer is to encode a
block of 5 symbols) in addition to the codeword itself; for size-5
blocks, this compromises the compression efficiency as follows:
the average number of bits per symbol required to compress the
input message is demonstrated to lie in the interval [H(S) + b,
H(S) + 0.4 + b], where b = 1.0 for single-precision floating-point
arithmetic coding (SPFPAC), b = 1.2 for a slower but more
practical double-precision counterpart (DPFPAC), and H(S) is the
Shannon entropy of symbol frequencies.

Keywords—Advanced Vector Extensions (AVX), assembly language,
arithmetic coding, bit manipulations, data compression

The Idea of Arithmetic Coding
We have an alphabet S = {s1:sm} of m symbols that occur
with repetition in a text file containing N total occurrences.
The method is non-adaptive, and so the integer-valued
symbol frequencies f1:fm are required and obtained by a
preliminary file scan. Consecutive sequences of symbols
are represented by intervals of floating-point (FP) values
between 0 and 1. Starting with the full range [0, 1),
symbols are added to the sequence and the interval
becomes narrower until we run out of FP precision required
for the representation; in an attempt to prevent this from
occurring, the sequence of collected symbols is truncated
at a selected magic number, say 5, called the block size.
The interval is reset to [0, 1) and the process starts over.

Having determined the interval between 0 and 1
corresponding to block w = si1…si5, the encoder chooses a
single number t in the interval, called a tag, and represents
w by a truncation of the binary representation of t. Just
enough bits should be selected so that the decoder, when
faced with this approximate representation of t, can recover
the original sequence. Moreover, when w contains more
frequent symbols, t (i.e., its truncation) should require
fewer bits; similarly, when w contains less frequent

symbols, t should require more bits. In this way,
compression can be achieved by removing redundancies.

For optimal decoder operation, the frequencies are sorted
in non-increasing order: F1 ≥ … ≥ Fm (these are relative
frequencies: Fk = fk/N). Define cumulative distribution
function (CDF) as follows: C0 = 0 and Ck+1 = Ck + Fk+1 (k =
0: m – 1). When the next block is encountered and before
its first symbol is encoded the entire interval is [0, 1),
having length (i.e., range) of L = 1. If [α, β) = [α, α+L) is the
―current interval‖ after having encountered zero or more
symbols and sk is the next symbol encountered—index k in
1:m does not necessarily coincide with the iteration number
in 1:5—then the next interval [α’, β’) is obtained by dividing
[α, β) into a subinterval whose length is proportional to Fk
as follows:

(*) α’ = α + Ck-1L L’ = LFk

The formula for β is β’ = β + CkL but we only store L as it
involves less arithmetic. From the initialization [0, 1) and
division formulas (*) we see that CDF values are nothing
but the m + 1 possible interval endpoints for the first
symbol encountered; and that the current length L is the
iterated product of relative frequencies of symbols
encountered so far, which indicates that blocks having
more frequent symbols produce wider intervals. Inverse
correlation of interval width to tag bit width will be seen
when methods for binary tag generation are explored.

The process of subdivision is illustrated in Figure 1 with S =
{a, b, c, d}, Fa = .4, Fb = .3, Fc = .2, and Fd = .1, whence Ca
= .4, Cb = .7, Cc = .9, and Cd = 1.0. The sequence badac is
encoded (only up to bad schematically) and taken from a
larger anonymous message having given frequency
distribution. If we stop at bad, the interval is [.508, .52); if
we complete the 5-symbol block, the final interval becomes
[.51136, .51232) having length L = .3 × .4 × .1 × .4 × .2 =
.00096, the product of relative frequencies.

Figure 1. Interval Division

Each successive interval is a subinterval of the former, so if
we provide decoder with the final interval [.51136, .51232),
it can deduce the first symbol as b, since b is assigned to
[.4, .7), which contains [.51136, .51232). The decoder can
then divide [0, 1) into [.4, .7). The next symbol is decoded
as a, since ba is assigned to [.4, .52), which is the only 2-
symbol subinterval containing [.51136, .51232). Continuing
like this, the decoder will correctly recover the sequence

badac. But providing the decoder with two floating-point
values, totaling 64 or 128 bits (for single or double
precision) does not reduce the ASCII size of 40 bits per
block, which explains why only a single number t (any
value belonging to the final interval suffices) in binary
format and hopefully fewer than 40 bits, is used for the
compressed form of the interval.

Exploring Two Methods for Generating a Binary
Tag

The first method explored is optimal from a standpoint of
compression efficiency and involves calculating the dyadic
fraction with least denominator (dfld)—see [1] for a detailed
treatment. To summarize, the dfld t in (α, β]—note the
interval is now open at left end—is the binary fraction of
shortest bit length that belongs to (α, β]. To demonstrate
its determination for (.51136, .51232] we first convert these
endpoints (as decimal fractions) into binary fractions (they
are continued fractions in this case), which gives:

 .51136 = (0.10000010 . . .)2
 .51232 = (0.10000011 . . .)2

These expansions are carried out until disagreement
occurs; at this location we write bit 1 and truncate giving t =
0.10000011 = 2-1 + 128-1 + 256-1 = .51171875 = dfld in
(.51136, .51232]. We can equally write t as a rational
number, an odd number divided by a power of two, as t =
131/28. Note that t requires 8 bits and no other number in
said interval could have fewer. Moreover, as an interval
widens, the location of disagreement in the endpoints
heads toward the binary point, which establishes the
inverse correlation of interval width to bit width and
explains how compression occurs in context of FPAC. But
the dfld tag method is prone to unwelcome precision
errors. Consider this statistical model and block:

 a b c d block dccbd

.7 .1 .1 .1 F αTi83 = .98879

.7 .8 .9 1 C βTi83 = .9888
 tTi83 = 129603/217
 = .9887924194 . . .

Encoding this block using Texas Instruments™ calculator
Ti83 (accurate to 14 digits of precision, with a home screen
display of 10) gives the indicated endpoints and tag (note
129603 = 1FA43h requires 17 bits). If we perform this
calculation using single-precision floating point (SPFP),
known to give just under 7 reliable digits of precision, we
might observe a C++ program (this test was done)
producing β = .98880005. The dfld in (.98879, .98880005]
is shown, using Ti83, to be t = 32401/215 = .9888000488 . .
., which requires only 15 bits, but does not lie in (.98879,
.9888], the correct interval in exact arithmetic. The
decoder is now at risk of incorrectly decoding the block,
even though α, β, and L are all within the SPFP limit of
precision. The problem is that there could be another
dyadic fraction of shorter bit width in an adjacent interval,
as we have shown, dangerously close to an interval
endpoint.

Experimenting with SPFPAC using dfld and observing
errors of this nature led to its abandonment as a viable
computational strategy. If, instead, we choose the interval
midpoint and truncate it to a certain prescribed number of
bits, errors will come about predictably via the interval
length dropping below a decided upon precision tolerance;
not only will fewer result, but they can be detected and
fixed.

The dfld and midpoint methods differ in how t is obtained
and in how many bits of its binary representation are
required so the decoder can uniquely recover its containing
subintervals. As has been pointed out, the intervals
assigned to individual symbols using CDF values (Ck)—
see integer division formulas (*)—form a partition of [0, 1).
In fact, the entire set { [α, β) } of all mn possible intervals for
blocks of fixed size n forms a partition of [0, 1) as well.
Then any number in [α, β) serves as a unique identifier
(i.e., tag) of [α, β). Sayood [2] shows by using the midpoint
t = (α + β) / 2 and truncating its binary representation to
l(t) = 1 + ceiling(log2(L-1)) many bits, that this truncated
binary number is guaranteed to remain in its interval, as
required for correct decoder operation. He further shows
that the mn tags generated in this manner form a prefix
code (none of these binary words can be a prefix of the
other). So FPAC implemented with blocking is, effectively,
a compression by replacement scheme, although it is not
necessary (as is the case for Huffman encoding [3]) to
maintain a codebook of these prefix codes.

Efficiency of Arithmetic Encoding
Throughout this section (and the whole article for that
matter), we have the well-rehearsed premise that S =
{s1:sm} is an alphabet whose symbols have relative
frequencies F1:Fm in a text message. The entropy [4] of
this message, or sometimes stated as the entropy H(S) of
these frequencies is defined as

H(S) = ∑ Fk log2(1
Fk

)
𝑚𝑚

𝑘𝑘=1

It is well known that H(S) is a lower bound for the average
number of bits per symbol (we write this average as <l(s)>)
achievable in data compression by replacement schemes
(e.g., Huffman and prefix codes) that involve binary codes.
Sayood proves this lower bound for the midpoint method;
the salient argument is that, in generating a prefix code,
the average length <l(t)> of all mn truncated tags cannot
drop below n × H(S). Hankerson et al. [1] do not attempt a
proof of the lower bound for the dfld method, citing
theoretical formalities. Upper bounds for midpoint and dfld
methods are shown in [1] and [2] to be vanishingly higher
than H(S) as the block size becomes very large. This
theorem clarifies:

Theorem-The average number of bits per symbol <l(s)> obtained
by arithmetic coding using dfld satisfies

<l(s)> ≤ H(S) + 1/n

whereas the less-efficient midpoint method satisfies

 H(S) ≤ <l(s)> ≤ H(S) + 2/n

c d

Volume 2 | Issue 3 | 3Eng OA, 2024

truncate it to a certain prescribed number of bits, errors will
come about predictably via the interval length dropping below
a decided upon precision tolerance; not only will fewer result,
but they can be detected and fixed.

The dfld and midpoint methods differ in how t is obtained and
in how many bits of its binary representation are required so
the decoder can uniquely recover its containing subintervals.
As has been pointed out, the intervals assigned to individual
symbols using CDF values (Ck)—see integer division formulas
(*)—form a partition of [0, 1). In fact, the entire set { [α, β) } of all
mn possible intervals for blocks of fixed size n forms a partition
of [0, 1) as well. Then any number in [α, β) serves as a unique
identifier (i.e., tag) of [α, β). Sayood [2] shows by using the
midpoint t = (α + β) / 2 and truncating its binary representation
to l(t) = 1 + ceiling(log2(L-1)) many bits, that this truncated
binary number is guaranteed to remain in its interval, as
required for correct decoder operation. He further shows that
the mn tags generated in this manner form a prefix code (none
of these binary words can be a prefix of the other). So FPAC
implemented with blocking is, effectively, a compression by
replacement scheme, although it is not necessary (as is the
case for Huffman encoding [3]) to maintain a codebook of
these prefix codes.

Efficiency of Arithmetic Encoding

Throughout this section (and the whole article for that matter),
we have the well-rehearsed premise that S = {s1 : sm} is an
alphabet whose symbols have relative frequencies F1:Fm in a
text message [4]. The entropy of this message, or sometimes
stated as the entropy H(S) of these frequencies is defined as

It is well known that H(S) is a lower bound for the average
number of bits per symbol (we write this average as <l(s)>)
achievable in data compression by replacement schemes
(e.g., Huffman and prefix codes) that involve binary codes.
Sayood proves this lower bound for the midpoint method;
the salient argument is that, in generating a prefix code, the
average length <l(t)> of all mn truncated tags cannot drop
below n × H(S). Hankerson et al. [1] do not attempt a proof
of the lower bound for the dfld method, citing theoretical
formalities. Upper bounds for midpoint and dfld methods are
shown in [1] and [2] to be vanishingly higher than H(S) as the
block size becomes very large. This theorem clarifies:

Owing to an additional storage requirement discussed shortly,
vectorized FPAC (of this article) adds either 1.0 or 1.2 to both
the lower and upper bounds of the theorem.

Description of FPAC Encoder Algorithm

As discussed, the method is not adaptive, and a preliminary
file scan and sorting of frequency array are required. Symbols
associated with F and C are numbered 1:m, where the most
frequent symbol is given index 1, the least frequent symbol
index m. The input message (file) is represented by a character
array called ibuff. The encoder operates in three phases:
division, binary tag generation, and storage to compressed
buffer. Pseudocode for processing a single block of size n (we
have used n = 5 throughout) follows. Extensions to multiple
blocks processed in parallel via x86 AVX are described later.
Error detection is ignored temporarily.

Phase 1. Interval division and midpoint determination:

 • Initialize α = 0; L = 1.0;
 • Repeat n times: (divisions loop)

 Read the next symbol with index k from ibuff and perform
 the left-endpoint and interval length updates:

 (α = α + Ck-1L) (L = LFk)

 End Repeat

 • β = α + L
 • t = (α + β) / 2.0 (calculate midpoint t as FP)

Phase 2. Binary tag generation (this involves three steps):

Phase 3. Write the binary code and its length to compressed
buffer.

The length l(t) is stored so the decoder can read the entire code
segment and compute the tag FP representation (as t = code
divided by 2l(t)) before the divisions loop begins. An alternative
would be to implement incremental reception where the
decoder processes one bit at a time—this is the hallmark of
integer arithmetic coding—see WNC [5]. But this strategy,
while having a very high compression efficiency, involves an
unpredictable number of interval rescalings and so our hopes
of processing multiple tags concurrently appear to be lost.

For simulated file I/O, the compressed buffer will consist of
two arrays: lengths and codes. The former stores unsigned
8-bit integers, the latter 32-bit unsigned integers (for SPFP) or
64-bit for DPFP. In a later section concerning contiguous file
I/O, the compressed buffer is modeled as a single array of 64-
bit integers, the packed representation of lengths and codes.
The code lengths will vary up to 31 bits for SPFPAC and up to
42 for DPFPAC (40 and up signals an error warning for DPFPAC;
no error detection was implemented for SPFPAC). Storing
these lengths requires 5 bits for SPFPAC and 6 for DPFPAC.
Adding 5 bits to the code storage requirement changes the
compression efficiency to give <l(s)> ≤ H(S) + 0.4 + 1 (where 1 =

badac. But providing the decoder with two floating-point
values, totaling 64 or 128 bits (for single or double
precision) does not reduce the ASCII size of 40 bits per
block, which explains why only a single number t (any
value belonging to the final interval suffices) in binary
format and hopefully fewer than 40 bits, is used for the
compressed form of the interval.

Exploring Two Methods for Generating a Binary
Tag

The first method explored is optimal from a standpoint of
compression efficiency and involves calculating the dyadic
fraction with least denominator (dfld)—see [1] for a detailed
treatment. To summarize, the dfld t in (α, β]—note the
interval is now open at left end—is the binary fraction of
shortest bit length that belongs to (α, β]. To demonstrate
its determination for (.51136, .51232] we first convert these
endpoints (as decimal fractions) into binary fractions (they
are continued fractions in this case), which gives:

 .51136 = (0.10000010 . . .)2
 .51232 = (0.10000011 . . .)2

These expansions are carried out until disagreement
occurs; at this location we write bit 1 and truncate giving t =
0.10000011 = 2-1 + 128-1 + 256-1 = .51171875 = dfld in
(.51136, .51232]. We can equally write t as a rational
number, an odd number divided by a power of two, as t =
131/28. Note that t requires 8 bits and no other number in
said interval could have fewer. Moreover, as an interval
widens, the location of disagreement in the endpoints
heads toward the binary point, which establishes the
inverse correlation of interval width to bit width and
explains how compression occurs in context of FPAC. But
the dfld tag method is prone to unwelcome precision
errors. Consider this statistical model and block:

 a b c d block dccbd

.7 .1 .1 .1 F αTi83 = .98879

.7 .8 .9 1 C βTi83 = .9888
 tTi83 = 129603/217
 = .9887924194 . . .

Encoding this block using Texas Instruments™ calculator
Ti83 (accurate to 14 digits of precision, with a home screen
display of 10) gives the indicated endpoints and tag (note
129603 = 1FA43h requires 17 bits). If we perform this
calculation using single-precision floating point (SPFP),
known to give just under 7 reliable digits of precision, we
might observe a C++ program (this test was done)
producing β = .98880005. The dfld in (.98879, .98880005]
is shown, using Ti83, to be t = 32401/215 = .9888000488 . .
., which requires only 15 bits, but does not lie in (.98879,
.9888], the correct interval in exact arithmetic. The
decoder is now at risk of incorrectly decoding the block,
even though α, β, and L are all within the SPFP limit of
precision. The problem is that there could be another
dyadic fraction of shorter bit width in an adjacent interval,
as we have shown, dangerously close to an interval
endpoint.

Experimenting with SPFPAC using dfld and observing
errors of this nature led to its abandonment as a viable
computational strategy. If, instead, we choose the interval
midpoint and truncate it to a certain prescribed number of
bits, errors will come about predictably via the interval
length dropping below a decided upon precision tolerance;
not only will fewer result, but they can be detected and
fixed.

The dfld and midpoint methods differ in how t is obtained
and in how many bits of its binary representation are
required so the decoder can uniquely recover its containing
subintervals. As has been pointed out, the intervals
assigned to individual symbols using CDF values (Ck)—
see integer division formulas (*)—form a partition of [0, 1).
In fact, the entire set { [α, β) } of all mn possible intervals for
blocks of fixed size n forms a partition of [0, 1) as well.
Then any number in [α, β) serves as a unique identifier
(i.e., tag) of [α, β). Sayood [2] shows by using the midpoint
t = (α + β) / 2 and truncating its binary representation to
l(t) = 1 + ceiling(log2(L-1)) many bits, that this truncated
binary number is guaranteed to remain in its interval, as
required for correct decoder operation. He further shows
that the mn tags generated in this manner form a prefix
code (none of these binary words can be a prefix of the
other). So FPAC implemented with blocking is, effectively,
a compression by replacement scheme, although it is not
necessary (as is the case for Huffman encoding [3]) to
maintain a codebook of these prefix codes.

