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Abstract
Rush hour and sustained traffic flows in eight cities are studied using the IBM Mega Traffic Simulator to understand the importance 
of road structures and vehicle acceleration in the prevention of gridlock. Individual cars among the tens of thousands launched 
are monitored at every simulation time step using live streaming data transfer from the simulation software to analysis software 
on another computer. A measure of gridlock is the fraction of cars moving at less than 30% of their local road speed. Plots of this 
fraction versus the instantaneous number of cars on the road show hysteresis during rush hour simulations, indicating that it can 
take twice as long to unravel clogged roads as fill them. The area under the hysteresis loop is used as a measure of gridlock to 
compare different cities normalized to the same central areas. The differences between cities, combined with differences between 
idealized models using square or triangular road grids, indicate that gridlock tends to occur most when there are a small number 
of long roads that channel large fractions of traffic. These long roads help light traffic flow but they make heavy flows worse. 
Increasing the speed on these long roads makes gridlock even worse in heavy conditions. City throughput rates are also modeled 
using a smooth ramp up to a constant vehicle launch rate. Models with increasing acceleration for the same road speeds show 
clear improvements in city traffic flow as a result of faster interactions at intersections and merging points. However, these 
improvements are relatively small when the gridlock is caused by long roads having many cars waiting to exit at the same 
intersection. In general, gridlock in our models begins at intersections regardless of the available road space in the network.
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1. Introduction
Traffic flow in cities differs from traffic on highways because city 
driving has many types of streets with various road speeds, and it 
has frequent intersections where driver judgement, signs, and lights 
determine the right of way. Cities also have complex road networks 
that can make them difficult to model. Here we use the IBM Mega 
Traffic Simulator to simulate rush hour traffic and sustained flows 
in eight cities. The purpose is to understand the influence of driver 
acceleration and road structure on the development and dissipation 
of gridlock, a condition where a high fraction of drivers are unable 
to move at the normal road speed because of congestion. Reviews 
of traffic models are in [1-3].

A discriminant for traffic mobility at merge points is the dimen-
sionless parameter aD/v2 for vehicle acceleration a, separation D 
and speed v. For example, when this number equals 1, cars can 
accelerate from a stop and fit between two cars moving at speed 
v and separation D. High values correspond to easy merging con-

ditions from a stop, while low values make merging difficult be-
cause there is no room to fit without precise timing. For any given 
city, the average separation D scales inversely with the ratio of the 
number of cars on the road, N, to the total occupied road length L, 
which is the sum of the product of all the utilized road lengths and 
their corresponding number of lanes. Then aL/(Nv2) might be con-
sidered an important, analogous, quantity that should be as high as 
possible. Low values occur during rush hour when N is high. They 
also occur when traffic tends to prefer a few main boulevards and 
cross streets, decreasing L for fixed N. Slow speeds help, as do 
high accelerations. However, the average road length per car, L/N, 
is not as decisive an indicator of potential flow problems as the 
local separation D if the congestion tends to occur near an inter-
section with free flow on the road before that. The best indicators 
are the most local and instantaneous, which makes traffic analysis 
extremely data rich on the scale of whole cities. 

High acceleration also relieves congestion on roads without in-
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tersections, such as highways. For a discussion of highway flow, 
oscillation instabilities, and possible solutions, see, for example, 
[4-7]. If the mean flow rate per lane, Nv/L = v/D measured in cars 
per second, exceeds the outflow rate at the rarefraction front lead-
ing a pack that forms, which is (0.5a/D)0.5, then more cars will join 
the pack at the back end than can leave it at the front end. The pack 
therefore grows. This outflow rate is the inverse time that it takes 
to accelerate up to the point where the vehicle separation is D. The 
pack does not grow when aD/v2 exceeds 2. Cars that accelerate 
more quickly and roads that have lower speeds each lead to more 
stable conditions.

Car acceleration is useful to consider as a variable in models of 
traffic control. Future communication systems between cars could 
aid in the control of this variable by prompting the driver to adjust 
the car’s acceleration – up to a reasonable limit – when needed to 
improve the flow [8]. Autonomously driving cars could also have 
optimum accelerations. As it is now, most drivers accelerate at 
fairly low rates in city conditions. For example, acceleration up to 
30 miles per hour in half of a city block, which is ∼ 0.05 of a mile, 
is the equivalent of only 11% of the acceleration of gravity, 0.11g. 
The fastest sports car accelerates from 0 to 60 at about 1g [9]. 
The maximum deceleration during braking is also about 1g with a 
typical value of unity for the coefficient of rolling friction between 
rubber tires and the road. 

In city conditions, when cars cannot merge after turning from one 
road to another at an intersection, traffic backs up. We would like 
to model such gridlock and see if it can be relieved by increasing 
the key dimensionless quantity discussed above, aD/v2. We do this 
using the IBM Mega Traffic Simulator code applied to 8 cities 
using road networks and speeds from www.openstreetmap.com, 
and using vehicle launch rates that simulate either a rush hour, 
which is done with a Gaussian launch rate profile, or a steady 
flow, which is done with a half-Gaussian ramp up to a steady flow 
[10,11]. We randomize the origin and destination positions for 
this rate profile, and then the code chooses the route in advance. 
Idealized road networks are studied also. Several measures of 
gridlock are employed and tested against variations in the launch 
rate and acceleration. Certain cities are found to be consistently 
worse than others depending primarily of the number of difficult 
intersections.

In Section 2, overviews of the IBM Mega Traffic Simulator and the 
traffic model are given. We also discuss a method to stream results 
from the Simulator into an analytics program on another computer. 
Section 4 shows the rush hour results comparing 8 cities in a 
standard model, and Section 5 considers idealized cities. Section 
6 shows results for these cases again with higher accelerations. 
Section 7 discusses steady flow-through models for the 8 cities. 
The conclusions are in Section 8.

