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Abstract
Wind energy has been widely explored and utilized as a renewable energy source. The integration of wind energy with other 
energy sources has been going well in strengthening current energy. However, this paper only discusses the prediction 
of wind speed into renewable energy by integrating based on hybrid. Combination of systems with the Successive model 
Variational Mode Decomposition uses the Least Squares Support Vector Machines model to obtain parts of the system with 
new variants. For the wind speed prediction of the system above, the RMSE and MAE models are used as validation of the 
tested system and the results show that the RMSE model is at a value of 1.2-32.7%, while the model with MAE is worth 
2.06-40.7%.

1. Introduction
The development and advancement of technology at this time, 
then the change in the use of fossil energy is decreasing, because 
it impacts air and environmental pollution [1-3]. As a substitute 
for the lack of energy, the transition to renewable energy is a form 
of public concern to maintain green energy [4-6]. Wind speed in 
tropical areas has good potential to be used as a source of green 
energy, especially to turn wind turbines, because they have high 
efficiency without the pollution produced [7,8]. The change in 
kinetic energy created by wind turbines into electrical energy is 
easy to operate and cheap [9,10].

Wind power utilization has several obstacles because wind speed 
always fluctuates, which affects the wind produced when turning 
the turbine [11]. This wind power cannot be stored for future 
use, but wind energy can be stored in batteries that can be used 
as a source of electricity at a certain time [12]. Managers always 
think about how to balance between producers and users to have 
certainty in the use of this wind energy continuously [13,14].

Wind power prediction serves the demand for electrical energy 
as a consideration model for minimal operational costs, but has 
optimal benefits [15]. An obstacle that is always experienced when 
integrating into a network system where fluctuating wind speeds 
and fairly high operating costs will result in uncertainty and are 
difficult to predict and possible damage can occur [16]. Therefore, 
integration for predicting wind velocity accurately and reliably 
becomes important to minimize operational costs.

The wind speed prediction strategy consists of an initial forecast to 
determine the potential as a source of wind turbine driving which 
is used as a benchmark to determine the capacity of the turbine to 
be installed [17,18]. The next strategy is a direct forecast of the 
existing conditions of wind speed at the research location. These 
two strategies are the best choices that can be accepted theoretically 
and practically for predicting the potential of wind speed as a 
renewable energy source [19,20]. However, this can be seen if 
there are no other wind energy sources so that potential predictions 
can be made on the downstream side of the wind energy source. 
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Wind predictions are generally carried out every 30 minutes to 
6 hours, even up to daily calculations, so this is a consideration 
in predicting the potential of wind speed as a renewable energy 
source [21,22].

In some countries, the development of power plants is concentrated 
on low-emission green energy, such as wind energy. Therefore, 
this study focuses on the prediction of hybrid power plants based 
on integrated technological developments, namely short-term 
wind speed predictions by combining advances in AI technology. 
Combination of systems with the Successive model Variational 
Mode Decomposition uses the Least Squares Support Vector 
Machines model to obtain a part of the system with a new variant. 
The proposed new variant is a combination of several parameters 
related to wind speed and training conducted to see the success 
of the combined system. Next, the error sequence trend obtained 
from the mode proposed and the wind data is modeled by LSTM 
to further improve the accuracy and maintain stable performance. 
This results in the predicted intrinsic modes and the error sequence 
is taken to produce the final predicted output wind speed.

1.1 Literature Review
For prediction models, Accurate wind speed and wind power are 
needed. In the academic and industrial worlds, related research 
has been carried out on wind speed [23]. Wind speed prediction 
has been carried out using physical methods, statistical methods, 
AI-based methods, and hybrid methods. For the physics method 
based on numerical weather prediction (NWP) and the utilization 
of weather variables [24]. Using the proposed sequence transfer 
correction algorithm (STCA) for NWP wind speed sequences 
which is a new forecasting method.

The statistical model is an ARMA model that utilizes a method 
using wind speed and direction forecasting by separating wind 
speed into lateral and longitudinal space, forecasting each 
individually, and combining them to obtain the final forecast [25]. 
Another model used is ARMAX to produce superior performance 
compared to other models. A weakness of Statistical models have 
a simple structure, fast computing time, and strong interpretation 
capabilities, but they take longer to run, so forecast accuracy 
decreases. As a result, statistical methods will fail if they are 
related to nonlinear relationships in time series. Statistical methods 
have good suitability for geostationary time series rather than non-
stationary series, and real wind data are mostly non-stationary 
[26,27].

