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Abstract
Various mathematical models of deformable solids mechanics are used in the study of seismic processes in the earth's 
crust. The processes of waves propagation are most studied in elastic media. But these models do not take into account 
many real properties of the ambient array. These are, for example, the presence of groundwater, which complicates 
the construction and operation of surface and underground structures, affect the magnitude and distribution of 
stresses. Models, which take into account the water saturation form the earth's crust structures, the presence of gas 
bubbles, etc., are multi-component medium. A variety of multicomponent media, the complexity of the processes 
associated with their deformation, lead to a large difference in the methods of analysis and modelling used in the 
solution of wave problems. In this paper the processes of wave propagation in a two-component Biot medium under 
the action of periodic forces of various forms are considered. Using the Fourier transform of generalized functions, 
fundamental solutions are constructed - the Green's tensor of the Biot equations and its properties are studied. This 
tensor describes the process of propagation of harmonic waves of a fixed frequency in spaces of dimension N = 1,2,3 
under the action of power sources concentrated at the origin of coordinates, described by a singular delta function. 
On its basis, generalized solutions of these equations are constructed under the action of various sources of periodic 
disturbances, which are described by both regular and singular generalized functions. For regularly acting forces, 
integral representations of solutions are given, which can be used to calculate the stress-strain state of a porous 
water-saturated medium.
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1. Introduction
Various mathematical models of deformable solids mechanics are used in the study of seismic processes in the earth's crust. The 
processes of waves propagation are most studied in elastic media. But these models do not take into account many real properties of 
the ambient array. These are, for example, the presence of groundwater, which complicates the construction and operation of surface 
and underground structures, affect the magnitude and distribution of stresses. Models, which take into account the water saturation 
form the earth's crust structures, the presence of gas bubbles, etc., are multi-component medium. A variety of multicomponent 
media, the complexity of the processes associated with their deformation, lead to a large difference in the methods of analysis and 
modelling used in the solution of wave problems. 

Porous medium saturated with liquid or gas, from the point of view of continuum mechanics, is essentially a two-phase continuous 
medium, one phase of which is particles of liquid (gas), other solid particles is its elastic skeleton. There are various mathematical 
models of such media, developed by various authors. The most famous of them are the models of M. Biot, V.N. Nikolaevsky, L.P. 
Horoshun [1-7]. However, the class of solved tasks to them is very limited and mainly associated with the construction and study of 
particular solutions of these equations based on the methods of full and partial separation of variables and theory of special functions 
in the works of Rakhmatullin, H. A., Saatov Ya. U., Filippov I. G., Artykov T. U. [6,7], Erzhanov Zh. S, Ataliev Sh.M., Alexeyeva 
L.A and the others [1-5] etc. In this regard, it is important to develop effective methods of solution of boundary value problems for 
such media with use of modern mathematical methods.

Periodic on time processes are very widespread in practice. By this cause here we consider the process of wave propagation in 
the Biot’s medium, posed by the periodic forces of different types. Based on Fourier transformation of generalized functions we 
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constructed fundamental solutions of oscillation equations of Biot’s medium. It is Green’s tensor, which describes the process of 
propagation of harmonic waves at a fixed frequency in the space-time of dimension N=1,2,3, under the action of concentrated at 
the coordinates origin. By use this tensor we construct generalized solutions of these equations for arbitrary sources of periodic 
disturbances, which can be described both regular and singular distributions. They can be used to calculate the stress-strain state of 
a porous water-saturated medium by seismic waves propagation.

2. Biot’s Equations of a Two-Components Medium
The equations of motion of a homogeneous isotropic two-component M. Biot medium are described by the following system of 
second-order hyperbolic equations [1-3]:

2 
 

important to develop effective methods of solution of boundary value problems for such media 
with  use of modern mathematical methods. 

Periodic on time processes are very widespread in practice.  By this cause here we 
consider the process of wave propagation in the Biot’s medium, posed by the periodic forces of 
different types. Based on Fourier transformation of generalized functions we constructed 
fundamental solutions of oscillation equations of Biot’s medium.  It is Green’s tensor, which 
describes the process of propagation of harmonic waves at a fixed frequency in the space-time of 
dimension N=1,2,3,  under the action of concentrated at the coordinates origin.  By use this 
tensor we construct generalized solutions of these equations for arbitrary sources of periodic 
disturbances, which can be described  both regular and singular distributions.  They can be used 
to calculate the stress-strain state of a porous water-saturated medium by seismic waves 
propagation. 

