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Abstract
The article studies and analyzes a hybrid power source system, lithium battery, and fuel cell assisted by flexible photovoltaic 
panels for hybrid electric vehicles (HEVs). The new configuration operates based on optimizing the performance of the dual power 
source to maximize the available energy and operating time. The operational mode simulates specific driving conditions in urban, 
peripheral, and intercity routes under variable driving patterns and traffic conditions. The simulation results show that the new 
configuration increases the hybrid electric vehicle performance, providing higher reliability despite the more complex design. The 
proposed system reduces the external power supply dependence and avoids unexpected sudden stops due to energy exhaustion. 
The new configuration also extends the vehicle driving range depending on driving mode and route conditions. The vehicle driving 
range extension may reach up to 276.3 km. The hybridization of fuel cells with lithium battery and PV panel assistance enhances 
battery management, reducing battery servicing and increasing lifespan. The proposed topology is cheaper than a single fuel cell 
power system by 17.2%, reducing the total cost related to the single battery power system if we consider the battery recharge for 
its entire lifespan. The cost saving is 2.6% for the American market and 14.8% for the European one.

Keywords: Hybrid Electric Vehicle, Dual Power Source, Renewable Energies, Lithium Battery, Fuel Cell, Photovoltaic System, Battery 
Management, Driving Range, Efficiency Improvement, Cost Saving

1. Introduction
Electric vehicles represent an alternative to internal combustion engine cars for reducing fossil fuel dependence, preserving the 
environment, and contributing to carbon emissions reduction [1-4]. Electric vehicles offer various configurations depending on the 
power source, with battery electric vehicles (BEV) representing the most popular option [5-7]. 

An alternative solution for the electric vehicle (FEV) is the fuel-cell electric vehicle (FCEV), which operates under a hydrogen supply 
basis [8-10]. Despite BEV being the most extended version of FEV, fuel-cell electric vehicles are gaining popularity as fuel-cell research 
is improving and car manufacturers are offering new models with competitive characteristics compared to BEVs [11-14].

Battery electric vehicles have been extensively studied and characterized and continue improving to achieve higher performance, longer 
lifespan, and extended driving range, one of the principal users' worries [15-18]. Despite the low implementation of fuel-cell electric 
vehicles in the automobile market, the new advances in fuel-cell research and technology make them an alternative for the future electric 
vehicle since hydrogen is abundant, and the residue, water vapor, does not generate environmental impact [14,19].

Hybrid configuration in electric vehicles is not new since battery electric vehicles assisted by photovoltaic energy, called vehicle 
integrated photovoltaics (VIPV) [20-23], already exists in commercial versions [24-25]. Nevertheless, this hybrid configuration is not 
very popular due to the low energy density of PV panels compared to the battery and the complexity of the hybrid design. Despite these 
drawbacks, researchers continue investigating how to improve the PV-BEV's performance, especially the driving range [26].

Hybrid BEV-FCEV does not exist in commercial versions but is the subject of many research works, currently under the battery/fuel-
cell/ultra-capacitor topology [27-29]. The great advantage of this configuration resides in the benefitting effects of using the battery for 
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high power demand and fuel cells for medium and lower power requirements when a high-rate battery and a fuel cell are combined to 
supply energy for vehicle traction [30].

The hybridization of fuel cells and PV panels is barely studied. A prospective research deals with hybrid photovoltaic fuel cell/battery 
bank system [31-33]. Nevertheless, a system including a built-in electrolyzer is not yet explored, maybe due to the technology complexity 
of installing an electrolyzer connected to the PV panel for in-situ hydrogen generation. Among the problems derived from the use of fuel 
cells in electric vehicles, we can mention the hydrogen storage system, which represents a security problem if operated in pressurized 
tanks [34-38]. We can partially solve this problem by reducing the tank pressure; however, the lower the tank pressure, the shorter the 
FCEV autonomy.

This work proposes hybridizing a PV panel, a battery, and a fuel cell to power electric vehicles. Each power source is responsible for 
supplying energy under specific conditions, so they complement each other to optimize the hybrid system operation. The basis of this 
new idea is assembling the three systems in one, which makes the electric vehicle run under variable driving conditions for optimum 
performance, longer driving range, and higher durability.

2. Electric Vehicle Prototype Topology
Hybrid electric vehicles (HEVs) currently use an internal combustion engine and an electric motor powered by a lithium-ion battery 
[39-40]. Alternative topologies for HEVs consist of a combination of non-pollutant power sources, thus avoiding internal combustion 
engine use [41-45]. The diagram of Figure 1 shows the topology structure for HEVs.

