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Abstract
This paper discovers that current variational principle and Noether theorem for different physics systems with (in) finite 
freedom systems have missed the double extremum processes of the general extremum functional that both is deduced by 
variational principle and is necessarily taken in deducing all the physics laws, but these have not been corrected for over 
a century since Noether's proposing her famous theorem, which result in the crisis deducing relevant mathematical laws 
and all physics laws. This paper discovers there is the hidden logic cycle that one assumes Euler-Lagrange equations, and 
then he finally deduces Euler-Lagrange equations via the equivalent relation in the whole processes in all relevant current 
references. This paper corrects the current key mistakes that when physics systems choose the variational extreme values, 
the appearing processes of the physics systems are real physics processes, otherwise, are virtual processes in all current 
articles, reviews and (text) books. The real physics should be after choosing the variational extreme values of physics 
systems, the general extremum functional of the physics systems needs to further choose the minimum absolute extremum 
zero of the general extremum functional, otherwise, the appearing processes of physics systems are still virtual processes. 
Using the double extremum processes of the general extremum functionals, the crisis and the hidden logic cycle in current 
variational principle and current Noether theorem are solved. Furthermore, the new mathematical and physical double 
extremum processes and their new mathematical pictures and physics for (in) finite freedom systems are discovered. This 
paper gives both general variational principle and general Noether theorem as well as their classical and quantum new 
physics, which would rewrite all relevant current different branches of science, as key tools of studying and processing them.
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1. Introduction
A variational principle in science is to enables a problem being 
solved by using the calculus of variations, which optimizes the 
values of these quantities in the variational systems [1].

Fundamental physics laws can be expressed by a variational 
principle, which can give Euler-Lagrange equations and the 
corresponding convervation quantity [2, 3]. Noether generalized 
the variational principle to a now called Noether theorem by 
finding the transformation symmetry properties of variational 
systems and giving both Euler-Lagrange equations and the many 
conservation quantities depending on the corresponding many 
symmetries [4, 5].

Current variational principle and Noether theorem have been 
extensively used in different branches of science and have 
become key tools of studying and processing the different 
branches, for examples:

In mathematics [1, 6-9]: (i) The extremum method for 
solving boundary-value problems; (ii) Variational principle 
in mathematical optimization; (iii) Variational principle in 
mathematical extremum problems; (iv) Variational principle 
in mathematical motion equations and invariant quantities; 
(v) The finite element method; ....... In physics [2, 10-14]: 
(i) Fermat's principle in geometrical optics; (ii) Maupertuis' 
principle in classical mechanics; (iii) The principle of least 
action in mechanics, electromagnetic theory and so on; (iv) The 
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variational method in quantum mechanics; (v) Gauss's principle 
of least constraint and variational principle of least curvature; 
(vi) Hilbert's action principle in general relativity leading to 
Einstein field equations; (vii) Palatini variational principle; (viii) 
Variational principle in different field theories;...... . In astronmy 
and astrophysics, in chemistry, even in engineering and so on 
[9, 15-17].

Various variational principles and their applications are very 
well investigated, e.g., see [18-23]. Role of Noether's Theorem 
at the Deconfined Quantum Critical Point is studied, Noether's 
theorems and conserved currents in gauge theories in the 
presence of fixed fields are explored, furthermore, Noether's 
theorem and conserved quantities for the crystal- and ligand field 
Hamiltonians invariant under continuous rotational symmetry 
are investigated [24-26].

In current variational principle and Noether theorem, there are 
the needs in advance to assume existing some conditions which 
are equivalent to Euler-Lagrange equations and conservation 
quantities, and then deducing Euler-Lagrange equations and 
conservation quantities, which are related to a hidden logic cycle 
problem and are not both exact and natural.

Furthermore, we find that all the investigations on variational 
principle and Noether theorem for different physics systems 
have missed the key studies on the double extremum processes 
related to the general extremum functional that is deduced via 
the least action principle and should be key largely taken in 
deducing all the physics laws, but the current variational principle 
and current Noether theorem have missed the general extreme 
functionals and their minimum extremums for over a century 
since Noether's proposing her theorem [4, 5], which result in the 
crisis of no objectively deducing all the physics laws. Using the 
studies on the double extremum processes related to the general 
extremum functionals in this paper, the crisis and the hidden 
logic cycle problem are solved, and the new physical pictures 
are discovered. 

No losing generality, all physics laws always can be expressed 
as some equations, these equations always can be viewed as 
some Euler-Lagrange equations, the Euler-Lagrange equations 
always can be deduced by the general variational principle and/
or Noether theorem [4, 5]. Especially, the four fundamental 
interaction theories in the universe, i.e., the strong, weak, 
electromagnetic and granvitational interaction theories, are 
directly deduced by variational principle and Noether theorem. 
Therefore, there always is the crisis deducing all the physics 
laws. This paper wants to solve the crisis.

The arrangements of this paper are: Sect. 2 shows unification 
studies on variational principle and Noether theorem for finite 
freedom systems; Sect. 3 investigates crisis of deducing physics 
laws and its solution to the crisis for finite freedom systems; Sect. 
4 gives unification studies on variational principle and Noether 
theorem for in finite freedom systems; Sect. 5 studies crisis of 
deducing physics laws and its solution to the crisis for in finite 
freedom systems; Sect. 6 shows discussions and applications; 
Sect. 7 gives summary and conclusions.

2. Unification Studies on Variational Principle and Noether 
Theorem for Finite Freedom Systems 
The exact mathematical descriptions of the least action principle 
for a general case are: the variation of the integral 
(i.e., the action) of the Lagrangian L during [t1, t2] about N 
generalized coordinates q = (q1, q2,...,qn) is [13, 27].

It is no losing the generality, because the results of the systems 
with higher derivatives of q are the similar but more terms 
relevant to higher derivatives of q.

Among them, the general infinitesimal transformations are [27-
29].

in which r = 0, 1, 2, α = (α1, α2, …, αm) are independent continuous 
variable parameters of Lie group G and

Eqs. (4) and (5) are the infinitesimal generating functions under 
the operation of group G, εσ (σ = 1,2,…,m) are independent 
infinitesimal parameters corresponding to α, one dot and two dots 
denote the  first and second order time derivatives respectively, 
the curve q(t) is parameterized by time, and the path takes 
extremum corresponding ΔA = 0.

Doing as the well-known Refs. [2, 9, 13, 27, 29], we define

Putting Eq. (6) into Eq. (1), one has

Using the technique of deducing Euler-Lagrange equations 
to simplify Eq. (7) and neglecting second-order infinitesimal 
quantities, we get
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∆A = A′−A =

∫ t′2

t′1

L′(q′, q̇′, q̈′, t′)dt′−
∫ t2

t1

L(q, q̇, q̈, t)dt = 0.