2. Method
2.1. IBM Mega Traffic Simulator
The IBM Mega Traffic Simulator, called Megaffic in what follows, 
is an agent-based traffic simulator that uses street maps from http://
www.openstreetmap.com and accepts as input a table of origin 
and destination points on a rectangular grid for each second of 
time [11]. Streets are designated as “primary,” “secondary,” and 
so on, with different speeds for each type ranging from 80 km hr−1 

for “motorways” to 20 km hr−1 for “residential.” The algorithm to 
determine the route for each car from the origin and destination 
grid points is discussed in [12]. These routes follow from the 
origin-destination table and are fixed for each car at the start of the 
simulation. Driver preferences with regard to travel time, distance, 
and number of turns are considered.

The program uses the Gipps model for driver action which 
contains an acceleration value a, evaluated here with a Gaussian 
probability distribution function with standard deviation σa [13]. 
Our nominal value is a = 1.7 ± 0.3 m s−2 but different values are 
used for experimentation. For reference, the vehicle lengths are 
all assumed to be 4.46 meters, the time step is 1 second, and the 
reaction time in the Gipps model is 2/3 second. The program also 
uses the lane-selection model in [14].

Although Megaffic is highly sophisticated as a simulation tool, 
it is still under development. It moves cars according to standard 
models along realistic road networks but there are elements of 
real traffic flow that are not present yet. For example, the models 
used here do not have traffic lights at intersections, nor can drivers 
change their routes to respond to changing road congestion. 
Still, it is useful as a comparison between cities and to test some 
basic properties of traffic flow in complex networks with tunable 
conditions, such as driver acceleration.

Use of Megaffic also allows monitoring of every car at every 
second, something that is not possible in real cities. The data 
rates are enormous for this, however. Traffic flow is an interesting 
problem from the point of view of data volume. Every car among 
tens or hundreds of thousands of cars is doing something interesting 
every second, such as braking, accelerating, turning, or interacting 
with other cars that are only seconds away in time. Understanding 
the source, origin and control of potential bottlenecks requires 
second by second monitoring at key locations, and for some cities, 
at many locations. Thus, the problem has a large dynamic range 
in both space and time dimensions. For example, the range of 
spatial scales is the ratio of the city size to the car size (e.g., ∼ 
2000-squared), or the total road length to the car size (∼ 50000), 
while the range of time scales may be determined by 1 second 
intervals for an hour or two (∼ 5000). This dynamic range even for 
inner city areas can exceed a billion distinct information elements 
during rush hour. For a large city and with commuters from the 
suburbs, the information can exceed a trillion elements.
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2.2. Streaming Analytics
Megaffic enables traffic analysis on microscopic levels while 
generating massive amounts of simulation data. At each simulation 
time step, each car’s longitude, latitude, speed, acceleration, 
distance to the leading car, road of travel, CO2 output, and other 
quantities, are computed and updated for the next time step. For 
a small city model, these values can be written to storage for later 
use, but for a large city with many cars traveling a long time, the 
data volume can be too large to store, and only the time-averaged 
or integrated quantities can be saved. This inability to write 
what is essentially every variable at every time step is common 
for computer simulations, which typically store only values at 
widely spaced intervals to limit the total data volume. Traffic flow 
is an intrinsically data-rich problem, however, where something 
interesting and important has the potential to occur at every time 
step for every car. Other physical problems are like that too, such 
as turbulence, weather forecasting, and financial markets.

For Megaffic, a lack of transparency to the state of the simulation 
at every time step makes it very difficult to perform a car-by-car 
analyses and visualizations that represents the real experiences of 
drivers in a large city. Also, the usual procedure of writing to disk 
during the simulation and they analyzing the results later only gives 
visibility to the problem after it is too late to change anything.

In order to overcome these limitations, we added a streaming 
capability to the Megaffic software [15]. At each simulation time 
step, each car state was packaged into a message and streamed 
to another process running on another computer which is only 
responsible for analyzing and visualizing the simulated data as it 
arrives. This approach decouples the simulation program from the 
analysis program. The analysis can then handle arbitrarily large 
amounts of data without ever requiring it to be stored. Streaming 
analytics also makes it easier to modify the analysis method, 
seeking out unexpected features, for example, without altering the 
simulation code while it is running.

In our application, the communication between processes used 
UDP protocol as it does not require hand-shaking and connection 
between them. This approach guarantees that the simulation 
program can still run at a full speed without worrying about the 
latency of the network or the analysis program on a different 
computer. However, since UDP protocol does not guarantee 
delivery and ordering, the analysis program needs to compensate 
for or be impervious to occasional transmission errors.

We used MATLAB and IBM’s Infosphere Streams as two examples 
for the analysis software. In some cases, we ran Megaffic on a 
multinode IBM Cloud computer and streamed the data to a socket 
on a desktop computer, where it was retrieved on-the-fly and 
put through MATLAB or Infosphere Streams. In other cases, we 
ran Megaffic on one desktop computer and streamed the results 
to another running these programs. In all cases, we were able 
to visualize and monitor the traffic state at single-second time 
resolution and on an individual car basis. Since the streaming was 
performed while the simulation was in progress, a real time display 

of every car on the road was realized.

Streaming was also used to display and map instantaneous gridlock 
measures (Section 4). By viewing where and when the slow spots 
occurred on a city road map, the positions and speeds of other 
cars around them, the level of congestion on adjacent roads where 
the slow cars needed to merge, the relative speeds of cars on the 
adjacent roads, the road structures, and so on, we could watch the 
gridlock patterns develop and understand their origins, such as 
the difficulty of merging onto new roads at certain intersections. 
We could also try various fixes in different Megaffic simulations, 
such as higher accelerations for all cars, and understand quickly 
how well they worked by watching the same cars at the same 
intersections when the problem was solved.