Efficiency of Arithmetic Encoding
Throughout this section (and the whole article for that
matter), we have the well-rehearsed premise that S =
{s1:sm} is an alphabet whose symbols have relative
frequencies F1:Fm in a text message. The entropy [4] of
this message, or sometimes stated as the entropy H(S) of
these frequencies is defined as

H(S) = ∑ Fk log2(1
Fk

)
𝑚𝑚

𝑘𝑘=1

It is well known that H(S) is a lower bound for the average
number of bits per symbol (we write this average as <l(s)>)
achievable in data compression by replacement schemes
(e.g., Huffman and prefix codes) that involve binary codes.
Sayood proves this lower bound for the midpoint method;
the salient argument is that, in generating a prefix code,
the average length <l(t)> of all mn truncated tags cannot
drop below n × H(S). Hankerson et al. [1] do not attempt a
proof of the lower bound for the dfld method, citing
theoretical formalities. Upper bounds for midpoint and dfld
methods are shown in [1] and [2] to be vanishingly higher
than H(S) as the block size becomes very large. This
theorem clarifies:

Theorem-The average number of bits per symbol <l(s)> obtained
by arithmetic coding using dfld satisfies

<l(s)> ≤ H(S) + 1/n

whereas the less-efficient midpoint method satisfies

 H(S) ≤ <l(s)> ≤ H(S) + 2/n

badac. But providing the decoder with two floating-point
values, totaling 64 or 128 bits (for single or double
precision) does not reduce the ASCII size of 40 bits per
block, which explains why only a single number t (any
value belonging to the final interval suffices) in binary
format and hopefully fewer than 40 bits, is used for the
compressed form of the interval.

Exploring Two Methods for Generating a Binary
Tag

The first method explored is optimal from a standpoint of
compression efficiency and involves calculating the dyadic
fraction with least denominator (dfld)—see [1] for a detailed
treatment. To summarize, the dfld t in (α, β]—note the
interval is now open at left end—is the binary fraction of
shortest bit length that belongs to (α, β]. To demonstrate
its determination for (.51136, .51232] we first convert these
endpoints (as decimal fractions) into binary fractions (they
are continued fractions in this case), which gives:

 .51136 = (0.10000010 . . .)2
 .51232 = (0.10000011 . . .)2

These expansions are carried out until disagreement
occurs; at this location we write bit 1 and truncate giving t =
0.10000011 = 2-1 + 128-1 + 256-1 = .51171875 = dfld in
(.51136, .51232]. We can equally write t as a rational
number, an odd number divided by a power of two, as t =
131/28. Note that t requires 8 bits and no other number in
said interval could have fewer. Moreover, as an interval
widens, the location of disagreement in the endpoints
heads toward the binary point, which establishes the
inverse correlation of interval width to bit width and
explains how compression occurs in context of FPAC. But
the dfld tag method is prone to unwelcome precision
errors. Consider this statistical model and block:

 a b c d block dccbd

.7 .1 .1 .1 F αTi83 = .98879

.7 .8 .9 1 C βTi83 = .9888
 tTi83 = 129603/217
 = .9887924194 . . .

Encoding this block using Texas Instruments™ calculator
Ti83 (accurate to 14 digits of precision, with a home screen
display of 10) gives the indicated endpoints and tag (note
129603 = 1FA43h requires 17 bits). If we perform this
calculation using single-precision floating point (SPFP),
known to give just under 7 reliable digits of precision, we
might observe a C++ program (this test was done)
producing β = .98880005. The dfld in (.98879, .98880005]
is shown, using Ti83, to be t = 32401/215 = .9888000488 . .
., which requires only 15 bits, but does not lie in (.98879,
.9888], the correct interval in exact arithmetic. The
decoder is now at risk of incorrectly decoding the block,
even though α, β, and L are all within the SPFP limit of
precision. The problem is that there could be another
dyadic fraction of shorter bit width in an adjacent interval,
as we have shown, dangerously close to an interval
endpoint.

Experimenting with SPFPAC using dfld and observing
errors of this nature led to its abandonment as a viable
computational strategy. If, instead, we choose the interval
midpoint and truncate it to a certain prescribed number of
bits, errors will come about predictably via the interval
length dropping below a decided upon precision tolerance;
not only will fewer result, but they can be detected and
fixed.

The dfld and midpoint methods differ in how t is obtained
and in how many bits of its binary representation are
required so the decoder can uniquely recover its containing
subintervals. As has been pointed out, the intervals
assigned to individual symbols using CDF values (Ck)—
see integer division formulas (*)—form a partition of [0, 1).
In fact, the entire set { [α, β) } of all mn possible intervals for
blocks of fixed size n forms a partition of [0, 1) as well.
Then any number in [α, β) serves as a unique identifier
(i.e., tag) of [α, β). Sayood [2] shows by using the midpoint
t = (α + β) / 2 and truncating its binary representation to
l(t) = 1 + ceiling(log2(L-1)) many bits, that this truncated
binary number is guaranteed to remain in its interval, as
required for correct decoder operation. He further shows
that the mn tags generated in this manner form a prefix
code (none of these binary words can be a prefix of the
other). So FPAC implemented with blocking is, effectively,
a compression by replacement scheme, although it is not
necessary (as is the case for Huffman encoding [3]) to
maintain a codebook of these prefix codes.

Efficiency of Arithmetic Encoding
Throughout this section (and the whole article for that
matter), we have the well-rehearsed premise that S =
{s1:sm} is an alphabet whose symbols have relative
frequencies F1:Fm in a text message. The entropy [4] of
this message, or sometimes stated as the entropy H(S) of
these frequencies is defined as

H(S) = ∑ Fk log2(1
Fk

)
𝑚𝑚

𝑘𝑘=1

It is well known that H(S) is a lower bound for the average
number of bits per symbol (we write this average as <l(s)>)
achievable in data compression by replacement schemes
(e.g., Huffman and prefix codes) that involve binary codes.
Sayood proves this lower bound for the midpoint method;
the salient argument is that, in generating a prefix code,
the average length <l(t)> of all mn truncated tags cannot
drop below n × H(S). Hankerson et al. [1] do not attempt a
proof of the lower bound for the dfld method, citing
theoretical formalities. Upper bounds for midpoint and dfld
methods are shown in [1] and [2] to be vanishingly higher
than H(S) as the block size becomes very large. This
theorem clarifies:

Theorem-The average number of bits per symbol <l(s)> obtained
by arithmetic coding using dfld satisfies

<l(s)> ≤ H(S) + 1/n

whereas the less-efficient midpoint method satisfies

 H(S) ≤ <l(s)> ≤ H(S) + 2/n

• Convert FP representation of t into a left-justified bit string
(E.G., 5/32 = (.00101)2 becomes 001010 . . . 0)

• Compute l(t) = 2 + floor(log2(L-1))
• Truncate bit string to l(t) many bits and right justify. This

string, perhaps thought of as a binary integer, is called the
code—E.G., the code for (.00101)2 is 00101 if l(t) = 5, or just
001 if l(t) = 3.

Volume 2 | Issue 3 | 4Eng OA, 2024

5/5 adds one extra bit per symbol in a block of size 5) or in case
we add 6 extra bits to a block of 5, then <l(s)> ≤ H(S) + 0.4 + 1.2
(where 1.2 = 6/5 extra bits).

Description of FPAC Decoder

For the most part, the decoder mimics the encoder. The
restored file is represented by a character array called obuff.

Phase 1. Load the code and its bit length l(t) from compressed
buffer. Now compute t = code/2l(t) as FP value.

Phase 2. Decode block of n symbols:

 • Initialize α = 0; L = 1.0;
 • Repeat n times: (divisions loop)

 Calculate scaled tag t* = (t – α)/L

 (Decode symbol procedure)

 Perform interval updates: (α = α + Ck-1L) (L = LFk)

 Write symbol sk to obuff

 End Repeat

The decode symbol procedure in the divisions loop is the
bottleneck of decoder and costs us m comparisons in the
worst case, assuming it is executed sequentially. It is clear
why F has been sorted in non-increasing order, since more
frequent symbols have lower-valued indices and involve fewer
comparisons. A binary interval search will help for larger
alphabets and even more so when we perform the search
to decode multiple symbols concurrently; this will lower the
average number of comparisons needed to process each
one. Another method involves performing a sequential search
on multiple symbols concurrently (referred to as vector
sequential search herein). These two methods are described
in later sections and give the expected improvements over the
one-by-one (i.e., one symbol at a time) sequential search.

Implementation Details

All programs were developed in Microsoft® Visual C++ and
Macro Assembler (MASM), which are included with Visual
Studio. Two separate files are required for the C++ (.cpp)
and assembly language (.asm) code. All precompiled header
files are built into C++. A C++ function main—see Supporting
Information (SI)—contains code that calls assembly language
functions for performing encoding and decoding. For instance,
the function header for SPFPAC encoder, declared in C++
(.cpp) follows:

extern "C" void encode_spfp_avx256(uint8_t* ibuff,
int n_octets, float* F, float* C, uint8_t* lgths,
uint32_t* codes);

Before we schematically provide its stack frame (see Figure
2) the pertinent features of Visual C++ calling convention are
underscored:

(Visual C++ Calling Convention)

The calling convention has more intricacies (e.g., compliance
with Microsoft ABI, alignment requirements of stack pointer
RSP, and designation of registers as either volatile or nonvol-
atile); most of these are not relevant here as the application is
stand-alone assembly language, having a limited external in-
terface. One can consult Kusswurm [6] or Hyde [7] for details.

Figure 2: Stack Frame for encode_spfp_avx256

All parameters except n_octets are 8-byte pointers and take
up the full 64-bit space. The n_octets parameter is a 32-bit
integer, so it only needs 4 bytes (the other 4 are unused). Note
lengths and codes are the fifth and sixth parameters and are
located at byte offsets of +40 and +48 relative to RSP. These
pointers were loaded into registers R12 and R13 for faster
access, as indicated by the two mov instructions. The first four
parameters are automatically loaded into registers RCX, RDX,
R8, and R9. R11 is used to index both lengths and codes.

RCX is used as a fixed pointer to (the first byte of) ibuff;
RAX is used to index the first block in 8 total (incremented
by 1 byte per iteration of divisions loop; then by 35 bytes
to the next octet, to complete the cycle). Offsets of 0, 5,
10, 15, 20, 25, 30, and 35 bytes relative to RCX+RAX are
used to parallel load an octet of symbols—see Figure 3. To
carry out this technique, said offsets with 5-byte spacing
are loaded from 256-bit memory operand ibuff_offsets
into YMM8 via instruction vmovdqa. This is an aligned move,
which requires the memory operand to be 32-byte aligned.
An unaligned move would work as well, as it could be done
outside divisions loop and the performance penalty would be
unnoticeable. Alignment is achieved by placing the declaration
of memory operand in a 32-byte aligned memory segment

extern "C" void encode_spfp_avx256(uint8_t* ibuff,
int n_octets, float* F, float* C, uint8_t* lgths,
uint32_t* codes);

Before we schematically provide its stack frame (see
Figure 2) the pertinent features of Visual C++ calling
convention are underscored:

(Visual C++ Calling Convention)

 Parameters are always 8-byte values, even though
only a fraction of this space may be needed.

 The first four parameters are passed in registers rather
than on stack. Integer arguments are passed in RCX,
RDX, R8, and R9; shadow space storage is
automatically reserved for these four parameters on
stack even though it might not be used. Floating-point
arguments are passed in LO bits of XMM0, XMM1,
XMM2, and XMM3.

 8 bytes are required for each additional parameter if
there are five or more parameters.

The calling convention has more intricacies (e.g., compliance with
Microsoft ABI, alignment requirements of stack pointer RSP, and
designation of registers as either volatile or nonvolatile); most of
these are not relevant here as the application is stand-alone
assembly language, having a limited external interface. One can
consult Kusswurm [6] or Hyde [7] for details.

Figure 2. Stack Frame for encode_spfp_avx256

All parameters except n_octets are 8-byte pointers and
take up the full 64-bit space. The n_octets parameter is a
32-bit integer, so it only needs 4 bytes (the other 4 are
unused). Note lengths and codes are the fifth and sixth
parameters and are located at byte offsets of +40 and +48
relative to RSP. These pointers were loaded into registers
R12 and R13 for faster access, as indicated by the two mov
instructions. The first four parameters are automatically
loaded into registers RCX, RDX, R8, and R9. R11 is used
to index both lengths and codes.

RCX is used as a fixed pointer to (the first byte of) ibuff;
RAX is used to index the first block in 8 total (incremented
by 1 byte per iteration of divisions loop; then by 35 bytes to
the next octet, to complete the cycle). Offsets of 0, 5, 10,
15, 20, 25, 30, and 35 bytes relative to RCX+RAX are used
to parallel load an octet of symbols—see Figure 3. To
carry out this technique, said offsets with 5-byte spacing
are loaded from 256-bit memory operand ibuff_offsets

into YMM8 via instruction vmovdqa. This is an aligned
move, which requires the memory operand to be 32-byte
aligned. An unaligned move would work as well, as it
could be done outside divisions loop and the performance
penalty would be unnoticeable. Alignment is achieved by
placing the declaration of memory operand in a 32-byte
aligned memory segment (not shown here); the simple
align directive does not work for 32 bytes.

Figure 3. Parallel Loading an Octet of Symbols
(SPFPAC)

The address of the first byte to be loaded (pointed to by
RCX+RAX) is placed in R15 via lea (load effective
address). The crux of parallel data transfer is instruction
vpgatherdd ymm4, [r15 + ymm8], ymm7, which loads
dword data into YMM4 using dword indices in YMM8; these
indices act as offsets relative to R15 to access source
operand [r15 + ymm8]. Register YMM7 stores a gather
mask; the HO bit of 8 dword lanes indicates whether data
should be moved for that lane. In this case, the mask
seems to be superfluous as all lanes are involved;
instruction vpcmpeqd ymm7,ymm7,ymm7 compares YMM7
to itself, which sets all 256 bits to 1. The reason for loading
dword lanes of YMM4 with bytes from ibuff is that these
bytes will act as indices themselves for accessing F and C
arrays via further gather instructions, and these limit us to
dword or qword indices (rather than our mere single byte
requirement). Moreover, this instruction moves 8 groups of
4 bytes, so we need to clear out 3 unused bytes per group
by AND’ing YMM4 with an appropriate mask loaded into
YMM9.

The strategy for DPFPAC (which requires only 4 dword
indices) is simpler; it loads the 4 dword lanes of an XMM
register, one by one, using vpinsrb, which can act as an
index source register for subsequent gather instructions.
Although one-by-one insertion is not done, by definition, in
parallel, it is arguably better than performing in only 4 lanes
the analogous SPFPAC route, which requires clearing out
wasted bytes and loading two separate masks. Both
methods were employed for DPFPAC, but no performance
difference was noticeable owing to the majority of work
done in the divisions loop.

In order to gather values of Ck-1 and Fk to perform updates
for α and L, the character (byte) data must be converted to
alphabet indices 1:m. For SPFPAC, the decision was to
simply test lower case letters a, b, … , l (only up to m=12),

Find index k in 1:m such that Ck-1 ≤ t* < Ck (this is
equivalent to finding in which possible subinterval
the unmodified tag t lies; the scaled tag method
involves less arithmetic)

• Parameters are always 8-byte values, even though only a
fraction of this space may be needed.

• The first four parameters are passed in registers rather than
on stack. Integer arguments are passed in RCX, RDX, R8,
and R9; shadow space storage is automatically reserved
for these four parameters on stack even though it might not
be used. Floating-point arguments are passed in LO bits of
XMM0, XMM1, XMM2, and XMM3.

• 8 bytes are required for each additional parameter if there
are five or more parameters.

Volume 2 | Issue 3 | 5Eng OA, 2024

(not shown here); the simple align directive does not work for
32 bytes.

Figure 3: Parallel Loading an Octet of Symbols (SPFPAC)

The address of the first byte to be loaded (pointed to by
RCX+RAX) is placed in R15 via lea (load effective address).
The crux of parallel data transfer is instruction vpgatherdd
ymm4, [r15 + ymm8], ymm7, which loads dword data
into YMM4 using dword indices in YMM8; these indices act
as offsets relative to R15 to access source operand [r15 +
ymm8]. Register YMM 7 stores a gather mask; the HO bit of 8
dword lanes indicates whether data should be moved for that
lane. In this case, the mask seems to be superfluous as all
lanes are involved; instruction vpcmpeqd ymm7,ymm7,ymm7
compares YMM7 to itself, which sets all 256 bits to 1. The
reason for loading dword lanes of YMM4 with bytes from ibuff
is that these bytes will act as indices themselves for accessing
F and C arrays via further gather instructions, and these limit
us to dword or qword indices (rather than our mere single byte
requirement). Moreover, this instruction moves 8 groups of 4
bytes, so we need to clear out 3 unused bytes per group by
AND’ing YMM4 with an appropriate mask loaded into YMM9.

