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Abstarct
We propose a transfer learning approach with a Swin Transformer model for auto- matic classification of gastrointestinal 
abnormalities in capsule endoscopy images. The fine-tuning was done by using a pretrained Swin Transformer, where the same 
model was trained on ten classes of gastrointestinal abnormalities which include Angioectasia, Bleeding, Erosion, and several 
others. The fine-tuned model might achieve an overall accuracy of 0.8976 on the validation set, with class-wise precision between 
0.32 and 0.98, and F1 scores in the range of 0.45 to 0.98. Out of the mentioned classes, Ulcer boasts the highest F1 score of 
0.95, and Worms also has an impressive score of 0.98. Erythema has the lowest F1 score and is considered to be a region where 
improvements are necessary. These results demonstrate the possibility of the Swin Transformer to advance automatic detection of 
gastrointestinal conditions in early diagnosis and reduce burdens associated with manual reviewing in clinical practice.

University School of Automation and Robotics

1. Introduction
The Capsule Vision 2024 Challenge is an excellent opportunity to 
push computer vision applications forward in the specific niche 
of medical imaging, targeting the identification of gastrointestinal 
abnormalities. Diagnosing the gastrointestinal region is crucial 
since it deals with subtle, high-resolution features that are hard 
for conventional computer vision models. Our project employs the 
state-of-the-art hierarchical transformer model, Swin Transformer, 
which has been identified to be adept at complex visual tasks, 
especially patch-based processing, and multi-scale self-attention 
mechanisms. Such properties make it robust in handling high-
resolution images and the intricate spatially distributed features 
necessary for high-resolution detection of gastrointestinal 
anomalies. We address both the requirement of local detail and 
global contextual awareness by using the Swin Transformer 
so that slight abnormalities in the gastrointestinal tract can be 
detected with accuracy. This kind of model can capture a wide 
range of spatial features, from microstructures to macro-patterns, 
thus improving anomaly detection in complex medical imagery. 
Our implementation pipeline involves robust data preprocessing, 
the design of model architecture, application of advanced data 
augmentation techniques for robust generalization, and a detailed 
evaluation framework that incorporates metrics such as balanced 
accuracy, precision, recall, and F1-score. The evaluation is then 
performed against a baseline set up by the challenge organizers to 
give further depth to the analysis into improvement in diagnostic 
accuracy. The ambition is toward the development of strong, 

AI-based technologies that should help healthcare specialists. It 
supports diagnostics by achieving higher diagnostic accuracy, 
decreased workload, and, of course, potential assistance for faster 
and more reliable decision-making about medicine. Hopefully, the 
computer vision medical frontiers that we open are a pathway to 
much more advanced, complex diagnostic assist systems, taking 
us further with regard to full-scale AI assimilation into the clinical 
workflow. 

2. Methods
The efficiency and scalability in handling high-resolution images 
have made the Swin Transformer model a prime choice to be used 
on such an array of a very complex and diverse dataset. Applying 
a hierarchical partition of images into non-overlapping windows, 
this model would capture both local and global features with high 
accuracy. Thus, it makes the model exceptionally suitable for 
applications involving high-dimensional medical images.

2.1 Model Architecture
The Swin Transformer is especially designed to cater to images 
of different resolutions with great computational efficiency. Its 
hierarchical architecture employs the use of shifted windows 
which improve the calculation of the self-attention mechanism 
while allowing the model to represent long-range dependencies 
inside the image. This method of applying window shifting will 
reduce computations and let the model better encode from local 
details in one layer up to further contextual information across 
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layers. The model layers of Swin Transformer were fine-tuned 
on the Capsule Vision 2024 Challenge dataset to fit the specific 
requirements of analyzing images in the gastrointestinal domain.

2.2 Training and Evaluation Pipeline
The Swin Transformer was fine-tuned and extensively tested on 
the dataset submitted by the Capsule Vision 2024 Challenge. Data 
preprocessing was at the very beginning stage done to make sure 
that uniformity is maintained in all the dimensions of the image in 
the dataset. It resized each input image accordingly to satisfy the 
input requirement determined by the model that has been selected 
to optimize computations and for easier use with the GPU-the two 
very important considerations in deep learning for big applications.

To improve the model’s generalization on unseen data, we employed 
advanced data augmentation techniques, including random 
rotations, flips, color adjustments, and scaling transformations. 
These augmentations artificially increased the diversity of the 
training dataset, thereby simulating a wide range of scenarios the 
model might encounter in real-world applications. This diversity 
helped the model to learn invariant representations, reducing the 
risk of overfitting and enhancing its robustness when deployed on 
new data.