Figure 1: Topology of Hybrid Electric Vehicles

PV and SC account for photovoltaic and super-capacitors. ICE only appears in the battery section because it is the only available 
commercial option. For our study, we selected the rounded option with a circle.

Fuel cell requires a continuous hydrogen supply, which we obtain from a pressurized tank, a hydrogen storage system in metal hydrates, a 
hydrocarbon reformer unit, or an electrolyzer [8, 46-49]. Pressurized hydrogen shows the advantage of a high energy density, depending 
on the tank pressure, and long working time if we operate a large tank size. The gaseous hydrogen storage, however, is subjected to 
severe security precautions due to the explosion risk since the hydrogen is highly dangerous [50-52]. We can store the hydrogen in metal 
hydrates to avoid explosion risk; metal hydrates are not flammable and use less space than pressurized tanks. Metal hydrates have some 
limitations when it comes to releasing hydrogen during the desorption process, and they may not be the most efficient in adsorbing and 
desorbing hydrogen [36, 53-55]. Direct hydrogen generation by electrolysis is a rapid, efficient, and safe method of generating gaseous 
hydrogen, having the problem of needing an in-situ electrolyzer for hydrogen flow generation to make the fuel cell work. This new 
technique contrasts with the up to now used methods to obtain hydrogen from methanol and propane, or ammonia. [56-57].

We select the last option, avoiding the pressurized hydrogen tank risk and the limited efficiency of hydrogen storage in a metal hydrate 
system. Therefore, the topology of the system consists of a lithium battery pack, a proton-exchange membrane fuel cell with an 
electrolyzer, and a vehicle rooftop photovoltaic system. Figure 2 shows the schematic view of the electric vehicle topology.
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Figure 2: Topology of the Hybrid Electric Vehicle Prototype

3. Hybrid System Characteristics
a) Photovoltaic Panel
Electric vehicle motor operates at a voltage between 360 V and 480 V, although recent models elevate the working voltage to 800 V 
[58-61]. Power sources should match operating voltage to avoid energy losses in the voltage conversion process; indeed, the higher the 
voltage conversion rate, the higher the energy losses [62-64].

Since photovoltaic panels currently operate in the range 12V to 48 V for a single panel, matching the electric motor operational voltage 
requires arranging in series PV panels until reaching the specific voltage; in our case, the number of panels in series is:
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Vel and VFV are the electric motor and photovoltaic panel working voltage. 
 
In our case, considering an electric motor of 480 V, and a 48V PV panel: 
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PV panel standard size depends on output maximum power [65-66]. Considering that the 
average power density is constant, around 200 W/m2, for a vehicle with an average 
rooftop size of 2.5 m2, we can install a panel of 500 W [67]. However, since the vehicle 
rooftop is not flat, the most adequate solar panel is a curved one (Figure 3), which 
increases the effective area due to its curvature [68]. 
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Modern curved solar panel has a curving factor of 0.78, on average. Therefore, the 
effective area is: 
 

eff o cS S f       (3) 
In our case: 

22.5 0.78 3.2effS m       (4) 
 
This surface allows a PV panel of 640 W. 
 
If we use the car hood for PV panel installation, the effective surface increases by a factor 
of 1.8, thus allowing a PV panel system of 1152 W. 
 
The energy generated by a PV system depends on the peak sun hours (psh) value, which 
depends on the location and day of the year. Since location depends on latitude and day 
of the year on declination, we should know these two parameters to determine the energy 
generation by the PV system. 
 
A current practice to simplify the calculation is using the typical day of the month, thus 
reducing the whole year to twelve values, one per month [69]. 
 
Figure 4 shows the evolution of the energy generated by the rooftop and hood car 
photovoltaic installation. We consider the average declination value for the entire month. 
 
We observe that photovoltaic energy generation moves in the range 2.6 kWh to 6.6 kWh. 
Considering an average latitude of 30º, and averaging the energy generation for the entire 
year, we obtain 5.2 kWh. 
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Vel and VFV are the electric motor and photovoltaic panel working voltage.

In our case, considering an electric motor of 480 V, and a 48V PV panel:

PV panel standard size depends on output maximum power [65-66]. Considering that the average power density is constant, around 200 
W/m2, for a vehicle with an average rooftop size of 2.5 m2, we can install a panel of 500 W [67]. However, since the vehicle rooftop is 
not flat, the most adequate solar panel is a curved one (Figure 3), which increases the effective area due to its curvature [68].

