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Short Article

Abstract
We conducted a topological analysis of the novel, non-associative, and unital algebraic structure known as Bermejo 
Algebras, developed by Alejandro Bermejo, which includes the Algebra B and Treon Algebra. This algebras can define Lie 
and Malcev algebras when their product operations are derived from the Bermejo Algebras product. Central to this study 
are treons, complex entities that arise as isomorphisms of Algebra B when the field is real. We define the vector spaces 
associated with Bermejo Algebras to establish equivalence classes and a quotient topology, resulting in Hausdorff spaces 
that do not depend on traditional norms, inner products, or metrics. Our findings lay the groundwork for constructing new 
types of differential manifolds, opening new avenues for advanced mathematical research.
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1. Introduction
Bermejo Algebras are a novel non-associative and unital algebraic structure, founded and developed by Alejandro Bermejo [1,2]. 
This algebraic construction can define Lie and Malcev algebras when their product operations are derived from the product operation 
of Bermejo Algebras. These algebras yield complex entities, such as the algebra C2 of vectors (a1, a2), which can be considered a 
trivial case of Bermejo Algebra: (a1, a2, 0). These entities are distinct from quaternions and other higher hypercomplex structures 
[2]. Bermejo termed these complex entities ”treons”, which manifest as isomorphisms of his algebra when the field is real (R) [2].
We undertake a topological analysis of Bermejo Algebras, redefining the fundamental space of these algebras to develop a structure 
based solely on the products of Bermejo Algebras. By avoiding the need to define norms, inner products, or metrics, we successfully 
establish equivalence classes and a quotient topology that forms a Hausdorff space. Given that Hausdorff spaces are crucial in the 
definition of manifolds [3,4], our work lays the essential groundwork for constructing treonic differential manifolds.

This work marks the beginning of constructing a framework to support any complex analysis of the spaces discussed here. For 
instance, the Cauchy-Riemann equations for treons [5] will be better defined with the vector bases established here.

2. Bermejo Algebras
Bermejo algebras (Algebra B [1] and Treon Algebra [2]) can be expressed both as points in R3, for the case (a1, a2, a3), or as points 
in a 3-dimensional ”complex space C3”, for the case a1 + a2i + a3j.

The algebra B isomorphic to the treon algebra necessarily implies the definition of algebra B over the real field R; therefore, the 
algebra B isomorphic to the treonic algebra uses R3 as a vector space and associates it with a product. Consequently, algebra B 
isomorphic to treon algebra is an algebra over R3 and, logically, treon algebra is an algebra over R3 [2].

Now, if we assume that in Bermejo algebras there are complex quantities [1, 2, 5], we can define a vector space with a subtly 
different base structure, i.e., the canonical basis of R3 can be defined from bases in a space we will call B-Spaces:
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and, logically, treon algebra is an algebra over R3 [2].
Now, if we assume that in Bermejo algebras there are complex quantities [1, 2, 5], we can define a

vector space with a subtly different base structure, i.e., the canonical basis of R3 can be defined from
bases in a space we will call B-Spaces:

Let {̂i, ĵ, k̂} be the canonical base in R3, we define:

î ≡ (1, 0, 0), ĵ ≡ (0, 1, 0), k̂ ≡ (0, 0, 1)

where {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is the basis for the space associated with algebra B [1, 2]: Space B1.
And:

(1, 0, 0) ≡ id, (0, 1, 0) ≡ i, (0, 0, 1) ≡ j

where {id, i, j} is the basis in the space associated with treon algebra [2]: Space B2. And, by transitivity
of the equivalence ≡:

î ≡ id, ĵ ≡ i, k̂ ≡ j.

In this way, space B1 will be generated by the span((1, 0, 0), (0, 1, 0), (0, 0, 1)) and space B2 will be
generated by the span{id, i, j}, such that the linear independence of both bases is inherited from the
linear independence of the canonical base in R3.

Since R3 is a differentiable manifold, B-spaces are a differentiable manifold. However, these spaces
are subject to and limited by the topology induced by the Euclidean metric. In this work, we carry out
a step-by-step analysis of the properties of B-spaces to define a differentiable manifold not limited by
the Euclidean metric, but at the same time influenced and defined by a particular property of Bermejo
Algebras, the appearance of a ”norm” in the real component of the double conjugated square of an
element. We cannot define the squared norm of a treon in the conventional sense without introducing an
inner product or a metric in the vector space. Here we present a pioneering analysis that allows working
with norms, metrics, and inner products in a non-normed, non-metric space without inner products; at
least not from the conventional viewpoint. This is because the products of Bermejo Algebras naturally
produce these properties.