One study, for example, considered the role of a few vehicles with 
low accelerations. We noted that these vehicles did not affect the 
overall city congestion much and wondered why. So, we tagged 
them and watched them move through the city streets along with 
all of the other cars. The laggards accumulated lines of other cars 
behind them between intersections, as expected, but as soon one 
left an intersection, the cars trapped behind it dodged off to other 
roads at their normal accelerations and the line temporarily went 
away. This was a different behavior compared to the long lines 
that accumulated at permanently bad intersections, which were the 
most common cause of gridlock.
 
InfoSphere Streams was developed to ingest and analyze informa-
tion in large data streams to enable on-the-fly big data applications 
[16]. It provides built-in operators for basic streaming operations, 
and has a Stream Programming Language (SPL) where end-us-
ers can create their own operators. For this project, we used the 
built-in UDP SINK operator to ingest and convert the aggregated 
message stream from Megaffic into a flow of tuples, and the built-
in SPLIT operator to extract a single car state from a tuple. Then 
we defined an operator to calculate our gridlock condition, i.e., the 
fraction of cars moving below 30% of their corresponding road 
speed (Section 4), and other interesting quantities. For visualiza-
tion, the HTTP TUPLE VIEW operator was used to stream the car 
position to a display program on the internet while Megaffic was 
running. Although the visualization tools were limited for Info-
Sphere Streams, this software was a much more scalable option 
than MATLAB for analyzing large amounts of data.

3. Launching Rates for Cars
To simulate rush hour, we launched cars in various cities using a 
10x10 grid inside the central 10 km by 10 km square road network. 
Normalization of each city to the same area mitigates trivial scaling 
differences when we compare the results. The cars were launched 
in batches, with some number R at a time using randomly chosen 
origin and destination points. The launching times were separated 
by 10 seconds to space them out along the adjacent streets. Thus, 
the launch rate was R/10 cars per second within the 100 km2 area. 
To simulate a rush hour, we set
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where t = 0, 10, 20, 30, ... seconds up to some maximum time tmax, 
taken to be 5000 seconds in many cases but varied to study the 
impact of spacing out cars during rush hour. To make a smooth 
Gaussian launch pattern, we took t0 = tmax/2 and σ = tmax/5. Sample 
launch patterns are shown in Figure 1. The curves are boxy because 
the launch numbers have to be integers for discrete cars. Rush hour 
simulations using launch rates like this are discussed in section 4.

In another set of experiments, cars were launched at a rate that has 
a half-Gaussian ramp with σ = 1000 seconds up to the peak at 2500 

seconds, and then remains constant thereafter for at least 20,000 
seconds. After the initial ramp up, this model simulates a steady 
flow of cars to determine what a city can sustain without gridlock 
conditions. These steady flow models are discussed in section 7.

4. Results for Rush Hour Simulations
Cars launched into the road network of a city accelerate up to the 
road speed and move around, negotiating other cars with a no-
collision rule and turning from one street to another according to 
pre-determined routes. Cars that hesitate or stop at intersections 
and other places cause the cars behind them to slow down or stop 
as well, as in a normal traffic flow.
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Fig. 1.— Trip launch rates for rush hour simulations. Rates are in cars or trips per 10 seconds.
Figure 1: Trip Launch Rates for Rush Hour Simulations. Rates are in Cars or Trips per 10 seconds.

We are interested in finding a good diagnostic for gridlock 
conditions, when a high fraction of cars cannot move at the nominal 
road speed. To search for such a diagnostic, we tried various things, 
such as the distribution function of trailing distances between cars, 
the fraction of cars stopping, and so on. The clearest diagnostic we 
found was the fraction of cars with an instantaneous speed below 
some fraction of the nominal road speed. To find this limiting 

fraction, we plotted histograms of the ratio of car speed to local 
road speed in fixed intervals of time.

Figure 2 shows an example with 6 equal time intervals out of the 
total travel time of 5973 seconds for a rush hour simulation in 
Washington DC. The peak launch rate in equation 1 is R0 = 80 
cars per 10 second interval and the launch window is tmax = 5000 
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seconds. Each plotted interval represents 1/19th of the total time 
when cars are on the road. The other time intervals between these 
look about the same. The total time is longer than tmax because cars 
continue to move to their destinations after the last one is launched.

Figure 2 shows that at the beginning of the simulation, in the time 
interval from 315 to 629 seconds (top left), most cars are within 
30% of the local road speed, whatever that is (the local road speed 
varies from car to car, depending on which type of road that car is 
on). There is no significant congestion. At time progresses, more 
and more cars dip below 30% of their road speed, which is indicated 
by the red vertical line. At the time of peak launch rate, which is 
t0 = 2500 seconds, a high fraction of cars are moving below 30% 
of the local road speed, and gridlock prevails (there are even more 
cars not plotted and out of range to the left in the figures, moving 
slower than 0.1% of the road speed). This bad condition continues 
until well after the last car is launched, with a significant fraction 
moving slowly even at t = 5339 − 5653 seconds. Only after ∼ 5600 
seconds do the roads clear up.

The fraction of cars moving slower than 30% of the local road 
speed is considered here to be a good measure of bad driving 
conditions after experiments like this. There is hysteresis in the 
congestion, with bad conditions asymmetrically shifted toward 
late times compared to the time of peak launch. Figure 2 shows 

that roads fill up quickly but drain slowly.