The strategy for DPFPAC (which requires only 4 dword indices)
is simpler; it loads the 4 dword lanes of an XMM register, one
by one, using vpinsrb, which can act as an index source
register for subsequent gather instructions. Although one-
by-one insertion is not done, by definition, in parallel, it is
arguably better than performing in only 4 lanes the analogous
SPFPAC route, which requires clearing out wasted bytes and
loading two separate masks. Both methods were employed for
DPFPAC, but no performance difference was noticeable owing
to the majority of work done in the divisions loop.

In order to gather values of Ck-1 and Fk to perform updates for α
and L, the character (byte) data must be converted to alphabet
indices 1:m. For SPFPAC, the decision was to simply test lower
case letters a, b, … , l (only up to m=12), which correspond to
ASCII hex codes 61h, 62h, … , 6Ch. We subtract 61h to obtain
CDF index k – 1, which is done by loading YMM6 with 8 copies
of this constant and performing packed integer subtraction
via vpsubd ymm4, ymm4, ymm6. There is no packed integer
increment-by-one instruction to obtain k from k – 1, but 1 can
be broadcast to 8 dword lanes and packed addition performed.
A more elaborate conversion scheme is required for DPFPAC
so a more diverse set of characters can be tested—this is
described in a later section when we focus on DPFPAC.

With L stored in YMM1 and Fk gathered in YMM3, L is updated
using packed SPFP multiplication vmulps ymm1,ymm1,ymm3
where YMM1 acts as both source and destination operand.
The update α’ = α + Ck-1L involves multiplication followed by
addition. Fused-multiply-add (FMA) instruction in AVX-256
combines these operations into one. It performs packed FP
multiplication followed by addition and uses a single rounding
operation (the intermediate product is not rounded) making
it more accurate than performing two steps separately. The
rounding mode is determined by MXCSR control register, which
has been set to truncate in the code listings. With α in YMM0,
L in YMM1, and Ck-1 in YMM2, the instruction vfmadd231ps
ymm0,ymm1,ymm2 performs the required update. The first two
indices (23) in mnemonic indicate multiplicand and multiplier;
the third index (1) indicates the source operand added to the
product and is the overall destination, as well. Note that 231
corresponds to YMM1, YMM2, and YMM0, respectively.

Phase 2 (Convert FP to Left-Justified Bit String)

Before describing an implementation, a brief hiatus is taken
to review IEEE 754 standard regarding FP numbers:

 SPFP: (0) (8-bit biased exponent) (23-bit significand)

 DPFP: (0) (11-bit biased exponent) (52-bit significand)

 (0.1101)2 = (0)(01111110)(101 020) = 3F500000h as SPFP

To recover the binary representation of a FP fractional value,
we extract the significand and insert the leading 1 along with
as many 0’s that occur before it and after the binary point. First,
we describe how this can be done for just one SPFP value,
understood to be a fraction between 0 and 1, and stored in a
32-bit general-purpose register, say EAX. For left justification, it
is desired to replace its HO bits with the binary representation
of given fraction. E.G., 0.15625 = (0.00101)2, so we start with
EAX = 3E200000h (this is 0.15625 as SPFP). Upon completion,
the HO bits will be 00101, that is, EAX = 28000000h.

The procedure follows:

extern "C" void encode_spfp_avx256(uint8_t* ibuff,
int n_octets, float* F, float* C, uint8_t* lgths,
uint32_t* codes);

Before we schematically provide its stack frame (see
Figure 2) the pertinent features of Visual C++ calling
convention are underscored:

(Visual C++ Calling Convention)

 Parameters are always 8-byte values, even though
only a fraction of this space may be needed.

 The first four parameters are passed in registers rather
than on stack. Integer arguments are passed in RCX,
RDX, R8, and R9; shadow space storage is
automatically reserved for these four parameters on
stack even though it might not be used. Floating-point
arguments are passed in LO bits of XMM0, XMM1,
XMM2, and XMM3.

 8 bytes are required for each additional parameter if
there are five or more parameters.

The calling convention has more intricacies (e.g., compliance with
Microsoft ABI, alignment requirements of stack pointer RSP, and
designation of registers as either volatile or nonvolatile); most of
these are not relevant here as the application is stand-alone
assembly language, having a limited external interface. One can
consult Kusswurm [6] or Hyde [7] for details.

Figure 2. Stack Frame for encode_spfp_avx256

All parameters except n_octets are 8-byte pointers and
take up the full 64-bit space. The n_octets parameter is a
32-bit integer, so it only needs 4 bytes (the other 4 are
unused). Note lengths and codes are the fifth and sixth
parameters and are located at byte offsets of +40 and +48
relative to RSP. These pointers were loaded into registers
R12 and R13 for faster access, as indicated by the two mov
instructions. The first four parameters are automatically
loaded into registers RCX, RDX, R8, and R9. R11 is used
to index both lengths and codes.

RCX is used as a fixed pointer to (the first byte of) ibuff;
RAX is used to index the first block in 8 total (incremented
by 1 byte per iteration of divisions loop; then by 35 bytes to
the next octet, to complete the cycle). Offsets of 0, 5, 10,
15, 20, 25, 30, and 35 bytes relative to RCX+RAX are used
to parallel load an octet of symbols—see Figure 3. To
carry out this technique, said offsets with 5-byte spacing
are loaded from 256-bit memory operand ibuff_offsets

into YMM8 via instruction vmovdqa. This is an aligned
move, which requires the memory operand to be 32-byte
aligned. An unaligned move would work as well, as it
could be done outside divisions loop and the performance
penalty would be unnoticeable. Alignment is achieved by
placing the declaration of memory operand in a 32-byte
aligned memory segment (not shown here); the simple
align directive does not work for 32 bytes.

Figure 3. Parallel Loading an Octet of Symbols
(SPFPAC)

The address of the first byte to be loaded (pointed to by
RCX+RAX) is placed in R15 via lea (load effective
address). The crux of parallel data transfer is instruction
vpgatherdd ymm4, [r15 + ymm8], ymm7, which loads
dword data into YMM4 using dword indices in YMM8; these
indices act as offsets relative to R15 to access source
operand [r15 + ymm8]. Register YMM7 stores a gather
mask; the HO bit of 8 dword lanes indicates whether data
should be moved for that lane. In this case, the mask
seems to be superfluous as all lanes are involved;
instruction vpcmpeqd ymm7,ymm7,ymm7 compares YMM7
to itself, which sets all 256 bits to 1. The reason for loading
dword lanes of YMM4 with bytes from ibuff is that these
bytes will act as indices themselves for accessing F and C
arrays via further gather instructions, and these limit us to
dword or qword indices (rather than our mere single byte
requirement). Moreover, this instruction moves 8 groups of
4 bytes, so we need to clear out 3 unused bytes per group
by AND’ing YMM4 with an appropriate mask loaded into
YMM9.

The strategy for DPFPAC (which requires only 4 dword
indices) is simpler; it loads the 4 dword lanes of an XMM
register, one by one, using vpinsrb, which can act as an
index source register for subsequent gather instructions.
Although one-by-one insertion is not done, by definition, in
parallel, it is arguably better than performing in only 4 lanes
the analogous SPFPAC route, which requires clearing out
wasted bytes and loading two separate masks. Both
methods were employed for DPFPAC, but no performance
difference was noticeable owing to the majority of work
done in the divisions loop.

In order to gather values of Ck-1 and Fk to perform updates
for α and L, the character (byte) data must be converted to
alphabet indices 1:m. For SPFPAC, the decision was to
simply test lower case letters a, b, … , l (only up to m=12),

• Three fields are required: sign bit, exponent, and significand.
The ordered representations for 32- and 64-bit types follow,
where for our purpose the leading sign bit is usually 0 to
indicate positive:

• To convert a binary fraction, say 0.1101 = 13/16 to SPFP,
write it in normalized binary scientific as 1.101e-1, having a
3-bit significand of 101 (the leading 1 is omitted). Now add
the bias value of 127 to the exponent (-1) to obtain the 8-bit
biased exponent as 126 = (01111110)2 = 7Eh. Then:

Enough 0’s were added to significand to make up the entire
23-bit space. Converting to DPFP is the same process, but
the bias is 1023 = (01111111111)2 = 3FFh. Then (0.1101)2 =
3FEA 012 h as DPFP.

• AND EAX with FF800000h and put result in EBX (EAX remains
unchanged). Now shift right logical EBX by 23 bits so that the
biased exponent is right-justified in EBX. Subtract EBX from
126 to give the number of leading zeros to appear in front of
significand.

Volume 2 | Issue 3 | 6Eng OA, 2024

(Proof of correctness) Start with binary value v = (0.1x1 … x23)2,
each xi = 0 or 1, and note that v cannot represent a continued
fraction or a dyadic fraction requiring more than 24 bits
without rounding and losing accuracy. Then v = (1.x1…x23 e-1)2,
the biased exponent is 126, and so EAX = 0 0111 1110 x1…x23,
initially; applying step 1 indicates there are no leading 0’s to be
inserted. Completing the procedure gives EAX = 1x1…x23 08, as
required. A proof by induction follows if we next consider v =
(0.01x2…x23)2, etc.

All these steps can be vectorized using AVX-256 instructions;
we demonstrate for DPFP in Code Listing 1. Instead of
subtracting from 126, we subtract from 1022; we shift right
logical by 52 bits instead of 23; we shift left by 11 instead
of 8; the exponent mask from step 1 is adjusted to FFF013h.
The crucial instruction is vpsrlvq ymm0, ymm0, ymm2
(variable shift right quadword) where qword lanes in YMM0 are
independently shifted right by variable counts specified in the
qword lanes of YMM2. In context, YMM2 stores the variable
number of leading 0’s to be inserted into HO bits of qwords in
YMM0. YMM0 is both a source and destination of these shifts.

Code Listing 1. DPFP Conversion to Left-Justified Bit String

.data
seg1 segment readonly align(32)
y8 qword 4 dup(0fff0000000000000h) ; exp mask
y9 qword 4 dup(1022) ; exp sub bias
y10 qword 4 dup(8000000000000000h) ; insert lead bit
vals real8 0.5, 0.1, 0.125, 0.8125 ; vals to convert
seg1 ends

.code
asm_ PROC

vmovapd ymm0, ymmword ptr vals
vmovdqa ymm8, ymmword ptr y8
vmovdqa ymm9, ymmword ptr y9
vmovdqa ymm10, ymmword ptr y10

vpand ymm2, ymm0, ymm8 ; isolate exp at HO end
vpsrlq ymm2, ymm2, 52 ; shift exp into LO end
vpsubq ymm2, ymm9, ymm2 ; sub 1022 gives #leading 0’s
vpsllq ymm0, ymm0, 11 ; shift out exp from ymm0
vpor ymm0, ymm0, ymm10 ; insert lead bit 1
vpsrlvq ymm0, ymm0, ymm2 ; insert leading 0’s

; YMM0 = D000000000000000-2000000000000000-
; 1999999999999A00-8000000000000000

ret
asm_ ENDP

Log2 Calculation SPFP (x87 versus AVX-256)

Using x87 FPU to calculate log2(L-1) disrupts parallel operation
and is a bottleneck to encoding. Even if it is abandoned, it is

useful to compare it to a parallel binary interval search method,
where the results are implementation and CPU dependent
(time testing results are delayed until CPU identification is
provided). See SI for the C++ main driving program for log2
calculations. The complete x86-x87 listing is found in Code
Listing 2.

Code Listing 2. Log2 Calculation (x87 FPU)

.data
seg1 segment align(32)
L real4 8 dup(?) ; mem for log2 calc
log2_res dword 8 dup(?) ; store fpu data
seg1 ends

.code
; extern “C” void log2_sequential_octets(int n_octets,
; float* inputs, int32_t * outputs);

calc_log2 MACRO idx
fld1 ; st0 = 1
fld1 ; st1 = st0 = 1
fld [L + 4*idx] ; st0 = L st1 = st2 = 1
fdiv ; st0 = 1/L st1 = 1
fyl2x ; st0 = 1*log2(1/L)
fisttp [log2_res + 4*idx] ; store floor(log2)
ENDM

log2_sequential_octets PROC

mov eax,0 ; init i/o index
next_octet: ; begin loop

vmovdqa ymm1, ymmword ptr [rdx+rax*4]
vmovdqa ymmword ptr L, ymm1

calc_log2 0 ; sto floor(log2(1/L)) in log_res
calc_log2 1 ; sto in log_res + 4
calc_log2 2 ; sto in log_res + 8
calc_log2 3
calc_log2 4
calc_log2 5
calc_log2 6
calc_log2 7 ; sto in log_res + 28

vmovdqa ymm1, ymmword ptr [log2_res]
vmovdqa ymmword ptr [r8+rax*4], ymm1

add eax,8 ; incr i/o index
dec ecx ; decr loop counter
test ecx,ecx ; test for zero
jnz next_octet ; repeat if nonzero
ret
log2_sequential_octets ENDP

The main driving program creates a suitably large array inputs
containing floating-point L-values between 2-8 and 2-18, typical
for the demand of accurate SPFPAC calculations; array
outputs stores calculated values of floor(log2(L-1)). These two
arrays are pointed to by RDX and R8 according to the header
for log2_sequential_octets, which is called by C++. The
first parameter n_octets counts the number of input values in
groups of 8. The FPU will repeat the macro calc_log2 8 times
sequentially without performing an expensive jump instruction
in order to mimic AVX log2 calculation strategy. The crux of
x87 log2 calculation is the usage of instruction fyl2x, which
multiplies st1, the second element on stack, times log2 of the

• Shift left EAX by 8 bits so the LO bit of exponent now occupies
the HO position in EAX and is followed by significand. Insert
the missing bit 1 at this HO location; this can be done by
OR’ing EAX with mask 80000000h.

• Shift right logical EAX by the number of bits determined in
the first step. Now the significand with leading 0’s and the
missing lead bit 1 is left-justified in EAX.

Volume 2 | Issue 3 | 7Eng OA, 2024

top of stack st0. To simulate how SPFPAC operates, an octet of
SPFP values is loaded into YMM1 via vmovdqa ymm1, ymmword
ptr [rdx+rax*4]. The x87 FPU cannot directly interact with
AVX registers, but we can store YMM1 in memory operand L
before loading onto FPU stack. The instruction fisttp (integer
store truncate pop) truncates st0 to an integer by removing
the fractional part, stores result in memory operand log2_res
(which points to an octet of dwords), and pops the result off
the stack. This 256-bit block of memory is eventually uploaded
back to YMM1, and then stored in outputs.

In Code Listing 2, the x87 FPU calculates log2 using 80-bit
extended double precision, and then all this effort is wasted
by truncating it to integer. A faster strategy appears to involve
calculating L-1 as a floating-point value, truncating it to integer,
and then finding (via binary search) the interval [2k, 2k+1)
containing this integer. Then k = floor(log2(floor(L-1))). Moreover,
floor(log(•)) = floor(log(floor(•))), regardless of whether the
argument is truncated. The search requires at most floor
(log2(p – 1)) integer comparisons, where p is the number of
entries of a random-access power-two lookup table (p – 1 is the
number of intervals formed by these powers). The truncated
value of L-1 could coincide with an interval endpoint, and for
a conventional search, the found index could be returned
early. But a facile AVX strategy involves running each search,
one performed independently per lane, the same number of
iterations. The C++ function in Code Listing 3 does just this for
a single search (Listing 4 provides an AVX extension).

Code Listing 3. Binary Interval Search (C++)

int floor_log2
(uint32_t pow2[], int log2p, int Low, int High, float x)
{
 uint32_t T = (uint32_t) 1 / x;
 for (int i = 0; i < log2p; ++i) {
 int Mid = (Low + High) / 2;
 if (T < pow2[Mid]) High = Mid - 1;
 else Low = Mid + 1;
 }
 if (T < pow2[Low]) Low = Low - 1;
 return Low;
}

For this search, we want to find interval [2k, 2k+1) containing
truncated integer T = x-1. After executing floor(log2(p – 1)) times,
T is in either [2Low, 2Low+1) or [2Low-1, 2Low); in the former case,
floor(log2(T)) = Low; in the latter, floor(log2(T)) = Low – 1. If the
index could have been discovered in fewer than floor(log2(p
– 1)) iterations (signaling an early return for a conventional
search), the loop just executes a few more times with Low and
High no longer changing.

Figure 4 demonstrates a proposed method to update four
independent values of H (High) using vectorized Boolean
operations (this would be a schematic for DPFPAC, where all
values occupy qword lanes of YMM registers). The identifier Px
(notation borrowed from [2]) is an alias for the FP interval length
L to prevent a temporary name clash with Low (L is written for
Low in some of the comments; likewise, M is written for Mid
on occasion). The values of pow2[Mid] are not shown but are
understood. YMM14 stores the results of vector comparison

(1/Px < pow2[Mid]); when true, a lane stores all 1’s (as F16 in hex,
but only FFFF is written in lacking space); otherwise, a lane
stores all 0’s. A value of true (all 1’s) is -1 as a signed integer, so
we can add this to Mid to obtain M – 1 as the update of H (but
only when said comparison is true). In the other lanes we want
the old value of H. So, the two registers YMM14 and YMM15
= NOT YMM14 can be used as masks to selectively pick the
values of M that need to be decremented (via YMM7 = YMM4
AND YMM14) and the values of H that remain unchanged (via
YMM13 = YMM3 AND YMM15). These values are then glued
back together via the final OR operation to give the updated H.