2 Construction of a Topology on Treons

2.1 Definitions for Treonic Topology

To construct a topology T on the space of treons, B2, which we denote X for simplicity, we define:
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i. ∅, X ∈ T , where ∅ represents the empty set.
ii. If U1, U2 ∈ T , then U1 ∩ U2 ∈ T (finite intersection), where U ∈ T are the open sets of topology T .
iii. If (Ui) =i∈I ∈ T , then Ui∈I Ui ∈ T . The index I is an arbitrary index, finite or not.

By definition, we have two trivial topologies: the indiscrete treonic topology, T = {∅, X}, and the
discrete treonic topology, T = P (X).

Let the pair (X, T) be our treonic topological space, we say that V is an open neighborhood of a treon

p if: V ∈ T ∧ p ∈ V .

3.2 Convergence of  Treons and Definition of Hausdorff  Space
We define a sequence of treons as a mapping φ such that:

where {n} is a notation to represent the successive elements:

We say that a sequence of treons p{n} converges to an element p, and we denote p{n} → p, if and only if:

The topological space (X, T ) is called a Hausdorff space if and only if [3, 4]:
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We say that a sequence of treons p{n} converges to an element p, and we denote p{n} → p, if and
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The topological space (X,T ) is called a Hausdorff space if and only if [3, 4]:

∀pa, pb ∈ X, pa ̸= pb, ∃Vpa ∈ T ∧ Vpb
∈ T : Vpa ∩ Vpb

= ∅,

where Vpa is the open neighborhood of pa, and Vpb
is an open neighborhood of pb.

Since R3 is a Hausdorff space with the topology induced by the Euclidean metric [3, 4], both space
B1 and space B2 are Hausdorff spaces.

A Hausdorff space guarantees that the limits of sequences of points are unique [3, 4]. If a sequence
p{n} of treons converges to both pa and pb, necessarily pa = pb. In a Hausdorff space, a sequence that
converges to two different points generates a contradiction.

If we have a Hausdorff space and if p{n} converges to both pa and pb we have:

p{n} → pa ⇔ ∀Va, pa ∈ Va, ∃Na ∈ N : ∀n ≥ Na ⇒ p{n} ∈ Va,

p{n} → pb ⇔ ∀Vb, pb ∈ Vb, ∃Nb ∈ N : ∀n ≥ Nb ⇒ p{n} ∈ Vb.

Therefore, taking simultaneously the maximum (Na, Nb), we will have that p{n} ∈ Va and p{n} ∈ Vb.
This contradicts the definition of a Hausdorff space, where there is no point p{n} in the intersection
Va ∩ Vb.

Hausdorff spaces are a fundamental pillar in the definition of manifolds [3, 4, 8, 9]; therefore, in this
work, we develop the elementary mathematical tools for defining Hausdorff spaces under the analysis of
Bermejo Algebras. This is the first step in generating treonic manifolds.

2.3 Definition of Treonic Quotient Topology

Let (X,T ) be our treonic topological space, and let ∼ be an arbitrary equivalence relation on X; let
[p]∼ be an equivalence class for pi ∈ X under the relation ∼, and let X/ ∼ be the quotient set. We define
the mapping (surjective) canonical projection on the set of treons X as:

q : X → X/ ∼,

p → [p]∼.

We define a preimage of the mapping q, which we denote Preimq ⊆ X.
Let an arbitrary Preimq(U) ⊆ X, such that Preimq(U) ∈ T , the canonical projection mapping q

implies, by definition, the obligatory existence of an open set U ⊆ X/ ∼, such that U ∈ T̃ , where T̃ is a
new topology defined on X/ ∼, which is simply a quotient topology [10]for the case of treons. We call
the pair (X/ ∼, T̃ ) the treons quotient space.
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We define a sequence of treons as a mapping φ such that:

φ : N → X,

n → φ(n) ≡ p{n},

where {n} is a notation to represent the successive elements:

p{n} = p1{1} + p2{1}i+ p3{1}j, p1{2} + p2{2}i+ p3{2}j, p1{3} + p2{3}i+ p3{3}j, . . .

We say that a sequence of treons p{n} converges to an element p, and we denote p{n} → p, if and
only if:

∀V, p ∈ V, ∃N ∈ N : ∀n ≥ N =⇒ p{n} ∈ V.

The topological space (X,T ) is called a Hausdorff space if and only if [3, 4]:

∀pa, pb ∈ X, pa ̸= pb, ∃Vpa ∈ T ∧ Vpb
∈ T : Vpa ∩ Vpb

= ∅,

where Vpa is the open neighborhood of pa, and Vpb
is an open neighborhood of pb.

Since R3 is a Hausdorff space with the topology induced by the Euclidean metric [3, 4], both space
B1 and space B2 are Hausdorff spaces.