The main results in Figure 2 are made more concise by plotting the 
fraction of cars moving slower than 30% of the road speed versus 
the number of cars currently on the road. Such plots are shown 
in Figure 3 for Washington DC with seven different peak launch 
rates, R0 = 40, 50, 60, ..., 100 cars per 10 seconds, all with tmax = 
5000 seconds. Each curve is a single experiment of a complete 
rush hour in the road network using the same 10x10 grid for origin 
and destination points, although all of these points are random 
and different for each case. The resulting curves do not depend 
on these random routes significantly for a given launch rate. The 
wiggles in the curves reflect the details of individual cars stopping 
and starting. As time progresses, the position of a simulation on 
a curve moves counter clockwise, as indicated by the blue arrow. 
Alternate curves have fiducial markers indicating the time: green 
triangles are at tmax/4 (i.e., 1250 seconds; these are difficult to see as 
they occur in the lower noisy part of each curve); filled circles are 
at tmax/2, squares are at 3tmax/4, and diamonds are at tmax. The worst 
gridlock occurs at the top of each curve, where the fraction of cars 
moving slower than 30% of the road speed is high, often exceeding 
10%. The corresponding time is between 30% and 100% of the 
maximum launch time. As expected, the gridlock improves and 
the number of cars on the road decreases as the peak launch rate 
decreases.
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Fig. 2.— Distributions of the ratio of instantaneous car speed to road speed for several intervals

of time in a rush hour simulation of the central 10 km square region in Washington DC. At early

times, there are very few cars and none are moving slower than 30% of the road speed (vertical

red lines). As more cars enter the roads, the total number increases and the fraction of cars that

move slowly increases too. The total duration of the rush hour start times is as shown in figure

1, 5000 seconds, but histograms here in the lower panel show significant numbers of cars and high

fractions that are moving slowly long after this time. The time at the peak launch rate, 2500

seconds, corresponds to the upper right panel. This delay in clearing of the congestion, compared

to the relatively fast time for it to build up, corresponds to an asymmetry of traffic flow, leading

to the hysteresis shown in Figure 3.

Figure 2: Distributions of the ratio of instantaneous car speed to road speed for several intervals of time in a rush hour simulation of 
the central 10 km square region in Washington DC. At early times, there are very few cars and none are moving slower than 30% of 
the road speed (vertical red lines). As more cars enter the roads, the total number increases and the fraction of cars that move slowly 
increases too. The total duration of the rush hour start times is as shown in figure 1, 5000 seconds, but histograms here in the lower panel 
show significant numbers of cars and high fractions that are moving slowly long after this time. The time at the peak launch rate, 2500 
seconds, corresponds to the upper right panel. This delay in clearing of the congestion, compared to the relatively fast time for it to build 
up, corresponds to an asymmetry of traffic flow, leading to the hysteresis shown in Figure 3.
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the worst traffic jams occur after the cars stop entering the road (the peak in the curves is counter

clockwise from the diamonds) because the last tens of percent of cars have no where to go.

Figure 3: The fraction of the cars moving slower than 30% of their local road speed is shown as a function of the number of cars on the 
road for rush hour simulations in Washington DC. Each curve has a different peak launch rate, R0, with lower R0 corresponding to less 
congestion because the number of cars on the road at any one time is lower. The curves are traversed in a counter clockwise direction, 
as shown by the arrows. The green triangles in the lower part of the ascending curves corresponds to a time midway up the rising part 
of the rush hour model, i.e., at t0/2 = 1250 seconds. The dots correspond to the time of peak launch rate, 2500 s, the squares are at 3750 
s, and the diamonds are at 5000 seconds, when cars stop entering the road. For high launch rates, the worst traffic jams occur after the 
cars stop entering the road (the peak in the curves is counter clockwise from the diamonds) because the last tens of percent of cars have 
nowhere to go.

Figure 4 shows the well-known result that gridlock improves if the 
rush hour time is prolonged for the same total number of cars. The 
different curves have different R0 and tmax with a constant product 
R0tmax, which is proportional to the total number of cars launched. 
As R0 decreases and tmax increases, the peak fraction of slow cars 
decreases. The plot has a logarithmic ordinate, so the decrease is 
rapid with small increases in tmax. Doubling the maximum time 
from 4000 s to 8000 s changes the flow from 20%–50% gridlocked 
to less than 1% gridlocked.

Now we consider eight different cities, all with the inner 10 km 
square used for the road network. These cities span a variety of 
network shapes, from regular grids, as in Indianapolis and Beijing, 
to highly convoluted small streets, as in London, Istanbul, and 

Damascus. Some have large waterways running through them with 
several bridges going from one side of the city to the other (e.g., 
Washington D.C., Istanbul).

Figure 5 shows the results for the 8 cities. They all have the same 
launch rate and duration, R0 = 80 cars per 10 s, tmax = 5000 s. 
The cities with high looping curves in the figure are more easily 
congested in our models than the others. Note that the total number 
of cars launched is the integral under the launch rate in equation 1, 
(2π)0.5σR0/10 = 20053. The maximum number on the road at any 
one time for most of the cities is about 20% of this integral, which 
indicates that most cars get where they are going even when there 
is severe gridlock elsewhere. Nairobi roads reach a peak count of 
7567 cars and a peak fraction of cars slower than 30% of the road 
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Figure 4: The fraction of slow cars is plotted versus the number of cars on the road for Washington DC in 7 cases with different total 
time spans for the rush hour, all with the same total number of cars launched. As the rush hour is spread out in time, the fraction of slow 
cars decreases. Even small changes in the duration of rush hour lead to large changes in the slow fraction, considering the ordinate is in 
logarithmic coordinates. The pair of numbers indicated for each curve is the launch function pair, (R0, tmax), in the notation of equation 1.

speed equal to 77.4%. Four cities have slow-car fractions of about 
a per cent or less.

What differences between cities contribute to a range of slow-car 
fractions even when they have same launch rates and city areas? 
We considered that the differences could be the total road capacity 
for all of the occupied roads, or perhaps the normalized capacity 
which is the road length per car, or the average number of cars per 
road, or perhaps the average road speed per occupied road. These 
quantities were measured at every second and a representative 
sample for Figure 6 was taken at two specific time steps, the time 
of peak launch, t0 = 2500 s, and midway down the Gaussian after 
the peak, at t = 3750 s. The abscissa in the plots is the integral under 
the hysteresis loop in Figure 5, which is a measure of gridlock. 

Filled circles are for the first time, and squares are the second time 
(the same symbols as in Figures 3 and 4). Colors represent cities 
as in Figure 5.

