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Abstract
This report investigates the history and impact of Generative Models and Connected and Automated Vehicles (CAVs), two 
groundbreaking forces pushing progress in technology and transportation. By focusing on the application of generative 
models within the context of CAVs, the study aims to unravel how this integration could enhance predictive modeling, 
simulation accuracy, and decision-making processes in autonomous vehicles. This thesis discusses the benefits and challenges 
of integrating generative models and CAV technology in transportation. It aims to highlight the progress made, the remaining 
obstacles, and the potential for advancements in safety and innovation.
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1. Introduction
In the rapidly evolving landscape of technology, two fields have 
emerged as frontrunners in shaping the future of our society: 
Generative Models in artificial intelligence (AI) and Connected 
and Automated Vehicles (CAVs) [54]. Generative Models, a 
cornerstone of AI, are algorithms designed to generate response 
similar to, but distinct from, data they have been trained on, 
enabling applications ranging from image and text generation to 
complex simulations [55]. Connected and Automated Vehicles, 
on the other hand, represent the advancement in transportation, 
merging connectivity, automation, and intelligence to enhance 
safety, efficiency, and the driving experience.

The intersection of these two groundbreaking technologies offers 
a promising avenue for research and innovation [56]. By merging 
the importance of Generative Models in transforming content 
creation and decision-making processes with CAVs approach 
to mobility, logistics, and urban planning, researchers have 
tapped into new potentials in vehicle intelligence, simulation 
accuracy, and decision-making capabilities. This synergy 
could lead to more sophisticated predictive models for vehicle 
behavior, enhanced safety features through realistic simulation 
environments, and even innovations in vehicle design and traffic 
management systems.

Despite the previous mentioned success, there are still several 
challenges on the fields remain unsolved. One of the pivotal 
challenges faced by CAVs and Generative Models revolves 
around the integration of these technologies in real-world 
applications, particularly concerning safety and reliability [57]. 
For CAVs, ensuring safety in unpredictable traffic conditions 

and diverse environments remains a significant obstacle. The 
vehicles must interpret complex scenarios and make split-second 
decisions, a challenge compounded by the current limitations in 
AI’s ability to fully understand nuanced human behaviors and 
unforeseen circumstances [58]. Generative Models, on the other 
hand, face issues of data privacy and decision reliability. These 
challenges threaten both the input and output of models. Users 
are afraid to provide models with all their data, and they can’t 
fully trust the generated output [59]. Fixing those challenges 
require advancements in AI’s understanding of the physical 
world and its ability to generate data that faithfully represents 
it, ensuring that CAVs can operate safely and effectively in any 
given situation.

This survey aims to delve into the challenges and relationship 
between Generative Models and Connected and Automated 
Vehicles, highlighting their individual contributions to 
their fields and exploring the potential of their integration. 
Specifically, the objectives of this survey include mapping out 
the historical development of both technologies, examining 
current applications and integrations, and speculating on future 
directions and innovations at their intersection. By providing a 
comprehensive overview of the state of the art and identifying 
gaps in current research, this survey seeks to pave the way for 
future studies and technological breakthroughs in the confluence 
of AI and automotive technologies.

2. Related Work
A. History of Generative Models
The history of Generative Models and Connected and Automated 
Vehicles (CAVs) provides a rich context for understanding 
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their potential intersection and future implications. Generative 
Models have evolved significantly over decades, from early 
innovations in procedural content generation [67] and Bayesian 
networks [60] to the development of deep learning techniques 
and architectures like Convolutional Neural Networks (CNNs) 

[61], Recurrent Neural Networks (RNNs) [62], and Generative 
Adversarial Networks (GANs) [63]. These models have found 
applications across various domains, including image and text 
generation, design, and simulation.

Fig. 1. The figure shows the development history of the generative model

[62], and Generative Adversarial Networks (GANs) [63].
These models have found applications across various domains,
including image and text generation, design, and simulation.

The development of Generative Models began with founda-
tional work in AI and machine learning, including the LISP
programming language in the 1960s, the ELIZA chatbot [64],
and early expert systems like Dendral [65] and MYCIN [66].
The rise of the internet and advancements in computing power
in the 1990s and 2000s led to significant progress in machine
learning, neural networks, and deep learning, setting the stage
for modern generative AI [68]. Figure 1 showcases a signifi-
cant evolution from unimodal approaches in natural language
processing (NLP) and computer vision (CV) towards increas-
ingly sophisticated multimodal technologies. Early models like
N-Gram [69] and GANs laid the groundwork between 2000
and 2015. The period from 2015 to 2018 saw the introduction
of transformative architectures such as Transformers [70] and
the emergence of multimodal models like StyleNet [71]. This
evolution accelerated from 2018 to 2020 with advancements
like BERT [72], GPT-2 [73], and StyleGAN, expanding to
complex multimodal approaches including VisualBERT [74].
The trend from 2020 to 2023 highlights the proliferation of
large language models like GPT-3 [75] and innovative visual
technologies such as DALL-E [76]. From the year 2023 up
until now, we have witnessed a steady rise in the emergence
of innovative models like the remarkable GPT-4 [77] and the
revolutionary Sora [78]. This trend signifies the continuous
evolution and advancement within the field of technology and
artificial intelligence.