A Hausdorff space guarantees that the limits of sequences of points are unique [3, 4]. If a sequence
p{n} of treons converges to both pa and pb, necessarily pa = pb. In a Hausdorff space, a sequence that
converges to two different points generates a contradiction.

If we have a Hausdorff space and if p{n} converges to both pa and pb we have:

p{n} → pa ⇔ ∀Va, pa ∈ Va, ∃Na ∈ N : ∀n ≥ Na ⇒ p{n} ∈ Va,

p{n} → pb ⇔ ∀Vb, pb ∈ Vb, ∃Nb ∈ N : ∀n ≥ Nb ⇒ p{n} ∈ Vb.

Therefore, taking simultaneously the maximum (Na, Nb), we will have that p{n} ∈ Va and p{n} ∈ Vb.
This contradicts the definition of a Hausdorff space, where there is no point p{n} in the intersection
Va ∩ Vb.

Hausdorff spaces are a fundamental pillar in the definition of manifolds [3, 4, 8, 9]; therefore, in this
work, we develop the elementary mathematical tools for defining Hausdorff spaces under the analysis of
Bermejo Algebras. This is the first step in generating treonic manifolds.

2.3 Definition of Treonic Quotient Topology

Let (X,T ) be our treonic topological space, and let ∼ be an arbitrary equivalence relation on X; let
[p]∼ be an equivalence class for pi ∈ X under the relation ∼, and let X/ ∼ be the quotient set. We define
the mapping (surjective) canonical projection on the set of treons X as:

q : X → X/ ∼,

p → [p]∼.

We define a preimage of the mapping q, which we denote Preimq ⊆ X.
Let an arbitrary Preimq(U) ⊆ X, such that Preimq(U) ∈ T , the canonical projection mapping q

implies, by definition, the obligatory existence of an open set U ⊆ X/ ∼, such that U ∈ T̃ , where T̃ is a
new topology defined on X/ ∼, which is simply a quotient topology [10]for the case of treons. We call
the pair (X/ ∼, T̃ ) the treons quotient space.
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2.4 Analysis of the Real Component of p⊙ p((∗i,j))

In algebra B, we define ⟨p2⟩ ≡ p ⊙ p((∗i,j)), where ⊙ is the product of algebra B, and (∗i,j) is the
double complex conjugation of a treon, i.e., a conjugation in i and a conjugation in j [1, 2]. According
to this, ⟨p2⟩ = (∥p∥2, 2p1p2 + p2p3, 2p1p3 + p3p2), where:

∥p∥2 ≡ p21 + p22 + p23.

The operation ⟨p2⟩ ≡ p⊙p((∗i,j)) we name it ”double conjugated square”. Bermejo called ∥p∥2 the ”norm
squared”, but it should not be interpreted as the norm squared per se of p, since only the real part of
⟨p2⟩ ∈ X is being considered. Note that this ”norm squared” is the real part of the double conjugated
square of a treon, i.e.,

∥p∥2 ≡ Re(⟨p2⟩).

We define the subset N ⊂ X, such that:

N ≡ {p ∈ X : p = ⟨p2⟩},

and the mapping ⟨·⟩:

⟨·2⟩ : X → N ⊂ X,

p → ⟨p2⟩.

∥p∥2 ≡ Re(⟨p2⟩) implies that the real part of a treon ⟨p2⟩ ∈ N is a place where Euclidean norms

of three components of a real vector p⃗ ≡ p1î + p2ĵ + p3k̂ arise, whose components coincide with the
components of the treon p = p1 + p2i + p3j, an element of the domain of ⟨·2⟩. We understand that the
norm of a real vector arises in the real component of a treon when performing the double conjugated
square.

Note that ∥p∥2 = 0 ⇒ p = 0 ∧ ⟨p2⟩ = 0. Therefore, within the set where norms are defined (the set
N), any treon ⟨p2⟩ with a zero real part will be a zero treon, and its preimage under ⟨·2⟩ will be the zero
treon in X. Therefore, in N , any pure imaginary treon p2i + p3j is zero and derives from a zero treon;
this means that there are no pure imaginary treons in N . This does not occur in X \N , where a pure
imaginary treon produces an element ⟨p2⟩ = (p22 + p23, p2p3, p3p2) ∈ N .

Theorem: In N , the norm of a treon is zero if and only if the treon is zero:

∀p ∈ N ⊂ X : Re(p) = 0 ⇔ p = 0 + 0i+ 0j.