Figure 4: Updating H (AVX Binary Interval Search)

The update of L = M + 1 when comparison (1/Px < pow2[Mid])
is false is similar, but we need to subtract -1 from M to achieve
addition. The complete x86 AVX binary interval search method
to calculate floor(log2) for SPFP follows in Code Listing 4.

Code Listing 4. Log2 Calculation (AVX Binary Search)

.data
H_init dword 31 ; initialize H to 31
log2_31 dword 4 ; #reps of avxBS

seg2 segment align(32)
one_p0 real4 8 dup(1.0)
pow2 dword 1h,2h,4h,8h,10h,20h,40h,80h,
 100h,200h,400h,800h,
 1000h,2000h,4000h,8000h,
 10000h,20000h,40000h,80000h,
 100000h,200000h,400000h,800000h,
 1000000h,2000000h,4000000h,8000000h,
 10000000h,20000000h,40000000h,80000000h
seg2 ends

.code

; extern "C" void log2_avx_octets(int n_octets,
; float* inputs, uint32_t * outputs);

log2_avx_octets PROC

mov eax,0
next_octet:
vmovdqa ymm1, ymmword ptr [rdx+rax*4]
vmovdqa ymm7, ymmword ptr [one_p0]

vdivps ymm1,ymm7,ymm1 ; y1 = 1/Px (SPFP)
vcvttps2dq ymm1,ymm1 ; take floor (truncate)

; y2 = Low y3 = High y4 = Mid ebx = #reps of avxBS

vpxor ymm2,ymm2,ymm2 ; Low = 0

Figure 4 demonstrates a proposed method to update four
independent values of H (High) using vectorized Boolean
operations (this would be a schematic for DPFPAC, where
all values occupy qword lanes of YMM registers). The
identifier Px (notation borrowed from [2]) is an alias for the
FP interval length L to prevent a temporary name clash
with Low (L is written for Low in some of the comments;
likewise, M is written for Mid on occasion). The values of
pow2[Mid] are not shown but are understood. YMM14
stores the results of vector comparison (1/Px < pow2[Mid]);
when true, a lane stores all 1’s (as F16 in hex, but only
FFFF is written in lacking space); otherwise, a lane stores
all 0’s. A value of true (all 1’s) is -1 as a signed integer, so
we can add this to Mid to obtain M – 1 as the update of H
(but only when said comparison is true). In the other lanes
we want the old value of H. So, the two registers YMM14
and YMM15 = NOT YMM14 can be used as masks to
selectively pick the values of M that need to be
decremented (via YMM7 = YMM4 AND YMM14) and the
values of H that remain unchanged (via YMM13 = YMM3
AND YMM15). These values are then glued back together
via the final OR operation to give the updated H.

Figure 4. Updating H (AVX Binary Interval Search)

The update of L = M + 1 when comparison (1/Px <
pow2[Mid]) is false is similar, but we need to subtract -1
from M to achieve addition. The complete x86 AVX binary
interval search method to calculate floor(log2) for SPFP
follows in Code Listing 4.

Code Listing 4. Log2 Calculation (AVX Binary Search)
.data
H_init dword 31 ; initialize H to
31
log2_31 dword 4 ; #reps of avxBS

seg2 segment align(32)
one_p0 real4 8 dup(1.0)
pow2 dword 1h,2h,4h,8h,10h,20h,40h,80h,
 100h,200h,400h,800h,
 1000h,2000h,4000h,8000h,
 10000h,20000h,40000h,80000h,
 100000h,200000h,400000h,800000h,
 1000000h,2000000h,4000000h,8000000h,
 10000000h,20000000h,40000000h,80000000h
seg2 ends

.code

; extern "C" void log2_avx_octets(int n_octets,
; float* inputs, uint32_t * outputs);

log2_avx_octets PROC

mov eax,0
next_octet:
vmovdqa ymm1, ymmword ptr [rdx+rax*4]
vmovdqa ymm7, ymmword ptr [one_p0]

vdivps ymm1,ymm7,ymm1 ; y1 = 1/Px (SPFP)
vcvttps2dq ymm1,ymm1 ; take floor (truncate)

; y2 = Low y3 = High y4 = Mid ebx = #reps of avxBS

vpxor ymm2,ymm2,ymm2 ; Low = 0
vpbroadcastd ymm3, dword ptr [H_init] ; High
= 31
mov ebx, dword ptr [log2_31]

log2_avxBS: ; begin loop
vpaddd ymm4,ymm2,ymm3 ; y4 = M
vpsrld ymm4,ymm4,1 ; = (L+H)/2
vpcmpeqd ymm7,ymm7,ymm7 ; set gather
mask
vpgatherdd ymm13, [pow2+ymm4*4], ymm7 ; y13 = pow2[M]

vpcmpgtd ymm14,ymm13,ymm1 ; y14 = 1/Px < pow2[M]
vpcmpeqd ymm15,ymm15,ymm15 ; y15 = all 1's
vpxor ymm15,ymm14,ymm15 ; y15 = not (y14)

vpand ymm7,ymm14,ymm4
vpaddd ymm7,ymm7,ymm14
vpand ymm13,ymm3,ymm15
vpor ymm3,ymm13,ymm7 ; H = M-1 if 1/Px < pow2[M]

vpand ymm7,ymm15,ymm4
vpsubd ymm7,ymm7,ymm15
vpand ymm13,ymm2,ymm14
vpor ymm2,ymm13,ymm7 ; L = M+1 otherwise

dec ebx
test ebx,ebx
jnz log2_avxBS ; rep floor(log2(31)) times

vpcmpeqd ymm7,ymm7,ymm7 ; set mask
vpgatherdd ymm13, [pow2+ymm2*4], ymm7 ; y13 = pow2[L]
vpcmpgtd ymm14,ymm13,ymm1 ; y14 = 1/Px < pow2[L]
vpaddd ymm1,ymm2,ymm14 ; dec L if 1/Px < pow2[L]

 ; end log2_avxBS, return floor(log2(1/Px)) in y1

vmovdqa ymmword ptr [r8+rax*4], ymm1
add eax,8
dec ecx
test ecx,ecx
jnz next_octet
ret
log2_avx_octets ENDP

Conversions between Int64 and DPFP

In observing Code Listing 4, the instruction vcvttps2dq
ymm1,ymm1 (convert packed single precision to signed
integer via truncation) to take floor(1/Px), does not have a
double-precision analog in AVX-256 (nor is there one to
convert int64 to DPFP), so bespoke methods are needed.
The conversion int64 to DPFP is needed by decoder to
calculate the tag before divisions loop; DPFP to int64 is
needed by encoder to begin its log2 calculation. These
conversions are now described.

(Int64 to DPFP) If x is a 64-bit integer requiring under 52
bits, then x + 252 is in [252, 253), and so dp(x + 252), its
DPFP representation, has x as its LO bits (i.e., the
significand is nothing but x, right-justified perfectly into
place). So given that dp(252) = 4330 012h, we OR (x)2 with
this magic value to obtain dp(x + 252). For example, if x = 5
= (101)2, then dp(x + 252) = 4330 011 5h. As an identity:

Volume 2 | Issue 3 | 8Eng OA, 2024

vpbroadcastd ymm3, dword ptr [H_init] ; High = 31
mov ebx, dword ptr [log2_31]

log2_avxBS: ; begin loop
vpaddd ymm4,ymm2,ymm3 ; y4 = M
vpsrld ymm4,ymm4,1 ; = (L+H)/2
vpcmpeqd ymm7,ymm7,ymm7 ; set gather mask
vpgatherdd ymm13, [pow2+ymm4*4], ymm7 ; y13 = pow2[M]

vpcmpgtd ymm14,ymm13,ymm1 ; y14 = 1/Px < pow2[M]
vpcmpeqd ymm15,ymm15,ymm15 ; y15 = all 1's
vpxor ymm15,ymm14,ymm15 ; y15 = not (y14)

vpand ymm7,ymm14,ymm4
vpaddd ymm7,ymm7,ymm14
vpand ymm13,ymm3,ymm15
vpor ymm3,ymm13,ymm7 ; H = M-1 if 1/Px < pow2[M]

vpand ymm7,ymm15,ymm4
vpsubd ymm7,ymm7,ymm15
vpand ymm13,ymm2,ymm14
vpor ymm2,ymm13,ymm7 ; L = M+1 otherwise

dec ebx
test ebx,ebx
jnz log2_avxBS ; rep floor(log2(31)) times

vpcmpeqd ymm7,ymm7,ymm7 ; set mask
vpgatherdd ymm13, [pow2+ymm2*4], ymm7 ; y13 = pow2[L]
vpcmpgtd ymm14,ymm13,ymm1 ; y14 = 1/Px < pow2[L]
vpaddd ymm1,ymm2,ymm14 ; dec L if 1/Px < pow2[L]

 ; end log2_avxBS, return floor(log2(1/Px)) in y1

vmovdqa ymmword ptr [r8+rax*4], ymm1
add eax,8
dec ecx
test ecx,ecx
jnz next_octet
ret
log2_avx_octets ENDP

Conversions between Int64 and DPFP

In observing Code Listing 4, the instruction vcvttps2dq
ymm1, ymm1 (convert packed single precision to signed integer
via truncation) to take floor(1/Px), does not have a double-
precision analog in AVX-256 (nor is there one to convert int64
to DPFP), so bespoke methods are needed. The conversion
int64 to DPFP is needed by decoder to calculate the tag before
divisions loop; DPFP to int64 is needed by encoder to begin its
log2 calculation. These conversions are now described.

(Int64 to DPFP) If x is a 64-bit integer requiring under 52
bits, then x + 252 is in [252, 253), and so dp(x + 252), its DPFP
representation, has x as its LO bits (i.e., the significand is
nothing but x, right-justified perfectly into place). So given that
dp(252) = 4330 012h, we OR (x)2 with this magic value to obtain
dp(x + 252). For example, if x = 5 = (101)2, then dp(x + 252) = 4330
011 5h. As an identity:

dp(x + 252) = (x)2 OR dp(252) (if x < 252)

Then dp(x) = {(x)2 OR dp(252)} – dp(252), where the indicated
subtraction is done as DPFP, not as integer subtraction.

(DPFP to Int64) Given DPFP value x < 252, the result y of DPFP

addition of 252 with x will leave the integer part of x as the
significand with fractional bits removed; this follows since x +
252 is in [252, 253) and the integer part requires exactly 52 bits of
the significand for its representation; there are no more bits
for the fractional part. Next, we integer-subtract dp(252) from y,
giving int64(x), as required. The subtraction is more efficiently
performed using XOR, which clears out 433h, the HO 12 bits.
As an identity:

 int64(x) = {x + dp(252)} XOR dp(252) (if x < 252)

The overall conversion requires only two instructions (vaddpd
and vpxor). The addition step that removes the fractional part
of x involves rounding, whose mode is determined by 32-bit
MXCSR register. In Code Listing 5, the rounding mode has
been set to truncate (bits 13 and 14 of MXCSR are both set).
The DPFP constant 4330 012h for 252 has been imported from
C++, along with an array of additional powers of two, just to
facilitate the demonstration.

Code Listing 5. Conversions between Int64 and DPFP

#include <math.h>
extern "C" double two52 = pow(2, 52.0);
extern "C" double ary2[] =
 { pow(2, 42), pow(2,51), pow(2,52), pow(2,53)};

.data
extern two52:real8
extern ary2:real8
mxcsr_state dword ?

seg segment readonly align(32)
i64s qword 101, 5, 0, 12345678999
ary1 real8 42.875, 51.875, 52.875, 53.875
seg ends

.code
asm_ PROC

vstmxcsr mxcsr_state ; store current state
bts mxcsr_state, 13 ; set bit 13 to 1
bts mxcsr_state, 14 ; set bit 14 to 1
vldmxcsr mxcsr_state ; load new state

vmovdqa ymm0, ymmword ptr [i64s]
vbroadcastsd ymm1, real8 ptr [two52]

vpor ymm2,ymm0,ymm1
vsubpd ymm3,ymm2,ymm1
; y3 = 101.0 5.0 0.0 12345678999.0

; YMM2 = 43300002DFDC1C97-4330000000000000-
; 4330000000000005-4330000000000065

; YMM3 = 4206FEE0E4B80000-0000000000000000-
; 4014000000000000-4059400000000000

vmovapd ymm4, real8 ptr ary1
vmovupd ymm5, real8 ptr ary2
; YMM4 = 404AF00000000000-404A700000000000-
; 4049F00000000000-4045700000000000
; YMM5 = 4340000000000000-4330000000000000-
; 4320000000000000-4290000000000000
vaddpd ymm5,ymm4,ymm5 ; DPFP vals to convert

; YMM5 = 434000000000001A-4330000000000034-
; 4320000000000067-429000000000AB80

Volume 2 | Issue 3 | 9Eng OA, 2024

vaddpd ymm5,ymm1,ymm5

; YMM5 = 434800000000001A-434000000000001A-
; 4338000000000033-433004000000002A

vpsubd ymm6,ymm5,ymm1

; YMM6 = 001800000000001A-001000000000001A-
; 0008000000000033-000004000000002A

vpxor ymm7,ymm5,ymm1

; YMM7 = 007800000000001A-007000000000001A-
; 0008000000000033-000004000000002A

ret
asm_ ENDP

The truncated result of conversion of 251 + 51.875 to int64 is
indicated as 801033h in the second lane (from the right end)
of YMM6, which is obtained via DPFP subtraction; YMM7 gives
the same result via the more efficient XOR. Lanes 3 and 4
give wrong answers by attempting to convert 52.875 + 252 and
53.875 + 253, which are both > 252. On the other hand, all i64’s
are < 252 and are correctly converted to DPFP, as seen in YMM3.

Encoder Phase 3 (SPFPAC) Simulated File I/O

This phase involves writing the binary encoded tag to com-
pressed buffer. For SPFPAC, error detection has been ignored
so we unconditionally write l(t) to lengths and l(t) many bits
of the binary code to codes. For simulated bit I/O, there is one
5-bit length stored per 8-bit integer so 3 bits are lost; and only
one code value is stored per 32-bit integer (several could be
lost). For gauging compression efficiency, it is assumed these
holes have been removed, as will be done later when contigu-
ous file I/O is considered. Currently, truncated log2 values are
stored in YMM1 so we add 2 to obtain the necessary lengths,
as l(t) = 2 + floor(log2(L-1))—this step was stated in phase 2 but
is provided here for continuation. With YMM0 storing 8 left-jus-
tified codes, we need to shift l(t) many HO bits to the low ends
and use vmovdqa ymmword ptr [r13 + r11*4], ymm0 to
transfer 8 dwords to codes. This code snippet demonstrates:

vmovdqa ymm13, ymmword ptr twos ; y13 = 2 (8 copies)
vmovdqa ymm11, ymmword ptr _32 ; y11 = 20h (8 copies)
vpaddd ymm1, ymm1, ymm13 ; y1 = 2 + floor(log2(1/Px))
vpsubd ymm2, ymm11, ymm1 ; #bits to srl = 32 - l(t)
vpsrlvd ymm0, ymm0, ymm2 ; right justify codes
vmovdqa ymmword ptr [r13 + r11*4], ymm0 ; store codes

Observe that 32 – l(t) is the variable number of bits by which
to shift right logical the code segments. Next, we describe
how to store l(t). Currently, these lengths occupy the 8 dword
lanes of YMM1. The method proposed involves packing these
dwords into the LO byte lanes of XMM1. These 8 bytes can
then be stored in memory using instruction vmovq qword ptr
[r12+r11], xmm1. Figure 5 illustrates how this is done using
vpackusdw and vpackuswb, which packs unsigned dwords
into words (16 bits), and then unsigned words into bytes,
respectively. Just for sake of demonstration, the length values
have been written as the integers 1:8; in practice they would be
larger values ranging up to 31. Before applying the two packed

operations, the bytes in HO dword lanes of YMM1 have been
copied into XMM2 using vextracti128.

Figure 5: Store Lengths (SPFPAC) Simulated File I/O

Encoder Phase 3 (DPFPAC) Simulated File I/O

Error detection was carried out for DPFPAC. The method can
be summarized as follows:

To do the latter, we broadcast 40 into the 4 qword lanes of
YMM4, and then compare YMM4 to YMM1 to see if 40 > l(t);
the results of this comparison are placed in the qword lanes
of YMM7 (all 1’s if true, all 0’s if false). Using YMM7 as a mask
to index the correct qword destinations, we conditionally store
the “good” code values in array codes at the 256-bit block
of memory whose starting address is R13 + R11*8, where 8
denotes the number of bytes allocated for one qword (codes
stores the type uint64_t); the instruction that does this is
vpmaskmovq [r13+r11*8], ymm7, ymm0. The following code
snippet summarizes:

vpbroadcastq ymm4, forty
vpcmpgtq ymm7, ymm4, ymm1
vpmaskmovq [r13+r11*8], ymm7, ymm0
Next, we copy 5 unencoded ASCII bytes (40 bits) from ibuff
to codes at the qword locations where nothing was stored
by vpmaskmovq (these 5 symbols are called a bad block,
even though they are correct). There does not appear to be
a direct AVX-256 method to transfer data in groups of 5 at
noncontiguous blocks of memory from a source memory
operand to a destination memory operand, but we can resort
to x86 instruction movsb (move string byte), which can perform
the task block by block. The penalty will be negligible since bad
blocks (i.e., bad codes) will be extreme outliers and we can
perform a quick preliminary test to see if any of the 4 blocks
(working in quartets for DPFPAC) are, in fact, bad. The test is
done with instruction vptest ymm15, ymm15 (where YMM15 =
NOT YMM7), which sets the zero flag if YMM15 is all 0’s (exactly
when YMM7 is all 1’s and all blocks are good). We then use
a conditional jump to skip the expensive section of code that
checks for bad blocks and executes movsb, if necessary. The
following code snippet summarizes:

instruction vmovq qword ptr [r12+r11], xmm1. Figure 5
illustrates how this is done using vpackusdw and
vpackuswb, which packs unsigned dwords into words (16
bits), and then unsigned words into bytes, respectively.
Just for sake of demonstration, the length values have
been written as the integers 1:8; in practice they would be
larger values ranging up to 31. Before applying the two
packed operations, the bytes in HO dword lanes of YMM1
have been copied into XMM2 using vextracti128.