B. Challenges in the Generative Models

Despite the advancements outlined in the previous sec-
tion, generative models still confront a host of unresolved
challenges that span ethical, legal, and technical domains. A
prominent issue lies in the ethical considerations surrounding
data privacy, biases in the training data, and the potential for
misuse in creating deepfakes or spreading misinformation. The
ethical dilemmas extend to copyright and legal exposure, as
these models are trained on vast databases of images and
text from various sources, raising concerns about intellectual
property infringement and the legal repercussions of data use
[79].

Efforts have been made to mitigate the generation of in-
appropriate information through strategies like jailbreak and
prompt injection [4]. However, malicious entities continue to

devise new methods to exploit generative models, highlighting
a persistent security threat [5], [6]. The rise in these attacks
complicates the use of comprehensive datasets for training, as
fears of revealing sensitive or harmful information loom large.

A promising approach to addressing data privacy chal-
lenges involves developing more sophisticated algorithms to
counteract malicious inputs. Research initiatives like Tensor
Trust [18] have engaged in creating defenses against prompt
injections through an interactive online game, generating a
significant dataset with over 126,000 attacks and 46,000 de-
fenses. Additionally, Jatmo [19] has introduced a novel method
for constructing task-specific models that are inherently resis-
tant to prompt injections by leveraging a teacher model for
generating tailored datasets. This advancement demonstrates a
critical step forward in enhancing generative models’ ability
to autonomously identify and mitigate harmful inputs, thus
bolstering data privacy protections.

Furthermore, the phenomenon of model hallucination,
where generative models fabricate information not present
in their training data, underscores the challenge of ensuring
reliability [80]. While approaches like Retrieval-Augmented
Generation (RAG) [81] and fine-tuning [82] offer some solu-
tions, they introduce additional complexities such as increased
time and computational costs.

One way to improve the computational cost of fine-tuning is
by utilizing Low Rank Adaptor (LoRA) [83], which introduces
trainable parameters that capture important information in a
lower-dimensional space. This method modifies only a small
portion of the model’s weights, reducing the number of param-
eters that need to be updated during fine-tuning. By focusing
on these adaptable components, LoRA efficiently updates the
model, maintaining performance while significantly lowering
computational demands and memory usage.

Improving the performance of Retrieval Augmented Gener-
ation (RAG) involves several strategic enhancements across
data preparation, indexing, and query handling. To reduce
computational time, we can explore various index types for
better context retrieval. Additionally, we can also transform
queries to better match the retrieval context. Each of these
tactics aims at refining the interaction between the LLM
and the data, ensuring more accurate, relevant, and efficient
generation outcomes [20].
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The development of Generative Models began with foundational 
work in AI and machine learning, including the LISP 
programming language in the 1960s, the ELIZA chatbot [64], 
and early expert systems like Dendral [65] and MYCIN [66]. The 
rise of the internet and advancements in computing power in the 
1990s and 2000s led to significant progress in machine learning, 
neural networks, and deep learning, setting the stage for modern 
generative AI [68]. Figure 1 showcases a significant evolution 
from unimodal approaches in natural language processing 
(NLP) and computer vision (CV) towards increasingly 
sophisticated multimodal technologies. Early models like 
N-Gram [69] and GANs laid the groundwork between 2000 
and 2015. The period from 2015 to 2018 saw the introduction 
of transformative architectures such as Transformers [70] and 
the emergence of multimodal models like StyleNet [71]. This 
evolution accelerated from 2018 to 2020 with advancements like 
BERT [72], GPT-2 [73], and StyleGAN, expanding to complex 
multimodal approaches including VisualBERT [74]. The trend 
from 2020 to 2023 highlights the proliferation of large language 
models like GPT-3 [75] and innovative visual technologies such 
as DALL-E [76]. From the year 2023 up until now, we have 
witnessed a steady rise in the emergence of innovative models 
like the remarkable GPT-4 [77] and the revolutionary Sora [78]. 
This trend signifies the continuous evolution and advancement 
within the field of technology and artificial intelligence.

B. Challenges in the Generative Models
Despite the advancements outlined in the previous section, 
generative models still confront a host of unresolved challenges 
that span ethical, legal, and technical domains. A prominent 
issue lies in the ethical considerations surrounding data privacy, 
biases in the training data, and the potential for misuse in 
creating deepfakes or spreading misinformation. The ethical 
dilemmas extend to copyright and legal exposure, as these 
models are trained on vast databases of images and text from 
various sources, raising concerns about intellectual property 
infringement and the legal repercussions of data use [79].