Proof ⇒:
We have that ⟨p2⟩ = (∥p∥2, 2p1p2 + p2p3, 2p1p3 + p3p2), such that ∥p∥2 ≡ p21 + p22 + p23. If ∥p∥2 = 0 ⇔
p1 = 0 ∧ p2 = 0 ∧ p3 = 0, then p = p1 + p2i+ p3j = 0 + 0i+ 0j.

Proof ⇐:
If p = 0 + 0i+ 0j, then p1 = 0. Therefore, Re(p) = 0.

Taking into account the product ⊙ of algebra B [1], defined as:

pA ⊙ pB ≡ (pA1pB1 − pA2pB2 − pA3pB3, pA1pB2 + pA2pB1 + pA3pB2, pA1pB3 + pA3pB1 + pA3pB2),

we have:

pA ⊙ p
((∗i,j))
B = (pA1pB1 + pA2pB2 + pA3pB3,−pA1pB2 + pA2pB1 − pA3pB2,−pA1pB3 + pA3pB1 − pA3pB2),

where we will define Re(pA ⊙ p
((∗i,j))
B ) ≡ Re(⟨pA, pB⟩) ≡ pA ⋄ pB ∈ R, which, while it has the structure

of an inner product, we do not define it as such. The diamond operation ⋄ naturally arises from the
definition of the product of algebra B. Therefore, we have:

⟨pA, pB⟩ = (pA ⋄ pB , pA2pB1 − pA1pB2 − pA3pB2, pA3pB1 − pA1pB3 − pA3pB2).

Then, with this, we have an operation involving the product of a treon with another doubly conjugated
treon, resulting in treons with a real component exhibiting the structure of an ”inner product”. We refer
to the operation ⟨pA, pB⟩ as the Bermejian inner product. In this context, the case of the doubly
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of three components of a real vector p⃗ ≡ p1î + p2ĵ + p3k̂ arise, whose components coincide with the
components of the treon p = p1 + p2i + p3j, an element of the domain of ⟨·2⟩. We understand that the
norm of a real vector arises in the real component of a treon when performing the double conjugated
square.

Note that ∥p∥2 = 0 ⇒ p = 0 ∧ ⟨p2⟩ = 0. Therefore, within the set where norms are defined (the set
N), any treon ⟨p2⟩ with a zero real part will be a zero treon, and its preimage under ⟨·2⟩ will be the zero
treon in X. Therefore, in N , any pure imaginary treon p2i + p3j is zero and derives from a zero treon;
this means that there are no pure imaginary treons in N . This does not occur in X \N , where a pure
imaginary treon produces an element ⟨p2⟩ = (p22 + p23, p2p3, p3p2) ∈ N .

Theorem: In N , the norm of a treon is zero if and only if the treon is zero:

∀p ∈ N ⊂ X : Re(p) = 0 ⇔ p = 0 + 0i+ 0j.

Proof ⇒:
We have that ⟨p2⟩ = (∥p∥2, 2p1p2 + p2p3, 2p1p3 + p3p2), such that ∥p∥2 ≡ p21 + p22 + p23. If ∥p∥2 = 0 ⇔
p1 = 0 ∧ p2 = 0 ∧ p3 = 0, then p = p1 + p2i+ p3j = 0 + 0i+ 0j.

Proof ⇐:
If p = 0 + 0i+ 0j, then p1 = 0. Therefore, Re(p) = 0.

Taking into account the product ⊙ of algebra B [1], defined as:

pA ⊙ pB ≡ (pA1pB1 − pA2pB2 − pA3pB3, pA1pB2 + pA2pB1 + pA3pB2, pA1pB3 + pA3pB1 + pA3pB2),

we have:

pA ⊙ p
((∗i,j))
B = (pA1pB1 + pA2pB2 + pA3pB3,−pA1pB2 + pA2pB1 − pA3pB2,−pA1pB3 + pA3pB1 − pA3pB2),

where we will define Re(pA ⊙ p
((∗i,j))
B ) ≡ Re(⟨pA, pB⟩) ≡ pA ⋄ pB ∈ R, which, while it has the structure

of an inner product, we do not define it as such. The diamond operation ⋄ naturally arises from the
definition of the product of algebra B. Therefore, we have:

⟨pA, pB⟩ = (pA ⋄ pB , pA2pB1 − pA1pB2 − pA3pB2, pA3pB1 − pA1pB3 − pA3pB2).

Then, with this, we have an operation involving the product of a treon with another doubly conjugated
treon, resulting in treons with a real component exhibiting the structure of an ”inner product”. We refer
to the operation ⟨pA, pB⟩ as the Bermejian inner product. In this context, the case of the doubly

4

2.4 Analysis of the Real Component of p⊙ p((∗i,j))

In algebra B, we define ⟨p2⟩ ≡ p ⊙ p((∗i,j)), where ⊙ is the product of algebra B, and (∗i,j) is the
double complex conjugation of a treon, i.e., a conjugation in i and a conjugation in j [1, 2]. According
to this, ⟨p2⟩ = (∥p∥2, 2p1p2 + p2p3, 2p1p3 + p3p2), where:

∥p∥2 ≡ p21 + p22 + p23.