This surface allows a PV panel of 640 W.

If we use the car hood for PV panel installation, the effective surface increases by a factor of 1.8, thus allowing a PV panel system of 
1152 W.

The energy generated by a PV system depends on the peak sun hours (psh) value, which depends on the location and day of the year. 
Since location depends on latitude and day of the year on declination, we should know these two parameters to determine the energy 
generation by the PV system.

Modern curved solar panel has a curving factor of 0.78, on average. Therefore, the effective area is:

Figure 3: Curve Solar Photovoltaic Panel for Vehicle Rooftop Mounting
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A current practice to simplify the calculation is using the typical day of the month, thus reducing the whole year to twelve values, one 
per month [69].

Figure 4 shows the evolution of the energy generated by the rooftop and hood car photovoltaic installation. We consider the average 
declination value for the entire month.

We observe that photovoltaic energy generation moves in the range 2.6 kWh to 6.6 kWh. Considering an average latitude of 30º, and 
averaging the energy generation for the entire year, we obtain 5.2 kWh.

b) Lithium Battery
Lithium batteries are responsible for vehicle traction at the most demanding power-driving conditions, acceleration and uphill road; 
therefore, we can determine the battery energy capacity from the required maximum dynamic force and average vehicle speed. 
Mathematically:
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Cx is the vehicle aerodynamic coefficient, Af is the front area, and ρair is the air density. 
 
A light-duty vehicle, including all the elements configured in Figure 2, weighs 
approximately 1900 kg [70]. This value differs depending on the manufacturer's model, 
although the weigh reduces by 200 kg if we select the appropriate fuel cell system [71]. 
 
Considering a moderate driving pattern, characterized by an acceleration of 1.75 m/s2 
[72], an aerodynamic coefficient of 0.29 [73], a rolling coefficient of 0.015 [73], and an 
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Figure 4: Evolution of PV Energy Generation

The maximum dynamic force corresponds to the route segment where the vehicle is accelerating and/or climbing an uphill road:

m, a,v and <v> are the mass, acceleration, current and average vehicle speed, κ and μ are the drag and rolling coefficient, and α is the 
road slope.

Expressing the drag coefficient in terms of aerodynamic coefficient:

Cx is the vehicle aerodynamic coefficient, Af is the front area, and ρair is the air density.

A light-duty vehicle, including all the elements configured in Figure 2, weighs approximately 1900 kg [70]. This value differs depending 
on the manufacturer's model, although the weigh reduces by 200 kg if we select the appropriate fuel cell system [71].

Considering a moderate driving pattern, characterized by an acceleration of 1.75 m/s2 [72], an aerodynamic coefficient of 0.29 [73], a 
rolling coefficient of 0.015 [73], and an average road slope of 2% (α=1.1º) [74], for average vehicle speed of 40 km/h in urban route 
[75], we have:

average road slope of 2% (α=1.1º) [74], for average vehicle speed of 40 km/h in urban 
route [75], we have: 
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1
(1900)(1.75) (1.225)(2.5)(0.29)(11.1) (0.015)(1900)(9.81) (1900)(9.81) sin(1.1) 3984
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The required maximum power for a peak vehicle speed of 70 km/h, a current traffic limit 
in many urban areas [76], is: 
 

max max max (3984)(19.45) 77467 77.5P F v W kW       (9) 
 
This power corresponds to 105.3 CV (103.9 HP), which matches many light-duty 
vehicles' engine power of similar characteristics [77]. 
 
Electric vehicle battery supplies the required energy for the electric engine. Nevertheless, 
to obtain the battery power and energy capacity, we should apply energy losses derived 
from transmission system and battery discharge; therefore: 
 

max
bat
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PP
 
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In current conditions, transmission and battery discharge efficiency is 0.855 [78-82] and 
0.95 [83-84]; replacing in Equation 10 and using data from Equation 9: 
 

75 92.3
(0.855)(0.95)batP kW      (11) 

 
If we apply the WLTP protocol [85] to determine the time interval the vehicle submits to 
the maximum power requirement, we obtain a time fraction of 8.494%. Retrieving data 
from the literature, the average daily trip distance is 35 km [86]; therefore, for an average 
speed of 40 km/h, the daily travelling time is: 
 

35 0.875
40opt h      (12) 

 
If we apply the battery fraction use to the daily traveling time, the daily battery time use 
is: 

, (0.875)(0.085) 0.074bat opt h      (13) 
 
The required energy from the battery during this working time is: 
 

, (0.074)(77.5) 5.8bat o kWh       (14) 
 
Equation 14 provides the theoretical minimum battery energy capacity to cover energy 
demand for acceleration and uphill road. 
 