Efforts have been made to mitigate the generation of 
inappropriate information through strategies like jailbreak and 
prompt injection [4]. However, malicious entities continue to 
devise new methods to exploit generative models, highlighting 
a persistent security threat [5,6]. The rise in these attacks 

complicates the use of comprehensive datasets for training, as 
fears of revealing sensitive or harmful information loom large.

A promising approach to addressing data privacy challenges 
involves developing more sophisticated algorithms to counteract 
malicious inputs. Research initiatives like Tensor Trust [18] have 
engaged in creating defenses against prompt injections through 
an interactive online game, generating a significant dataset with 
over 126,000 attacks and 46,000 defenses. Additionally, Jatmo 
[19] has introduced a novel method for constructing task-specific 
models that are inherently resistant to prompt injections by 
leveraging a teacher model for generating tailored datasets. This 
advancement demonstrates a critical step forward in enhancing 
generative models’ ability to autonomously identify and mitigate 
harmful inputs, thus bolstering data privacy protections.

Furthermore, the phenomenon of model hallucination, where 
generative models fabricate information not present in their 
training data, underscores the challenge of ensuring reliability 
[80]. While approaches like Retrieval-Augmented Generation 
(RAG) [81] and fine-tuning [82] offer some solutions, they 
introduce additional complexities such as increased time and 
computational costs.

One way to improve the computational cost of fine-tuning is 
by utilizing Low Rank Adaptor (LoRA) [83], which introduces 
trainable parameters that capture important information in 
a lower-dimensional space. This method modifies only a 
small portion of the model’s weights, reducing the number 
of parameters that need to be updated during fine-tuning. By 
focusing on these adaptable components, LoRA efficiently 
updates the model, maintaining performance while significantly 
lowering computational demands and memory usage.

Improving the performance of Retrieval Augmented Generation 
(RAG) involves several strategic enhancements across 
data preparation, indexing, and query handling. To reduce 
computational time, we can explore various index types for better 
context retrieval. Additionally, we can also transform queries to 
better match the retrieval context. Each of these tactics aims at 
refining the interaction between the LLM and the data, ensuring 
more accurate, relevant, and efficient generation outcomes [20].
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TABLE I
ADVANTAGE AND DISADVANTAGE OF GENERATIVE MODLE IN AV

Model Advantages Disadvantages

Generative Adversarial
Networks (GAN) [7] [8]

Realistic Data Generation: GANs can produce highly re-
alistic synthetic data, aiding in diverse scenario training for
automotive vehicles (AV) systems without costly real-world
data collection.
Data Augmentation: Enable the enhancement of existing
datasets with varied conditions, crucial for comprehensive AV
system training.
Anomaly Detection: Capable of identifying anomalies by
learning normal operational patterns, enhancing safety mech-
anisms in AVs.

Training Complexity: GANs are challenging to train, often
facing issues like mode collapse, where the diversity of
generated samples is limited.
High Computational Demand:The generation of high-
quality data through GANs requires substantial computa-
tional resources. Bias Propagation: Biases in training data
can be mirrored in the generated data, possibly leading to
biased learning outcomes in AVs.

Reinforcement Learning
[9] [10]

Adaptive Decision Making: RL models are excellent at
learning optimal actions through trial and error, enabling
autonomous vehicles to adapt to changing road conditions
dynamically.
Continuous Learning: Continuously improve by learning
from interactions with the environment, enhancing the per-
formance and safety of autonomous vehicles over time.

Sample Efficiency: RL models often require a significant
number of interactions with the environment, making the
learning process resource-intensive and time-consuming.
Complexity and Scalability: Designing RL algorithms that
perform well across various driving scenarios is challenging,
which can limit the scalability and general applicability of
these models in complex environments.

StyleGAN [11] [12]

High-Quality Images: Produces high-resolution, photo real-
istic images with fine details.
Control Over Generation: Offers control over specific fea-
tures of the generated images through style-based generation,
allowing for detailed customization.
Variety and Diversity: Capable of generating a wide variety
of images within the same framework, showcasing impressive
diversity.

Complexity and Resources: Requires significant computa-
tional resources and expertise to train, limiting accessibility.
Training Difficulties: Can encounter stability issues during
training, requiring careful tuning of parameters.
Potential for Misuse: High-quality synthetic image gen-
eration raises ethical concerns, including the creation of
deepfakes.

Neural Architecture
Search(NAS) [13] [14]

Automation: NAS automates the design of network architec-
tures, potentially outperforming manually designed networks,
especially in multi-objective optimization scenarios.
Efficiency: It enables the discovery of novel network archi-
tectures optimized for specific hardware constraints, improv-
ing sensor fusion performance and efficiency on embedded
devices.

Time Consuming: NAS processes can be computation-
ally intensive and time-consuming, requiring significant
resources for training and evaluation of numerous archi-
tectural configurations.
Complexity Balance: There might be a complexity in bal-
ancing the trade-offs between model size, performance, and
computational efficiency, especially under strict hardware
constraints.