The operation ⟨p2⟩ ≡ p⊙p((∗i,j)) we name it ”double conjugated square”. Bermejo called ∥p∥2 the ”norm
squared”, but it should not be interpreted as the norm squared per se of p, since only the real part of
⟨p2⟩ ∈ X is being considered. Note that this ”norm squared” is the real part of the double conjugated
square of a treon, i.e.,

∥p∥2 ≡ Re(⟨p2⟩).

We define the subset N ⊂ X, such that:

N ≡ {p ∈ X : p = ⟨p2⟩},

and the mapping ⟨·⟩:

⟨·2⟩ : X → N ⊂ X,

p → ⟨p2⟩.

∥p∥2 ≡ Re(⟨p2⟩) implies that the real part of a treon ⟨p2⟩ ∈ N is a place where Euclidean norms
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3.5 Sr
  -Spheres and Treonic Equivalence Classes

We define an S2-sphere as the set of vectors ρ, such that Re (⟨p2⟩i) = r2 ∈ R:
 

where     are the different spheres of radius ri greater than zero. This notation, in the traditional sense, refers to 2-spheres of radius r. 
For the purposes of our algebra, we have renamed this as S2 r-spheres.

With this, we construct an equivalence relation for the elements p ∈ Preim ⟨·2 ⟩. Let the following equivalence relation ∼:

where ⊻ denotes the binary logical operator ”exclusive or”, which excludes the truth value ”True” when both propositions are True.

Proof ⇒:

Proof ⇐:

If p = 0 + 0i + 0j, then p1 = 0. Therefore, Re(p) = 0.
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4conjugated square is considered a particular instance of the Bermejian inner product, specifically for the
product of identical treons.

On the other hand, ∥p∥2 = 0 ⇒ p⃗ = 0⃗. Therefore, within N , any zero treon maps to the zero vector
p⃗ = 0⃗ in R3 through a mapping h:

h : N → R3,

⟨p2⟩ → p⃗.

Taking the set of all treons p ∈ X that have an image in N ⊂ X under ⟨·2⟩, Preim⟨·2⟩, we can define
a composition mapping H = h ◦ ⟨·2⟩, such that:

H : Preim⟨·2⟩ → R3,

p → p⃗.

This mapping ensures that all elements have a defined norm, such that the only possibility for an element
to have a zero norm is for the element to be zero (0, 0, 0).

Note that the components of p⃗ in the canonical basis, as defined, can be made to coincide with the
components of a treon p ∈ Preim⟨·2⟩ in its corresponding base {id, i, j}. In this way:

∀p⃗ ∈ R3, ∀p ∈ Preim⟨·2⟩, ∃∥p⃗∥ ∈ R : ∥p⃗∥ =
√

Re(⟨p2⟩).

The vectors p⃗ ∈ R3 that are a representation of the treons p ∈ Preim⟨·2⟩ under the composition
mapping H, we denote as ρ.

2.5 S2
r -Spheres and Treonic Equivalence Classes

We define an S2
r -sphere as the set of vectors ρ, such that Re(⟨p2⟩i) = r2 ∈ R:

S2
i ≡ {ρ ∈ R3 :

√
Re(⟨p2⟩i) = ri ∧ ri > 0},

where S2
i are the different spheres of radius ri greater than zero. This notation, in the traditional sense,

refers to 2-spheres of radius r. For the purposes of our algebra, we have renamed this as S2 r-spheres.
With this, we construct an equivalence relation for the elements p ∈ Preim⟨·2⟩. Let the following

equivalence relation ∼:

∀pi, pj ∈ Preim⟨·2⟩ ⊂ X, ∀ρi, ρj ∈ R3 : pi ∼ pj ⇔ ρi = ρj ⊻ ρi = −ρj ,

where ⊻ denotes the binary logical operator ”exclusive or”, which excludes the truth value ”True” when
both propositions are True.

Proof that pi ∼ pj is an equivalence relation:

1. Reflexivity: We have pi ∼ pi ⇔ ρi = ρi ⊻ ρi = −ρi. Clearly, this proposition is true because
ρi = 0 imply null norms and, therefore, null vectors and treons that do not conform to the sphere by
definition.

2. Symmetry: pi ∼ pj = pj ∼ pi. Clearly, this holds since ρi = ρj is the same as ρj = ρi, and since
ρi = −ρj is the same as ρj = −ρi.