AI-based algorithm models utilize machine learning and deep 
learning algorithms, so they have the best accuracy and strong 
ability to handle nonlinear and nonstationary data for wind 
forecasting applications, such as those used in ANN models ELM 
models, and others [28]. For self-learning and non-linear mapping, 
ANN models are used for WSF applications. However, ANN 
models can easily get trapped in local minima during training 
because defining important parameters such as learning rate, 
number of iterations, and trapping criteria is usually difficult.

The LSSVM algorithm model is an improvement of SVM that 
handles linear equations, but this method has been widely used 
in WSF, LSSVM relies on two important hyperparameters that 
greatly affect the overall prediction performance [29]. These two 
hyperparameters, known as the regularization parameter and the 
kernel parameter, must be chosen carefully to avoid overfitting 
or underfitting [30]. A new proposal for PSO algorithm to obtain 
optimal parameters of LSSVM trained using data set collected 
from wind farms in Indonesia. WSF methods short-term using the 
improved PSO method on a combination of persistence methods, 
radial basis functions (RBF), and neural networks. Learning 
methods in the subcategory of AI-based approaches have also been 
widely used for wind speed forecasting, namely recurrent neural 
networks (RNNs), nerve convolutional (CNN), and long-term 
term models (LSTM) [31,32]. Wind speed prediction with RNN 
based on Wind Speed and Turbulence Intensity is presented. The 
proposed scheme shows superior performance compared to other 
machine learning methods, but the issue related to the relationship 
between turbulence intensity and performance at different time 
intervals is not addressed. Although results were obtained, the 
research results showed that the accuracy can be further improved 
by increasing the number of feature maps and the number of 
neurons using more hardware resources. The LSTM model was 
implemented to analyze Primary data analysis (PDA) and was 
first used to reduce the dimensionality of meteorological data 
and differential evolution (DE) algorithm was applied to generate 
optimized values of LSTM hyperparameters such as learning rate, 
number of hidden layer nodes, and batch size [33]. Overall, the 
advantages of deep learning models become more apparent when 
there is a large amount of data supply and plenty of computing 
resources.

The empirical mode decomposition (EMD) model is used for 
WSF, decomposition empirical ensemble mode (EEMD), and 
decomposition variation mode (VMD). Method decomposition 
EMD and EEMD-based algorithms have been shown to produce 
moderate accuracy improvements. However, due to the aliasing 
mode phenomenon that occurs in EMD and the high prevalence 
of noise in EEMD residuals, the accuracy improvement is limited. 
Therefore, SVMD is a better alternative for parsing time series 
data such as wind speed [34].

This study proposes a hybrid model for short-term WSF that takes 
into account the suitability of the LSSVM model for average 
data size and computational resources with an improved QPSO 
algorithm to optimize its parameters, with an LSTM network 
to model irregular sequences, and the advantages of the SVMD 
decomposition algorithm. Compared to other techniques. This 
work is novel because it is the first to attempt to use an improved 
QPSO algorithm based on the transposon operator principle to 
optimize LSSVM parameters.

2. Methodology
2.1 SVMD Model
The VMD model is a mathematical model that utilizes time series 
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signals and K sub-signals non-recursively [35]. The time series 
used does not depend on the sample rate and interference. Taking 
K sub-signals when the decomposition process begins to produce 
a low K as a duplicate mode and a high K will be at the mixed 
mode value so that the selection of an inappropriate K will result 
in a decrease in the performance of the algorithm and this results in 
a decrease in the wind speed prediction results. The VMD model 
that has been presented is of concern to reduce the performance 
degradation of wind speed, so a model is needed to overcome this 
with sequential variational mode decomposition (SVMD), where 
in this model the K value will be extracted before being used to 
produce the expected mode spectrum [36,37].

The SVMD model assumes that the original signal is decomposed 
into two signals, namely the original signal and the residual signal, 
where the residual signal is also assumed to be a component, 
namely the sum of the previous modes and the original signal to 
be processed [38,39]. The original decomposition signal that has 
been extracted gives a value that is around the center frequency 
which is the main criterion in the VMD model, while the minimal 
spectral overlap and other residual signals are minimized for the 
reconstruction of existing modes and other residual signals [40]. 
The SVMD model algorithm is shown in Figure 1.

Figure 1: Flowchart of the SVMD Model

2.2 LSSVM Model
The LSSVM model provides an improved SVM model by utilizing 
the least squares for efficient patterns of classification and regression 
inputs used to produce linear optimization of the original signal. 
SVM has the advantage of learning from sophisticated patterns 
in the data set delivered by the Kernel function [41]. However, 
learning large data is not able to execute it. The LSSVM model 
can execute large data by converting inequality into controlled 
equality for complex linear optimization and expected function 
convergence [42]. The original wind speed and SVMD model are 
shown in Figure 2.