Figure 6 shows only weak correlations between these four 
quantities and the degree of gridlock. An obvious relation is in the 
lower right, where the number of occupied roads per car drops for 
the worst gridlock cases. This merely reflects the inability of cars 
to reach their destinations in these cities, and is more a result of 
gridlock than a determinant. In the upper right, the average road 
speed per car drops for the red point, which is Nairobi; this is not 
the car speed but the road speed limit. Still, even with slow road 
speeds, a high fraction of the cars are moving more than 30% 
slower.
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clarity.

Figure 5: The fraction of slow cars is plotted versus the number of cars on the road for 8 cities with various road types. All of the curves 
are for the same rush hour model with R0 = 80 cars per 10 seconds, and tmax = 5000 seconds. Some cities get congested much more 
easily than others, as shown by the high values of the instantaneous slow fraction. Time increases counter clock wise in each loop. The 
correspondence between color and city is preserved in the next two figures, for clarity.
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Figure 6: Distributions of various quantities for the 8 cities plotted versus the area under the top part of the curves in Figure 5. The 
quantities considered are: (top left): the average occupied road length per car, (top right) the average occupied road speed per car (road 
speed is a function of the road and is not the car’s speed), (bottom left): the road length per occupied road, and (lower right): the average 
number of cars per occupied road. Aside from quantities that result from congestion, there is no evidence for a cause of congestion in 
properties of the roads themselves, leading to the inference that the cause begins at the intersections.

The road length per occupied road and the road length per car seem 
to increase with gridlock. This was not expected because it means 
there is more room in the road network for cars when gridlock is 
worse. We would have expected the opposite, that gridlock results 
when there is less room on the road for the existing cars.

These considerations lead us to suspect that the intersections are 
more the problem than the roads. To study this, we plot on the left 
in Figure 7 the number of roads with slow cars (defined as above 
as cars moving at less than 30% of their local road speed) versus 
the fraction of the occupied roads with slow cars. Time varies 
clockwise around the jagged curves. The bottom panel has a bigger 
scale than the top panel so that all of the cities can be seen clearly 
in one panel or another. Similarly, the right-hand side of Figure 
7 shows the number of roads with slow cars versus the average 
fraction of the road speed for all cars.

These distributions have an interesting pattern. In the left-hand 
panels, all of the cities start moving along a diagonal line toward 
the upper right until about the time of the peak launch rate, which 
is shown by the square (symbols are the same as in Figures 3 and 
4). This trend corresponds to a simultaneous increase in both the 
number and the fraction of roads with slow cars. After the time 
of peak launch rate, the fraction of occupied roads with slow cars 
continues to increase as the roads without slow cars begin to free 
up. The roads with slow cars free up much more slowly, decreasing 
the curve gradually along the ordinate as it continues to move to 
the right. Eventually all of the gridlocked roads begin to empty and 
the curves decrease down and to the left. This pattern is another 
manifestation of the hysteresis seen in Figures 3-5, but it shows 
that even with bad gridlock only a small fraction of the occupied 
roads, less than 1%-10% for 7 of the cities, actually have this 
gridlock – the rest are relatively free. Also, as shown in the right-
hand panels, the average speed of all the cars is within 80% of the 
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local road speed for 6 of the 8 cities. In the worst cases, it drops 
down to 20%.

For Istanbul (black curve), the fraction of occupied roads with 
slow cars in Figure 7 is a maximum, and the average fraction 
of the road speed is a minimum, when the number of roads with 
slow cars is far lower than the peak number. The same is true for 
Washington DC. What this means is that after a while, most of 
the gridlock is on only a few roads and the rest of the roads are 
relatively clear. It takes a long time for these blocked roads to free 

up while all the other roads empty. Cities without this pattern, such 
as Damascus (yellow) and Beijing (gray) have distributions that 
go up and come down on nearly the same diagonal line. For these 
cases, the roads that block up easily also free up easily. Thus, the 
openness of the curves in Figure 7 indicates the range in the ability 
of blocked roads to free up. Narrow curves have a small range, 
which means the troublesome roads and intersections are all about 
the same, while open curves have a wide range, which means that 
some intersections are much worse than others.
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Fig. 7.— (Left:) The number of roads with slow cars (defined to have less than 30% of the road

speed) versus the fraction of the occupied roads with slow cars. (Right:) The same quantity versus

the average fraction of the road speed for all cars. Each curve is for a different city during the rush

hour models shown in Figure 5 using the same color scheme. Points move clockwise around the

curves in time for the left-hand panels and counter clockwise for the right-hand panels. The top

two panels show enlargements of the lower two panels and also exclude the red and black curves

for clarity. These figures indicate that gridlock is dominated by a few intersections in a city.

Figure 7: (Left:) The number of roads with slow cars (defined to have less than 30% of the road speed) versus the fraction of the occupied 
roads with slow cars. (Right:) The same quantity versus the average fraction of the road speed for all cars. Each curve is for a different 
city during the rush hour models shown in Figure 5 using the same color scheme. Points move clockwise around the curves in time for 
the left-hand panels and counter clockwise for the right-hand panels. The top two panels show enlargements of the lower two panels 
and also exclude the red and black curves for clarity. These figures indicate that gridlock is dominated by a few intersections in a city.
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At this point, one of the limitations of the Megaffic code should be 
recalled, as the results for real cities could be different from what 
we simulate. This limitation is that the routes used by all of the cars 
are determined and fixed before the simulation begins, so drivers 
cannot change their routes as the congestion develops. In one 
sense this is realistic because drivers sometimes have few options 
for different routes and are forced to follow the congested roads. 
However, some cities have many more side streets connected to 
the main thoroughfares than other cities do, and for these well-
connected cities, smart drivers will get off the congested roads and 
take alternate routes even if they are longer.