Figure 5. Store Lengths (SPFPAC) Simulated File I/O

Encoder Phase 3 (DPFPAC) Simulated File I/O
Error detection was carried out for DPFPAC. The method
can be summarized as follows:

 Write l(t) to lengths unconditionally

 If l(t) < 40, write the binary code value to codes
Else, copy 5 ASCII symbols from ibuff to codes

To do the latter, we broadcast 40 into the 4 qword lanes of
YMM4, and then compare YMM4 to YMM1 to see if 40 >
l(t); the results of this comparison are placed in the qword
lanes of YMM7 (all 1’s if true, all 0’s if false). Using YMM7
as a mask to index the correct qword destinations, we
conditionally store the ―good‖ code values in array codes at
the 256-bit block of memory whose starting address is R13
+ R11*8, where 8 denotes the number of bytes allocated
for one qword (codes stores the type uint64_t); the
instruction that does this is vpmaskmovq [r13+r11*8],
ymm7, ymm0. The following code snippet summarizes:

vpbroadcastq ymm4, forty
vpcmpgtq ymm7, ymm4, ymm1
vpmaskmovq [r13+r11*8], ymm7, ymm0

Next, we copy 5 unencoded ASCII bytes (40 bits) from
ibuff to codes at the qword locations where nothing was
stored by vpmaskmovq (these 5 symbols are called a bad
block, even though they are correct). There does not
appear to be a direct AVX-256 method to transfer data in
groups of 5 at noncontiguous blocks of memory from a
source memory operand to a destination memory operand,
but we can resort to x86 instruction movsb (move string
byte), which can perform the task block by block. The
penalty will be negligible since bad blocks (i.e., bad codes)
will be extreme outliers and we can perform a quick
preliminary test to see if any of the 4 blocks (working in
quartets for DPFPAC) are, in fact, bad. The test is done

with instruction vptest ymm15, ymm15 (where YMM15 =
NOT YMM7), which sets the zero flag if YMM15 is all 0’s
(exactly when YMM7 is all 1’s and all blocks are good).
We then use a conditional jump to skip the expensive
section of code that checks for bad blocks and executes
movsb, if necessary. The following code snippet
summarizes:
vpcmpeqq ymm15,ymm15,ymm15 ; y15 = 1's
vpxor ymm15,ymm7,ymm15 ; y15 = not(y7)
vptest ymm15,ymm15 ; set ZF if y15 = 0's

jz proceed ; handle bad blocks only if necessary

 ; .
 ; code to handle bad blocks goes here
 ; .

proceed:

 ; write lengths to compressed buffer
 ; proceed to next quartet of blocks

The code to handle bad blocks involves extracting qword
Boolean mask values, one by one, from YMM7 into 64-bit
register RBX and testing for 0 (if so, movsb for the current
block being tested is executed). For this task, a macro
m_copybadblock was used, which conditionally calls
instruction movsb. This macro is shared by decoder (see
SI for details).

Decoder Phase 1 (Simulated File I/O)
The decoder was implemented in three ways for SPFPAC,
depending on the symbol decoding procedure (one-by-one
sequential, vector sequential, and vector binary interval
search). The vector sequential method was not
implemented for DPFPAC as it will inevitably be too slow
for larger alphabets (as will be the case for one-by-one
sequential, for that matter). The DPFPAC decoder is like
the one for SPFPAC but involves a few extra parameters
and is described later. We focus on the function header for
SPFPAC decoder:
extern "C" void decode1_spfp_avx256(float* C,
int n_octets, uint8_t* lgths, uint32_t* codes,
uint8_t* obuff, float* F);

The array C is now the first parameter and so is pointed to
by RCX. According to the stack frame layout from Figure
2, registers R8 and R9 now point to lengths and codes.
Parameters obuff and F are located on the stack at RSP
+ 40 and RSP + 48, and were loaded into R12 and R13 for
faster access. Phase 1 involves loading codes and code
lengths into AVX registers, and then computing the
associated tags as FP values. This is illustrated for
SPFPAC in Figure 6.

In determining t = code/2l(t), the denominator obtains by
accessing a table containing powers of two (not shown in
Figure 6) using l(t)-values (as indices) that have been
moved from byte-spaced values (in lengths) into dwords
in YMM8 for a subsequent gather instruction that performs
this access. To prepare for this gather, an octet of lengths
is moved to the 8 LO bytes of XMM8 (HO bytes are

• Write l(t) to lengths unconditionally

• If l(t) < 40, write the binary code value to codes
 Else, copy 5 ASCII symbols from ibuff to codes

Volume 2 | Issue 3 | 10Eng OA, 2024

vpcmpeqq ymm15,ymm15,ymm15 ; y15 = 1's
vpxor ymm15,ymm7,ymm15 ; y15 = not(y7)
vptest ymm15,ymm15 ; set ZF if y15 = 0's

jz proceed ; handle bad blocks only if necessary

 ; .
 ; code to handle bad blocks goes here
 ; .

proceed:

 ; write lengths to compressed buffer
 ; proceed to next quartet of blocks

The code to handle bad blocks involves extracting qword
Boolean mask values, one by one, from YMM7 into 64-bit
register RBX and testing for 0 (if so, movsb for the current
block being tested is executed). For this task, a macro m_
copybadblock was used, which conditionally calls instruction
movsb. This macro is shared by decoder (see SI for details).

Decoder Phase 1 (Simulated File I/O)

The decoder was implemented in three ways for SPFPAC,
depending on the symbol decoding procedure (one-by-one
sequential, vector sequential, and vector binary interval
search). The vector sequential method was not implemented
for DPFPAC as it will inevitably be too slow for larger alphabets
(as will be the case for one-by-one sequential, for that matter).
The DPFPAC decoder is like the one for SPFPAC but involves a
few extra parameters and is described later. We focus on the
function header for SPFPAC decoder:

extern "C" void decode1_spfp_avx256(float* C,
int n_octets, uint8_t* lgths, uint32_t* codes,
uint8_t* obuff, float* F);

The array C is now the first parameter and so is pointed to
by RCX. According to the stack frame layout from Figure
2, registers R8 and R9 now point to lengths and codes.
Parameters obuff and F are located on the stack at RSP + 40
and RSP + 48, and were loaded into R12 and R13 for faster
access. Phase 1 involves loading codes and code lengths into
AVX registers, and then computing the associated tags as FP
values. This is illustrated for SPFPAC in Figure 6.

In determining t = code/2l(t), the denominator obtains by
accessing a table containing powers of two (not shown in
Figure 6) using l(t)-values (as indices) that have been moved
from byte-spaced values (in lengths) into dwords in YMM8 for
a subsequent gather instruction that performs this access. To
prepare for this gather, an octet of lengths is moved to the 8 LO
bytes of XMM8 (HO bytes are unused) using vmovq; we move
these bytes into dword lanes of YMM8 via vpmovzxbd—move
zero-extend byte to dword. The code values (4-byte spacing)
are loaded into YMM10 via vmovdqa (the codes array was 32-
byte aligned in C++ using _aligned_malloc to facilitate) and
are labeled as c1:c8 to avoid writing out generic, lengthy hex
values. The integer powers of two in YMM9 and integer codes
in YMM10 are converted to SPFP using vcvtdq2ps to facilitate
the subsequent SPFP packed division instruction, which
calculates t = code/2l(t).

Figure 6: Decoder Phase 1 (SPFPAC) Simulated File I/O

The calculation for DPFP is similar but we process 4 tags in
qword lanes instead. We use vmovd xmm8, [r8+r11] to
load 4 bytes into the LO 32 bits of XMM8 and follow up with
vpmovzxbq ymm8, xmm8 to move these bytes into the 4 qword
lanes of YMM8. The instruction to convert 64-bit code values
to DPFP does not exist in AVX-256, so we use the bespoke
conversion method discussed earlier.

Decoder Phase 2

Given m possible subdivisions of the current interval, we
must find the one that contains t, update the interval to the
one found, and then write the corresponding symbol to output
buffer. For the subdivision that contains t, we have α + Ck-1L ≤ t
< α + CkL, which is equivalent to:

Ck-1 ≤ t* < Ck where t* = (t – α)/L is the scaled tag

Satisfying the latter inequality involves less work since it is
not necessary to compute the interval endpoints of each
subdivision. Pseudocode for finding index k of the containing
interval follows (for proper decoding with the midpoint
method, coincidence of a tag with an endpoint will not occur,
so we can use comparison t* > Ck instead of t* ≥ Ck):

The procedure returns k – 1 since update α’ = α + Ck-1L must
occur before L’ = LFk. For vectorized FPAC, implementing a
sequential search one tag at a time is inefficient, since a scalar
FP comparison involves moving the current scaled tag into the
first lane of an AVX register, and one must decide how to save
or even discard the remaining tags. In this implementation of
decode_symbol, the current scaled tag has been shifted
into the first lane of XMM0, and effectively acts as a FP
parameter (this procedure is not called by C++, but the
pseudo header indicates the two effective parameters):

; int decode_symbol(float *C, float tscale);

decode_symbol PROC
mov eax, 0 ; eax = k

@@: inc eax
vmovss xmm15, real4 ptr [rcx + rax*4] ; x15[0] = Ck

unused) using vmovq; we move these bytes into dword
lanes of YMM8 via vpmovzxbd—move zero-extend byte to
dword. The code values (4-byte spacing) are loaded into
YMM10 via vmovdqa (the codes array was 32-byte aligned
in C++ using _aligned_malloc to facilitate) and are
labeled as c1:c8 to avoid writing out generic, lengthy hex
values. The integer powers of two in YMM9 and integer
codes in YMM10 are converted to SPFP using vcvtdq2ps
to facilitate the subsequent SPFP packed division
instruction, which calculates t = code/2l(t).

Figure 6. Decoder Phase 1 (SPFPAC) Simulated File
I/O

The calculation for DPFP is similar but we process 4 tags
in qword lanes instead. We use vmovd xmm8, [r8+r11]
to load 4 bytes into the LO 32 bits of XMM8 and follow up
with vpmovzxbq ymm8, xmm8 to move these bytes into the
4 qword lanes of YMM8. The instruction to convert 64-bit
code values to DPFP does not exist in AVX-256, so we use
the bespoke conversion method discussed earlier.

Decoder Phase 2
Given m possible subdivisions of the current interval, we
must find the one that contains t, update the interval to the
one found, and then write the corresponding symbol to
output buffer. For the subdivision that contains t, we have
α + Ck-1L ≤ t < α + CkL, which is equivalent to:

Ck-1 ≤ t* < Ck where t* = (t – α)/L is the scaled tag

Satisfying the latter inequality involves less work since it is
not necessary to compute the interval endpoints of each
subdivision. Pseudocode for finding index k of the
containing interval follows (for proper decoding with the
midpoint method, coincidence of a tag with an endpoint will
not occur, so we can use comparison t* > Ck instead of t* ≥
Ck):

 k = 0
do {k++} while (t* > Ck);
return k – 1

The procedure returns k – 1 since update α’ = α + Ck-1L
must occur before L’ = LFk. For vectorized FPAC,
implementing a sequential search one tag at a time is
inefficient, since a scalar FP comparison involves moving
the current scaled tag into the first lane of an AVX register,

and one must decide how to save or even discard the
remaining tags. In this implementation of decode_symbol,
the current scaled tag has been shifted into the first lane of
XMM0, and effectively acts as a FP parameter (this
procedure is not called by C++, but the pseudo header
indicates the two effective parameters):
; int decode_symbol(float *C, float tscale);

decode_symbol PROC
mov eax, 0 ; eax = k

@@: inc eax
vmovss xmm15, real4 ptr [rcx + rax*4] ; x15[0] = Ck
vcomiss xmm0,xmm15 ; tscale > Ck ?
ja @B ; if so, repeat loop

dec eax ; otherwise ..
ret ; return k – 1 in eax
decode_symbol ENDP

Observe that RCX points to C, and so the scalar SPFP
instruction vmovss xmm15, real4 ptr [rcx + rax*4]
loads the first lane of XMM15 with Ck for the subsequent
scalar SPFP comparison vcomiss. After the procedure
returns, the decoded index k – 1 (returned in EAX) is
inserted into the appropriate lane of YMM6, which is
eventually used to gather data (Ck-1 and Fk) for the interval
updates. Before decoding the next symbol, the next tag is
shifted into the LO lane of XMM0, which kicks out the old
one. This tag shifting process can only be done for the
lower half of YMM0 (i.e., XMM0), so the two halves are
swapped using vperm2f128 ymm0,ymm0,ymm0,1. See SI
for details.

Shifting and swapping can be avoided by performing the
sequential search concurrently on an entire group of tags (8 for
SPFPAC). There does not appear to be a simple way to break
out of the search early when a match is found, but we can force it
to execute all m – 1 times (the last interval can be skipped). For
smaller alphabets, this AVX method makes sense as processing
all 8 tags in parallel can lower the average number of
comparisons below that for processing these tags one by one with
early departures. We proceed to the entry point of divisions
loop where 8 unscaled tags are stored in YMM10; the
scaled tags will be placed in YMM0. The index k (to gather
Ck for comparison) will occupy the 8 dword lanes of YMM8.
This k is incremented m – 1 times (per each of 5 iterations of
divisions loop) and holds the same value in all 8 lanes. We
use another register (YMM9) to hold the k-values to be
used for subsequent instructions that gather Ck-1 and Fk, for
the interval updates that occur after the current octet of
symbols has been decoded; we call these values K. This
extra register is needed since we do not want to increment
these K’s after the associated matches are found.

Figure 7. Incrementing K (AVX Sequential Search)

• k = 0
 do {k++} while (t* > Ck);
 return k – 1

Volume 2 | Issue 3 | 11Eng OA, 2024

 vcomiss xmm0,xmm15 ; tscale > Ck ?
ja @B ; if so, repeat loop

dec eax ; otherwise ..
ret ; return k – 1 in eax
decode_symbol ENDP

Observe that RCX points to C, and so the scalar SPFP
instruction vmovss xmm15, real4 ptr [rcx + rax*4]
loads the first lane of XMM15 with Ck for the subsequent scalar
SPFP comparison vcomiss. After the procedure returns,
the decoded index k – 1 (returned in EAX) is inserted into the
appropriate lane of YMM6, which is eventually used to gather
data (Ck-1 and Fk) for the interval updates. Before decoding the
next symbol, the next tag is shifted into the LO lane of XMM0,
which kicks out the old one. This tag shifting process can only
be done for the lower half of YMM0 (i.e., XMM0), so the two
halves are swapped using vperm2f128 ymm0,ymm0,ymm0,1.
See SI for details.

Shifting and swapping can be avoided by performing the
sequential search concurrently on an entire group of tags (8
for SPFPAC). There does not appear to be a simple way to
break out of the search early when a match is found, but we
can force it to execute all m – 1 times (the last interval can
be skipped). For smaller alphabets, this AVX method makes
sense as processing all 8 tags in parallel can lower the average
number of comparisons below that for processing these tags
one by one with early departures. We proceed to the entry
point of divisions loop where 8 unscaled tags are stored in
YMM10; the scaled tags will be placed in YMM0. The index k
(to gather Ck for comparison) will occupy the 8 dword lanes
of YMM8. This k is incremented m – 1 times (per each of 5
iterations of divisions loop) and holds the same value in all 8
lanes. We use another register (YMM9) to hold the k-values to
be used for subsequent instructions that gather Ck-1 and Fk,
for the interval updates that occur after the current octet of
symbols has been decoded; we call these values K. This extra
register is needed since we do not want to increment these K’s
after the associated matches are found.

Figure 7: Incrementing K (AVX Sequential Search)

Figure 7 illustrates the contents of YMM8 and YMM9 (only 4 out
of 8 lanes are shown) for alphabet size m = 4 and 4 tags t1:t4
occupying the first four intervals, respectively.

To implement this method, YMM5 stores 8 copies of constant
1 in dword lanes for incrementing k in YMM8. The results of
comparison t* > Ck are placed in YMM11, which is used as
a mask to select the lanes of YMM9 to be incremented. The

instruction vpand ymm12, ymm5, ymm11 loads YMM12 with
1 in lanes where K will be incremented (match is not yet
found), or with 0 where matches have been found. Once these
matches are found, these K’s are never incremented again
as the comparison t* > Ck will remain false. Code Listing 6
provides an AVX sequence of instructions for vector sequential
decoding. The parameter m is located at RSP + 56 on stack.