 
1 Biot’s equations of a two-components medium 

 
The equations of motion of a homogeneous isotropic two-component M. Biot medium are 

described by the following system of second-order hyperbolic equations [1-3]: 
 

   
 

11 12

12 22

graddiv graddiv ,

graddiv graddiv ,

s
s s f s f

f
s f s f

u u Q u F x t u u

Q u R u F x t u u

    

 

      

   
            (1) 
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where m is  a porosity of medium. The constant of the attached density 12  is related to the 
dispersion of the deviation of the micro-velocities of the fluid particles in the pores from the 
average velocity of the fluid flow and depends on the geometry of the pores. Elastic constants 

,   are the Lame parameters of an isotropic elastic skeleton, and Q, R characterize the 
interaction of the skeleton with a liquid on the basis of   Biot’s law for stresses: 
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Here ( , )ij x t  are  the stress tensor in the skeleton, ( , )p x t  is a  pressure in the fluid. Further we 

use the notations for partial derivatives: ,,k j k k j
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, k k    is  Laplace operator. 
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We introduce also two velocities of propagation of dilatational waves in corresponding elastic body and in an ideal compressible 
fluid:
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Since   fundamental solutions are not unique, we’ll construct such, which tend to zero at infinity: 
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Figure 1.1 -  Displacement of a solid component under the action of a force sF along the X2  
axis at t nT and a) 0.1  , b) 1  , c) 10  , d) 100   
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Figure 1.1: Displacement of a solid component under the action of a force Fs along the X2 axis at t = nT and a)  ω = 0.1, b) ω = 1 
, c) ω = 10, d) ω = 100

Figure 1.2: Displacement of a solid component under the action of a force  Fs along the X2 axis at 
4
Tt nT= +

 
and a)  ω = 0.1, b) 

ω = 1 , c) ω = 10, d) ω = 100



Adv Theo Comp Phy, 2024       Volume 7 | Issue 3 | 8

9 
 

Figure 1.2 – Displacement of a solid component under the action of a force sF along the 
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Tt nT  and a) 0.1  , b) 1  , c) 10  , d) 100   
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Figure 1.3 – Displacement of a solid component under the action of a force sF along the 

X2  axis at  t nT and a) 0.1  , b) 1  , c) 10  , d) 100   
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Figure 1.3: Displacement of a solid component under the action of a force  Fs along the X2 axis at t = nT and a)  ω = 0.1, b) ω = 1 
, c) ω = 10, d) ω = 100
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Рисунок 1.4 – Displacement of a solid component under the action of a force sF along 

the X2  axis  at 
4
Tt nT   and a) 0.1  , b) 1  , c) 10  , d) 100   
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ω = 1 , c) ω = 10, d) ω = 100
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Figure 1.5 - Displacement of fluid under the action of force fF  along the X2  axis at 
t nT and  a) 0.1  , b) 1  , c) 10  , d) 100   
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Figure 1.5: Displacement of fluid under the action of force F f  along the X2 axis at t = nT and a)  ω = 0.1, b) ω = 1 , c) ω = 10, d) 
ω = 100 
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Figure 1.6 – Displacement of fluid under the action of force fF  along the X2  axis at  

4
Tt nT   and a) 0.1  , b) 1  , c) 10  , d) 100   

 
 
Calculations are given for water-saturated soil in dimensionless parameters.  . The unit of 

stress is the shear modulus of the solid component   , the density of the mass – is the density of 
water 22 ,  time in seconds. As is customary in seismology, we assume   
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Figure 1.6: Displacement of fluid under the action of force F f  along the X2 axis at  
4
Tt nT= +  and a)  ω = 0.1, b) ω = 1 , c) ω 