(1)
It is no losing the generality, because the results of the

systems with higher derivatives of q are the similar but
more terms relevant to higher derivatives of q.
Among them, the general infinitesimal transformations

are [27–29]

t′ = t′(q, q̇, q̈, t, α) = t+∆t = t+ εστ
σ, (2)

q′i
(r) = q′i

(r)(q, q̇, q̈, t, α) = q
(r)
i +∆q

(r)
i = q

(r)
i + εσ(ξ

σ
i )

(r),
(3)

in which r = 0, 1, 2, α = (α1, α2, ..., αm) are independent
continuous variable parameters of Lie group G and

(ξσi )
(r) =

∂q
′(r)
i (q, q̇, q̈, t, α)

∂ασ
|α=0 , σ = 1, 2, ...,m; r = 0, 1, 2,

(4)

τσ =
∂t′(q, q̇, q̈, t, α)

∂ασ
|α=0 , σ = 1, 2, ...,m. (5)

Eqs.(4) and (5) are the infinitesimal generating func-
tions under the operation of group G, εσ (σ = 1,2,. . . ,m)
are independent infinitesimal parameters corresponding
to α, one dot and two dots denote the first and second
order time derivatives respectively, the curve q(t) is pa-
rameterized by time, and the path takes extremum cor-
responding ∆A = 0.
Doing as the well-known Refs. [2, 9, 13, 27, 29], we

define

L′(q′, q̇′, q̈′, t′) = L(q′, q̇′, q̈′, t′)+εσ
dΩσ

dt
, σ = 1, 2, ...,m.

(6)
Putting Eq.(6) into Eq.(1), one has

∆A =

∫ t′2

t′1

[L(q′, q̇′, q̈′, t′)+εσ
dΩσ

dt
]dt′−

∫ t2

t1

L(q, q̇, q̈, t)dt = 0.

(7)
Using the technique of deducing Euler-Lagrange equa-

tions to simplify Eq.(7) and neglecting second-order in-
finitesimal quantities, we get

∆A =

∫ t2

t1

[
dΩ

dt
+
∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqi+

d

dt
[
∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i −

d

dt

∂L

∂q̈i
δqi) + L∆(t)]]dt. (8)

where Ω = εσΩ
σ. Eq.(8) is simplified as

∆A = 0 =

∫ t2

t1

{
∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqi+

d

dt
[
∑
i

(
∂L

∂q̇i
δqi+

∂L

∂q̈i
δq̇i−

d

dt

∂L

∂q̈i
δqi)+L∆(t)+Ω]}dt. (9)
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where Ω = εσ Ω
σ. Eq. (8) is simplified as

For Eq. (9), about the degree of freedom, there are still three 
different cases:

Case (i): When assuming

using Eq. (10), one has

where i = 1, 2,…,N, because δqi (i =1,2,. . . ,N) are linear 
independent each other because qi are independent coordinates.

Using Eq. (10), we deduce conservation quantity

because

Eq. (12) can be rewritten as

Eq. (14) is the result of variational principle.

Putting Eqs. (2) and (3) into Eq. (14), we deduce m conservation 
quantities of the systems

where we have used that εσ (σ = 1; 2,…,m) are independent 
infinitesimal parameters. Namely, eq. (15) is the Noetther 
theorem's result.

We can see that both variational principle and Noether theorem 
all give the same Euler-Lagrange equations (11), but they give 
the convervation quantities are very different, i.e., Eq. (14) and 

Eq. (15) respectively.

Case (ii): When assuming that there exists Eq. (11), then putting 
Eq. (11) into Eq. (9), one has Eq. (10). In the following, there are 
the almost same discussions below Eq. (11) in Case (i).

3. Crisis of Deducing Physics Laws and Its Solution to the 
Crisis for Finite Freedom Systems
Case (iii): Using Eq. (9) and the rule of merging like terms, we 
exactly have a general functional expression

Eq. (16) comes from the general systems' taking extremum of 
the Lagrangian, but when the system has no Eq. (10) or Eq. 
(11), or no Eqs. (10) and (11), then the systems cannot give 
Euler-Lagrange equations and the corresponding conservation 
quantities. Namely, this case cannot give real physics laws, 
which is just the reason that current variational principle and 
current Noether theorem have missed the case (iii) [27-29].

Cases (i) and (ii) are necessary and sufficient conditions that 
just give real physics laws, and accordint to current variational 
principle and current Noether theorem, case (iii) at all cannot 
give real physics laws [28,29].

Using Eq. (16) derived from the variational extremum, we can 
exactly define a general extremum functional

The new general equal equation functional F between the 
functional F1 of deducing Euler-Lagrange equations having 
merged like terms relevant to Euler-Lagrange equations and the 
functional F2 of deducing the general conservation quantities 
having merged like terms relevant to the general conservation 
quantities is deduced by satisfying variational principle, i.e., F 
= F1 = -F2, namely, F1 + F2 = 0, which just shows the variational 
extreme value, but these still cannot give real physics, see the 
studies below, these are very important classical and quantum 
new physics processes of general physics systems, because this 
Lagrangian is a general classical or quantum Lagrangian. 

When the absolute value of the general extremum functional F 
is taken as zero, because the minimum absolute value of any 
functional is zero, i.e., a general extremum (because the general 
extremum functional F may generally take a lot of different 
values, e.g., arbitrary positive and/or negative values), then we 
generally have
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is [13, 27]

∆A = A′−A =

∫ t′2

t′1

L′(q′, q̇′, q̈′, t′)dt′−
∫ t2

t1

L(q, q̇, q̈, t)dt = 0.

(1)
It is no losing the generality, because the results of the

systems with higher derivatives of q are the similar but
more terms relevant to higher derivatives of q.
Among them, the general infinitesimal transformations

are [27–29]

t′ = t′(q, q̇, q̈, t, α) = t+∆t = t+ εστ
σ, (2)

q′i
(r) = q′i

(r)(q, q̇, q̈, t, α) = q
(r)
i +∆q

(r)
i = q

(r)
i + εσ(ξ

σ
i )

(r),
(3)

in which r = 0, 1, 2, α = (α1, α2, ..., αm) are independent
continuous variable parameters of Lie group G and

(ξσi )
(r) =

∂q
′(r)
i (q, q̇, q̈, t, α)

∂ασ
|α=0 , σ = 1, 2, ...,m; r = 0, 1, 2,

(4)

τσ =
∂t′(q, q̇, q̈, t, α)

∂ασ
|α=0 , σ = 1, 2, ...,m. (5)

Eqs.(4) and (5) are the infinitesimal generating func-
tions under the operation of group G, εσ (σ = 1,2,. . . ,m)
are independent infinitesimal parameters corresponding
to α, one dot and two dots denote the first and second
order time derivatives respectively, the curve q(t) is pa-
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responding ∆A = 0.
Doing as the well-known Refs. [2, 9, 13, 27, 29], we

define

L′(q′, q̇′, q̈′, t′) = L(q′, q̇′, q̈′, t′)+εσ
dΩσ

dt
, σ = 1, 2, ...,m.

(6)
Putting Eq.(6) into Eq.(1), one has

∆A =

∫ t′2

t′1

[L(q′, q̇′, q̈′, t′)+εσ
dΩσ

dt
]dt′−

∫ t2

t1

L(q, q̇, q̈, t)dt = 0.