Figure 2: Original Wind Speed and SVMD Mode

The LSSVM model maintains the trade-off that a large error penalty 
will result in the model fitting the data pattern and data noise to 
produce the worst generalization model ability. For small values, 
the model will be under-fit, meaning it fails to learn patterns from 
the given training set.

2.3 QPSO Model
Model QPSO works on new particle group optimization (PSO) 
by simulating the quantum mechanics of particles. This model 
will affect the position of the surrounding delta model particles 
by utilizing the best position to improve the global search. The 
movement of QPSO particles in quantum space without spin by 
utilizing the estimated probability density function to determine 
its optimal point [43]. The first PSO for particle initialization 
repeatedly produces the optimal solution of the particle so that 
the evolution and mutation consisting of position and velocity 
vectors can be determined. The PSO model is computationally 
easier, but cannot be applied to complex multimodels. The QPSO 
model has an impact on the performance of the algorithm because 
each particle will affect the average population of the final solution 
and hurt all large particles. Development of the QPSO model to 
find optimal parameters on LSSVM by building a group of data 
for breeding and application to obtain various particles on long-
term memory (LSTM) swarms developed from RNN models to 
overcome vanishing gradients. For LSTM units consist of cells, 
input gates, output gates, and forget gates. All of these gates act as 
controllers of information entering and leaving the cell, while the 
forget gate acts as a selector of previous condition information to 
be passed and sets a value of zero or one.

2.4 Data set
The LSTM model is a deviation model between the original mode 
number and the original wind speed [44]. This model can handle 
vanishing and exploding gradients, so the LSTM model is more 
suitable for the non-linear and non-stationary performance of 
errors.
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Figure 3: LSTM used for Modeling

Dataset collection in this study was obtained from data from the 
Meteorology, Climatology and Geophysics Agency (MCGA) of 
Medan city which is located at 3°27'–3°47' North Latitude and 
98°35'–98°44' East Longitude. Datasets for wind speed and other 
information can be obtained at the office according to their needs.

2.5 Data Cleaning And Feature Selection
Supervisory Control And Data Acquisition (SCADA) is a dataset 
obtained to produce missing data due to the equipment used or 
errors in measuring the actual data. The application of LSSVM 
parameters and the same or different particle sizes will affect the 
performance of the wind speed prediction model. However, the 
missing data can be replaced with a training machine. Predictive 
modeling of wind speed against time series can be obtained from 
the training machine, where the time series is treated as univariate 
for every change of 20 minutes or more [45,46]. The SVMD 
model is used to obtain the initial wind speed as intrinsic data, 
then normalized and to produce its optimal value.

2.6 Modeling of the Proposed Method
This study proposes an SVMD-EBQSPO-LSSVM-LSTM method 
for short-term wind speed forecasting. Each modal component 
generated by SVMD is modeled by an EBQSO-optimized LSSVM 
algorithm. For the error sequence, the LSTM method is used. To 
implement QPSO with elitist breeding (EB-QPSO) for searching 
the optimum values of LSSVM hyperparameters and window 
sizes, the parameters should first be encoded as chromosomes. The 
regularization parameter, kernel parameter, and window size should 
contain three positional values, which denote each chromosome as 
a particle with three genes and limit the number of transposons and 
the size of each transposon to one. Furthermore, selecting a good 
fitness function is a key component of the successful application 
of evolutionary algorithms. In this paper, the inverse of the mean 
square error (MSE), is chosen as the fitness function of the EB-
QPSO algorithm. This is mainly due to the simplicity of computing 
MSE compared to other metrics such as root mean squared (RMS).

2.7 Evaluation for RMSE
Therefore, the SVMD-EBQPSO-LSSVM-LSTM model first 
optimizes the LSSVM parameters and window size using each 
mode as the training and validation sets by maximizing the 
fitness function (i.e., the inverse of the mean squared error). Then 
the LSTM network models a sequence of errors that replace the 
difference between the decomposed mode aggregates and the 
original wind series. The final prediction result is calculated by 
summing the intrinsic mode prediction values and error values.

One of the challenges when taking aggregates is that the window 
size used for each decomposed value and the order of the errors 
can be different, resulting in a length mismatch. The solution 
to this problem is to first calculate the difference between the 
maximum window size and the chosen window size for a given 
series. Assuming that the difference is denoted as DI, the first DI 
values of the series are divided, resulting in a length mismatch for 
all series to be added.