Code Listing 6. AVX Sequential Search (SPFPAC)

 ; calc 8 scaled tags in y0 (y1 = alpha, y2 = L)
vsubps ymm0, ymm10, ymm1 ; y0 = t - alpha
vdivps ymm0, ymm0, ymm2 ; y0 = [t1* ... t8*]

vpxor ymm8,ymm8,ymm8 ; index k to get Ck for cmp
vpxor ymm9,ymm9,ymm9 ; K = decoded index

mov eax, dword ptr [rsp+56] ; eax = #reps of search
dec eax ; only m-1 reps are needed

decode_symbol_avx:
vpaddd ymm8,ymm8,ymm5 ; inc k (to get Ck)
vpcmpeqd ymm7,ymm7,ymm7 ; set gather mask
vgatherdps ymm3, [rcx + ymm8*4], ymm7 ; y3 = Ck

vcmpgtps ymm11,ymm0,ymm3 ; t* > Ck ?
vpand ymm12,ymm5,ymm11 ; mask for addition to K
vpaddd ymm9,ymm9,ymm12 ; add 1 to K if t* > Ck

dec eax
test eax,eax
jnz decode_symbol_avx
 ; end avx sequential search; ret K-1 in y9

The third symbol decoding technique is based on the AVX
binary interval search; the implementation is virtually
identical to the one used for the floor(log2) calculation, where
intervals were formed from powers of two in a lookup table;
indices for access into the table ranged up to 31 for SPFPAC
and up to 40 for DPFPAC. For the AVX binary interval search
used by decoder, we search the m intervals formed by the CDF
endpoints. The search executes floor(log2(m)) times for each
group of symbols encountered (8 for SPFPAC, 4 for DPFPAC).
Index High is initialized to m. Both floor(log2(m)) and m are
parameters of the decoder function and are passed in by C++.

Decoder Error Detection (DPFPAC) Simulated File I/O

If FP length L is under 1e-12, the calculation of t = code/2l(t) will
be erroneous (t > 1 was observed in the debugger in certain
cases); this follows since High was initialized to 40 in the
encoder log2 calculation, the return value Low becomes 40
at termination, and the likely incorrect value of l(t) = 42 (after
addition by 2) is stored in lengths. To prevent the decoders
from producing unexpected results (e.g., infinite loops,
program crashes, and out-of-range symbols were observed),
a solution was to set these bad tags to 0 using these three
instructions (YMM8 stores the length values):

vpbroadcastq ymm4, qword ptr [forty]
vpcmpgtq ymm12, ymm4, ymm8 ; y12 = 40 > l(t) ?

; ..

; (instructions to calc t = code/2l(t) in y10)

Figure 7 illustrates the contents of YMM8 and YMM9 (only
4 out of 8 lanes are shown) for alphabet size m = 4 and 4
tags t1:t4 occupying the first four intervals, respectively.

To implement this method, YMM5 stores 8 copies of
constant 1 in dword lanes for incrementing k in YMM8.
The results of comparison t* > Ck are placed in YMM11,
which is used as a mask to select the lanes of YMM9 to be
incremented. The instruction vpand ymm12,ymm5,ymm11
loads YMM12 with 1 in lanes where K will be incremented
(match is not yet found), or with 0 where matches have
been found. Once these matches are found, these K’s are
never incremented again as the comparison t* > Ck will
remain false. Code Listing 6 provides an AVX sequence of
instructions for vector sequential decoding. The parameter
m is located at RSP + 56 on stack.

Code Listing 6. AVX Sequential Search (SPFPAC)
 ; calc 8 scaled tags in y0 (y1 = alpha, y2 = L)
vsubps ymm0, ymm10, ymm1 ; y0 = t - alpha
vdivps ymm0, ymm0, ymm2 ; y0 = [t1* ... t8*]

vpxor ymm8,ymm8,ymm8 ; index k to get Ck for cmp
vpxor ymm9,ymm9,ymm9 ; K = decoded index

mov eax, dword ptr [rsp+56] ; eax = #reps of search
dec eax ; only m-1 reps are
needed

decode_symbol_avx:
vpaddd ymm8,ymm8,ymm5 ; inc k (to get Ck)
vpcmpeqd ymm7,ymm7,ymm7 ; set gather mask
vgatherdps ymm3, [rcx + ymm8*4], ymm7 ; y3 = Ck

vcmpgtps ymm11,ymm0,ymm3 ; t* > Ck ?
vpand ymm12,ymm5,ymm11 ; mask for addition to K
vpaddd ymm9,ymm9,ymm12 ; add 1 to K if t* > Ck

dec eax
test eax,eax
jnz decode_symbol_avx

 ; end avx sequential search; ret K-1 in y9

The third symbol decoding technique is based on the AVX
binary interval search; the implementation is virtually
identical to the one used for the floor(log2) calculation,
where intervals were formed from powers of two in a
lookup table; indices for access into the table ranged up to
31 for SPFPAC and up to 40 for DPFPAC. For the AVX
binary interval search used by decoder, we search the m
intervals formed by the CDF endpoints. The search

executes floor(log2(m)) times for each group of symbols
encountered (8 for SPFPAC, 4 for DPFPAC). Index High is
initialized to m. Both floor(log2(m)) and m are parameters
of the decoder function and are passed in by C++.

Decoder Error Detection (DPFPAC) Simulated File
I/O
If FP length L is under 1e-12, the calculation of t =
code/2l(t) will be erroneous (t > 1 was observed in the
debugger in certain cases); this follows since High was
initialized to 40 in the encoder log2 calculation, the return
value Low becomes 40 at termination, and the likely
incorrect value of l(t) = 42 (after addition by 2) is stored in
lengths. To prevent the decoders from producing
unexpected results (e.g., infinite loops, program crashes,
and out-of-range symbols were observed), a solution was
to set these bad tags to 0 using these three instructions
(YMM8 stores the length values):
vpbroadcastq ymm4, qword ptr [forty]
vpcmpgtq ymm12, ymm4, ymm8 ; y12 = 40 > l(t) ?

; ..

; (instructions to calc t = code/2l(t) in y10)

; ..

vpand ymm10,ymm10,ymm12 ; set bad tags to 0

Bad scaled tags are then determined as t* ≤ 0 and all
symbol decoding procedures will decode each symbol in its
bad block as the most frequent symbol (lowest index) s1,
which is the whitespace symbol (32)10 in OTF. This causes
no concern since these erroneous characters will be
overwritten in the output buffer by their correct ASCII
codes. The method uses the same macro
m_copybadblock used by encoder.

Oxygen Transport File (4HHB) Statistics
This text file (OTF) uses m = 53 ASCII symbols. After
sorting by non-increasing frequency of occurrence, the
alphabet and its statistical summary appear in Table 1.

Table 1. Statistical Summary OTF

Volume 2 | Issue 3 | 12Eng OA, 2024

; ..

vpand ymm10,ymm10,ymm12 ; set bad tags to 0

Bad scaled tags are then determined as t* ≤ 0 and all symbol
decoding procedures will decode each symbol in its bad block
as the most frequent symbol (lowest index) s1, which is the
whitespace symbol (32)10 in OTF. This causes no concern since
these erroneous characters will be overwritten in the output
buffer by their correct ASCII codes. The method uses the same
macro m_copybadblock used by encoder.

Oxygen Transport File (4HHB) Statistics

This text file (OTF) uses m = 53 ASCII symbols. After sorting by
non-increasing frequency of occurrence, the alphabet and its
statistical summary appear in Table 1.

Table 1: Statistical Summary OTF

The five columns identify the sorted alphabet indices 1:53,
decimal ASCII codes, ASCII symbols (nothing appears for
whitespace and newline), relative frequencies, and associated
CDF values. Except for whitespace, frequencies above
5e-5 were rounded to 4 decimal places, those below were
estimated as 1e-5. F1 is determined so that the cumulative
frequency sum is 1.00000, as indicated by C53.

The encoder and decoder need to convert between ASCII codes
and sorted alphabet indices. The decoder uses a mapping D
that converts column 1 (1:53) into column 2 (decimal ASCII);
encoder uses a mapping E, the inverse of D, which maps ASCII
codes into 1:53. These two mappings are determined during
a preliminary C++ file scan and are passed as arguments, as
seen in these two function headers for DPFPAC (decode2 uses
the AVX binary interval search):

extern "C" void encode(uint8_t* ibuff, int nquads,
double* F, double* C, uint8_t* lgths, uint64_t* codes,
int32_t* E);

extern "C" void decode2(double* C, int nquads,
uint8_t* lgths, uint64_t* codes, uint8_t* obuff,
double* F, int32_t* D, int m, int log2m);

Parameters E and D are located on stack at RSP + 56 and were
loaded into R14. After the encoder loads 4 ASCII symbols into
the dword lanes of XMM6, the instruction vpgatherdd xmm4,
[r14 + xmm6*4], xmm7 converts ASCII to sorted alphabet
indices and loads them into XMM4, which is used to index and
gather C and F. The decoder uses a similar gather instruction
to convert decoded indices back into ASCII, so they can be
stored correctly in obuff.

DPFP numbers are accurate up to 16 decimal places, but
after calculations, rounding errors reduce reliability. Allowing
interval lengths to not drop below (1e-12)10 gave a reasonable
factor of safety from precision errors occurring and, according
to the midpoint method, bad tags would require over 40 bits
as floor(log2(1e-12)) = 39. The OTF consists of N = 473687
total ASCII characters, giving 94737 blocks of size 5 (2 extra
whitespace characters at the end of file were ignored to give
an even number). Examination of OTF using C++ shows that
exactly 254 (fewer than 3ppt) of these blocks have L < 1e-12
and were overwritten by error detection procedure. These
bad blocks occur on lines numbered 1 to 881. The total
file has 5848 lines, the largest fraction of which consists of
whitespaces and numerical data—these blocks all have L >
1e-12, none of which is overwritten. A sample of bad blocks
with line numbers and lengths is provided in Table 2

Table 2: Sample of Bad Blocks (L < 1e-12) from OTF

Contiguous File I/O

This introductory discussion primarily applies to encoding
(phase 3) where we must pack the contents of YMM1 and
YMM0 (storing lengths and codes, respectively) into the
destination compressed file. Decoding (phase 1) involves
reading this file and loading 256-bit registers with lengths and
codes, analogously. For simulated file I/O, the net result was
to transfer individual 5- or 6-bit length values into an array
of 8-bit integers, one length value per integer; an unpacked
arrangement with 2 or 3 bits wasted per byte resulted. A
similar unpacked arrangement resulted by transferring the
codes into an array of 32- or 64-bit integers. These simulated

 1 32 0.48055 0.48055
 2 46 . 0.05180 0.53235
 3 49 1 0.05140 0.58375
 4 48 0 0.04420 0.62795
 5 50 2 0.03420 0.66215
 6 51 3 0.02990 0.69205
 7 52 4 0.02880 0.72085
 8 53 5 0.02410 0.74495
 9 65 A 0.02240 0.76735
10 54 6 0.02150 0.78885
11 55 7 0.02030 0.80915
12 56 8 0.02000 0.82915
13 57 9 0.02000 0.84915
14 67 C 0.01740 0.86655
15 79 O 0.01660 0.88315
16 84 T 0.01430 0.89745
17 77 M 0.01310 0.91055
18 10 0.01230 0.92285
19 69 E 0.01010 0.93295
20 82 R 0.00740 0.94035
21 76 L 0.00720 0.94755
22 78 N 0.00630 0.95385
23 72 H 0.00570 0.95955
24 83 S 0.00560 0.96515
25 45 - 0.00530 0.97045
26 68 D 0.00510 0.97555
27 66 B 0.00450 0.98005

28 71 G 0.00340 0.98345
29 73 I 0.00280 0.98625
30 85 U 0.00270 0.98895
31 80 P 0.00260 0.99155
32 89 Y 0.00230 0.99385
33 75 K 0.00160 0.99545
34 86 V 0.00150 0.99695
35 70 F 0.00060 0.99755
36 58 : 0.00040 0.99795
37 90 Z 0.00030 0.99825
38 40 (0.00020 0.99845
39 41) 0.00020 0.99865
40 44 , 0.00020 0.99885
41 61 = 0.00020 0.99905
42 81 Q 0.00020 0.99925
43 88 X 0.00020 0.99945
44 42 * 0.00010 0.99955
45 59 ; 0.00010 0.99965
46 74 J 0.00010 0.99975
47 87 W 0.00010 0.99985
48 95 _ 0.00010 0.99995
49 37 % 0.00001 0.99996
50 43 + 0.00001 0.99997
51 47 / 0.00001 0.99998
52 60 < 0.00001 0.99999
53 62 > 0.00001 1.00000

1 OXYGE 2.6222e-13
2 XYHAE 5.93201e-13
6 WRONG 2.63123e-13
7 WRONG 2.63123e-13
11 MOL_I 4.38399e-13
18 B, D; 2.20572e-13
19 OBIN, 2.63542e-13
21 MOL_I 4.38399e-13
.
.
131 (%) : 7.6888e-17
133 RKING 7.10116e-13
135 %) : 1.84743e-13
146 (A**2 1.53216e-15
147 , A** 2.15286e-14
149 (A** 2.15286e-14
150 *2) : 1.31478e-13
151 **2) 3.28696e-14
152 A**2) 1.53216e-15

529 FINED 5.45182e-13
529 80 +/ 4.24806e-14
530 +/- 3 7.61528e-15
546 D, WI 1.37245e-13
549 MBER; 4.40592e-13
549 NTIFI 4.23783e-13
550 SSEQ= 1.26694e-14
550 SEQUE 3.08478e-13
.
.
826 HELIX 2.32122e-13
831 HELIX 2.32122e-13
836 HELIX 2.32122e-13
841 HELIX 2.32122e-13
846 HELIX 2.32122e-13
851 HELIX 2.32122e-13
875 RIGX1 7.24205e-13
876 ORIGX 2.33887e-13
881 MTRIX 7.76296e-13

Volume 2 | Issue 3 | 13Eng OA, 2024

file I/O techniques boasted parallel data transfer but did not
result in a contiguous representation. This problem could be
circumvented if the AVX-256 data gather instructions (and
data scatter, only present in AVX-512) involved bit rather than
byte granularity. Then data could be transferred in parallel to
and from memory at specified bit-indexed locations and a
packed arrangement could be feasible.

So, it appears, as usual, we are forced to use byte-addressable
memory access and bit masking; the method provided in the
sequel is an adaptation of one found in Hyde [7], wherein a bit
string contained in a general-purpose register is inserted via
Boolean operations into another one of the same bit width.
Although it is mentioned as an exercise left to the reader,
the method in [7] does not account for the case when the
bit string to be inserted (or extracted) crosses the boundary
of the destination (or source) operand (in the sequel, these
destinations will be 64-bit array elements); when accounting
for said caveat shortly, it appears that the logic involved in
performing the task of parallel insertions of multiple bit strings
into a destination array is either too complex or not feasible at
all, and so the process is done one by one.

In the contiguous file I/O model, the compressed file (referred
to by its C++ identifier as cfile) is declared as an array of 64-
bit unsigned integers (which translate into qwords in x86) and
is pictured as being divided into two sections: lengths at LO
memory followed by codes at HO memory. Two pointers (RDI
and R9) and bit indices (R10 and R11) are used to locate these
sections. RDI points to the LO byte of the qword containing the
bit location where the next length is to be inserted; R9 points
to the LO byte of the qword containing the code, similarly.
RDI and R9 are multiples of 8 bytes, the space requirement
of multiple qwords. R10 and R11 are the actual insertion
locations (taken at the LO bit of the bit string) and belong to
the range 0:63 of 64 total bits. RDI is named for the encoding
phase, where the array elements of cfile are destinations
for writing the contents of YMM1 and YMM0. The register RDI
is changed to RSI for decoding where cfile is a source (its
contents are read and transferred into 256-bit registers). R9 is
used to locate code values for both encoding and decoding;
using integer division by 64, it can be initialized with a byte
offset of 8 * [(6 * nblocks)/64 + 1]. For example, 10 blocks
require 60 bits of length storage, so the offset is 8 bytes; one
extra block would make the offset 16 bytes. Figure 8 illustrates
cfile, its pointers, and two inserted bit strings.

Figure 8: Contiguous Compressed File Representation

Registers RAX and RBX store zero-extended and right-justified
length and code values to be inserted at the indicated offsets.
Figure 8 shows the register contents before left shifting and
the actual insertion (OR operation).

To insert a bit string (length or code) into a qword destination
operand (i.e., a cfile array element), we must first see if the
string fits without crossing the qword boundary separating
the next HO qword. A 6-bit length will fit without crossing
when R10 ≤ 58; its associated code will fit when length ≤ 64
– R11. The following macro demonstrates how a bit string
(stored in generic register Rsrc, standing for RAX or RBX)
can be inserted at generic bit offset Rpos (standing for R10
or R11), and associated file offset Rfile (RDI or R9), and
assuming our preliminary test indicates it will properly fit.

m_write_fits MACRO Rsrc, Rpos, Rfile, inc_val

LOCAL return
mov ecx, Rpos ; cl = Rpos
shl Rsrc, cl ; shift into position
or qword ptr [Rfile], Rsrc ; insert into file
add Rpos, inc_val ; increment pos
cmp Rpos, 64 ; Rpos = 64?
jne return ; return if not equal
xor Rpos, Rpos ; reset Rpos if src just fits
add Rfile, 8 ; inc to next qword
return:

ENDM

The first step is to left shift the source bit string (Rsrc) so its
LO bit occupies the bit insertion location (Rpos). The next step
is to OR the shifted string into destination operand (pointed to
by Rfile). Finally, we increment Rpos (by 6 for length values,
or by the length itself for codes) and check to see if the source
string has just fit into the destination, which occurs exactly
when its HO bit becomes bit 63—if and only if the incremented
Rpos becomes 64—in which case we reset Rpos to 0 and point
Rfile to the next qword, 8 bytes away.