Batteries, however, suffer from capacity modification depending on discharge rate 
according to the expression [87]: 
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The required maximum power for a peak vehicle speed of 70 km/h, a current traffic limit 
in many urban areas [76], is: 
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Cr and Cn represent the real and nominal battery capacity. Coefficients a and b are 
empirical constants depending on battery type; for lithium-ion a=0.9541 and b=0.0148 
[87]. 
 
Battery energy capacity depends on battery capacity and voltage as: 
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Replacing values from our prototype, we have: 
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Combining Equations 15, 16, and 18 and considering the battery voltage, the battery 
capacity results: 
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We must determine the battery discharge rate, XC, to evaluate if the battery stands for the 
maximum required power; applying data from our prototype: 
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A discharge rate of 12.3 is fully compatible with lithium battery performance.  
 

c) Fuel cell 

Fuel cell power for electric vehicles depends on the type of cell used for electricity 
generation; in our case, we use an electrolyzer whose power range is 5 W to 250 kW [88], 
matching the required maximum power for our prototype. An alternative is a methanol 
reformer unit.  
 
According to chemical reactions, the methanol reformer is more efficient since it produces 
three hydrogen moles per methanol unit, while the electrolyzer only produces two 
hydrogen moles per mole of water. Nevertheless, considering a fuel tank, methanol, or 
water of identical volume, the electrolyzer is more efficient since it produces 55.6 moles 
of hydrogen when using the electrolyzer and only 49.5 moles in the case of a methanol-
reformer. 

  
 b

r n opC C a t      (15) 
 
Cr and Cn represent the real and nominal battery capacity. Coefficients a and b are 
empirical constants depending on battery type; for lithium-ion a=0.9541 and b=0.0148 
[87]. 
 
Battery energy capacity depends on battery capacity and voltage as: 
 

bat r batC V        (16) 
 
Because the battery voltage remains constant: 
 

 
 

,bat o
bat b

opa t


        (17) 

 
Replacing values from our prototype, we have: 
 

6.27bat kWh       (18) 
 
Combining Equations 15, 16, and 18 and considering the battery voltage, the battery 
capacity results: 
 

6.271000 13.1
480

bat
r

bat

C Ah
V


       (19) 

 
We must determine the battery discharge rate, XC, to evaluate if the battery stands for the 
maximum required power; applying data from our prototype: 
 

77.51000 12.3
(13.1)(480)

bat
C

r bat

PX
C V

       (20) 

 
A discharge rate of 12.3 is fully compatible with lithium battery performance.  
 

c) Fuel cell 

Fuel cell power for electric vehicles depends on the type of cell used for electricity 
generation; in our case, we use an electrolyzer whose power range is 5 W to 250 kW [88], 
matching the required maximum power for our prototype. An alternative is a methanol 
reformer unit.  
 
According to chemical reactions, the methanol reformer is more efficient since it produces 
three hydrogen moles per methanol unit, while the electrolyzer only produces two 
hydrogen moles per mole of water. Nevertheless, considering a fuel tank, methanol, or 
water of identical volume, the electrolyzer is more efficient since it produces 55.6 moles 
of hydrogen when using the electrolyzer and only 49.5 moles in the case of a methanol-
reformer. 

  
 b

r n opC C a t      (15) 
 
Cr and Cn represent the real and nominal battery capacity. Coefficients a and b are 
empirical constants depending on battery type; for lithium-ion a=0.9541 and b=0.0148 
[87]. 
 
Battery energy capacity depends on battery capacity and voltage as: 
 

bat r batC V        (16) 
 
Because the battery voltage remains constant: 
 

 
 

,bat o
bat b

opa t


        (17) 

 
Replacing values from our prototype, we have: 
 

6.27bat kWh       (18) 
 
Combining Equations 15, 16, and 18 and considering the battery voltage, the battery 
capacity results: 
 

6.271000 13.1
480

bat
r

bat

C Ah
V


       (19) 

 
We must determine the battery discharge rate, XC, to evaluate if the battery stands for the 
maximum required power; applying data from our prototype: 
 

77.51000 12.3
(13.1)(480)

bat
C

r bat

PX
C V

       (20) 

 
A discharge rate of 12.3 is fully compatible with lithium battery performance.  
 

c) Fuel cell 

Fuel cell power for electric vehicles depends on the type of cell used for electricity 
generation; in our case, we use an electrolyzer whose power range is 5 W to 250 kW [88], 
matching the required maximum power for our prototype. An alternative is a methanol 
reformer unit.  
 