We experimented with more diverse route plannings on a square 
grid of roads to see what possible improvements there might be. 
The road grid measured 51 by 51 roads intersecting at right angles; 
it will be discussed later for another purpose in Section 5. We used 
Dijkstra’s algorithm to design trips [17]. In one case, we generated 
100 trips that start from the upper-right cross-point in the square 
grid to the lower left cross-point using Dijkstra’s shortest path for 
all of them. As a result, they followed the same path. In a second 
case, we generated 100 trips from the same start and end points 
and each trip again used the shortest path algorithm but the cost of 
the used roads was raised sequentially as the trips were generated. 
The result was a sequence of trips distributed all over the map. The 
second approach improved the average trip time in this idealized 
model by a few per cent and avoided jams at crowded intersections.

Another experiment moved cars from the entire left-hand column 
to the entire right-hand column in a square 51 × 51 road grid. 
Dijkstra’s method decreased the total trip time by 7% compared to 
the Megaffic algorithm for trip designs.

These tests suggest that modest levels of improvement are possible 
with trip designs that program in some avoidance strategy. Square 
grids are optimum for this however, because the number of routes 
with the same total road length is enormous. Small variations in 
routing can decrease the traffic flow on each road by the inverse of 
the number of different routes.

5. Idealized Road Networks
Idealized road networks allow us to study the most basic properties 
of traffic flow without the complexity that comes from a mixture 
of road structures in real cities. We considered the three idealized 
networks shown in Figure 8; only the inner portions of the left 
and middle networks are shown. On the left is a square grid 
composed of 51 single lane roads in each direction; the dots are 
the intersections. Each road segment has the same length L and the 
same speed v. In the center is a triangular network with single-lane 
roads in each direction along the 60° angles, and with segment 
lengths L and uniform speeds v. On the right is a square grid with 
two-way, single-lane segments as before, but now the central parts 
along each axis have roads 10 times longer. This third case is 
intended to simulate cities with boulevards or highways that can 
hold more cars than the shorter side streets elsewhere. In another 
set of simulations, we considered higher or lower road speeds for 
the same middle segments in the vertical and horizontal directions, 

but now with normal short road lengths there as in the left panel.

The results of rush hour launch rates for these cases are shown in 
Figure 9. Each panel has five cases for the grid type indicated: four 
with (R0, tmax) = (80, 5000) and (160, 5000) for each of (L, v) = 
(200, 30) and (400, 60), and a fifth with (R0, tmax) = (40, 10000) and 
(L, v) = (400, 30). Units of R0 are cars per 10 seconds; units of tmax 
are seconds; units of L are meters, and units of v are km hr−1. This 
choice of cases is made because cases with (L, v) = (200, 30) and 
(400, 60) have the same average travel times (i.e., from the ratio 
of road length to speed), which normalizes the simulations to time. 
The different (R0, tmax) give light and heavy rush hour traffic with 
one having twice the launch rate as the other. The fifth case has half 
the launch rate for the same number of cars compared to (R0, tmax) 
= (80, 5000), but the road density is the same because the speed is 
half compared to the case (L, v) = (400, 60). For comparison, the 
square grid results from the top left are repeated in the lower left 
as dotted curves.

The results show relatively little gridlock for the square and 
triangular grid cases (top left and right) unless there are long roads 
mixed with short roads (lower left). Then the congestion gets 
much worse for the heavy rush hour cases (red and cyan curves in 
the lower left). This worsening condition contrasts with the light 
rush hour case in the lower left, where long roads improve the 
flow (blue, black and green solid-line curves have slightly smaller 
slow-car fractions than the dotted curves of the same colors). For 
equal road lengths, the triangular grid is marginally better than the 
square grid. In all cases, the lowest launch rates (blue curves) have 
the least congestion.

The results for a square grid with uniform road lengths and variable 
road speeds are shown in the lower right of Figure 9. As mentioned 
above, all of the road speeds are the same except for horizontal 
roads in a vertical strip through the center and vertical roads in a 
horizontal strip through the center, where the roads are either half 
the speed of the other roads (dashed curves) or twice the speed 
(solid curves). Lowering the speed of some fraction of the roads 
does not increase congestion noticeably (the dashed curves in the 
lower right panel are like the similarly-colored curves in the upper 
left). However, increasing some road speeds creates problems for 
all launch rates. The reason for this is that cars on the fast roads 
come to their ending intersections quickly, and then they have to 
wait for the cars ahead of them to cross before they can go.

Note that the nominal road speeds in all of these cases can be 
reached after traveling only at most 20% of the road length, so the 
congestion is not an artifact of acceleration in a limited domain. 
For example, several cases in Figure 9 have a road length of 200 
meters with a road speed of 30 km hr−1, which is 8.3 m s−1. The 
acceleration is always 1.7 ± 0.3 m s−2. With this acceleration, the 
road speed is reached after traveling only 20 m, which is 10% of 
the road length. For 60 km hr−1 roads of 400 m length, the speed is 
reached after 20% of the road is traveled.
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6. Dependence on Acceleration
Merging and leaving an intersection or other stopping point should 
be faster if the acceleration is higher. The dimensionless quantity 
aD/v2 was discussed in the introduction. For a given road density, 
written here as the separation between cars, D, and road speed, v, a 
higher acceleration a, and higher corresponding braking rate, which 
in our simulations is proportional to a, allow for easier merging 
between cars, either during lane shifts or while entering new roads 
at intersections. To test for this in Megaffic, we increased the mean 
and standard deviation for the accelerations of all cars by factors of 
20.25i for i = 0, 1, 2, up to 9. Thus, the acceleration ranges between 
the nominal value we have been using in Figures 1-7, which is a = 
1.7 ± 0.3 m s−2 up to a = 8.09 ± 1.43 m s−2.

The rush hour models with these accelerations are shown in 
Figure 10 for Washington DC and Damascus. The looping curves 
decrease rapidly with increasing acceleration. After reaching a 
certain value, they increase again but only at a level of 0.1% or so. 
Too large an acceleration increases the gridlock because then cars 
move too fast after a single time step to merge with traffic at the 
nominal road speed.