Collaborative AI [15] [16]
[17]

Enhanced Learning and Adaptation: Collaborative AI al-
lows vehicles to learn from each other’s experiences, signif-
icantly improving their ability to adapt to new environments
and situations without direct human intervention.
Increased Data Diversity: It facilitates access to a broader
range of data collected from various vehicles operating in
different conditions, leading to more robust and generalizable
AI models.
Efficiency in Data Use: By sharing insights rather than
raw data, collaborative AI can efficiently utilize bandwidth
and storage, ensuring timely updates and learning without
overwhelming the system’s resources.
Improved Safety and Reliability:Vehicles can benefit from
shared knowledge about hazardous conditions, traffic con-
gestion, and road safety, leading to more informed decision-
making and enhanced safety for all road users.

Data Privacy and Security: Collaborating and sharing data
between vehicles raise concerns about user privacy and data
security. Ensuring the integrity and confidentiality of shared
information is critical.
System Complexity and Integration: Implementing col-
laborative AI requires sophisticated systems capable of man-
aging communication, data processing, and learning across
different vehicles and infrastructure, adding complexity to
the autonomous driving ecosystem.
Dependency on Connectivity: The effectiveness of collab-
orative AI hinges on reliable connectivity. Issues such as
signal loss, latency, or network failures could impact the
system’s performance and safety.
Standardization and Compatibility: Achieving seamless
collaboration requires standardized protocols and interfaces
across different manufacturers and models. Lack of stan-
dardization can limit interoperability and the overall effec-
tiveness of collaborative AI systems.

C. History of Connected and Automated Vehicles (CAVs)

The concept of connected cars has been around since the
mid-1990s, with General Motors’ introduction of OnStar in
1996 marking a significant early milestone [84]. This system,
developed in collaboration with Motorola Automotive, aimed
primarily at enhancing vehicle safety and providing emergency
services. Since then, the scope of connected car features
has expanded significantly to include mobility management,
commerce, vehicle management, safety, entertainment, driver
assistance, well-being, and breakdown prevention. Innova-

tions such as Google’s formation of the Open Automotive
Alliance in 2014 [85] and the launch of Apple’s CarPlay
[86] and Android Auto [87] signify the growing integration
of smartphone technology with vehicle infotainment systems.
This evolution underscores a shift towards enhancing driver
experience, safety, and vehicle efficiency through connectivity.

On the other hand, the development of autonomous vehicles
(AVs) represents a parallel trajectory towards reducing the
need for human intervention in vehicle operation [88]. The
Society of Automotive Engineers (SAE) defines six levels of
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C. History of Connected and Automated Vehicles (CAVs)
The concept of connected cars has been around since the 
mid-1990s, with General Motors’ introduction of OnStar in 
1996 marking a significant early milestone [84]. This system, 
developed in collaboration with Motorola Automotive, aimed 
primarily at enhancing vehicle safety and providing emergency 
services. Since then, the scope of connected car features has 
expanded significantly to include mobility management, 
commerce, vehicle management, safety, entertainment, driver 
assistance, well-being, and breakdown prevention. Innovations 
such as Google’s formation of the Open Automotive Alliance in 
2014 [85] and the launch of Apple’s CarPlay [86] and Android 
Auto [87] signify the growing integration of smartphone 
technology with vehicle infotainment systems. This evolution 

underscores a shift towards enhancing driver experience, safety, 
and vehicle efficiency through connectivity.

On the other hand, the development of autonomous vehicles 
(AVs) represents a parallel trajectory towards reducing the need 
for human intervention in vehicle operation [88]. The Society of 
Automotive Engineers (SAE) defines six levels of automation 
for vehicles, ranging from no automation (Level 0) to full 
automation (Level 5), where the vehicle is capable of performing 
all driving functions under all conditions without human input. 
The current state of technology primarily falls between Levels 
3 and 4, where vehicles can perform some driving functions 
independently but still require human oversight. The technology 
underpinning AVs includes radar, GPS, cameras, and lidar to 
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create a detailed 3D map of the vehicle’s surroundings, enabling 
decision-making and vehicle control through advanced computer 

systems, machine learning, and artificial intelligence [88].

Fig. 2. The figure shows the development history of the car safety

automation for vehicles, ranging from no automation (Level
0) to full automation (Level 5), where the vehicle is capable of
performing all driving functions under all conditions without
human input. The current state of technology primarily falls
between Levels 3 and 4, where vehicles can perform some
driving functions independently but still require human over-
sight. The technology underpinning AVs includes radar, GPS,
cameras, and lidar to create a detailed 3D map of the vehicle’s
surroundings, enabling decision-making and vehicle control
through advanced computer systems, machine learning, and
artificial intelligence [88].