According to chemical reactions, the methanol reformer is more efficient since it produces 
three hydrogen moles per methanol unit, while the electrolyzer only produces two 
hydrogen moles per mole of water. Nevertheless, considering a fuel tank, methanol, or 
water of identical volume, the electrolyzer is more efficient since it produces 55.6 moles 
of hydrogen when using the electrolyzer and only 49.5 moles in the case of a methanol-
reformer. 

  
 b

r n opC C a t      (15) 
 
Cr and Cn represent the real and nominal battery capacity. Coefficients a and b are 
empirical constants depending on battery type; for lithium-ion a=0.9541 and b=0.0148 
[87]. 
 
Battery energy capacity depends on battery capacity and voltage as: 
 

bat r batC V        (16) 
 
Because the battery voltage remains constant: 
 

 
 

,bat o
bat b

opa t


        (17) 

 
Replacing values from our prototype, we have: 
 

6.27bat kWh       (18) 
 
Combining Equations 15, 16, and 18 and considering the battery voltage, the battery 
capacity results: 
 

6.271000 13.1
480

bat
r

bat

C Ah
V


       (19) 

 
We must determine the battery discharge rate, XC, to evaluate if the battery stands for the 
maximum required power; applying data from our prototype: 
 

77.51000 12.3
(13.1)(480)

bat
C

r bat

PX
C V

       (20) 

 
A discharge rate of 12.3 is fully compatible with lithium battery performance.  
 

c) Fuel cell 

Fuel cell power for electric vehicles depends on the type of cell used for electricity 
generation; in our case, we use an electrolyzer whose power range is 5 W to 250 kW [88], 
matching the required maximum power for our prototype. An alternative is a methanol 
reformer unit.  
 
According to chemical reactions, the methanol reformer is more efficient since it produces 
three hydrogen moles per methanol unit, while the electrolyzer only produces two 
hydrogen moles per mole of water. Nevertheless, considering a fuel tank, methanol, or 
water of identical volume, the electrolyzer is more efficient since it produces 55.6 moles 
of hydrogen when using the electrolyzer and only 49.5 moles in the case of a methanol-
reformer. 

  
 b

r n opC C a t      (15) 
 
Cr and Cn represent the real and nominal battery capacity. Coefficients a and b are 
empirical constants depending on battery type; for lithium-ion a=0.9541 and b=0.0148 
[87]. 
 
Battery energy capacity depends on battery capacity and voltage as: 
 

bat r batC V        (16) 
 
Because the battery voltage remains constant: 
 

 
 

,bat o
bat b

opa t


        (17) 

 
Replacing values from our prototype, we have: 
 

6.27bat kWh       (18) 
 
Combining Equations 15, 16, and 18 and considering the battery voltage, the battery 
capacity results: 
 

6.271000 13.1
480

bat
r

bat

C Ah
V


       (19) 

 
We must determine the battery discharge rate, XC, to evaluate if the battery stands for the 
maximum required power; applying data from our prototype: 
 

77.51000 12.3
(13.1)(480)

bat
C

r bat

PX
C V

       (20) 

 
A discharge rate of 12.3 is fully compatible with lithium battery performance.  
 

c) Fuel cell 

Fuel cell power for electric vehicles depends on the type of cell used for electricity 
generation; in our case, we use an electrolyzer whose power range is 5 W to 250 kW [88], 
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We must determine the battery discharge rate, XC, to evaluate if the battery stands for the maximum required power; applying data from 
our prototype:

A discharge rate of 12.3 is fully compatible with lithium battery performance. 

c) Fuel Cell
Fuel cell power for electric vehicles depends on the type of cell used for electricity generation; in our case, we use an electrolyzer whose 
power range is 5 W to 250 kW [88], matching the required maximum power for our prototype. An alternative is a methanol reformer unit. 