Figure 11 shows the decrease in area under the hysteresis loop 
versus the acceleration factor for the five cities in Figure 5 that 
have the most gridlock. Each city improves when the acceleration 
increases, with the least gridlocked cities improving the fastest. 
Highly gridlocked cities do not improve as much with acceleration 
because each bad intersection has a lot of stopped cars and only 
a small fraction of cars get to accelerate at the beginning of 
the queue when it leaves the intersection. Improvements from 
increased acceleration help more when there are small queues at 
a large number of intersections, rather than large queues at a few 
intersections.

7. Results for Steady Flow Simulations
Steady traffic flow inside a city center was also investigated using 
a vehicle launch rate that increases first as a half-Gaussian with σa 
= 1000 seconds up to the peak rate R0 at t0 = 2500, as for most of 
the rush hour simulations discussed above, and then levels off to 
the steady rate R0 for another 20,000 seconds. At low R0, traffic was 
stable with the rate of trip completion equaling the launch rate. As 
R0 increased, there was a certain value beyond which the number 
of cars on the road increased indefinitely, causing more and more 
congestion over time.

Figure 12 shows the results for one city; other cities are similar. 
The launch rates increase from R0 = 10 cars in each 10 second 
interval, up to 100 cars/10 s, in steps of 10 cars/10 s. In the 
lower right panel, the number of cars is shown for each R0 as a 
function of time using logarithmic coordinates on the ordinate. 
The lower curves level off, indicating a constant number of 
cars or equilibrium between trip starts and completions. Higher 
launch rates have increasing numbers of cars without leveling off. 
The center panel on the right plots the same thing but in linear 
coordinates on the ordinate, to emphasize the rapid increase in car 
counts for large R0 at later times. The lower and middle left panels 

show the summed speeds of all the cars versus the number of cars 
and the time, respectively. The summed speed is a measure of the 
total traffic flux. Higher R0 gives higher summed speed even at 
late times and high car numbers, so the city is supporting these 
cars and still moving them. However, the average speed per car, 
shown by the red decreasing curves in the bottom left, decreases 
rapidly with increasing car numbers, suggesting congestion. This 
congestion is shown better in the top panels where the fraction of 
cars with speeds less than 30% of their local road speed is plotted 
versus time and number of cars on the road. This fraction stays low 
for low R0 but increases to a saturated value of ∼ 0.9 at high R0 and 
late times. It does not reach unity because even with congestion, 
there are still cars that move on unblocked routes.

The maximum R0 for equilibrium flow varies for the 8 cities in 
the same way that the congestion indicator varies for the rush 
hour experiments. This variation is shown in Figure 13 where the 
number of cars on the road at 10,000 seconds is plotted versus the 
launch rate R0 on log-log axes. The 4 cities on the left have the 
largest congestion and are plotted separately from the 4 cities on 
the right, using a different range of coordinate values. Following 
the order of cities in Figure 5, those that are most easily congested 
in a steady state branch off earlier in Figure 13 from the linear 
increase of car numbers with R0.

The solid curves in Figure 13 are for the normal acceleration, a 
= 1.7±0.3, used above, and the dotted curves are for twice this 
acceleration with the same road speeds. As in Section 6, increased 
acceleration decreases congestion. In this case, the decreased 
congestion allows higher launch rates and more cars on the road in 
a steady state before the runaway growth begins at high R0. Thus, 
the dotted lines lie below and to the right of the solid lines. The 
result is sensitive to acceleration as found above: launch rates can 
increase safely by ∼ 25% if the average acceleration doubles [18].

8. Conclusions
City traffic was investigated using the IBM software package 
Megaffic combined with car-by-car and second-resolved streaming 
analytics using socket writes to a second computer. Rush hour and 
sustained traffic flows in 8 cities were followed with Gaussian-
shaped vehicle launch rates and random city routes determined in 
advance.

A good measure of congestion was found to be the fraction of cars 
moving slower than 30% of their local road speed. Decreasing 
the launch rates for the same window of time, or increasing the 
time interval for vehicle launching with the same total number 
of cars, both decreased congestion, as expected from common 
experience. Increasing vehicle acceleration for the same road 
speed also improved traffic flow as it increased the probability that 
a car waiting at an intersection could enter the next road and merge 
safely.

The main impediments to traffic flow seemed to occur at the 
intersections in our models, not in the free-streaming traffic 
between intersections. Cars stopped at an intersection had to 
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wait for an opening to cross to the next road, and all of the cars 
behind them had to wait also. Increasing car acceleration helped, 
as just mentioned, but only for the lead car at the intersection. If 
a road system was jammed to a certain level by a small number 
of cars at each of a large number of intersections, then increased 
acceleration improved the overall flow rate, sometimes by a large 
factor. However, if the same level of jamming was caused by a 
large number of cars stuck at a small number of intersections, then 
vehicle acceleration did not matter much as the fraction of cars 
with improved mobility was small.

Real-time streaming analytics using all of the data generated 
by Megaffic was found to help in visualizing and understanding 
problems as they arose. It would have been impossible with the 
available computers to store all of the data and analyze it later in 
large-network simulations. Standard storage and retrieval methods 
used for limited runs could not be scaled to real-life systems.