3. Transitivity: For pi ∼ pk and pk ∼ pj we have:

pi ∼ pk ⇔ ρi = ρk ⊻ ρi = −ρk,

pk ∼ pj ⇔ ρk = ρj ⊻ ρk = −ρj ,

As ρi = ρk = ρj , and as ρi = −ρk = −(−ρj) = ρj , we have that the proposition pi ∼ pj is true as it
verifies the unique possibility of transitivity that ρi = ρj . Thus, transitivity verifies pi ∼ pj ⇔ ρi = ρj
only, being false ρi = −ρj .

We extended the definition of S2
r -spheres to the treonic set X. We define:

Λ ≡ {p ∈ Preim⟨·2⟩ ⊂ X :
√

Re(⟨p2⟩i) = ri ∧ ri > 0}.
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the element to be zero (0, 0, 0).

Note that the components of p⃗ in the canonical basis, as defined, can be made to coincide with the components of a treon p ∈ Preim 
⟨·2 ⟩ in its corresponding base {id, i, j}. In this way:
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This is simply a change in the way of representing: ρ is a vector on the canonical base while p is a treon
on the treonic base {id, i, j}.

We call the set Λ the ”r-treosphere,” again, a change in the way of thinking about the spaces where
they are defined. For r = 1 we have a 1-treosphere such that there is an equivalence class [p]∼(r=1)

, for
r = 2 we have [p]∼(r=2)

, and for any r = r0 ∈ R, we have [p]∼R . The set [p]∼R for any r0 ∈ R allows
grouping the treons according to these equivalence classes.

We define Λ/ ∼ as the set of all [p]∼R in X. And we construct the treons quotient space (Λ/ ∼, T̃ ).
Note that [p]∼R involves all the points in the volume of a sphere.

We denoted the topology T of (X,T ) that is in Λ as TΛ, and the corresponding topological subspace
as (Λ, TΛ). Thus, (Λ, TΛ) is a topological subspace of (X,T ).

The Treons Quotient Space is a Hausdorff Space

Let two treons pi and pj ∈ Λ, such that ρi ̸= ρj ∧ ρi ̸= −ρj , then [pi]∼ ̸= [pj ]∼. Two treons pi and pj
are equal if their corresponding components are equal; therefore, if ρi ̸= ρj and ρi ̸= −ρj , then pi ̸= pj .
On the other hand, the canonical projection mapping q ◦ h ◦ ⟨·2⟩ : Λ → Λ/ ∼ is surjective, not injective,
and we can have two treons pi and pj mapped to an equivalence class [p]∼, i.e., we can have two treons
pi and pj such that ρi = ρj ⊻ ρi = −ρj . This implies that the construction of a neighborhood in Λ/ ∼
implies the definition of two neighborhoods in S2

i and, by extension, in Λ.
We define the following treons:

p(ζ,r0) ≡ {pζ ∈ Λ : ρζ ⇒
√
Re(⟨p2ζ⟩) = r0 > 0},
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, for
r = 2 we have [p]∼(r=2)

, and for any r = r0 ∈ R, we have [p]∼R . The set [p]∼R for any r0 ∈ R allows
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We define Λ/ ∼ as the set of all [p]∼R in X. And we construct the treons quotient space (Λ/ ∼, T̃ ).
Note that [p]∼R involves all the points in the volume of a sphere.

We denoted the topology T of (X,T ) that is in Λ as TΛ, and the corresponding topological subspace
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are equal if their corresponding components are equal; therefore, if ρi ̸= ρj and ρi ̸= −ρj , then pi ̸= pj .
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Let two treons pi and pj ∈ Λ, such that ρi ̸= ρj ∧ ρi ̸= −ρj, then [pi]∼ ̸= [pj]∼. Two treons pi and pj are equal if their corresponding 
components are equal; therefore, if ρi ̸= ρj and ρi ̸= −ρj, then pi ̸= pj. On the other hand, the canonical projection mapping q ◦ h ◦ ⟨·2⟩ 
: Λ → Λ/ ∼ is surjective, not injective, and we can have two treons pi and pj mapped to an equivalence class [p]∼, i.e., we can have 
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Evaluating Preimq(Vη ∩ Vµ), we have:

Preimq(Vη ∩ Vµ) = Preimq(Vη) ∩ Preimq(Vµ)

= (V(η,r0) ∪ V(−η,r0)) ∩ (V(µ,r0) ∪ V(−µ,r0))

= ((V(η,r0) ∪ V(−η,r0)) ∩ V(µ,r0)) ∪ ((V(η,r0) ∪ V(−η,r0)) ∩ V(−µ,r0))

= (V(η,r0) ∩ V(µ,r0)) ∪ (V(−η,r0) ∩ V(µ,r0)) ∪ (V(η,r0) ∩ V(−µ,r0)) ∪ (V(−η,r0) ∩ V(−µ,r0))

= ∅.