3. Results and Discussion
3.1 Performance Evaluation of the EBQPSO Algorithm Using 
Benchmark Functions
To compare the performance of the EBQPSO optimization 
algorithm with PSO and QPSO, four well-known benchmark 
functions are considered. These functions are Sphere (F1), Ackley 
(F2), Griewank (F3), and Mc Cormick (F4), and mathematical 
expressions.

Each experiment was performed five times to produce statistically 
convincing results about its performance. The number of iterations 
taken was 100, and the population size was 25. The dimension 
D of the functions F1:F2 and F3 was set to 20, while F4 was 2. 
For to summarize the final results of each algorithm in terms 
of mean and standard deviation are compared with the global 
minimum value of the benchmark function. As can be observed 
from the table, EBQPSO produces the minimum values closest 
to the global minimum values of the functions F1, F2, and F4, 
while producing the same minimum value as QPSO for F4. We 
believe this performance difference can be improved if more trials 
are used.

3.2 Experimental Setup
Parameter settings for the EBQPSO algorithm when implemented 
to optimize the LSSVM parameters and window size for each time 
modal component. We set the maximum number of generations 
to 100 and the population size to 25. Since we are optimizing 
three hyperparameters, the problem dimension is set to 3, the skip 
percentage to 1, and the number of transposons is also set to 1. 
The skip rate is chosen to be 0.3, which indicates the transposon 
operator is activated with a probability of 0.30; otherwise, the 
algorithm continues with regular QPSO. The value is set to 5 
to start elitist breeding every 5 generations. Choosing the right 
search space is also important: we set the minimum value of 
both to 0.0001 and the maximum to 10000. The minimum value 
of the window size is 1 and the maximum is 25. In addition, we 
map the search space to perform a logarithmic scale to improve 
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the search power and help convergence to the optimal value with 
fewer iterations. This EBQPSO configuration is used to optimize 
the LSSVM model when trained on all disentangled modes of the 
dataset. The error sequence is modeled using an LSTM network 
with parameter settings chosen through trial and error. Errors to 
produce the best architecture. After calculating the error series 
using equality, LSTM is trained and tested using the wind speed 
dataset.

The proposed approach is also compared with other competitive 
methods. The competitive methods considered in this study are 
LSSVM, SVMD-LSSVM, CNN, LSTM, CNN-LSTM, SVMD-
CNN, SVMD-LSTM, and SVMD-CNN-LSTM. CNN, LSTM, 
and CNN-LSTM and their hybrid varieties have been widely used 
in the literature for wind forecasting. By combining these methods, 
the proposed SVMD method is also an important approach to 
determine whether the proposed method is superior to these 
benchmark models. Parameter settings of the prediction methods 
and comparing the methods proposed with EBQPSO-LSSVM, it 
can be concluded whether the inclusion of the SVMD algorithm 
will provide performance improvements.

3.3 Wind Speed Model
The relationship between the intrinsic mode function and the 
original wind series can be evaluated using the correlation 
value. The correlation value can help us understand whether the 
SVMD algorithm decomposes the wind speed into independent 
modes and whether the center frequency of each decomposed 
signal is adequately separated. The diagonal correlation matrix 
of IMF for April and May datasets. We can observe from the 
figure that the highest correlation values are 0.29 and 0.16 and 
occur between IMF-1 and IMF-2 for the datasets respectively. 
The other correlation values are very small in magnitude. These 
small correlation outputs show that the SVMD algorithm produces 
independent and dissimilar IMFs. It also shows that the center 
frequencies of the IMFs are farther apart from each other.

3.4 Performance of the Proposed Method
In this study, seven competitive models are considered to measure 
the performance of the proposed models. The methods are 
LSSVM-EBQPSO, CNN, SVMD-CNN, LSTM, SVMD-LSTM, 
CNN-LSTM, and SVMD-CNN-LSTM.

Illustrate the performance of all methods using various metrics for 
the datasets. As can be seen in the table, the SVMD- EBQPSO-
LSSVM-LSTM method outperforms all methods in terms of all 
performance metrics for both datasets. 

The dataset on the proposed model obtained an RMSE of 0.703, 
MAE of 0.512, MAPE of 5.9%, R2 of 0.796, and correlation 
coefficient of 0.892. The model with the lowest performance 
is the SVMD-CNN-LSTM model, while the model with the 
second highest performance is the SVMD-CNN model. There is 
a performance improvement of 2.42% with the proposed method 
compared to the second-best model in terms of RMSE, 4.10% in 

terms of MAE, 3.38% in terms of MAPE, and 1.27% in terms of 
R2. In addition, a performance difference of 33.85% is obtained 
between the proposed method and the method with the lowest 
performance in terms of RMSE, 48.82% in terms of MAE, 40.68% 
in terms of MAPE, 25.35% in terms of R2, and 1.25% in terms of 
the correlation coefficient.