According to chemical reactions, the methanol reformer is more efficient since it produces three hydrogen moles per methanol unit, 
while the electrolyzer only produces two hydrogen moles per mole of water. Nevertheless, considering a fuel tank, methanol, or water of 
identical volume, the electrolyzer is more efficient since it produces 55.6 moles of hydrogen when using the electrolyzer and only 49.5 
moles in the case of a methanol-reformer.

The gap in hydrogen generation comes from the difference in density between methanol and water, 792 kg/m3 and 1000 kg/m3 [89-90]. 
Considering methanol and water molecular mass [89-90]:

For a conventional light-duty vehicle 40 liters tank:

 				  

We consider hydrogen as an ideal gas, occupying 22.7 liters per mole.

Fuel cell operates when battery is deactivated, and vehicle is not working on energy recovery mode. Previous work studied the required 
energy distribution associated to inertial, drag, rolling and weight forces [91]; the results analysis shows that the vehicle only requires 
20% of the maximum power to stand for drag and rolling forces. Therefore, the fuel cell should have a supplying power of:

The energy supplied by the fuel cell is:

Which corresponds to the following daily hydrogen flow:

eH2 is the hydrogen specific energy.

Replacing data for our prototype:
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For a conventional light-duty vehicle 40 liters tank: 
 

2 2(22.7)(40)(49.5) 44496 ( )H meth
m L H      (23) 

 

2 2
2(22.7)(40)(55.6) 50444 ( )H H O

m L H      (24) 

 
We consider hydrogen as an ideal gas, occupying 22.7 liters per mole. 
 
Fuel cell operates when battery is deactivated, and vehicle is not working on energy 
recovery mode. Previous work studied the required energy distribution associated to 
inertial, drag, rolling and weight forces [91]; the results analysis shows that the vehicle 
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Considering the energy required by the fuel cell and an electrolyzer efficiency of 0.8 [92], 
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Considering the energy required by the fuel cell and an electrolyzer efficiency of 0.8 [92], the necessary power to make the electrolyzer 
work, Pely, is:

On the other hand, retrieving efficiency data from commercial electrolyzer units [93-95], we obtain:

We observe the good agreement between the two calculation methods, within 93.5% accuracy, which proves the quality of the calculated 
value. Comparing data from Equations 29 and 30 with the expected power demand from the fuel cell (Equation 25), a deviation of 8.6% 
occurs, which is attributed to inaccuracy in calculating the fuel cell operating time fraction from WLTP protocol.

4. Energy Balance
For a daily cycle, the proposed prototype requires a total power of 107.8 kW to operate the battery and fuel cell, with a combined energy 
capacity of 20.54 kWh. The solar photovoltaic system generates 5.2 kWh daily. Table 1 resumes the power and energy hybrid system 
characteristics.
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Table 1: Hybrid System Daily Power and Energy Characteristics 

We realize that the photovoltaic system cannot stand for battery or fuel cell power or energy demand; besides, even with a charged 
battery, the combined energy of the PV system and battery cannot match the fuel cell energy demand. Therefore, since we cannot enlarge 
the PV system size or reduce the fuel cell energy requirements, we should increase the battery capacity to compensate for the system 
energy unbalance.

Since the energy imbalance is 3.51 kWh, the new battery capacity should be:

The extended energy capacity is 9.8 kWh. Super-index o accounts for the extended capacity.

Nevertheless, to prevent sudden lack of energy due to cloudy days, the battery extended capacity should cover the PV energy supply, 
thus having a capacity of:

The new extended energy capacity is 15.0 kWh. Super-index FV,o indicated battery extended capacity for cloudy days.

The total energy balance, however, should include the battery and the fuel cell since the PV system is an additional power source not 
currently included in the vehicle powering system; computing these three elements results in 51.4 kWh. Comparing this value with the 
average conventional battery energy capacity over 120 different EV models for the same driving conditions and driving range [96], 
corresponding to a value of 51.6 kWh, we have a 0.4% deviation, which is negligible.

The high agreement between reference and calculated battery energy capacity shows that the design of the hybrid system is coherent 
and compatible with driving conditions.