As of recent developments, the industry continues to face
challenges, including regulatory hurdles, technological limita-
tions, and public skepticism. Incidents involving self-driving
car companies like Waymo highlight the ongoing issues related
to safety and public acceptance of autonomous technology
[89]. However, efforts such as dedicated lanes for CAVs and
advancements in vehicle-to-vehicle (V2V) [90] and vehicle-to-
infrastructure (V2I) [91] communications demonstrate a clear
commitment to overcoming these obstacles and pushing the
boundaries of what’s possible in smart transportation.

D. Challenges in the Connected and Automated Vehicles

The journey towards fully autonomous vehicles is fraught
with challenges, chief among them being safety and reliability.
While the promise of accident-free mobility and significant
reductions in road fatalities is the motivation behind CAVs, we
realize this goal is too complex [92]. The National Highway
Traffic Safety Administration (NHTSA) outlines the stages
of automation from Level 0 (no automation) to Level 5
(full automation), with current consumer technologies mainly
falling between Levels 2 and 3. These levels highlight the
incremental steps towards fully autonomous systems, where
the vehicle is responsible for all driving tasks within certain
conditions (Level 3) to all conditions (Level 5) [93]. However,
these advanced driving systems, crucial for removing the
human driver from the chain of events leading to a crash, are
not yet available for consumer purchase, underscoring the gap
between current capabilities and the goal of full automation
[94].

Looking back at the history of vehicle safety, we’ve seen
tremendous progress through various challenges on the path
towards fully autonomous driving. This journey can be mapped

through the ”Five Eras of Safety” as outlined by the NHTSA
[1]. As figure 2 shows, these eras highlight the evolution from
basic manual safety features to the sophisticated, automated
systems that are paving the way for fully autonomous vehicles.
Each era has brought with it significant advancements in
technology and regulation, from the introduction of seat belts
and airbags to the development of Safety and Convenience
Features, to the brink of Fully Automated Safety Features.
This historical perspective underscores the collaborative efforts
between automakers, technology companies, and regulatory
bodies in overcoming obstacles and innovating towards a safer
automotive future.

Despite the significant progress and overcoming of numer-
ous challenges on the way to fully autonomous driving, we
are currently facing a new set of challenges that appear to
grow more complex as we advance further. One of the major
challenges includes Autosteer on City Streets, where vehicles
must navigate complex urban environments, recognizing and
responding to traffic signs, signals, and unpredictable human
behaviors. This complexity is compounded by the requirement
for Traffic and Stop Sign Control, where vehicles must ac-
curately identify and react to stop signs and traffic lights in
real-time, ensuring safe and law-compliant driving [95]. More-
over, achieving 360 Degree Vision is pivotal for autonomous
vehicles to ensure a comprehensive understanding of their
surroundings, enabling them to detect obstacles, pedestrians,
and other vehicles from every angle. This is essential for safe
navigation, especially in densely populated urban areas. How-
ever, developing such sophisticated sensor systems that can
reliably function under various weather and lighting conditions
presents significant technical and financial challenges [96].
Automated Navigation poses another significant challenge,
requiring advanced algorithms capable of planning optimal
routes in real-time while considering current traffic conditions,
road works, and other dynamic factors [97].

The challenges extend beyond technical capabilities, touch-
ing on infrastructure and regulatory frameworks. The in-
frastructure needs to evolve to support autonomous vehi-
cles fully, requiring clear lane markings, reliable Vehicle-to-
Infrastructure (V2I) communication systems, and robust data
storage solutions [2]. Regulatory support is crucial to address
safety concerns, establish trusted ecosystems, and implement
global standards. This includes updates to road maintenance
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As of recent developments, the industry continues to face 
challenges, including regulatory hurdles, technological 
limitations, and public skepticism. Incidents involving self-
driving car companies like Waymo highlight the ongoing 
issues related to safety and public acceptance of autonomous 
technology [89]. However, efforts such as dedicated lanes for 
CAVs and advancements in vehicle-to-vehicle (V2V) [90] and 
vehicle-toinfrastructure (V2I) [91] communications demonstrate 
a clear commitment to overcoming these obstacles and pushing 
the boundaries of what’s possible in smart transportation.

D. Challenges in the Connected and Automated Vehicles
The journey towards fully autonomous vehicles is fraught with 
challenges, chief among them being safety and reliability. While 
the promise of accident-free mobility and significant reductions 
in road fatalities is the motivation behind CAVs, we realize this 
goal is too complex [92]. The National Highway Traffic Safety 
Administration (NHTSA) outlines the stages of automation 
from Level 0 (no automation) to Level 5 (full automation), with 
current consumer technologies mainly falling between Levels 
2 and 3. These levels highlight the incremental steps towards 
fully autonomous systems, where the vehicle is responsible 
for all driving tasks within certain conditions (Level 3) to all 
conditions (Level 5) [93]. However, these advanced driving 
systems, crucial for removing the human driver from the chain 
of events leading to a crash, are not yet available for consumer 
purchase, underscoring the gap between current capabilities and 
the goal of full automation [94].