= 10, d) ω = 100 

Calculations are given for water-saturated soil in dimensionless parameters. . The unit of stress is the shear modulus of the solid 
component μ , the density of the mass – is the density of water  ρ22, time in seconds. As is customary in seismology, we assume λ = μ
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Figure 1.7 - Displacement of fluid under the action of force fF  along the X2  axis at 

t nT and a) 0.1  , b) 1  , c) 10  , d) 100   
 

 
The graphs show the amplitudes of oscillations in the Biot medium under the action of 

concentrated sources of oscillations at the origin of coordinates on the segments whose 
coordinates are indicated in columns of variable functions on the ordinate axis at fixed times, 
separated by a quarter of a period from each other. These are the maximum amplitudes, the 
magnitude of which depends on the frequency. 
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Figure 1.7: Displacement of fluid under the action of force F f  along the X2 axis at t = nT and a)  ω = 0.1, b) ω = 1 , c) ω = 10, d) 
ω = 100 

The graphs show the amplitudes of oscillations in the Biot medium under the action of concentrated sources of oscillations at the 
origin of coordinates on the segments whose coordinates are indicated in columns of variable functions on the ordinate axis at fixed 
times, separated by a quarter of a period from each other. These are the maximum amplitudes, the magnitude of which depends on 
the frequency.
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Figure 1.7 - Displacement of fluid under the action of force fF  along the X2  axis at 

t nT and a) 0.1  , b) 1  , c) 10  , d) 100   
 

 
The graphs show the amplitudes of oscillations in the Biot medium under the action of 

concentrated sources of oscillations at the origin of coordinates on the segments whose 
coordinates are indicated in columns of variable functions on the ordinate axis at fixed times, 
separated by a quarter of a period from each other. These are the maximum amplitudes, the 
magnitude of which depends on the frequency. 
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c)                                                                               d) 
 

Figure 1.8 - Displacement of fluid under the action of force fF  along the X2  axis at 

4
Tt nT   and  a) 0.1  , b) 1  , c) 10  , d) 100   

 
 

A program has also been developed for calculating the displacements of the solid and 
liquid components under the action of distributed forces in the solid and liquid components on 
the segments. Based on the materials of these studies, an article is being prepared for the foreign 
press. 

 
Conclusion. Note that mass forces may be different from the space of generalized vector-

function, singular and regular. Since Green tensor is singular, contains delta-functions, this 
convolution are calculated on the rule of convolution in generalized function space. If a support 
of  acting forces are bounded (contained in a ball of finite radius), then all convolutions exist.  If 
supports are not bounded, then the existence condition (17) require some limitations on behavior 
of forces at infinity which depend on the type of mass forces. 

The obtained solutions allow us to study the dynamics of porous water and gas-saturated 
media at the action of periodic sources of disturbances of a sufficiently arbitrary form. In 
particular, under the action of certain forces on surfaces, for example cracks, in porous media 
that can be simulated by simple and double layers on the crack surface.  

There is another feature of the Green tensor of the Biot equations, which can be used for 
solving boundary value problems based on  the boundary untegral equations method.  

This monograph was prepared and submitted for publication with the financial support of 
the Science Committee of the Republic of Kazakhstan under the republican program 
BR20281002 “Fundamental research in mathematics and mathematical modeling.” 
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Figure 1.8: Displacement of fluid under the action of force F f  along the X2 axis at 
4
Tt nT= +   and a)  ω = 0.1, b) ω = 1 , c) ω 
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A program has also been developed for calculating the 
displacements of the solid and liquid components under the 
action of distributed forces in the solid and liquid components on 
the segments. Based on the materials of these studies, an article 
is being prepared for the foreign press.

8. Conclusion
Note that mass forces may be different from the space of 
generalized vector-function, singular and regular. Since Green 
tensor is singular, contains delta-functions, this convolution are 
calculated on the rule of convolution in generalized function 
space. If a support of acting forces are bounded (contained in 
a ball of finite radius), then all convolutions exist. If supports 
are not bounded, then the existence condition (17) require some 
limitations on behavior of forces at infinity which depend on the 
type of mass forces.

The obtained solutions allow us to study the dynamics of porous 
water and gas-saturated media at the action of periodic sources of 
disturbances of a sufficiently arbitrary form. In particular, under 
the action of certain forces on surfaces, for example cracks, in 
porous media that can be simulated by simple and double layers 
on the crack surface. 

There is another feature of the Green tensor of the Biot equations, 
which can be used for solving boundary value problems based 
on the boundary untegral equations method. 

This monograph was prepared and submitted for publication with 
the financial support of the Science Committee of the Republic 
of Kazakhstan under the republican program BR20281002 
“Fundamental research in mathematics and mathematical 
modeling.”
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