(7)
Using the technique of deducing Euler-Lagrange equa-

tions to simplify Eq.(7) and neglecting second-order in-
finitesimal quantities, we get

∆A =

∫ t2

t1

[
dΩ

dt
+
∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqi+

d

dt
[
∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i −

d

dt

∂L

∂q̈i
δqi) + L∆(t)]]dt. (8)

where Ω = εσΩ
σ. Eq.(8) is simplified as

∆A = 0 =

∫ t2

t1

{
∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqi+

d

dt
[
∑
i

(
∂L

∂q̇i
δqi+

∂L

∂q̈i
δq̇i−

d

dt

∂L

∂q̈i
δqi)+L∆(t)+Ω]}dt. (9)
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For Eq.(9), about the degree of freedom, there are still
three different cases:

Case (i): When assuming

∆A =

∫ t2

t1

d

dt
[
∑
i

(
∂L

∂q̇i
δqi+

∂L

∂q̈i
δq̇i−

d

dt

∂L

∂q̈i
δqi)+L∆(t)+Ω]dt,

(10)
using Eq.(10), one has

∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
= 0, (11)

where i = 1, 2, . . . , N , because δqi (i =1,2,. . . ,N) are lin-
ear independent each other because qi are independent
coordinates.

Using Eq.(10), we deduce conservation quantity

∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i −

d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω = const.,

(12)
because

∆q
(r)
i = δq

(r)
i (t) + q

(r+1)
i (t)∆t, r = 0, 1, 2, (13)

Eq.(12) can be rewritten as

∑
i

(
∂L

∂q̇i
(∆qi − q̇i∆t) +

∂L

∂q̈i
(∆q̇i − q̈i∆t)

− d

dt

∂L

∂q̈i
(∆qi − q̇i∆t)) + L∆(t) + Ω = const. (14)

Eq.(14) is the result of variational principle.
Putting Eqs.(2) and (3) into Eq.(14), we deduce m

conservation quantities of the systems

∑
i

(
∂L

∂q̇i
(ξσi − q̇iτ

σ) +
∂L

∂q̈i
(

.

ξσi − q̈iτ
σ)

− d

dt

∂L

∂q̈i
(ξσi − q̇iτ

σ) + Lτσ +Ωσ = constσ. (15)

where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(15) is the
Noetther theorem’s result.

We can see that both variational principle and Noether
theorem all give the same Euler-Lagrange equations (11),
but they give the convervation quantities are very differ-
ent, i.e., Eq.(14) and Eq.(15) respectively.

Case (ii): When assuming that there exists Eq.(11),
then putting Eq.(11) into Eq.(9), one has Eq.(10). In the
following, there are the almost same discussions below
Eq.(11) in Case (i).

III.Crisis of deducing physics laws and its solu-
tion to the crisis for finite freedom systems

Case (iii): Using Eq.(9) and the rule of merging like
terms, we exactly have a general functional expression

∫ t2

t1

∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqidt = −

∫ t2

t1

d

dt
[

∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i −

d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω]dt. (16)

Eq.(16) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the system has no
Eq.(10) or Eq.(11), or no Eqs.(10) and (11), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (iii) [27–29].

Cases (i) and (ii) are necessary and sufficient conditions
that just give real physics laws, and accordint to current
variational principle and current Noether theorem [28,
29], case (iii) at all cannot give real physics laws.

Using Eq.(16) derived from the variational extremum,
we can exactly define a general extremum functional

F =

∫ t2

t1

∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqidt = −

∫ t2

t1

d

dt
[

∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i −

d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω]dt. (17)

The new general equal equation functional F between
the functional F1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional F2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., F = F1 = −F2,
namely, F1 + F2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.

When the absolute value of the general extremum func-
tional F is taken as zero, because the minimum absolute
value of any functional is zero, i.e., a general extremum (
because the general extremum functional F may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have

∫ t2

t1

∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqidt = 0

= −
∫ t2

t1

∑
i

d

dt
[
∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i
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conservation quantities of the systems
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where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(15) is the
Noetther theorem’s result.

We can see that both variational principle and Noether
theorem all give the same Euler-Lagrange equations (11),
but they give the convervation quantities are very differ-
ent, i.e., Eq.(14) and Eq.(15) respectively.

Case (ii): When assuming that there exists Eq.(11),
then putting Eq.(11) into Eq.(9), one has Eq.(10). In the
following, there are the almost same discussions below
Eq.(11) in Case (i).

III.Crisis of deducing physics laws and its solu-
tion to the crisis for finite freedom systems

Case (iii): Using Eq.(9) and the rule of merging like
terms, we exactly have a general functional expression
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∑
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[
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∂L

∂q̇i
+
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(
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δqi +
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d

dt
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∂q̈i
δqi) + L∆(t) + Ω]dt. (16)

Eq.(16) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the system has no
Eq.(10) or Eq.(11), or no Eqs.(10) and (11), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (iii) [27–29].

Cases (i) and (ii) are necessary and sufficient conditions
that just give real physics laws, and accordint to current
variational principle and current Noether theorem [28,
29], case (iii) at all cannot give real physics laws.

Using Eq.(16) derived from the variational extremum,
we can exactly define a general extremum functional

F =

∫ t2

t1

∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
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∂q̈i
]δqidt = −
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d

dt
[

∑
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(
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δqi +

∂L

∂q̈i
δq̇i −

d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω]dt. (17)

The new general equal equation functional F between
the functional F1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional F2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., F = F1 = −F2,
namely, F1 + F2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.

When the absolute value of the general extremum func-
tional F is taken as zero, because the minimum absolute
value of any functional is zero, i.e., a general extremum (
because the general extremum functional F may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have

∫ t2

t1

∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqidt = 0

= −
∫ t2

t1

∑
i

d

dt
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i
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∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i
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Putting Eqs.(2) and (3) into Eq.(14), we deduce m

conservation quantities of the systems

∑
i

(
∂L

∂q̇i
(ξσi − q̇iτ

σ) +
∂L

∂q̈i
(

.

ξσi − q̈iτ
σ)

− d

dt

∂L

∂q̈i
(ξσi − q̇iτ

σ) + Lτσ +Ωσ = constσ. (15)

where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(15) is the
Noetther theorem’s result.
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theorem all give the same Euler-Lagrange equations (11),
but they give the convervation quantities are very differ-
ent, i.e., Eq.(14) and Eq.(15) respectively.

Case (ii): When assuming that there exists Eq.(11),
then putting Eq.(11) into Eq.(9), one has Eq.(10). In the
following, there are the almost same discussions below
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III.Crisis of deducing physics laws and its solu-
tion to the crisis for finite freedom systems

Case (iii): Using Eq.(9) and the rule of merging like
terms, we exactly have a general functional expression

∫ t2

t1

∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqidt = −

∫ t2

t1

d

dt
[

∑
i

(
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∂q̇i
δqi +

∂L

∂q̈i
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d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω]dt. (16)

Eq.(16) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the system has no
Eq.(10) or Eq.(11), or no Eqs.(10) and (11), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (iii) [27–29].