Looking back at the history of vehicle safety, we’ve seen 
tremendous progress through various challenges on the path 
towards fully autonomous driving. This journey can be mapped 
through the”Five Eras of Safety” as outlined by the NHTSA [1]. 
As figure 2 shows, these eras highlight the evolution from basic 
manual safety features to the sophisticated, automated systems 
that are paving the way for fully autonomous vehicles. Each era 
has brought with it significant advancements in technology and 
regulation, from the introduction of seat belts and airbags to the 
development of Safety and Convenience Features, to the brink 
of Fully Automated Safety Features. This historical perspective 
underscores the collaborative efforts between automakers, 
technology companies, and regulatory bodies in overcoming 
obstacles and innovating towards a safer automotive future.

Despite the significant progress and overcoming of numerous 
challenges on the way to fully autonomous driving, we are 
currently facing a new set of challenges that appear to grow more 
complex as we advance further. One of the major challenges 
includes Auto steer on City Streets, where vehicles must navigate 
complex urban environments, recognizing and responding to 
traffic signs, signals, and unpredictable human behaviors. This 
complexity is compounded by the requirement for Traffic and 
Stop Sign Control, where vehicles must accurately identify 
and react to stop signs and traffic lights in real-time, ensuring 
safe and law-compliant driving [95]. Moreover, achieving 360 
Degree Vision is pivotal for autonomous vehicles to ensure a 
comprehensive understanding of their surroundings, enabling 
them to detect obstacles, pedestrians, and other vehicles from 
every angle. This is essential for safe navigation, especially 
in densely populated urban areas. However, developing such 
sophisticated sensor systems that can reliably function under 
various weather and lighting conditions presents significant 
technical and financial challenges [96]. Automated Navigation 
poses another significant challenge, requiring advanced 
algorithms capable of planning optimal routes in real-time while 
considering current traffic conditions, road works, and other 
dynamic factors [97].

The challenges extend beyond technical capabilities, touching 
on infrastructure and regulatory frameworks. The infrastructure 
needs to evolve to support autonomous vehicles fully, requiring 
clear lane markings, reliable Vehicle-to Infrastructure (V2I) 
communication systems, and robust data storage solutions 
[2]. Regulatory support is crucial to address safety concerns, 
establish trusted ecosystems, and implement global standards. 
This includes updates to road maintenance practices and the 
introduction of new funding models to support the necessary 
infrastructure upgrades without significantly impacting public 
budgets [3].

3. Integration of Generative Models in Cavs
A. Integration in Real Life
In the field of Connected Automated Vehicles (CAV), as Table I 
shows various computational models like Generative Adversarial 
Networks (GANs), Reinforcement Learning (RL), StyleGAN, 
Neural Architecture Search (NAS), and Collaborative AI 
significantly enhance AV intelligence and safety. GANs 
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contribute by generating synthetic data for diverse scenario 
training, though they are complex to train and may propagate 
bias [25]. Creswell et al. [29] excels in adaptive decision-making 
but is resource-intensive in RL. Shalev-Shwartz et al. [31] offers 
high-resolution image generation for training data but requires 
substantial resources and poses ethical risks in StyleGAN. Karras 
et al. [34] streamlines network architecture design, optimizing 
for specific constraints yet demanding in terms of computational 
resources in NAS. Tan et al. [37] facilitates shared learning 
and data diversity among vehicles, improving adaptability and 
model robustness, albeit raising concerns over data privacy and 
the need for reliable connectivity in Collaborative AI. Despite 
these challenges, such as computational demands and ethical 
considerations, the benefits of these models in improving safety, 
efficiency, and adaptability are undeniable, underscoring the 
need for ongoing advancements to fully leverage their potential 
in CAV technology [40]. Here are some real life application 
examples.

1) VistaGPT: VistaGPT [46] leverages the capabilities of 
generative models to enhance traffic management, particularly 
at congested urban intersections. By analyzing extensive traffic 
data, including vehicle speeds and pedestrian movements, 
VistaGPT predicts traffic patterns, enabling dynamic optimization 
of traffic light timings. This reduces congestion and wait times, 
showcasing the potential of AI in improving urban mobility and 
efficiency.

The practical efficacy of VistaGPT was rigorously tested through 
a pilot project undertaken in a densely populated metropolitan 
area, where the system was seamlessly incorporated into the 
existing traffic management infrastructure. The outcomes of 
this integration were profound, with the project documenting 
a substantial reduction in wait times at critical intersections 
by up to 25% during peak traffic periods. This improvement 
in traffic flow not only underscored VistaGPT’s capability 
to significantly enhance urban traffic management but also 
highlighted its environmental impact through the reduction 
of vehicular emissions attributed to prolonged idling at traffic 
stops. Moreover, VistaGPT’s predictive functionality ensures 
that the traffic management system can respond proactively to 
unexpected traffic conditions, such as accidents or emergency 
vehicle prioritization, further underscoring the system’s value 
in creating more adaptable and responsive urban transportation 
networks. The successful deployment of VistaGPT in this real-
world scenario signals a promising direction for the future of 
intelligent transportation systems, where AI-driven solutions 
can lead to safer, more efficient, and environmentally friendly 
urban environments.