If the test indicates that the source string will not fit, we parse
Rsrc into two parts: a chopped off HO segment to be inserted
into the next qword (i.e., at Rfile + 8); and a chopped LO
segment that just fits starting at location Rpos in the current
qword (i.e., at Rfile itself). This task is illustrated in Figure 9;
the companion macro follows:

Figure 9: Bit-String Insertion (Qword Boundary Crossed)

as an exercise left to the reader, the method in [8] does not
account for the case when the bit string to be inserted (or
extracted) crosses the boundary of the destination (or
source) operand (in the sequel, these destinations will be
64-bit array elements); when accounting for said caveat
shortly, it appears that the logic involved in performing the
task of parallel insertions of multiple bit strings into a
destination array is either too complex or not feasible at all,
and so the process is done one by one.

In the contiguous file I/O model, the compressed file
(referred to by its C++ identifier as cfile) is declared as an
array of 64-bit unsigned integers (which translate into
qwords in x86) and is pictured as being divided into two
sections: lengths at LO memory followed by codes at HO
memory. Two pointers (RDI and R9) and bit indices (R10
and R11) are used to locate these sections. RDI points to
the LO byte of the qword containing the bit location where
the next length is to be inserted; R9 points to the LO byte
of the qword containing the code, similarly. RDI and R9
are multiples of 8 bytes, the space requirement of multiple
qwords. R10 and R11 are the actual insertion locations
(taken at the LO bit of the bit string) and belong to the
range 0:63 of 64 total bits. RDI is named for the encoding
phase, where the array elements of cfile are destinations
for writing the contents of YMM1 and YMM0. The register
RDI is changed to RSI for decoding where cfile is a
source (its contents are read and transferred into 256-bit
registers). R9 is used to locate code values for both
encoding and decoding; using integer division by 64, it can
be initialized with a byte offset of 8 * [(6 * nblocks)/64 + 1].
For example, 10 blocks require 60 bits of length storage,
so the offset is 8 bytes; one extra block would make the
offset 16 bytes. Figure 8 illustrates cfile, its pointers, and
two inserted bit strings.

Figure 8. Contiguous Compressed File Representation

Registers RAX and RBX store zero-extended and right-
justified length and code values to be inserted at the
indicated offsets. Figure 8 shows the register contents
before left shifting and the actual insertion (OR operation).

To insert a bit string (length or code) into a qword
destination operand (i.e., a cfile array element), we must
first see if the string fits without crossing the qword
boundary separating the next HO qword. A 6-bit length will
fit without crossing when R10 ≤ 58; its associated code will
fit when length ≤ 64 – R11. The following macro

demonstrates how a bit string (stored in generic register
Rsrc, standing for RAX or RBX) can be inserted at generic
bit offset Rpos (standing for R10 or R11), and associated
file offset Rfile (RDI or R9), and assuming our preliminary
test indicates it will properly fit.
m_write_fits MACRO Rsrc, Rpos, Rfile, inc_val

LOCAL return
mov ecx, Rpos ; cl = Rpos
shl Rsrc, cl ; shift into position
or qword ptr [Rfile], Rsrc ; insert into file
add Rpos, inc_val ; increment pos
cmp Rpos, 64 ; Rpos = 64?
jne return ; return if not equal
xor Rpos, Rpos ; reset Rpos if src just fits
add Rfile, 8 ; inc to next qword
return:

ENDM

The first step is to left shift the source bit string (Rsrc) so
its LO bit occupies the bit insertion location (Rpos). The
next step is to OR the shifted string into destination
operand (pointed to by Rfile). Finally, we increment Rpos
(by 6 for length values, or by the length itself for codes)
and check to see if the source string has just fit into the
destination, which occurs exactly when its HO bit becomes
bit 63—if and only if the incremented Rpos becomes 64—in
which case we reset Rpos to 0 and point Rfile to the next
qword, 8 bytes away.

If the test indicates that the source string will not fit, we
parse Rsrc into two parts: a chopped off HO segment to be
inserted into the next qword (i.e., at Rfile + 8); and a
chopped LO segment that just fits starting at location Rpos
in the current qword (i.e., at Rfile itself). This task is
illustrated in Figure 9; the companion macro follows:

Figure 9. Bit-String Insertion (Qword Boundary
Crossed)

m_write_nofit MACRO Rsrc, Rpos, Rfile, new_pos

xor edx, edx ; clear rdx
mov ecx, Rpos ; cl = Rpos
shld rdx, Rsrc, cl ; rdx = chopped HO segment
shl Rsrc, cl ; Rsrc = chopped LO segment
or qword ptr [Rfile], Rsrc ; insert LO segment
add Rfile, 8 ; inc to next qword
mov qword ptr [Rfile], rdx ; insert HO segment
mov Rpos, new_pos ; set new bit position

ENDM

as an exercise left to the reader, the method in [8] does not
account for the case when the bit string to be inserted (or
extracted) crosses the boundary of the destination (or
source) operand (in the sequel, these destinations will be
64-bit array elements); when accounting for said caveat
shortly, it appears that the logic involved in performing the
task of parallel insertions of multiple bit strings into a
destination array is either too complex or not feasible at all,
and so the process is done one by one.

In the contiguous file I/O model, the compressed file
(referred to by its C++ identifier as cfile) is declared as an
array of 64-bit unsigned integers (which translate into
qwords in x86) and is pictured as being divided into two
sections: lengths at LO memory followed by codes at HO
memory. Two pointers (RDI and R9) and bit indices (R10
and R11) are used to locate these sections. RDI points to
the LO byte of the qword containing the bit location where
the next length is to be inserted; R9 points to the LO byte
of the qword containing the code, similarly. RDI and R9
are multiples of 8 bytes, the space requirement of multiple
qwords. R10 and R11 are the actual insertion locations
(taken at the LO bit of the bit string) and belong to the
range 0:63 of 64 total bits. RDI is named for the encoding
phase, where the array elements of cfile are destinations
for writing the contents of YMM1 and YMM0. The register
RDI is changed to RSI for decoding where cfile is a
source (its contents are read and transferred into 256-bit
registers). R9 is used to locate code values for both
encoding and decoding; using integer division by 64, it can
be initialized with a byte offset of 8 * [(6 * nblocks)/64 + 1].
For example, 10 blocks require 60 bits of length storage,
so the offset is 8 bytes; one extra block would make the
offset 16 bytes. Figure 8 illustrates cfile, its pointers, and
two inserted bit strings.

Figure 8. Contiguous Compressed File Representation

Registers RAX and RBX store zero-extended and right-
justified length and code values to be inserted at the
indicated offsets. Figure 8 shows the register contents
before left shifting and the actual insertion (OR operation).

To insert a bit string (length or code) into a qword
destination operand (i.e., a cfile array element), we must
first see if the string fits without crossing the qword
boundary separating the next HO qword. A 6-bit length will
fit without crossing when R10 ≤ 58; its associated code will
fit when length ≤ 64 – R11. The following macro

demonstrates how a bit string (stored in generic register
Rsrc, standing for RAX or RBX) can be inserted at generic
bit offset Rpos (standing for R10 or R11), and associated
file offset Rfile (RDI or R9), and assuming our preliminary
test indicates it will properly fit.
m_write_fits MACRO Rsrc, Rpos, Rfile, inc_val

LOCAL return
mov ecx, Rpos ; cl = Rpos
shl Rsrc, cl ; shift into position
or qword ptr [Rfile], Rsrc ; insert into file
add Rpos, inc_val ; increment pos
cmp Rpos, 64 ; Rpos = 64?
jne return ; return if not equal
xor Rpos, Rpos ; reset Rpos if src just fits
add Rfile, 8 ; inc to next qword
return:

ENDM

The first step is to left shift the source bit string (Rsrc) so
its LO bit occupies the bit insertion location (Rpos). The
next step is to OR the shifted string into destination
operand (pointed to by Rfile). Finally, we increment Rpos
(by 6 for length values, or by the length itself for codes)
and check to see if the source string has just fit into the
destination, which occurs exactly when its HO bit becomes
bit 63—if and only if the incremented Rpos becomes 64—in
which case we reset Rpos to 0 and point Rfile to the next
qword, 8 bytes away.

If the test indicates that the source string will not fit, we
parse Rsrc into two parts: a chopped off HO segment to be
inserted into the next qword (i.e., at Rfile + 8); and a
chopped LO segment that just fits starting at location Rpos
in the current qword (i.e., at Rfile itself). This task is
illustrated in Figure 9; the companion macro follows:

Figure 9. Bit-String Insertion (Qword Boundary
Crossed)

m_write_nofit MACRO Rsrc, Rpos, Rfile, new_pos

xor edx, edx ; clear rdx
mov ecx, Rpos ; cl = Rpos
shld rdx, Rsrc, cl ; rdx = chopped HO segment
shl Rsrc, cl ; Rsrc = chopped LO segment
or qword ptr [Rfile], Rsrc ; insert LO segment
add Rfile, 8 ; inc to next qword
mov qword ptr [Rfile], rdx ; insert HO segment
mov Rpos, new_pos ; set new bit position

ENDM

Volume 2 | Issue 3 | 14Eng OA, 2024

m_write_nofit MACRO Rsrc, Rpos, Rfile, new_pos

xor edx, edx ; clear rdx
mov ecx, Rpos ; cl = Rpos
shld rdx, Rsrc, cl ; rdx = chopped HO segment
shl Rsrc, cl ; Rsrc = chopped LO segment
or qword ptr [Rfile], Rsrc ; insert LO segment
add Rfile, 8 ; inc to next qword
mov qword ptr [Rfile], rdx ; insert HO segment
mov Rpos, new_pos ; set new bit position

ENDM

Shift left double (shld) left shifts its destination (RDX) by the
number of bits in the third operand (using CL, the LO byte of
ECX); the bit positions opened up by the shift are filled with
the most significant bits of source operand (Rsrc). In context,
the effect is to shift into RDX the HO segment of the chopped-
off bit string in attempting to fit the entirety starting at location
Rpos. The LO segment of the chopped string resides at the
HO end of Rsrc after the instruction shl Rsrc, cl. These
two segments can now be inserted into qword destinations
at Rfile and Rfile + 8 (using or and mov). The last step is to
update Rpos with new_pos (passed in by parameter).

Encoder Phase 3 (Contiguous File I/O)

Code Listing 7 simulates phase 3 (see SI for the actual DPFPAC
program). To run the program, one needs to insert the macro
definitions m_write_fits and m_write_nofit (omitted to
save space) and call procedure encode_demo from C++. Three
sets of lengths and codes quartet data are provided to build a
suitably large compressed file (cfile was declared arbitrarily
as an array of 8 qwords). The input message (declared as
ibuff, an array of 60 bytes) is contrived and is not encoded
or connected in any way to the lengths and codes arrays.
Rather, ibuff is provided to demonstrate the error handling
procedure. Referring to the macro m_write_lgth_code, a pair
of length and code values is loaded from YMM1 and YMM0
into RAX and RBX. If RAX ≥ 40, RBX is overwritten with 8 bytes
from the input buffer (ibuff is pointed to by RSI, indicating its
role as a source); the HO 3 bytes are then masked out so that
RBX only stores the correct 5 bytes from ibuff. From here, the
appropriate tests are applied to determine if the 6-bit value in
RAX will fit into the lengths section of cfile, and if the code
value in RBX will fit into the codes section. Depending on the
outcomes of these tests, macros m_write_fits and m_write_
nofit are called, accordingly. Procedure encode_demo drives
the entire program; it begins by initializing RSI, RDI, and R9
to the starting addresses of ibuff, cfile (lengths section)
and cfile (codes section); the bit positions R10 and R11
are then initialized to 0. Register RBP is awkwardly used (no
more general-purpose registers are left) to index the lengths
and codes arrays for data transfer into YMM1 and YMM0 (RBP
has no role in DPFPAC and exists only for demonstration); the
same goes for memory operand nreps_encode, which exists
only to count 3 full encoding phases.

Code Listing 7. Compressed File Simulation (Encoder)

.data
seg segment align(32)
lgths qword 13, 14, 14, 15, 40, 9, 10, 11, 8, 9, 10, 45

codes qword 1aaah, 2bbbh, 3ccch, 4dddh,
 9999999999h, 123h, 234h, 412h,
 12h, 123h, 234h, 199999999999h
cfile qword 8 dup(?)
seg ends

nreps_encode dword 3
ibuff byte 1,2,3,4,5,6,7,1,2,3,1,2,3,4,5,6,7,1,2,3
 byte 1,2,3,4,5,6,7,1,2,3,1,2,3,4,5,6,7,1,2,3
 byte 1,2,3,4,5,6,7,1,2,3,1,2,3,4,5,6,7,1,2,3
msk5bytes qword 0ffffffffffh
.code
; cut and paste here:
; m_write_fits MACRO Rsrc, Rpos, Rfile, inc_val
; m_write_nofit MACRO Rsrc, Rpos, Rfile, new_pos

m_write_lgth_code MACRO _01

LOCAL else1, else2, endif_1, endif_2, proceed
vpextrq rax, xmm1, _01 ; rax = lgths[_01]
vpextrq rbx, xmm0, _01 ; rbx = codes[_01]
cmp eax, 40 ; length >= 40 ?
jb proceed ; if not, move along
mov eax, 40 ; change length to 40
mov rbx, qword ptr [rsi] ; load 8 bytes ibuff
and rbx, [msk5bytes] ; keep only LO 5 bytes
proceed: ; move along
add rsi, 5 ; inc ibuff index in any case
mov r15d, eax ; r15 = copy of lgth
cmp r10d, 58 ; posL <= 58 ?
ja else1 ; if not, jump to label else1
m_write_fits rax, r10d, rdi, 6
jmp endif_1
else1: ; lgth crosses the border
mov r14d, r10d ; store posL
sub r14d, 58 ; new posL = old posL - 58
m_write_nofit rax, r10d, rdi, r14d
endif_1:
mov edx, 64
sub edx, r11d ; edx = 64 - posC
cmp r15d, edx ; lgth <= 64 - posC ?
ja else2 ; if not, jump to label else2
m_write_fits rbx, r11d, r9, r15d
jmp endif_2
else2: ; code crosses the border
sub r15d, edx ; new posC = lgth - (64 - posC)
m_write_nofit rbx, r11d, r9, r15d
endif_2:

ENDM

encode_demo PROC

lea rsi, ibuff ; rsi = ibuff index
lea rdi, cfile ; rdi = lgths ptr
lea r9, [cfile+16] ; r9 = codes ptr
mov r10d, 0 ; r10 = lgth bit pos (posL)
mov r11d, 0 ; r11 = code bit pos (posC)
push rbp ; just for demo sake
mov rbp, 0 ; idx lgths and codes

@@:
vmovdqa ymm0, ymmword ptr [codes+rbp]
vmovdqa ymm1, ymmword ptr [lgths+rbp]
m_write_lgth_code 0 ; write lgth[0] and code[0]
m_write_lgth_code 1 ; write lgth[1] and code[1]
vextracti128 xmm0, ymm0, 1 ; shift HO to LO
vextracti128 xmm1, ymm1, 1 ; shift HO to LO
m_write_lgth_code 0 ; write lgth[2] and code[2]
m_write_lgth_code 1 ; write lgth[3] and code[3]
add rbp, 32 ; index next quartet
dec nreps_encode
cmp nreps_encode, 0
jnz @B

Volume 2 | Issue 3 | 15Eng OA, 2024

pop rbp ; restore or corrupt stack
ret
encode_demo ENDP
; hex dump of memory block at address cfile:
; 8d e3 3c 68 a2 2c 48 a2 a0 00 00 00 00 00 00 00
; aa 7a 77 65 e6 bb 9b 01 02 03 04 05 23 69 94 a0
; c4 48 1a 0d 0e 02 04 06 00 00 . .

In this loop, YMM1 and YMM0 are loaded with the next
quartets. Then m_write_lgth_code executes 4 times. The
parameter for this macro is either 0 or 1 to indicate which
qword lane is to be extracted into RAX and RBX. The two HO
lanes cannot be directly accessed so vextracti128 replaces
the two LO qword lanes beforehand. The C++ interface to this
program did not use a display; instead, we can examine the
hex dump (provided in little-endian format) of cfile after the
code listing.