2.2.1 Adaptive Learning Rate Scheduler
The training process utilized an adaptive learning rate scheduler 
that adjusted the learning rate based on the performance of the 
model during training. This aided in convergence as larger weight 
updates occurred at the beginning, when the model was quite 
far from an optimal solution, and progressively smaller updates 
as it approached convergence. This approach was such that it 
dynamically controlled the learning rate, speeding the process of 
training. Notably, it helps alleviate the problem of overfitting by 
allowing one more effective exploration of the space of parameters. 

2.2.2 Performance Evaluation
For a comprehensive evaluation, we employed a suite of 
performance metrics, including balanced accuracy, F1-score, 
precision, and recall, which are well-suited for assessing 
classification performance in an imbalanced dataset. Balanced 
accuracy was particularly important, as it provided a more 
nuanced assessment by giving equal weight to all classes, thereby 
addressing potential biases introduced by class imbalance. This 
metric, alongside precision and recall, allowed us to thoroughly 
evaluate the model’s ability to accurately classify minority classes, 
which is often a limitation of conventional accuracy metrics in 
imbalanced datasets.

The evaluation was conducted on a validation dataset that was 
distinct from the training set to ensure an unbiased assessment of 
the model’s generalization capabilities. This separation prevented 
data leakage and allowed for a true representation of the model’s 
performance. Performance metrics were tracked systematically at 
each epoch, enabling iterative adjustments to the model architecture 
and training regimen as needed. Finally, a comprehensive 
evaluation was carried out on a reserved test dataset, with results 
recorded and discussed in the subsequent sections of this report. 
This training and evaluation pipeline was essential in ensuring that 
the model achieved high validation performance while retaining 
applicability in real-world diagnostic tasks, underscoring its 
potential as a robust tool for medical image classification.

3. Results
3.1 Achieved Results on the Validation Dataset
The Swin Transformer model achieved a balanced accuracy 
of 0.84 on the validation dataset. The performance metrics, as 
compared to the baseline models provided by the Capsule Vision 
2024 organizers, are shown below in Table 1. 

Figure 1: Architecture of the Swin Transformer model used in this study. The hierarchical
design allows for efficient feature extraction from high-resolution images. Adapted from [4].

Table 1: Validation results and comparison to the baseline methods reported by the organizing
team.

Method Avg. ACC Avg. Specificity Avg. Sensitivity Avg. F1-score Avg. Precision Mean AUC Balanced Accuracy
SVM (baseline) 0.82 0.81 0.41 0.49 0.81 N/A 0.61

VGG16 (baseline) 0.72 0.97 0.54 0.48 0.52 0.92 0.57
ResNet50 (baseline) 0.76 N/A N/A 0.37 0.78 N/A N/A

Custom CNN (baseline) 0.46 N/A N/A 0.09 0.59 N/A N/A
Swin Transformer 0.90 0.97 0.84 0.79 0.92 0.98 0.84

3.2 Classification Report and Overall Metrics
The detailed classification report of the Swin Transformer model, as applied to the val-
idation dataset, is presented in Table 2. This report includes metrics for each class,
highlighting precision, recall, F1-score, and support.

As part of the evaluation, we generated a confusion matrix to analyze the classifica-
tion performance across different categories. This visualization provides insights into the
correct and incorrect predictions made by the model.

Figure 1: Architecture of the Swin Transformer Model Used in this Study. The Hierarchical Design Allows for Efficient Feature 
Extraction from High-Resolution Images. Adapted from [4]
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3.2 Classification Report and Overall Metrics
The detailed classification report of the Swin Transformer model, 
as applied to the validation dataset, is presented in Table 2. This 
report includes metrics for each class, highlighting precision, recall, 

F1-score, and support. As part of the evaluation, we generated a 
confusion matrix to analyze the classification performance across 
different categories. This visualization provides insights into the 
correct and incorrect predictions made by the model.Table 2: Classification Report for Swin Transformer on Validation Dataset.

Class Precision Recall F1-Score Support
Angioectasia 0.6893 0.8169 0.7477 497
Bleeding 0.6896 0.8663 0.7679 359
Erosion 0.6798 0.7299 0.7040 1155
Erythema 0.3203 0.7710 0.4526 297
Foreign Body 0.8765 0.8765 0.8765 340
Lymphangiectasia 0.8472 0.8892 0.8677 343
Normal 0.9883 0.9319 0.9592 12287
Polyp 0.6037 0.5940 0.5988 500
Ulcer 0.9448 0.9580 0.9514 286
Worms 0.9710 0.9853 0.9781 68

Table 3: Overall Metrics for Swin Transformer on Validation Dataset.