2) Solution of Human Driving Behavior Modeling: The 
integration of systematic human driving behavior modeling 
and simulation into automated vehicle (AV) studies presents a 
groundbreaking approach to enhancing the interaction between 
human drivers and autonomous systems. A pivotal application 
of this methodology is observed in the development of a virtual 
simulation environment designed to mirror the complexities 
of real-world driving scenarios. This environment employs 
advanced behavioral models to accurately represent a wide array 

of human driving behaviors, such as aggressive and cautious 
driving patterns, as well as unpredictable human actions on the 
road. The primary aim of this initiative was to assess and refine 
the adaptability and responsiveness of AVs when navigating 
mixed-traffic environments, which are characterized by the 
coexistence of human-operated vehicles and AVs [47].

The project yielded remarkable insights, particularly in the 
domain of improving safety protocols and traffic efficiency for 
AVs operating alongside human drivers. By simulating diverse 
human driving behaviors and their potential impact on road 
safety, researchers were able to enhance the decisionmaking 
algorithms of AVs, enabling these vehicles to anticipate human 
actions with greater precision and modify their operation to 
avert accidents. The findings from this study revealed that AVs 
equipped with these enhanced algorithms could significantly 
diminish the likelihood of traffic incidents, with simulations 
showing up to a 30% reduction in accidents in mixed-traffic 
conditions. This underscores the vital role that understanding 
human driving behavior plays in the evolution of autonomous 
driving technologies, emphasizing the effectiveness of 
simulation-based strategies in fostering the safe cohabitation of 
AVs and human drivers on public roads.

3) Integrating Wireless Technologies and Sensor Fusion in 
CAVs: The integration of enabling wireless technologies and 
sensor fusion is transforming the landscape of next-generation 
Connected and Autonomous Vehicles (CAVs), with practical 
applications already emerging in smart city infrastructures. A 
notable project in this realm focused on leveraging Dedicated 
Short-Range Communications (DSRC) and the burgeoning 5G 
networks to facilitate advanced Vehicle-to-Everything (V2X) 
communications. This synergy, coupled with sensor fusion that 
harmonizes data inputs from LiDAR, radar, and cameras, equips 
CAVs with unparalleled situational awareness. For example, in 
a pilot implementation in a metropolitan area, this integration 
enabled CAVs to navigate complex urban terrains by detecting 
obstacles, traffic, and pedestrian movements in real-time, 
significantly enhancing safety and traffic efficiency [48], [49].

Further, this technological amalgamation has pioneered new 
paradigms in traffic management and vehicle coordination. 
In scenarios such as intersection crossing, CAVs utilize these 
wireless and sensor fusion technologies to communicate with 
each other and with traffic infrastructure to optimize traffic flow 
and reduce wait times, effectively minimizing the reliance on 
traditional traffic control devices. This application not only 
illustrates the potential of these technologies to streamline urban 
transportation but also highlights their role in mitigating traffic 
congestion and fostering a sustainable urban mobility ecosystem. 
The advancements documented in projects like these underscore 
the critical importance of continued innovation in wireless 
communication and sensor technologies for the evolution of 
autonomous driving and the realization of fully connected and 
intelligent transportation systems [50], [51].

4) Eco-Driving through AI in Hybrid Electric Vehicles: The 
deployment of Safe Model-Based Off-Policy Reinforcement 
Learning for enhancing eco-driving in Connected and Automated 
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Hybrid Electric Vehicles (CAV-HEVs) has made notable strides 
in improving fuel efficiency and reducing environmental impact. 
In a key project, researchers developed a model leveraging off-
policy reinforcement learning to optimize driving behaviors and 
powertrain operations for fuel savings, utilizing real-time data 
from V2V and V2I communications. This model enabled CAV-
HEVs to dynamically adjust to live traffic and environmental 
conditions, promoting efficient route selection and vehicle 
operation.

A field trial involving a fleet of CAV-HEVs showcased a 
substantial 20% reduction in fuel consumption compared to 
traditional driving methods, while maintaining high safety 
standards. This achievement highlights the potential of 
integrating advanced AI algorithms with eco-driving techniques 
to promote sustainable automotive technologies. The project 
exemplifies how intelligent vehicle systems can contribute to 
environmental sustainability goals by optimizing energy usage 
in urban transportation [52, 53].