The performance margin of the proposed method is more 
prominent, especially in terms of RMSE and MAE, which show 
that the SVMD-EBQPSO-LSSM-LSTM model is superior in 
capturing large errors and is less sensitive to outliers.

Similarly, for the May dataset, the proposed model produces 
results that are superior to the benchmark methods, except for the 
SVMD-LSTM model, where both methods obtain similar results. 
The proposed method obtains RMSE scores of 0.856, MAE of 
0.661, MAPE of 13.0%, R2 of 0.817, and a correlation coefficient 
of 0.905. The method with the lowest performance is the EBQPSO-
LSSVM model. The proposed system achieves 31.66% RMSE, 
32.68% MAE, 28.46% MAPE, 19.62% R2, and a correlation 
coefficient increase of 9.17% compared to the EBQPSO-LSSVM 
model. These performance improvements prove the impact of the 
SVMD and LSTM methods on the overall model improvement.

Compared with the SVMD-LSTM model, the proposed model 
obtains less than 1% higher MAPE score with the same performance 
in terms of RMSE and R2. Furthermore, the SVMD-LSTM 
method yields less than 1% performance improvement in MAE 
and less than 0.2% improvement in correlation coefficient, which 
according to all reports are almost negligible. Thus, although the 
performance of the SVMD-LSTM model is close to the proposed 
method for the May dataset, this similarity disappears, and the 
superiority of the proposed method is maintained when both 
datasets are considered. On average, the proposed model achieves 
5.76% RMSE, 8.85% MAE, and 5.93% MAPE improvement over 
SVMD-LSTM.

To further explain the forecasting ability of the proposed method, 
show actual value versus predicted value for the function proposed 
and benchmark functions, along with error indices for both 
datasets. The error values are calculated by taking the difference 
between the actual wind speed and the predicted wind series. 
The adaptability of the proposed approach is quite good, as it can 
recognize all the test set patterns with high accuracy. In addition, 
the benchmark method also shows great generalization ability 
on the test set. Conclusively validating that the proposed system 
shows better generalization ability by simply observing the graphs 
is a difficult task. This is because the size of the wind test set is not 
large enough to identify the nuances that explain the superiority 
of the proposed model. However, it can be observed that the error 
indices are slightly smaller in magnitude than the benchmark 
model.

Another important performance assessment tool for forecasting 
models is a linear fit. An ideal model produces the same predicted 
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value for each actual value. In such a case, the slope of the linear 
plot is one. In general, a good fit keeps the predicted values close 
to the actual values. Therefore, the robustness of the model is 
inferred from how dense the points are and the slope of the linear 
plot.

For the April dataset, we have the proposed SVMD-EBQPSO-
LSSVM-LSTM model points that are denser around the linear plot. 
In addition, the slope of the linear plot of the proposed approach, 
0.7889, is the closest to one. From this, it can be concluded that 
the proposed approach shows better forecasting ability than the 
benchmark method. Thus, the dataset for the proposed method 
achieves the densest points on the linear fit and achieves the 
highest slope, 0.7812, when compared to the benchmark method. 
Therefore, it can be concluded that the proposed method is the best 
for the test set fit.

For each dataset, it can be observed that for all models, the 
distribution can be approximated by a normal distribution with 
varying mean and variance. In general, a good fit is expected 
to have a narrow range and be centered in the middle of the 
distribution. The proposed method produces error distribution with 
mean lowest and variance. The SVMD-CNN model also has the 
same variance but its average is higher than the proposed method.

Similarly, the proposed method produces a residual error 
distribution with the mean closest to zero and the lowest variance 
compared to the benchmark model. The CNN model is another 
model that achieves the same mean but its variance is larger than 
the proposed approach. Hence further strengthens the superiority 
of the proposed model in accurately predicting and generalizing 
unseen sequences, as it shows superior performance compared 
to the well-known models as validated using various forecasting 
metrics and separate datasets.

4. Conclusion
Current technological developments have provided a new finding 
for the utilization of renewable energy as a future energy source 
that is environmentally friendly without the resulting emissions. 
The development of artificial intelligence (AI) combined with 
machine learning contributes to hybrid machine learning applied 
to renewable energy. The model proposed in this study can predict 
the potential for non-continuous and non-fixed wind speeds to 
provide a source of future energy generation. Taking two sets 
of wind speed data obtained from a set of local wind speeds has 
provided the best contribution performance to other forecasts.
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