Cases (i) and (ii) are necessary and sufficient conditions
that just give real physics laws, and accordint to current
variational principle and current Noether theorem [28,
29], case (iii) at all cannot give real physics laws.

Using Eq.(16) derived from the variational extremum,
we can exactly define a general extremum functional

F =
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+

d2

dt2
∂L

∂q̈i
]δqidt = −

∫ t2

t1

d

dt
[

∑
i

(
∂L

∂q̇i
δqi +
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The new general equal equation functional F between
the functional F1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional F2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., F = F1 = −F2,
namely, F1 + F2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.

When the absolute value of the general extremum func-
tional F is taken as zero, because the minimum absolute
value of any functional is zero, i.e., a general extremum (
because the general extremum functional F may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have
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[
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+
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theorem have missed the case (iii) [27–29].

Cases (i) and (ii) are necessary and sufficient conditions
that just give real physics laws, and accordint to current
variational principle and current Noether theorem [28,
29], case (iii) at all cannot give real physics laws.

Using Eq.(16) derived from the variational extremum,
we can exactly define a general extremum functional

F =
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δqi) + L∆(t) + Ω]dt. (17)

The new general equal equation functional F between
the functional F1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional F2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., F = F1 = −F2,
namely, F1 + F2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.

When the absolute value of the general extremum func-
tional F is taken as zero, because the minimum absolute
value of any functional is zero, i.e., a general extremum (
because the general extremum functional F may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have
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For Eq.(9), about the degree of freedom, there are still
three different cases:

Case (i): When assuming
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using Eq.(10), one has
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= 0, (11)

where i = 1, 2, . . . , N , because δqi (i =1,2,. . . ,N) are lin-
ear independent each other because qi are independent
coordinates.

Using Eq.(10), we deduce conservation quantity

∑
i
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dt
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(r)
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i (t)∆t, r = 0, 1, 2, (13)
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Eq.(14) is the result of variational principle.
Putting Eqs.(2) and (3) into Eq.(14), we deduce m

conservation quantities of the systems
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σ) + Lτσ +Ωσ = constσ. (15)

where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(15) is the
Noetther theorem’s result.

We can see that both variational principle and Noether
theorem all give the same Euler-Lagrange equations (11),
but they give the convervation quantities are very differ-
ent, i.e., Eq.(14) and Eq.(15) respectively.

Case (ii): When assuming that there exists Eq.(11),
then putting Eq.(11) into Eq.(9), one has Eq.(10). In the
following, there are the almost same discussions below
Eq.(11) in Case (i).
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the functional F1 of deducing Euler-Lagrange equation-
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evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., F = F1 = −F2,
namely, F1 + F2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.

When the absolute value of the general extremum func-
tional F is taken as zero, because the minimum absolute
value of any functional is zero, i.e., a general extremum (
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ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have
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where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(15) is the
Noetther theorem’s result.

We can see that both variational principle and Noether
theorem all give the same Euler-Lagrange equations (11),
but they give the convervation quantities are very differ-
ent, i.e., Eq.(14) and Eq.(15) respectively.

Case (ii): When assuming that there exists Eq.(11),
then putting Eq.(11) into Eq.(9), one has Eq.(10). In the
following, there are the almost same discussions below
Eq.(11) in Case (i).

III.Crisis of deducing physics laws and its solu-
tion to the crisis for finite freedom systems

Case (iii): Using Eq.(9) and the rule of merging like
terms, we exactly have a general functional expression
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Eq.(16) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the system has no
Eq.(10) or Eq.(11), or no Eqs.(10) and (11), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (iii) [27–29].

Cases (i) and (ii) are necessary and sufficient conditions
that just give real physics laws, and accordint to current
variational principle and current Noether theorem [28,
29], case (iii) at all cannot give real physics laws.

Using Eq.(16) derived from the variational extremum,
we can exactly define a general extremum functional

F =
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The new general equal equation functional F between
the functional F1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional F2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., F = F1 = −F2,
namely, F1 + F2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.

When the absolute value of the general extremum func-
tional F is taken as zero, because the minimum absolute
value of any functional is zero, i.e., a general extremum (
because the general extremum functional F may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have
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where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(15) is the
Noetther theorem’s result.

We can see that both variational principle and Noether
theorem all give the same Euler-Lagrange equations (11),
but they give the convervation quantities are very differ-
ent, i.e., Eq.(14) and Eq.(15) respectively.

Case (ii): When assuming that there exists Eq.(11),
then putting Eq.(11) into Eq.(9), one has Eq.(10). In the
following, there are the almost same discussions below
Eq.(11) in Case (i).

III.Crisis of deducing physics laws and its solu-
tion to the crisis for finite freedom systems

Case (iii): Using Eq.(9) and the rule of merging like
terms, we exactly have a general functional expression
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Eq.(16) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the system has no
Eq.(10) or Eq.(11), or no Eqs.(10) and (11), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (iii) [27–29].

Cases (i) and (ii) are necessary and sufficient conditions
that just give real physics laws, and accordint to current
variational principle and current Noether theorem [28,
29], case (iii) at all cannot give real physics laws.

Using Eq.(16) derived from the variational extremum,
we can exactly define a general extremum functional

F =
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The new general equal equation functional F between
the functional F1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional F2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., F = F1 = −F2,
namely, F1 + F2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.

When the absolute value of the general extremum func-
tional F is taken as zero, because the minimum absolute
value of any functional is zero, i.e., a general extremum (
because the general extremum functional F may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have
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pendent infinitesimal parameters. Namely, eq.(15) is the
Noetther theorem’s result.

We can see that both variational principle and Noether
theorem all give the same Euler-Lagrange equations (11),
but they give the convervation quantities are very differ-
ent, i.e., Eq.(14) and Eq.(15) respectively.

Case (ii): When assuming that there exists Eq.(11),
then putting Eq.(11) into Eq.(9), one has Eq.(10). In the
following, there are the almost same discussions below
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Eq.(16) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the system has no
Eq.(10) or Eq.(11), or no Eqs.(10) and (11), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (iii) [27–29].
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that just give real physics laws, and accordint to current
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the functional F1 of deducing Euler-Lagrange equation-
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systems, because this Lagrangian is a general classical or
quantum Lagrangian.

When the absolute value of the general extremum func-
tional F is taken as zero, because the minimum absolute
value of any functional is zero, i.e., a general extremum (
because the general extremum functional F may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have

∫ t2

t1

∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqidt = 0

= −
∫ t2

t1

∑
i

d

dt
[
∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i
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Thus, the first line of Eq. (18) is equivalent to case (ii), and the 
sum of the second and third lines of Eq. (18) are equivalent to 
case (i), all these can give physics laws. Namely, the general 
extremum functional F takes the minimum absolute value, i.e., 
zero, all the physics laws can be deduced, otherwise, all the 
physics laws cannot be deduced. That is, Eq. (17) is deduced 
from the variational extremum, Eq. (18) is further taking 
the absolute extreme value zero, i.e., the minimum absolute 
extremum, of the general extremum functional F. Therefore, we, 
for the first time, discover that it is the double extreme values 
(i.e., the extreme functional F's extremum) that result in that 
all the physics laws can be deduced, otherwise, all the physics 
laws cannot be deduced. These are very important classical and 
quantum new physics processes of general physics systems.