5. Control System
The system configuration includes a control unit to operate the hybrid system. The control system works on a protocol that selects the 
power source, battery, or fuel cell for vehicle traction as a function of the driving conditions. The control system manages the PV panels 
to charge the battery or supply power to the fuel cell unit and detect the road type, flat, uphill, and downhill terrain, to select the power 
source according to road conditions. Figure 5 shows the flowchart of the control system operation.
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Figure 5 Flowchart of control system operation 
 
 
 

Figure 5: Flowchart of Control System Operation

The control system works this way:
• The solar sensor detects solar radiation and sends the signal to the control unit, which evaluates the intensity of solar radiation
• If the level of solar radiation is less than 250 W/m2, the control unit deactivates the photovoltaic system as an energy source and 
activates the battery to supply energy to the fuel cell (a) and to drive the vehicle (c1)
• If the solar radiation level is higher than 250 W/m2, the control unit activates the photovoltaic system (b) and detects the battery state 
of charge (SOC)
• If the battery is fully charged (SOC=100%), the control unit diverts the photovoltaic energy supply to the fuel cell (b2); otherwise, it 
switches the PV system to charge the battery to the 100% state of charge (b1) at which point the control unit returns to the initial state 
and the PV system supplies power to the fuel cell again (b2)
• In parallel, the control unit detects the driving and road conditions by receiving the vehicle speed and road inclination signal
• The control unit determines the acceleration from the moment the vehicle speed changes, using the classic dynamic equation
• If the acceleration exceeds a configured threshold, currently set at the conservative value (1 m/s2), the control unit interprets that the 
vehicle is accelerating and switches the energy source to the battery (c1), which powers the electric motor to drive the vehicle
• If the acceleration is lower than the configuration threshold or zero, the control unit switches the power supply to the fuel cell (c2), 
which powers the vehicle's electric traction motor
• The control system continuously monitors road conditions (d); when it detects an uphill segment from the road inclination sensor, it 
switches the power supply to the battery (d1), regardless of the driving conditions encountered; otherwise, it maintains the fuel cell as a 
power source (d2) until driving or road conditions change

6. Driving Range Evaluation
Hybrid power system intends to improve energy efficiency, enhance battery and fuel cell management, and optimize the use of PV 
panels. This goal also aims to extend the vehicle driving range as a result of energy use optimization and efficiency increase.

Driving range evaluation depends on the power source use, battery, or fuel cell. Since we design the prototype with the fuel cell as a 
regular power source for low energy demand and the battery as an auxiliary source for high power requirements, we determine the 
driving range from the combined use. To do so, based on data from Table 1 and considering a 45-liter tank to supply water to the 
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ζr accounts for the energy consumption rate, in Wh/km.

The driving range in Equation 33 corresponds to the standard average energy rate. Nevertheless, we used for our hybrid system moderate 
driving conditions, which are not the standard ones for the average energy consumption used in the calculation of conventional battery 
energy capacity, since in moderate driving pattern, the energy consumption is 10% lower, on average, than the standard value [103-104]; 
therefore, the control unit protocol uses a value of 140.2 Wh/km [105], which results in the following driving range:

Applying a more conservative driving pattern extends the driving range by 16.1 km, 17.6% longer driving distance.

Repeating the process with the fuel cell, considering the fuel (water) tank size, the hydrogen flow required to make the fuel cell work, 
the cycle operating time, and the daily travelled distance:

Now, replacing values from our prototype characteristics:
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Applying the reduced energy consumption rate, which corresponds to the operating conditions for the prototype performance simulation:
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We can compare the driving range for the proposed topology with the one for an electric vehicle powered by a lithium battery or a fuel 
cell. Table 2 resumes the results of this comparison.
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Topology Standard energy consumption rate Reduced energy 
consumption rateMaximum Average Minimum

Battery only 317.1 275.7 248.1 324.4
Fuel cell only 640.0 520.0 480.0 528.7
Battery + Fuel cell n.a. n.a. n.a. 728.5

Table 2: Driving Range for Different Electric Vehicle Topology (km)

The average, maximum, and minimum values are obtained from the manufacturer technical sheet for different models of light-duty 
electric vehicles of similar characteristics to our prototype [110-111].

We can evaluate the driving range gain, simulating an electric vehicle operating with two independent power sources, a battery, and a 
fuel cell. The working time of every power source is the same as for our prototype. Since the battery operates for 12% of the total time 
and the fuel cell for the remaining 88%, the simulated electric vehicle driving range is obtained by applying the fraction time to the 
driving range shown in Table 2, thus obtaining (Table 3):
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Energy consumption rate
Optimum Average Minimum

Prototype 728.5 728.5 728.5
Simulated 601.3 490.7 452.2
Gain 127.2 237.8 276.3

Table 3: Driving Range Gain for the Hybrid Prototype (All Values in KM)

We realize that the combined use of battery and fuel cell extends the driving range compared with the battery or the fuel cell option, 
which proves the enhancement of the electric vehicle performance operating under the hybrid power system basis.