Metric Value
Overall Accuracy 0.8976
Precision (weighted) 0.9199
Recall (weighted) 0.8976
F1 Score (weighted) 0.9059

Figure 2: Confusion matrix illustrating the classification results across different categories.

4 Discussion
The Swin Transformer model demonstrated strong validation performance, achieving a
validation accuracy of 0.8976 and a validation loss of 0.3063. These values indicate that
the model effectively learned from the training data while maintaining generalization on
unseen samples. Among the key metrics, balanced accuracy—a key measure in imbal-
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4. Discussion
The Swin Transformer model demonstrated strong validation 
performance, achieving a validation accuracy of 0.8976 and a 
validation loss of 0.3063. These values indicate that the model 
effectively learned from the training data while maintaining 
generalization on unseen samples. Among the key metrics, balanced 
accuracy—a key measure in imbal- anced datasets—stood out 
at 0.8419. Balanced accuracy averages the recall for each class, 
providing an unbiased assessment of model performance across both 

dominant and minority classes. In scenarios like medical diagnostics, 
where rare classes are crucial to detect, balanced accuracy ensures 
that the model doesn’t favor only the more prevalent classes.

The classification report provides class-wise precision, recall, and 
F1-scores, giving a detailed view of the model’s strengths and areas 
for improvement. Precision represents the ratio of true positives to 
the sum of true positives and false positives for each class. High 
precision values, like 0.9883 in the Normal class, mean the model 
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is highly reliable in identifying non-pathological instances without 
mistakenly labeling other conditions as Normal. Lower precision 
for classes such as Erythema (0.3203) suggests that the model 
misclassifies a relatively high number of samples as Erythema, 
possibly due to class imbalance or overlapping features with other 
categories.

Recall, defined as the ratio of true positives to the sum of true positives 
and false negatives, measures the model’s ability to correctly identify 
all actual instances of a class. The model demonstrated robust recall 
across various classes, with especially strong results for Worms 
(0.9853) and Bleeding (0.8663). High recall for these classes implies 
that the model effectively detects true instances of these conditions, 
which is vital for a task where missing positive instances can lead to 
underdiagnosis. However, for classes like Erosion (0.7299), recall 
was somewhat lower, indicating that certain positive cases went 
undetected, suggesting that the model might benefit from further 
training adjustments to capture features relevant to this class.

The F1-score, the harmonic mean of precision and recall, provides 
an overall measure of class performance by balancing both false 
positives and false negatives. F1-scores varied across classes, with 
values such as 0.9592 for Normal and 0.5988 for Polyp, reflecting 
how well each class balances precision and recall. Lower F1-scores 
for classes like Erythema (0.4526) indicate that the model struggles 
with both false positives and false negatives, revealing opportunities 
for improvement.

In terms of aggregate performance, the macro and weighted averages 
give complemen- tary perspectives. Macro averages treat all classes 
equally by averaging metrics across classes, yielding a precision of 
0.7610, recall of 0.8419, and F1-score of 0.7904. This gives a class-
independent view of the model’s performance, showing it can handle 
various class distinctions reasonably well. Weighted averages, on 
the other hand, consider each class’s sample size, resulting in a 
precision of 0.9199, recall of 0.8976, and F1-score of 0.9059. The 
strong weighted scores confirm the model’s effectiveness across 
both prevalent and rare classes and suggest its robustness in diverse 
clinical contexts.

Finally, a deeper look at the confusion matrix can help pinpoint 
specific areas for improvement. Misclassifications observed in classes 
like Erythema and Polyp suggest the need for targeted enhancements, 
such as additional data for these classes or employing augmentation 
techniques. This analysis highlights how Swin Transformer’s metrics 
align with the requirements of medical diagnostic tasks and suggests 
pathways for refining model performance further.
 
5. Conclusion
In conclusion, the approach that the Swin Transformer model 
presents for the Capsule Vision 2024 Challenge is a strong approach 
and competitive one at that regarding class imbalance and the 
perfect inclusion of fine-grained and global features through this hi- 
erarchical architecture and shifted window attention. The approach 
resulted in excellent classification accuracy and, further, good 
balanced accuracy on the test set-the capability of this model over 
complex multi-class diagnostic tasks that are often presented by the 

medical images.

The performance of the model suggests its applicability as a useful 
tool in enhancing diagnostic workflows, reducing the workload of 
medical professionals, and improving diag- nostic precision. Future 
work could be ensemble or stacking techniques that would lever- age 
multiple models’ strengths and enhance classification performance. 
Such extensions hold promise for meeting the stringent demands of 
medical image analysis, contributing to more accurate and reliable 
automated diagnostics.
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