Figure 8: Idealized road grids: (left) The inner portion of a square grid with a total of 51 vertical and 51 horizontal roads. Each segment is 
400 m long and consists of single-lane traffic in each direction. The axes labels give the road positions in km. (middle) The inner portion 
of a triangular grid with 51 roads in each 60° direction supporting single-lane two-way traffic; each segment is 400 m long. (right) The 
full image of a square grid with 51 roads in each direction and roads 10 times longer than the others in the central cross; the roads are 
also single-lane and support traffic in each direction. Segment lengths are 400 m in each quadrant corner and 4 km in the central cross.
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Figure 9: The fraction of cars moving slower than 0.3 of the local road speed is plotted versus the current number of cars on the road 
for the idealized grids shown in Figure 8. Each panel has 5 rush hour launch rates characterized by the parameter combinations (R0, tmax, 
v, L) = (80, 5000, 60, 400) for green curves, (160, 5000, 60, 400) for red, (80, 5000, 30, 200) for black, (160, 5000, 30, 200) for cyan, 
and (40, 10000, 30, 400) for blue. The meaning and units of these parameters are, in order, peak launch rate in cars/10s, total time span 
for car launching in seconds, road speed in km hr−1, and segment length in m. The top left and right panels show only these curves. The 
lower left panel shows solid-line curves for the square grid with long roads in a cross pattern (Fig. 8), and it repeats the curves in the 
upper left as dotted lines, for comparison. The lower right panel is for a uniform square grid like the upper left panel, but the road speed 
in the segments of the central cross is 2 times higher (solid curves) or 2 times lower (dashed curves) than the speed in the other roads. 
Road networks with long segments (lower left) or road networks with fast segments (lower right) experience greater congestion at high 
launch rates because these enhanced road segments can have a lot of cars but they have only one endpoint to exit onto the rest of the grid.

– 24 –

0.01%

0.1%

1%

10%

100%

Square Grid Triangular Grid

0 5 10 15
0.001%

0.01%

0.1%

1%

10%

100%

F
ra

ct
io

n
 w

ith
 S

p
e

e
d

 <
 0

.3
 o

f 
R

o
a

d
 S

p
e

e
d

Square Grid with

Some Long Roads

0 5 10 15 20

Number of Cars on the Road (x1000)

Square Grid with

Two Road Speeds

Fig. 9.— The fraction of cars moving slower than 0.3 of the local road speed is plotted versus the

current number of cars on the road for the idealized grids shown in Figure 8. Each panel has 5 rush

hour launch rates characterized by the parameter combinations (R0, tmax, v, L) = (80, 5000, 60, 400)

for green curves, (160, 5000, 60, 400) for red, (80, 5000, 30, 200) for black, (160, 5000, 30, 200) for

cyan, and (40, 10000, 30, 400) for blue. The meaning and units of these parameters are, in order,

peak launch rate in cars/10s, total time span for car launching in seconds, road speed in km hr−1,

and segment length in m. The top left and right panels show only these curves. The lower left

panel shows solid-line curves for the square grid with long roads in a cross pattern (Fig. 8), and

it repeats the curves in the upper left as dotted lines, for comparison. The lower right panel is for

a uniform square grid like the upper left panel, but the road speed in the segments of the central

cross is 2 times higher (solid curves) or 2 times lower (dashed curves) than the speed in the other

roads. Road networks with long segments (lower left) or road networks with fast segments (lower

right) experience greater congestion at high launch rates because these enhanced road segments

can have a lot of cars but they have only one endpoint to exit onto the rest of the grid.
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Fig. 10.— The fraction of slow cars versus the number of cars for two cities, Washington DC and

Damascus, with (R0, tmax) = (80 cars/10s, 5000 s) and different accelerations, increasing by powers

of 20.25 from the top curve down to the green curve and then back up again to the cyan curve.

Greater average car acceleration decreases congestion.

Figure 10: The fraction of slow cars versus the number of cars for two cities, Washington DC and Damascus, with (R0, tmax) = (80 
cars/10s, 5000 s) and different accelerations, increasing by powers of 20.25 from the top curve down to the green curve and then back up 
again to the cyan curve. Greater average car acceleration decreases congestion.
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Fig. 11.— The integral below the curve of slow car fraction versus car number – the hysteresis loop

– is shown versus the acceleration factor for simulations of 5 cities. The acceleration for each point

in a segmented curve equals the nominal acceleration, 1.7±0.3 m s−2 multiplied by the acceleration

factor. Highly congestible cities like Nairobi and Istanbul are less sensitive to acceleration than

weakly congestible cities because the congestible cities have a smaller number of more difficult

intersections where the queue to cross is long. Then only a small fraction of slow cars get a chance

to accelerate up to the road speed while the rest of the cars wait in the queue.

Figure 11: The integral below the curve of slow car fraction versus car number – the hysteresis loop – is shown versus the acceleration 
factor for simulations of 5 cities. The acceleration for each point in a segmented curve equals the nominal acceleration, 1.7 ± 0.3 m s−2 

multiplied by the acceleration factor. Highly congestible cities like Nairobi and Istanbul are less sensitive to acceleration than weakly 
congestible cities because the congestible cities have a smaller number of more difficult intersections where the queue to cross is long. 
Then only a small fraction of slow cars get a chance to accelerate up to the road speed while the rest of the cars wait in the queue.
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Figure 12: These curves show the time development of traffic in one representative city, Istanbul, when the rate of car launching 
increases and then levels off to a value R0 = 10, 20, ... 100 cars per 10 seconds. For small launch rates, the number of cars on the road 
can remain constant because the starting and ending rates are equal. For large launch rates, the number of cars continuously increases 
and the average speed per car continuously decreases (red curves, lower left) because of increasing congestion. The various panels are 
described in the text. Note that the summed speed is a measure of the total car flux in and around the city, and it continuously increases 
with time (middle left panel) even as the congestion increases (top left panel). The relationship between the fraction of slow cars and the 
number of cars on the road is nearly independent of the launch rate in a steady state (upper right).
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Fig. 13.— The number of cars on the road versus the launch rate for the case of steady flows

shown in Figure 12. The number increases linearly with launch rate for small launch rates when

the roads are uncongested, but the number increases much faster when the launch rate reaches a

critical value and the roads begin fill up. The critical launch rate increases with city in the same

order as the hysteresis loops decrease in Figure 5.

Figure 13: The number of cars on the road versus the launch rate for the case of steady flows shown in Figure 12. The number increases 
linearly with launch rate for small launch rates when the roads are uncongested, but the number increases much faster when the launch 
rate reaches a critical value and the roads begin fill up. The critical launch rate increases with city in the same order as the hysteresis 
loops decrease in Figure 5.
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