Therefore, Preimq(Vη ∩ Vµ) = ∅.
Since the mapping q is surjective, each element of the codomain has at least one preimage in the

domain. If we start from the premise Preimq(Vη∩Vµ) = ∅, this implies that there is no element in Λ such
that q(p ∈ Λ) ∈ Vη ∩ Vµ, i.e., there is no element in the domain of q that is mapped to the intersection
Vη ∩ Vµ. Consequently, due to surjectivity, for there to be no p ∈ Λ such that q(p ∈ Λ) ∈ Vη ∩ Vµ, it is
necessary that there be no element in the intersection itself. If there were any element [p]∼ ∈ Vη ∩ Vµ,
surjectivity guarantees that there necessarily exists some p ∈ Λ. Therefore:

∀Preimq(Vη ∩ Vµ) = ∅ ⇒ Vη ∩ Vµ = ∅.

Let the topological space (Λ/ ∼, T̃Λ):

∀ [pµ]∼, [pη]∼ ∈ Λ/ ∼, [pµ]∼ ̸= [pη]∼, ∃Vµ ∈ T̃Λ ∧ Vη ∈ T̃Λ : Vη ∩ Vµ = ∅.

Therefore, the treon quotient topology Λ/ ∼ is a Hausdorff space.

All this analysis allows us to well-define the treon quotient topology Λ/ ∼ as a Hausdorff space,
without the need to equip the vector space with norms or inner products. The definition of the product
in Bermejo Algebras is sufficient to work with these concepts implicitly.

We must consider that we can also define a canonical projection mapping m : Λ → Λ/ ∼ that is not
given by the composition q ◦H, and therefore does not depend on conventional vectors p⃗; however, this
excludes from our analysis the equivalence classes of opposite vectors in the S2

i r-spheres and returns
surface areas of radius ri. Let us consider the mapping m:

m : Λ → Λ/ ∼

p → [p]∼

where:

∀pi, pj ∈ Λ : pi ∼ pj ⇐⇒
√

Re(⟨p2i ⟩) =
√

Re(⟨p2j ⟩).

Note that now the equivalence classes are not two points represented by position vectors on S2
i but

are each of the surfaces S2
i .

Similarly, we can now define other equivalence classes in their corresponding Λ/ ∼, for example,
taking the diamond ⋄ operation:

∀pi, pj , pk, pl ∈ Λ : (pi, pj) ∼ (pk, pl) ⇐⇒ pi ⋄ pj = pk ⋄ pl.

Our work thus opens new possibilities in the development and topological analysis of Bermejo Alge-
bras.

Conclusions

We conducted a topological analysis of the Bermejo Algebras, demonstrating their ability to create
Hausdorff spaces without the need for traditional norms, inner products, or metrics. We achieved this
distinctive feature through the creation of equivalence classes and a specific quotient topology. This
contribution is particularly relevant for the study of complex functions and complex analysis in a non-
associative algebraic framework.

We defined a Bermejian inner product derived from the product of the Bermejo Algebras; this product
is distinguished by not depending on conventional definitions where vector spaces are equipped with
metric, inner product, and norm operations. This Bermejian inner product naturally arose from the
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Since the mapping q is surjective, each element of the codomain has at least one preimage in the domain. If we start from the premise 
Preimq (Vη ∩Vµ) = ∅, this implies that there is no element in Λ such that q(p ∈ Λ) ∈ Vη ∩ Vµ, i.e., there is no element in the domain 
of q that is mapped to the intersection Vη ∩ Vµ. Consequently, due to surjectivity, for there to be no p ∈ Λ such that q(p ∈ Λ) ∈ Vη ∩ 
Vµ, it is necessary that there be no element in the intersection itself. If there were any element [p]∼ ∈ Vη ∩ Vµ, surjectivity guarantees 
that there necessarily exists some p ∈ Λ. Therefore:

Therefore, the treon quotient topology Λ/ ∼ is a Hausdorff space.

All this analysis allows us to well-define the treon quotient topology Λ/ ∼ as a Hausdorff space, without the need to equip the vector 
space with norms or inner products. The definition of the product in Bermejo Algebras is sufficient to work with these concepts 
implicitly.

We must consider that we can also define a canonical projection mapping m : Λ → Λ/ ∼ that is not given by the composition q ◦ 
H, and therefore does not depend on conventional vectors p⃗; however, this excludes from our analysis the equivalence classes of 
opposite vectors in the S2 r-spheres and returns surface areas of radius ri. Let us consider the mapping m:
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= ∅.