Therefore, the systems first choose extreme value (i.e., via Eq. 
(1)) of the Lagrangian, and then we naturally deduce Eq. (9), 
there are needs as usual in advance to assume existing case (i) or 
(ii), because which are equivalent to Euler-Lagrange equations 
and conservation quantities, and then deducing Euler-Lagrange 
equations and conservation quantities, which are related to a 
hidden logic cycle and are not both exact and natural.

Actually, there naturally exists the general extremum functional 
F so that we can choose the absolute extreme value zero of 
the general extremum functional F, then case (i) or (ii) can 
be naturally deduced (e.g., see the studies below Eq. (18). 
Making these natural deductions reflects the systems' intrinsical 
properties, namely, the intrinsical mathematical and physical 
double extreme value procceses. Otherwise, the systems cannot 
get real physical laws. These results are not only supplementary 
developments of the current variational principle and current 
Noether theorem but also classsical and quantum new physics 
corresponding to classical and quantum physics systems, 
because this Lagrangian is a general Lagrangian.

For all times, both the Lagrangian and the action contain the 
systems' dynamics, and the real appearance case is that the 
path taken by the systems during [t1, t2] takes extreme value 
corresponding ΔA = 0, which means that the systems can not 
only choose but also make the least extremum choice and 
further choose the minimum absolute extremum of the general 
extremum functional F.

We discover that, up to now, all the investigations on variational 
principle and Noether theorem for different physics systems 
have missed the key studies on the double extremum processes 
related to the general extremum functional F that is deduced 

via the least action principle and should be key largely taken 
in deducing all the physics laws, but the current variational 
principle and current Noether theorem have neglected the 
general extreme function F and F ' s minimum extremum, which 
results in the crisis and the hidden logic cycle of no objectively 
deducing all physics laws. Using the studies on the double 
extremum processes related to the general extremum processes 
related to the general extremum functional F in this paper, the 
crisis and the hidden logic cycle are not only solved, but also the 
new mathematical and physical double extremum processes and 
their new mathematical and physical pictures are discovered. 
Therefore, the general variantional principle and the general 
Noether theorem for finite freedom systems are given, which 
solve the crisis and the hidden logic cycle.

4. Unification Studies on Variational Principle and Noether 
Theorem for Infinite Freedom Systems
For general field variables X(x) = {Ψ(x), φ(x), ωµ(x), gµv (x), 
….,}, the exact mathematical descriptions of the least action 
principle for a general case are: the variation of the action about 
N field components X = (X1,X2,...,XN) is 

in which the general infinitesimal transformations are [28, 29].

are independent continuous variable parameters of Lie group G 
and

where τµσ and ξ ab (σ = 1, 2, …,m) are infinitesimal transformation 
functions.

Eqs. (22) and (23) are the infinitesimal generating function 
under the operation of group G, εσ(σ = 1,2,…,m) are independent 
infinitesimal parameters corresponding to ω.

Without loss of generality, we define

3

For Eq.(9), about the degree of freedom, there are still
three different cases:

Case (i): When assuming

∆A =

∫ t2

t1

d

dt
[
∑
i

(
∂L

∂q̇i
δqi+

∂L

∂q̈i
δq̇i−

d

dt

∂L

∂q̈i
δqi)+L∆(t)+Ω]dt,

(10)
using Eq.(10), one has

∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
= 0, (11)

where i = 1, 2, . . . , N , because δqi (i =1,2,. . . ,N) are lin-
ear independent each other because qi are independent
coordinates.

Using Eq.(10), we deduce conservation quantity

∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i −

d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω = const.,

(12)
because

∆q
(r)
i = δq

(r)
i (t) + q

(r+1)
i (t)∆t, r = 0, 1, 2, (13)

Eq.(12) can be rewritten as

∑
i

(
∂L

∂q̇i
(∆qi − q̇i∆t) +

∂L

∂q̈i
(∆q̇i − q̈i∆t)

− d

dt

∂L

∂q̈i
(∆qi − q̇i∆t)) + L∆(t) + Ω = const. (14)

Eq.(14) is the result of variational principle.
Putting Eqs.(2) and (3) into Eq.(14), we deduce m

conservation quantities of the systems

∑
i

(
∂L

∂q̇i
(ξσi − q̇iτ

σ) +
∂L

∂q̈i
(

.

ξσi − q̈iτ
σ)

− d

dt

∂L

∂q̈i
(ξσi − q̇iτ

σ) + Lτσ +Ωσ = constσ. (15)

where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(15) is the
Noetther theorem’s result.

We can see that both variational principle and Noether
theorem all give the same Euler-Lagrange equations (11),
but they give the convervation quantities are very differ-
ent, i.e., Eq.(14) and Eq.(15) respectively.

Case (ii): When assuming that there exists Eq.(11),
then putting Eq.(11) into Eq.(9), one has Eq.(10). In the
following, there are the almost same discussions below
Eq.(11) in Case (i).

III.Crisis of deducing physics laws and its solu-
tion to the crisis for finite freedom systems

Case (iii): Using Eq.(9) and the rule of merging like
terms, we exactly have a general functional expression

∫ t2

t1

∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqidt = −

∫ t2

t1

d

dt
[

∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i −

d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω]dt. (16)

Eq.(16) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the system has no
Eq.(10) or Eq.(11), or no Eqs.(10) and (11), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (iii) [27–29].

Cases (i) and (ii) are necessary and sufficient conditions
that just give real physics laws, and accordint to current
variational principle and current Noether theorem [28,
29], case (iii) at all cannot give real physics laws.

Using Eq.(16) derived from the variational extremum,
we can exactly define a general extremum functional

F =

∫ t2

t1

∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqidt = −

∫ t2

t1

d

dt
[

∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i −

d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω]dt. (17)

The new general equal equation functional F between
the functional F1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional F2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., F = F1 = −F2,
namely, F1 + F2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.

When the absolute value of the general extremum func-
tional F is taken as zero, because the minimum absolute
value of any functional is zero, i.e., a general extremum (
because the general extremum functional F may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have