Decoder Phase 1 (Contiguous File I/O)

This phase reverses what the encoder did in its final phase;
the decoder reads cfile and loads the appropriate YMM’s in
preparation for divisions and symbol decoding. Three macros
are used, analogous to the ones for writing. Their headers are:

; m_read_fits MACRO Rdest, Rpos, Rfile, inc_val
; m_read_nofit MACRO Rdest, Rpos, Rfile, msksze
; m_read_lgth_code MACRO _01, x0, x1

The first two macros read the required bit string located in
cfile and load Rdest (RAX or RBX) as the return parameter.
The third macro drives the first two and loads the 128-bit
generic XMM registers (x0 and x1) with RBX and RAX in generic
qword lanes (_01) as 0 or 1. Rpos, Rfile, and inc_val have
the same semantics as their encoder analogs. Of note, both
the fit and nofit macros require a mask to remove yet-to-
be-read segments of lengths or codes that contaminate the
right-justified values in RAX and RBX after shifting the current
bit strings into place; this contamination was absent (as 0’s)
for writing to cfile, which was initialized to all null (ASCII
0) chars, so a mask for writing was avoided. These masks
are accessed via their required sizes (passed in generic
parameters inc_val and msksze) using the following lookup
table containing 41 qwords (masks are accessed one at a time
so 32-byte alignment is not required):

msk qword 0, 1, 3, 7, 0fh, 01fh, 03fh, 07fh, 0ffh,
1ffh, 3ffh, 7ffh, 0fffh, 1fffh, 3fffh, 7fffh, 0ffffh,
1ffffh, 3ffffh, 7ffffh, 0fffffh,
1fffffh, 3fffffh, 7fffffh, 0ffffffh,
1ffffffh, 3ffffffh, 7ffffffh, 0fffffffh,
1fffffffh, 3fffffffh, 7fffffffh, 0ffffffffh,
1ffffffffh, 3ffffffffh, 7ffffffffh, 0fffffffffh,
1fffffffffh, 3fffffffffh, 7fffffffffh, 0ffffffffffh

The decoder uses the following snippet for execution:

m_read_lgth_code 0, xmm3, xmm8 ; y3/8 = [* 0 0 0]
m_read_lgth_code 1, xmm3, xmm8 ; y3/8 = [* * 0 0]
m_read_lgth_code 0, xmm4, xmm6 ; y4/6 = [* 0 0 0]
m_read_lgth_code 1, xmm4, xmm6 ; y4/6 = [* * 0 0]
vinserti128 ymm3, ymm3, xmm4, 1 ; y3 = [c1 c2 c3 c4]
vinserti128 ymm8, ymm8, xmm6, 1 ; y8 = [l1 l2 l3 l4]

YMM3 and YMM8 are the destinations for codes and lengths,

while XMM4 and XMM6 are temporary registers to store
the two HO lanes, which are then inserted into the upper
halves of YMM3 and YMM8 to complete a full quartet. The
DPFP tags can now be computed the same way as in Figure
6 (YMM3 acts as YMM10 in the figure), where 4 qword lanes
are processed rather than 8 dword lanes. Moreover, YMM3
stores a copy of codes—5 ASCII symbols when l(t) ≥ 40—so
the decoder can bypass a costly second access of cfile
during error detection, which occurs after the divisions loop.

Decoder Error Detection (Contiguous File I/O)

Like in simulated file I/O, register YMM12 contains Boolean
values signaling whether lanes in YMM3 correspond to good
codes—l(t) < 40; bad scaled tags were computed as t* ≤ 0,
which caused 5 whitespace symbols to be erroneously written
to obuff. After the divisions loop has completed, we check to
see if any blocks are bad, just like in simulated file I/O. If so,
a section of code overwrites these wrong symbols with the
associated unencoded 5 ASCII symbols stored in YMM3. The
following macro and code snippet show how this is done:

m_writebadblock MACRO xmmBool, xmmcodes, _01

LOCAL nextblock
vpextrq rax, xmmBool, _01 ; extract Bool into rax
test rax, rax ; rax = 0 (bad)?
jnz nextblock ; if not, go to nextblock
mov rax, qword ptr [mskout5] ; load mask
and qword ptr [rdi], rax ; clear out bad 5 bytes
vpextrq rax, xmmcodes, _01 ; load 5 ASCII chars
or qword ptr [rdi], rax ; insert into obuff
nextblock:

add rdi, 5 ; point obuff to next block in any case

ENDM

m_writebadblock xmm12, xmm3, 0 ; write c1 if bad
m_writebadblock xmm12, xmm3, 1 ; write c2 if bad
vextracti128 xmm12,ymm12,1 ; shift down Bools
vextracti128 xmm3,ymm3,1 ; shift down c3 and c4
m_writebadblock xmm12, xmm3, 0 ; write c3 if bad
m_writebadblock xmm12, xmm3, 1 ; write c4 if bad

Performance of SPFPAC and DPFPAC

Time-testing experiments were done on a 12th generation
bargain-brand Intel® Core™ i3-1215u processor having a
codename formerly known as Alder Lake. The base processor
speed is reported by the manufacturer as 1.2GHz. This chip
model is equipped with AVX and AVX2 (128- and 256-bit
registers), but not AVX-512. Said information was verified by
three independent sources: the first being the out-of-box specs
(the processor name, clock speed, and memory features were
provided) of Lenovo® brand computer, purchased at Office
Depot, Inc., for 320 dollars; secondly, the Intel® Processor
Identification Utility 7.1.6, downloadable from company
website; and thirdly, via an x86 AVX CPU identification utility
program courtesy of Kusswurm [6]—see Ch16_02—based on
the CPUID instruction, which retrieves various information
such as the model number, the sizes of internal caches, and
AVX instruction set features. Running this program gave the
following output:

Volume 2 | Issue 3 | 16Eng OA, 2024

GenuineIntel
12th Gen Intel(R) Core(TM) i3-1215U @ 1.20GHz
Cache L1: 48KB Data
Cache L1: 32KB Instruction
Cache L2: 1MB Unified
Cache L3: 10MB Unified

----- CPUID Feature Flags -----
ADX: 1
AVX: 1
AVX2: 1
AVX512F: 0 ; more zero AVX-512 flags follow

The AVX-512 letter-F extension stands for “foundation” [8], and
when this is zero, all other AVX-512 flags will be so, indicating
no capability or absence (these zeros for the extensions FMA,
BMI, etc., are omitted).

Time testing in C++ was performed using both <chrono> and
the function clock() contained in <time.h>; these report
wall time and not CPU time. Both <chrono> and <time.h>
gave the same results to the nearest tenth of a millisecond
and it was decided to incorporate <time.h> in the SI. For all
tests performed, an average time was taken by running 10
consecutive trials and dividing net time by 10. The output
of clock() is in units of milliseconds, so division by macro
constant CLOCKS_PER_SEC = 1000 was used to report answers
in seconds. In typical sequences of 5 or so program runs, the
shortest time observed was repeatably obtained on separate
days, and this fastest time is the one reported without
resorting to standard deviations or confidence intervals.
Sample variation in x86 FPAC times was on the order of a few
tenths of a millisecond (an exception being for the slower one-
by-one sequential decoder applied to the larger alphabet (m =
53), which showed variation of nearly 10ms); Huffman coding
times (described in Experiment 4) showed variation of about
5ms.

Experiment 1. Log2 Calculation SPFP (x87 versus AVX-256)

To test Code Listing 2 (x87 log2) against Listing 4 (AVX log2), an
array of 33 SPFP L-values x, x + (1e-6)10, and x – (1e-6)10 where x
= 1/2k (k = 8:18) was created; the value of 1/x coincides with a
power of two, so the binary interval search operates at or near
the endpoints of its lookup table. This array was duplicated
7544 times to serve as the inputs array (of 31119 octets)
to the two x86 procedures; the total number of logs nearly
matches the number (125) calculated in a shortly described
SPFPAC experiment. Both methods were tested without error,
as compared to the C++ value of abs((int) log2(L))—this
one-by-one time is reported as well:

cpp time: 0.014 (248952 truncated logs, one by one)
x87 time: 0.0084
avx time: 0.0012

Experiment 2. SPFPAC Encoder and Decoder Performance

An alphabet of size m = 12 (letters a:l) was chosen; all 125 =
248832 blocks of size 5 were concatenated into one message
(1.24MB), which forms 31104 octets, each consisting of 40
symbols to be processed in one encoding or decoding phase.

Since all letters are equally likely, an equiprobable distribution
results, where F = 1/12 for each symbol giving H(S) = log2(12)
= 3.58. Adding 1.4 gives 4.98 as an upper bound for <l(s)>. For
each block, L = (1/12)5, which requires 5 + (2 + floor(log2(L-1)))
= 24 bits. So SPFPAC has an efficiency of 24/5 = 4.80 ≤ 4.98
bits per symbol for this message. AVX log2 encoder was tested
alongside three decoders (no errors resulted, inferred by
comparing ibuff to obuff, symbol by symbol).

Time testing results for simulated file I/O follow:

encode time: 0.0016 AVX log2
decode time: 0.0054 one-by-one sequential search
decode time: 0.0026 AVX sequential search
decode time: 0.0066 AVX binary interval search

As one might expect, the AVX sequential search decoder is the
fastest; it runs 8 independent searches concurrently, where
each goes the distance of 11 repetitions. The AVX binary
interval search is the slowest due to the overhead of, albeit in
only floor(log2(12)) = 3 repetitions, a palpable accumulation
of Boolean operations; but this seems unavoidable, where
for m = 53 (OTF), only 2 more repetitions are needed, and the
sequential methods slow down considerably.

Experimenting with SPFPAC shows that decoding errors
manifest when L drops below (1e-6)10. Using 1e-6 (21 bits) or
even 1e-7 (25 bits) as a cutoff to encoding a block of size 5 does
not guarantee an upper bound of 1.4 bits above the entropy
(40 bits need to be transmitted). Although one can reduce
the block size, this deleteriously impacts the upper bound.
Then SPFPAC appears to have limited use with an exception
for small alphabets and messages not containing infrequent
symbols occurring in close proximity.

Experiment 3. DPFPAC Performance (OTF)

OTF is a 0.474MB (473687 ASCII characters) text file and
was tested using two encoders (x87 log2 and AVX log2) and
two decoders (one-by-one sequential search and AVX binary
interval search). No errors resulted. This file was compressed
to 4.87 bits per symbol (H(S) = 3.37). This efficiency was drawn
by a C++ program that compiles data such as a list of the bad
blocks and the entropy. During a traversal of the blocks, C++
determines DPFP interval length (L) and accumulates the bit
value 2 + floor(log2(L-1)) (if < 40), or just adds 40 to simulate
error detection, otherwise. The total accumulation is 1741453
bits; division by the number of blocks of size 5 (94737 rounded)
gives an average bit per block count of 18.38. Adding 6 to
account for code length storage gives 24.38 bits per block, or
4.87 per symbol.

Time testing results for simulated file I/O follow:

encode time: 0.0023 x87 log2
encode time: 0.0010 AVX log2
decode time: 0.0058 AVX binary interval search
decode time: 0.07 one-by-one sequential search

Time testing results for contiguous file I/O follow:

Volume 2 | Issue 3 | 17Eng OA, 2024

encode time: 0.0018 AVX log2
decode time: 0.0070 AVX binary interval search
decode time: 0.07 one-by-one sequential search

Assuming simulated file I/O times can represent a baseline or
gauge, the penalty in constructing the contiguous file is much
more severe for encoding (nearly a factor of 2), where the
burden of symbol decoding and its load of DPFP comparisons
is absent. The difference in the two times (0.0010 versus
0.0018) is about 1ms, slightly less than the difference in the two
binary search decoder times (0.0058 versus 0.0070), which is
merely several percentage points of difference. No significant
difference was observed between the two sequential search
times (both at 0.07s, but with much higher variation between
trials), although as mentioned, a detailed statistical study was
not performed.

Experiment 4: Time-Testing FPAC against Huffman Coding

When compared to conventional AC methods, raising a
lower bound by a full bit above the entropy is a substantial
compromise of efficiency. If an improvement in performance
is not gained, one could deem vectorized FPAC as having
little value, other than educational. Informal testing against
unoptimized C++ implementations of integer AC, very similar
to those found in [1,5], shows over two orders of magnitude
of improvement. A better test appears to be against Huffman
coding, known to strongly outperform integer AC under similar
input conditions, non-adaptive in this case.

To perform this test, a commercially available [9] C++
implementation of Huffman coding was run on the current
Alder Lake processor. In addition to the actual compression
routine, the program comes with tree and heap ADT interfaces,
which were combined via cutting and pasting from the the
GITHUB® repository into one (.cpp) file. Much unnecessary
safeguarding (e.g., testing for null pointers) was eliminated
in route to compiling the final program (available in SI). In
comparison to FPAC, glaringly poor times were initially noticed,
which was attributed to inappropriate usage, in context, of
dynamic memory; C++ function realloc is used by [9] to resize
the compressed buffer and the recovered message with each
extra byte of memory required (the former during encoding,
the latter during decoding). This led to an abysmal drop in the
expected performance (e.g., OTF was encoded and decoded
in about a half second). Usage of realloc was omitted in favor
of a single dynamic allocation (via malloc), identical with the
ones used for cfile and obuff in FPAC. The following snippet
shows the modification (260 accounts for the size, in bytes, of
a shortly described compressed file header—note that more
memory than required is allocated for the compressed file):

uint8_t* cfile = (uint8_t*)malloc(N + 260);

// the encoder then runs with no dynamic reallocation

uint8_t* obuff = (uint8_t*) malloc(N);

// the decoder then runs with no dynamic reallocation

The remaining C++ program is still unoptimized; in particular,
the bit I/O interface uses two functions (bit_set and bit_

get), which set up stack frames and use masking operations
in a bit-by-bit manner. Given that FPAC processes entire bit
strings, each requiring one or two masking operations, an
advantage to FPAC is gained. Adjusting Huffman encoder to
process bit strings was not done in this study, but could be a
next direction.

Like in FPAC, Huffman encoding requires a preliminary file
scan to determine the frequencies of each symbol. They are
scaled (see [9] for details) and placed in a 260-byte file header
for the compressed file (the input message size, in bytes,
takes up the first 4 bytes); the encoding clock is turned on
after this has been done to make a fair comparison to FPAC.
The encoder then builds a Huffman tree using a priority queue
(implemented as a heap array) in order m × log2(m) many
steps. After the tree is built, a random-access table storing the
Huffman symbol codes is built. The encoder now scans each
symbol in the input buffer, looks up its code, and writes it, bit
by bit, to the compressed file. Upon completion, the clock is
turned off and the encoding time reported.

Decoding begins by reading the compressed file header and
building the array of frequencies (no header was used for
FPAC, the model is simply made available to the encoder
and decoder); to compare to FPAC, the decoding clock is
subsequently turned on. The decoder then rebuilds the same
Huffman tree used to compress the data. After this, it reads
the compressed file, bit by bit. Starting at the root, the tree is
traversed according to the encountered bit sequence (0 left,
1 right) until a leaf node is encountered, which contains the
ASCII code for the next symbol to be written to the output
buffer. After writing the symbol, we reposition ourselves at the
root and repeat the process. Upon completion, the clock is
turned off and the decoding time reported.

Huffman coding was used to test the two messages from
experiments 2 and 3. About 5ms variation in these times
was observed, the best of which is reported. For the 1.24MB
message of 125 blocks of size 5 (alphabet size 12):

encode time:0.055 decode time:0.042

The Huffman encoder compresses this message from 1.24MB
down to 0.571MB, or 3.68 bits per symbol (as compared to
4.80 for SPFPAC and H(S) = 3.58). Looking back, one sees that
SPFPAC is several times faster. But the alphabet size is small
and FPAC decoders are not yet substantially hindered.

For OTF (0.474MB, size 53 alphabet):

encode time: 0.025 decode time: 0.017

OTF is compressed by Huffman down to 0.204MB (or 3.44 bits
per symbol, as compared to 4.87 for DPFPAC and H(S) = 3.37).
For this larger alphabet, the FPAC decoder (AVX binary search,
contiguous file I/O) only outperforms Huffman’s by around a
factor of 2. These results are not surprising since the FPAC
decoders are strongly affected by alphabet size, whereas
the Huffman decoder is relatively insensitive. Optimizations
of Huffman coding (e.g., advanced bit I/O, perhaps via

Volume 2 | Issue 3 | 18Eng OA, 2024

an x86 interface) should lead to a substantial increase in
performance. But then again, so would an implementation of
FPAC using AVX-512.

References

1. Johnson Jr, P. D., Harris, G. A., & Hankerson, D. C. (2003).
Introduction to information theory and data compression.
Chapman and Hall/CRC.

2. Sayood, K. (2017). Introduction to data compression. Mor-
gan Kaufmann.

3. Huffman, D. A. (1952). A method for the construction of
minimum-redundancy codes. Proceedings of the IRE,
40(9), 1098-1101.

4. Shannon, C. E. (1948). A mathematical theory of commu-
nication. The Bell system technical journal, 27(3), 379-
423.

5. Witten, I. H., Neal, R. M., & Cleary, J. G. (1987). Arithme-
tic coding for data compression. Communications of the
ACM, 30(6), 520-540.

6. Kusswurm, D. Modern X86 Assembly Language Program-
ming. APRESS®, 2018.

7. Hyde, R. (2021). The Art of 64-Bit Assembly, Volume 1: x86-
64 Machine Organization and Programming. No Starch
Press.

8. Intel® (64). and IA-32 Architectures Software Developer’s
Manual-Volume 1: Basic Architecture.

9. Loudon, Kyle. Mastering Algorithms with C. O’Reilly®,
1999.

10. Mike H. B. Gray. (2024). Implementation of Floating- Point
Arithmetic Coding using x86-64 AVX-256 Assembly Lan-
guage. Authorea Preprints.

Copyright: ©2024 Mike H.B. Gray. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

https://opastpublishers.com