B. Future Directions
1) Perception and Scene Understandingg: Future directions for 
integrating generative models with Connected and Automated 
Vehicles (CAVs) are poised to significantly enhance perception 
and scene understanding capabilities, a foundational aspect 
for the advancement of autonomous driving technologies. As 
vehicles evolve to interpret their environments with greater 
accuracy, real-time recognition and response to both static 
and dynamic elements become imperative. While the work by 
Muhammad et al. (2022) [21] explores advancements in vision-
based technologies for autonomous driving, it also highlights 
significant challenges that impede optimal performance. 
Notably, existing limitations, such as the oversight of locational 
context during classification, diminished performance under 
adverse weather conditions, and the underutilization of vision 
transformers, underscore the necessity for continued innovation 
in this field. Addressing these challenges will not only refine the 
current approaches but also unlock new potentials for generative 
models to revolutionize how CAVs perceive and interact with 
their surroundings, marking a significant leap forward in the 
quest for fully autonomous driving systems.

2) Prediction of other Road User's Behavior: Beyond 
achieving comprehensive awareness and understanding of their 
surroundings, the future of CAVs also hinges on the ability 
to anticipate the actions of other road users. This predictive 
capability is crucial for ensuring smooth and safe interactions 
on the road, especially in complex scenarios such as urban 
intersections. For instance, when a vehicle signals a lane change 
through its left turn light, CAVs should be able to infer that the 
vehicle is likely to merge into their lane and adjust their behavior 
accordingly. Kalatian et al. [22] sheds light on significant 
advancements in CAV technologies. This study puts forward 
a context-aware model utilizing virtual reality data to simulate 
pedestrian behavior, particularly at mid-block unsignalized 
crossings. By integrating a multi-input network of Long Short-
Term Memory (LSTM) and fully connected dense layers, the 
model incorporates not just past trajectories but also pedestrian 

head orientations and their distance to approaching vehicles 
as sequential input data. The study also acknowledges the 
limitations of this approach, including challenges in accurately 
capturing the dynamic interactions between pedestrians and 
vehicles in various environmental conditions and the need for 
extensive data to train the models effectively. One of the future 
approach is to improve model accuracy under diverse scenarios, 
such as different weather conditions, varied pedestrian behaviors, 
and complex urban landscapes.

3) Enhanced Decision-Making: Beyond mere perception and 
predictive capabilities, vehicles and their corresponding models 
must also excel in making decisions about subsequent actions 
based on these predictions. Such decisions should represent the 
pinnacle of safety and optimality. Hang et al. [23] introduced 
a game-theoretic framework specifically designed to improve 
the coordination of Connected Automated Vehicles (CAVs) 
at urban intersections, targeting the augmentation of both 
communal benefits, like traffic system efficiency and safety, 
and individual user advantages. Central to this framework is 
the challenge presented by un signalized intersections, where 
vehicles are required to collaboratively make decisions without 
traffic signal guidance. Incorporating a Gaussian potential field 
approach for risk assessment, this framework aims to reduce 
the complexity inherent in real-time decision-making. In the 
future, researchers should continue on this path to solve the 
limitations that Hang et all. proposed, such as difficulties in 
fully capturing dynamic vehicle-environment interactions, the 
extensive dataset necessary for model training, and the need to 
refine the algorithm for enhanced efficiency and safety across 
varied driving scenarios.

4.  Conclusion
This survey has looked into combining Generative Models 
with Connected and Automated Vehicles (CAVs). It has shown 
progress and obstacles in artificial intelligence and autonomous 
transportation. Our study found positive connections between 
generative models and CAVs, such as improving predictive 
modeling, simulation accuracy, and decision-making for 
autonomous vehicles.

Throughout the survey, we identified critical advancements in 
generative models, such as Generative Adversarial Networks 
(GANs), Reinforcement Learning, StyleGAN, Neural 
Architecture Search (NAS), and Collaborative AI, each offering 
unique contributions to enhancing the intelligence, safety, and 
efficiency of CAVs. Despite these advancements, the integration 
of generative models into CAVs faces challenges, including 
ethical considerations, data privacy concerns, computational 
demands, and the reliability of generated data.

Real-world applications, such as VistaGPT for traffic 
management, systematic human driving behavior modeling, 
the integration of wireless technologies and sensor fusion in 
CAVs, and AI-driven eco-driving in hybrid electric vehicles, 
demonstrate the practical benefits and potential of leveraging 
generative models in the context of CAVs. These applications 
not only improve safety and efficiency but also pave the way for 
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innovative solutions in smart transportation systems.

Looking ahead, the future of CAVs will depend on overcoming 
the current challenges and further harnessing the power of 
generative models. This includes enhancing perception and 
scene understanding, improving the prediction of other road 
users’ behavior, and advancing decision-making algorithms 
for autonomous vehicles. Addressing these areas will require a 
multidisciplinary approach, combining expertise from artificial 
intelligence, automotive engineering, ethics, and policymaking, 
to fully realize the potential of CAVs and ensure their safe, 
efficient, and ethical integration into our transportation systems.

In conclusion, the integration of Generative Models with CAVs 
holds tremendous potential for revolutionizing the transportation 
industry. By continuing to address the challenges and harness 
the opportunities presented by this synergy, we can look 
forward to a future where autonomous vehicles operate more 
safely, efficiently, and harmoniously within our transportation 
ecosystems.
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