7. Economic Analysis
Implementing a dual battery and fuel cell hybrid system as a power source for electric vehicle traction, plus installing photovoltaic 
panels on the vehicle rooftop and hood, may represent a significant investment related to the conventional topology of a single battery 
or fuel cell unit.

Flexible PV panels are more expensive than flat ones, but the continuous growth of the photovoltaic market reduces the manufacturing 
cost and the gap between flat and flexible PV panel prices [112-115].

Fuel cell cost is higher than lithium batteries [116-117]; however, new advances in fuel cell research forecast a promising future cost 
lowering [118-119]. A recent study predicts a drop in fuel cell cost by 2025 and a continuous dropping until 2030 [120]. Nevertheless, 
according to actual prices, a fuel cell costs around 400 USD per kW [121-122], although the price depends on the production rate [123].

Lithium-ion batteries, which are the most widely used for electric vehicles, have shown a dramatic declining cost in the past decades, 
from an initial price of nearly 8000 USD per kWh in 1990 to 100 USD per kWh in present days [124], with expecting lowering to less 
than 40 USD per kWh in few years [125].

Considering the current prices for lithium batteries and fuel cells, the total cost of a single battery or fuel cell installation compared with 
a hybrid system like the one we propose in this work for equal power and energy capacity is shown in Table 4.

Cost
System USD €
Lithium battery 7170.0 6750.8
Fuel Cell 9737.5 9168.1
Hybrid 8311.8 7825.8

Table 4: Comparative Cost of Single and Hybrid Power System for Electric Vehicles

We realize that the hybrid system is cheaper than the fuel cell but more expensive than the lithium battery. Nevertheless, since we reduce 
the frequency of battery recharge due to extended driving range for a standard lifespan of 15-20 years [126] and considering the daily 
traveled distance, 35 km, from the simulation, the number of battery recharges for every case, battery, and hybrid system is:

Considering an average electricity price of 0.2095 €/kWh for the European market [127] and 0.1272 USD/kWh (0.1351 €/kWh) for the 
American market [128], the additional cost for battery recharging is:
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Now, adding this additional cost to the initial investment, we have (Table 5):

Table 5: Comparative global cost of single and hybrid power system for electric vehicles for the battery lifespan

Cost
System USD €

Lithium battery 8526.4 8984.7
Hybrid 8311.8 7825.8

Analyzing the results from Table 5, we realize the hybrid system is cheaper for the European market by 1158.91 €, representing a relative 
cost saving of 14.8%. For the American market, the cost is similar, with a moderate cost saving of 214.58 € (227.90 USD), representing 
a reduction of 2.6%.

8. Conclusions
Hybrid battery and fuel cell power sources for electric vehicles represent a feasible and reliable alternative to current topologies. The PV 
panel implementation on the vehicle rooftop and hood helps to increase the energy supply and reduce the risk of sudden energy breakage 
and vehicle stops.

Hybrid system optimum performance is achieved when running the electric vehicle on battery for high power demand like medium 
or high acceleration processes and uphill road segments and on fuel cells for low power requirements such as low acceleration steps, 
constant vehicle speed, and flat and downhill route.

Power system management is optimized through a control unit that commutes the power source from the battery to the fuel cell and 
vice versa, depending on driving and road conditions. The control unit decision is based on continuous information provided by specific 
installed sensors (solar radiation, vehicle speed, and road tilt).

Electric vehicle performance is enhanced due to the optimized power source control, resulting in an extended driving range. The driving 
range gain related to an electric vehicle equipped with a dual independent battery and fuel power source block depends on the energy 
consumption rate of this latter vehicle configuration.

Driving range extension may reach up to 276.3 km, with a minimum and average gain of 127.2 km and 237.8 km. This driving range 
extension represents a significant improvement in the electric vehicle's performance, increases user confidence in the electric car, and 
reduces the number of recharges of both the battery and the fuel cell.

The proposed hybrid system topology for electric vehicles is cheaper than a single fuel cell power source of equivalent energy capacity 
by 17.2%; the hybrid system is more expensive than the battery power source system if we consider only the initial investment. 
Nevertheless, if we analyze the total cost, including the battery recharge price for the whole battery lifespan, the hybrid system saves 
money, 2.6% for the American market and 14.8% for the European one.
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