∫ t2

t1

∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqidt = 0

= −
∫ t2

t1

∑
i

d

dt
[
∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i
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− d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω]dt = 0 (18)

thus the first line of Eq.(18) is equivalent to case (ii),
and the sum of the second and third lines of Eq.(18) are
equivalent to case (i), all these can give physics laws.
Namely, the general extremum functional F takes the
minimum absolute value, i.e., zero, all the physics laws
can be deduced, otherwise, all the physics laws cannot be
deduced. That is, Eq.(17) is deduced from the variational
extremum, Eq.(18) is further taking the absolute extreme
value zero, i.e., the minimum absolute extremum, of the
general extremum functional F . Therefore, we, for the
first time, discover that it is the double extreme values
(i.e., the extreme functional F ’s extremum) that result
in that all the physics laws can be deduced, otherwise,
all the physics laws cannot be deduced. These are very
important classical and quantum new physics processes
of general physics systems.
Therefore, the systems first choose extreme value (i.e.,

via Eq.(1)) of the Lagrangian, and then we naturally d-
educe Eq.(9), there are needs as usual in advance to as-
sume existing case (i) or (ii), because which are equiva-
lent to Euler-Lagrange equations and conservation quan-
tities, and then deducing Euler-Lagrange equations and
conservation quantities, which are related to a hidden
logic cycle and are not both exact and natural.
Actually, there naturally exists the general extremum

functional F so that we can choose the absolute extreme
value zero of the general extremum functional F , then
case (i) or (ii) can be naturally deduced ( e.g., see the s-
tudies below Eq.(18) ). Making these natural deductions
reflects the systems’ intrinsical properties, namely, the in-
trinsical mathematical and physical double extreme value
procceses. Otherwise, the systems cannot get real physi-
cal laws. These results are not only supplementary devel-
opments of the current variational principle and current
Noether theorem but also classsical and quantum new
physics corresponding to classical and quantum physics
systems, because this Lagrangian is a general Lagrangian.
For all times, both the Lagrangian and the action con-

tain the systems’ dynamics, and the real appearance case
is that the path taken by the systems during [t1, t2] takes
extreme value corresponding ∆A = 0, which means that
the systems can not only choose but also make the least
extremum choice and further choose the minimum abso-
lute extremum of the general extremum functional F .
We discover that, up to now, all the investigations on

variational principle and Noether theorem for different
physics systems have missed the key studies on the dou-
ble extremum processes related to the general extremum
functional F that is deduced via the least action princi-
ple and should be key largely taken in deducing all the
physics laws, but the current variational principle and
current Noether theorem have neglected the general ex-
treme function F and F ’s minimum extremum, which
results in the crisis and the hidden logic cycle of no ob-
jectively deducing all physics laws. Using the studies on
the double extremum processes related to the general ex-

tremum functional F in this paper, the crisis and the
hidden logic cycle are not only solved, but also the new
mathematical and physical double extremum processes
and their new mathematical and physical pictures are
discovered. Therefore, the general variantional principle
and the general Noether theorem for finite freedom sys-
tems are given, which solve the crisis and the hidden logic
cycle.
IV.Unification studies on variational principle

and Noether theorem for infinite freedom systems

For general field variables X(x) = {Ψ(x), ϕ(x),
ωµ(x), gµν(x), ..., } , the exact mathematical description-
s of the least action principle for a general case are:
the variation of the action about N field components
X = (X1, X2,...,XN ) is

∆A = A′ −A =

∫ x′
2

x′
1

L′(X ′(x′), ∂′
αX

′(x′), ∂′
α∂

′
βX

′(x′), x′)dx′4

−
∫ x2

x1

L((X(x), ∂αX(x), ∂α∂βX(x), x)dx4 = 0.

(19)

in which the general infinitesimal transformations are [28,
29]

x′µ = xµ+∆xµ = xµ+εσ(x)τ
µσ(x,X(x), ∂αX(x), ∂α∂βX(x)),

(20)

X ′α(x′) = Xa(x)+εσ(x)ξ
aσ(x,X(x), ∂µX(x), ∂µ∂νX(x))

(21)
where X ′α(x′) = Xα(x) + ∆Xα(x), ω = (ω1, ω2, ..., ωm)
are independent continuous variable parameters of Lie
group G and

τµσ =
∂xµ(x,X(x), ∂µX(x), ∂µ∂νX(x), ω)

∂ωσ
|ωσ=0 , (22)

ξaσ =
∂Xα(x,X(x), ∂αX(x), ∂α∂βX(x), ω)

∂ωσ
|ωσ=0 ,

(23)
where τµσ and ξaσ(σ = 1, 2, ...,m) are infinitesimal trans-
formation functions.
Eqs.(22) and (23) are the infinitesimal generating func-

tion under the operation of group G, εσ (σ = 1,2,. . . ,m)
are independent infinitesimal parameters corresponding
to ω.
Without loss of generality, we define

L′(X ′(x′), ∂′
αX

′(x′), ∂α∂βX
′(x′), x′) = L(X ′(x′), ∂′

αX
′(x′),

∂′
α∂

′
βX

′(x′), x′) + εσ∂µΩ
σ(X(x), ∂αX(x), ∂α∂βX(x), x),

(24)
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− d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω]dt = 0 (18)

thus the first line of Eq.(18) is equivalent to case (ii),
and the sum of the second and third lines of Eq.(18) are
equivalent to case (i), all these can give physics laws.
Namely, the general extremum functional F takes the
minimum absolute value, i.e., zero, all the physics laws
can be deduced, otherwise, all the physics laws cannot be
deduced. That is, Eq.(17) is deduced from the variational
extremum, Eq.(18) is further taking the absolute extreme
value zero, i.e., the minimum absolute extremum, of the
general extremum functional F . Therefore, we, for the
first time, discover that it is the double extreme values
(i.e., the extreme functional F ’s extremum) that result
in that all the physics laws can be deduced, otherwise,
all the physics laws cannot be deduced. These are very
important classical and quantum new physics processes
of general physics systems.
Therefore, the systems first choose extreme value (i.e.,

via Eq.(1)) of the Lagrangian, and then we naturally d-
educe Eq.(9), there are needs as usual in advance to as-
sume existing case (i) or (ii), because which are equiva-
lent to Euler-Lagrange equations and conservation quan-
tities, and then deducing Euler-Lagrange equations and
conservation quantities, which are related to a hidden
logic cycle and are not both exact and natural.
Actually, there naturally exists the general extremum

functional F so that we can choose the absolute extreme
value zero of the general extremum functional F , then
case (i) or (ii) can be naturally deduced ( e.g., see the s-
tudies below Eq.(18) ). Making these natural deductions
reflects the systems’ intrinsical properties, namely, the in-
trinsical mathematical and physical double extreme value
procceses. Otherwise, the systems cannot get real physi-
cal laws. These results are not only supplementary devel-
opments of the current variational principle and current
Noether theorem but also classsical and quantum new
physics corresponding to classical and quantum physics
systems, because this Lagrangian is a general Lagrangian.
For all times, both the Lagrangian and the action con-

tain the systems’ dynamics, and the real appearance case
is that the path taken by the systems during [t1, t2] takes
extreme value corresponding ∆A = 0, which means that
the systems can not only choose but also make the least
extremum choice and further choose the minimum abso-
lute extremum of the general extremum functional F .
We discover that, up to now, all the investigations on

variational principle and Noether theorem for different
physics systems have missed the key studies on the dou-
ble extremum processes related to the general extremum
functional F that is deduced via the least action princi-
ple and should be key largely taken in deducing all the
physics laws, but the current variational principle and
current Noether theorem have neglected the general ex-
treme function F and F ’s minimum extremum, which
results in the crisis and the hidden logic cycle of no ob-
jectively deducing all physics laws. Using the studies on
the double extremum processes related to the general ex-

tremum functional F in this paper, the crisis and the
hidden logic cycle are not only solved, but also the new
mathematical and physical double extremum processes
and their new mathematical and physical pictures are
discovered. Therefore, the general variantional principle
and the general Noether theorem for finite freedom sys-
tems are given, which solve the crisis and the hidden logic
cycle.
IV.Unification studies on variational principle

and Noether theorem for infinite freedom systems

For general field variables X(x) = {Ψ(x), ϕ(x),
ωµ(x), gµν(x), ..., } , the exact mathematical description-
s of the least action principle for a general case are:
the variation of the action about N field components
X = (X1, X2,...,XN ) is

∆A = A′ −A =

∫ x′
2

x′
1

L′(X ′(x′), ∂′
αX

′(x′), ∂′
α∂

′
βX

′(x′), x′)dx′4

−
∫ x2

x1

L((X(x), ∂αX(x), ∂α∂βX(x), x)dx4 = 0.