Therefore, Preimq(Vη ∩ Vµ) = ∅.
Since the mapping q is surjective, each element of the codomain has at least one preimage in the

domain. If we start from the premise Preimq(Vη∩Vµ) = ∅, this implies that there is no element in Λ such
that q(p ∈ Λ) ∈ Vη ∩ Vµ, i.e., there is no element in the domain of q that is mapped to the intersection
Vη ∩ Vµ. Consequently, due to surjectivity, for there to be no p ∈ Λ such that q(p ∈ Λ) ∈ Vη ∩ Vµ, it is
necessary that there be no element in the intersection itself. If there were any element [p]∼ ∈ Vη ∩ Vµ,
surjectivity guarantees that there necessarily exists some p ∈ Λ. Therefore:

∀Preimq(Vη ∩ Vµ) = ∅ ⇒ Vη ∩ Vµ = ∅.

Let the topological space (Λ/ ∼, T̃Λ):

∀ [pµ]∼, [pη]∼ ∈ Λ/ ∼, [pµ]∼ ̸= [pη]∼, ∃Vµ ∈ T̃Λ ∧ Vη ∈ T̃Λ : Vη ∩ Vµ = ∅.

Therefore, the treon quotient topology Λ/ ∼ is a Hausdorff space.

All this analysis allows us to well-define the treon quotient topology Λ/ ∼ as a Hausdorff space,
without the need to equip the vector space with norms or inner products. The definition of the product
in Bermejo Algebras is sufficient to work with these concepts implicitly.

We must consider that we can also define a canonical projection mapping m : Λ → Λ/ ∼ that is not
given by the composition q ◦H, and therefore does not depend on conventional vectors p⃗; however, this
excludes from our analysis the equivalence classes of opposite vectors in the S2

i r-spheres and returns
surface areas of radius ri. Let us consider the mapping m:

m : Λ → Λ/ ∼

p → [p]∼

where:

∀pi, pj ∈ Λ : pi ∼ pj ⇐⇒
√
Re(⟨p2i ⟩) =

√
Re(⟨p2j ⟩).

Note that now the equivalence classes are not two points represented by position vectors on S2
i but

are each of the surfaces S2
i .

Similarly, we can now define other equivalence classes in their corresponding Λ/ ∼, for example,
taking the diamond ⋄ operation:

∀pi, pj , pk, pl ∈ Λ : (pi, pj) ∼ (pk, pl) ⇐⇒ pi ⋄ pj = pk ⋄ pl.

Our work thus opens new possibilities in the development and topological analysis of Bermejo Alge-
bras.

Conclusions

We conducted a topological analysis of the Bermejo Algebras, demonstrating their ability to create
Hausdorff spaces without the need for traditional norms, inner products, or metrics. We achieved this
distinctive feature through the creation of equivalence classes and a specific quotient topology. This
contribution is particularly relevant for the study of complex functions and complex analysis in a non-
associative algebraic framework.

We defined a Bermejian inner product derived from the product of the Bermejo Algebras; this product
is distinguished by not depending on conventional definitions where vector spaces are equipped with
metric, inner product, and norm operations. This Bermejian inner product naturally arose from the
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Note that now the equivalence classes are not two points represented by position vectors on S2 but are each of the surfaces S2.
Similarly, we can now define other equivalence classes in their corresponding Λ/ ∼, for example, taking the diamond ⋄ operation:

Our work thus opens new possibilities in the development and topological analysis of Bermejo Alge- bras.

5. Conclusions
We conducted a topological analysis of the Bermejo Algebras, demonstrating their ability to create Hausdorff spaces without the 
need for traditional norms, inner products, or metrics. We achieved this distinctive feature through the creation of equivalence 
classes and a specific quotient topology. This contribution is particularly relevant for the study of complex functions and complex 
analysis in a non- associative algebraic framework.

We defined a Bermejian inner product derived from the product of the Bermejo Algebras; this product is distinguished by not 
depending on conventional definitions where vector spaces are equipped with metric, inner product, and norm operations. This 
Bermejian inner product naturally arose from the product of the Bermejo Algebras, allowing us to work with metric and norm 
properties without explicitly introducing these structures.

Our work established an important precedent for the exploration of new algebraic structures, topo- logical structures, and differential 
manifolds. By constructing treonic spheres and treonic equivalence classes, we provided a new way to group and analyze treons. 
Demonstrating that the treonic quotient space is a Hausdorff space ensured the uniqueness of the limits of point sequences in these 
spaces, which is fundamental for the definition and study of differential manifolds.

This work set an important precedent for the exploration of new algebraic and topological structures, opening a field of research for 
mathematicians and physicists.
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