(19)

in which the general infinitesimal transformations are [28,
29]

x′µ = xµ+∆xµ = xµ+εσ(x)τ
µσ(x,X(x), ∂αX(x), ∂α∂βX(x)),

(20)

X ′α(x′) = Xa(x)+εσ(x)ξ
aσ(x,X(x), ∂µX(x), ∂µ∂νX(x))

(21)
where X ′α(x′) = Xα(x) + ∆Xα(x), ω = (ω1, ω2, ..., ωm)
are independent continuous variable parameters of Lie
group G and

τµσ =
∂xµ(x,X(x), ∂µX(x), ∂µ∂νX(x), ω)

∂ωσ
|ωσ=0 , (22)

ξaσ =
∂Xα(x,X(x), ∂αX(x), ∂α∂βX(x), ω)

∂ωσ
|ωσ=0 ,

(23)
where τµσ and ξaσ(σ = 1, 2, ...,m) are infinitesimal trans-
formation functions.
Eqs.(22) and (23) are the infinitesimal generating func-

tion under the operation of group G, εσ (σ = 1,2,. . . ,m)
are independent infinitesimal parameters corresponding
to ω.
Without loss of generality, we define

L′(X ′(x′), ∂′
αX

′(x′), ∂α∂βX
′(x′), x′) = L(X ′(x′), ∂′

αX
′(x′),

∂′
α∂

′
βX

′(x′), x′) + εσ∂µΩ
σ(X(x), ∂αX(x), ∂α∂βX(x), x),

(24)
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− d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω]dt = 0 (18)

thus the first line of Eq.(18) is equivalent to case (ii),
and the sum of the second and third lines of Eq.(18) are
equivalent to case (i), all these can give physics laws.
Namely, the general extremum functional F takes the
minimum absolute value, i.e., zero, all the physics laws
can be deduced, otherwise, all the physics laws cannot be
deduced. That is, Eq.(17) is deduced from the variational
extremum, Eq.(18) is further taking the absolute extreme
value zero, i.e., the minimum absolute extremum, of the
general extremum functional F . Therefore, we, for the
first time, discover that it is the double extreme values
(i.e., the extreme functional F ’s extremum) that result
in that all the physics laws can be deduced, otherwise,
all the physics laws cannot be deduced. These are very
important classical and quantum new physics processes
of general physics systems.

Therefore, the systems first choose extreme value (i.e.,
via Eq.(1)) of the Lagrangian, and then we naturally d-
educe Eq.(9), there are needs as usual in advance to as-
sume existing case (i) or (ii), because which are equiva-
lent to Euler-Lagrange equations and conservation quan-
tities, and then deducing Euler-Lagrange equations and
conservation quantities, which are related to a hidden
logic cycle and are not both exact and natural.

Actually, there naturally exists the general extremum
functional F so that we can choose the absolute extreme
value zero of the general extremum functional F , then
case (i) or (ii) can be naturally deduced ( e.g., see the s-
tudies below Eq.(18) ). Making these natural deductions
reflects the systems’ intrinsical properties, namely, the in-
trinsical mathematical and physical double extreme value
procceses. Otherwise, the systems cannot get real physi-
cal laws. These results are not only supplementary devel-
opments of the current variational principle and current
Noether theorem but also classsical and quantum new
physics corresponding to classical and quantum physics
systems, because this Lagrangian is a general Lagrangian.

For all times, both the Lagrangian and the action con-
tain the systems’ dynamics, and the real appearance case
is that the path taken by the systems during [t1, t2] takes
extreme value corresponding ∆A = 0, which means that
the systems can not only choose but also make the least
extremum choice and further choose the minimum abso-
lute extremum of the general extremum functional F .

We discover that, up to now, all the investigations on
variational principle and Noether theorem for different
physics systems have missed the key studies on the dou-
ble extremum processes related to the general extremum
functional F that is deduced via the least action princi-
ple and should be key largely taken in deducing all the
physics laws, but the current variational principle and
current Noether theorem have neglected the general ex-
treme function F and F ’s minimum extremum, which
results in the crisis and the hidden logic cycle of no ob-
jectively deducing all physics laws. Using the studies on
the double extremum processes related to the general ex-

tremum functional F in this paper, the crisis and the
hidden logic cycle are not only solved, but also the new
mathematical and physical double extremum processes
and their new mathematical and physical pictures are
discovered. Therefore, the general variantional principle
and the general Noether theorem for finite freedom sys-
tems are given, which solve the crisis and the hidden logic
cycle.

IV.Unification studies on variational principle
and Noether theorem for infinite freedom systems

For general field variables X(x) = {Ψ(x), ϕ(x),
ωµ(x), gµν(x), ..., } , the exact mathematical description-
s of the least action principle for a general case are:
the variation of the action about N field components
X = (X1, X2,...,XN ) is

∆A = A′ −A =

∫ x′
2

x′
1

L′(X ′(x′), ∂′
αX

′(x′), ∂′
α∂

′
βX

′(x′), x′)dx′4

−
∫ x2

x1

L((X(x), ∂αX(x), ∂α∂βX(x), x)dx4 = 0.

(19)

in which the general infinitesimal transformations are [28,
29]

x′µ = xµ+∆xµ = xµ+εσ(x)τ
µσ(x,X(x), ∂αX(x), ∂α∂βX(x)),

(20)

X ′α(x′) = Xa(x)+εσ(x)ξ
aσ(x,X(x), ∂µX(x), ∂µ∂νX(x))

(21)
where X ′α(x′) = Xα(x) + ∆Xα(x), ω = (ω1, ω2, ..., ωm)
are independent continuous variable parameters of Lie
group G and

τµσ =
∂xµ(x,X(x), ∂µX(x), ∂µ∂νX(x), ω)

∂ωσ
|ωσ=0 , (22)

ξaσ =
∂Xα(x,X(x), ∂αX(x), ∂α∂βX(x), ω)

∂ωσ
|ωσ=0 ,

(23)
where τµσ and ξaσ(σ = 1, 2, ...,m) are infinitesimal trans-
formation functions.

Eqs.(22) and (23) are the infinitesimal generating func-
tion under the operation of group G, εσ (σ = 1,2,. . . ,m)
are independent infinitesimal parameters corresponding
to ω.
Without loss of generality, we define

L′(X ′(x′), ∂′
αX

′(x′), ∂α∂βX
′(x′), x′) = L(X ′(x′), ∂′

αX
′(x′),

∂′
α∂

′
βX

′(x′), x′) + εσ∂µΩ
σ(X(x), ∂αX(x), ∂α∂βX(x), x),

(24)
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− d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω]dt = 0 (18)

thus the first line of Eq.(18) is equivalent to case (ii),
and the sum of the second and third lines of Eq.(18) are
equivalent to case (i), all these can give physics laws.
Namely, the general extremum functional F takes the
minimum absolute value, i.e., zero, all the physics laws
can be deduced, otherwise, all the physics laws cannot be
deduced. That is, Eq.(17) is deduced from the variational
extremum, Eq.(18) is further taking the absolute extreme
value zero, i.e., the minimum absolute extremum, of the
general extremum functional F . Therefore, we, for the
first time, discover that it is the double extreme values
(i.e., the extreme functional F ’s extremum) that result
in that all the physics laws can be deduced, otherwise,
all the physics laws cannot be deduced. These are very
important classical and quantum new physics processes
of general physics systems.

Therefore, the systems first choose extreme value (i.e.,
via Eq.(1)) of the Lagrangian, and then we naturally d-
educe Eq.(9), there are needs as usual in advance to as-
sume existing case (i) or (ii), because which are equiva-
lent to Euler-Lagrange equations and conservation quan-
tities, and then deducing Euler-Lagrange equations and
conservation quantities, which are related to a hidden
logic cycle and are not both exact and natural.

Actually, there naturally exists the general extremum
functional F so that we can choose the absolute extreme
value zero of the general extremum functional F , then
case (i) or (ii) can be naturally deduced ( e.g., see the s-
tudies below Eq.(18) ). Making these natural deductions
reflects the systems’ intrinsical properties, namely, the in-
trinsical mathematical and physical double extreme value
procceses. Otherwise, the systems cannot get real physi-
cal laws. These results are not only supplementary devel-
opments of the current variational principle and current
Noether theorem but also classsical and quantum new
physics corresponding to classical and quantum physics
systems, because this Lagrangian is a general Lagrangian.

For all times, both the Lagrangian and the action con-
tain the systems’ dynamics, and the real appearance case
is that the path taken by the systems during [t1, t2] takes
extreme value corresponding ∆A = 0, which means that
the systems can not only choose but also make the least
extremum choice and further choose the minimum abso-
lute extremum of the general extremum functional F .

We discover that, up to now, all the investigations on
variational principle and Noether theorem for different
physics systems have missed the key studies on the dou-
ble extremum processes related to the general extremum
functional F that is deduced via the least action princi-
ple and should be key largely taken in deducing all the
physics laws, but the current variational principle and
current Noether theorem have neglected the general ex-
treme function F and F ’s minimum extremum, which
results in the crisis and the hidden logic cycle of no ob-
jectively deducing all physics laws. Using the studies on
the double extremum processes related to the general ex-

tremum functional F in this paper, the crisis and the
hidden logic cycle are not only solved, but also the new
mathematical and physical double extremum processes
and their new mathematical and physical pictures are
discovered. Therefore, the general variantional principle
and the general Noether theorem for finite freedom sys-
tems are given, which solve the crisis and the hidden logic
cycle.

IV.Unification studies on variational principle
and Noether theorem for infinite freedom systems

For general field variables X(x) = {Ψ(x), ϕ(x),
ωµ(x), gµν(x), ..., } , the exact mathematical description-
s of the least action principle for a general case are:
the variation of the action about N field components
X = (X1, X2,...,XN ) is

∆A = A′ −A =

∫ x′
2

x′
1

L′(X ′(x′), ∂′
αX

′(x′), ∂′
α∂

′
βX

′(x′), x′)dx′4

−
∫ x2

x1

L((X(x), ∂αX(x), ∂α∂βX(x), x)dx4 = 0.

(19)

in which the general infinitesimal transformations are [28,
29]

x′µ = xµ+∆xµ = xµ+εσ(x)τ
µσ(x,X(x), ∂αX(x), ∂α∂βX(x)),

(20)

X ′α(x′) = Xa(x)+εσ(x)ξ
aσ(x,X(x), ∂µX(x), ∂µ∂νX(x))

(21)
where X ′α(x′) = Xα(x) + ∆Xα(x), ω = (ω1, ω2, ..., ωm)
are independent continuous variable parameters of Lie
group G and

τµσ =
∂xµ(x,X(x), ∂µX(x), ∂µ∂νX(x), ω)

∂ωσ
|ωσ=0 , (22)

ξaσ =
∂Xα(x,X(x), ∂αX(x), ∂α∂βX(x), ω)

∂ωσ
|ωσ=0 ,

(23)
where τµσ and ξaσ(σ = 1, 2, ...,m) are infinitesimal trans-
formation functions.

Eqs.(22) and (23) are the infinitesimal generating func-
tion under the operation of group G, εσ (σ = 1,2,. . . ,m)
are independent infinitesimal parameters corresponding
to ω.
Without loss of generality, we define

L′(X ′(x′), ∂′
αX

′(x′), ∂α∂βX
′(x′), x′) = L(X ′(x′), ∂′

αX
′(x′),

∂′
α∂

′
βX

′(x′), x′) + εσ∂µΩ
σ(X(x), ∂αX(x), ∂α∂βX(x), x),

(24)
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− d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω]dt = 0 (18)

thus the first line of Eq.(18) is equivalent to case (ii),
and the sum of the second and third lines of Eq.(18) are
equivalent to case (i), all these can give physics laws.
Namely, the general extremum functional F takes the
minimum absolute value, i.e., zero, all the physics laws
can be deduced, otherwise, all the physics laws cannot be
deduced. That is, Eq.(17) is deduced from the variational
extremum, Eq.(18) is further taking the absolute extreme
value zero, i.e., the minimum absolute extremum, of the
general extremum functional F . Therefore, we, for the
first time, discover that it is the double extreme values
(i.e., the extreme functional F ’s extremum) that result
in that all the physics laws can be deduced, otherwise,
all the physics laws cannot be deduced. These are very
important classical and quantum new physics processes
of general physics systems.

Therefore, the systems first choose extreme value (i.e.,
via Eq.(1)) of the Lagrangian, and then we naturally d-
educe Eq.(9), there are needs as usual in advance to as-
sume existing case (i) or (ii), because which are equiva-
lent to Euler-Lagrange equations and conservation quan-
tities, and then deducing Euler-Lagrange equations and
conservation quantities, which are related to a hidden
logic cycle and are not both exact and natural.

Actually, there naturally exists the general extremum
functional F so that we can choose the absolute extreme
value zero of the general extremum functional F , then
case (i) or (ii) can be naturally deduced ( e.g., see the s-
tudies below Eq.(18) ). Making these natural deductions
reflects the systems’ intrinsical properties, namely, the in-
trinsical mathematical and physical double extreme value
procceses. Otherwise, the systems cannot get real physi-
cal laws. These results are not only supplementary devel-
opments of the current variational principle and current
Noether theorem but also classsical and quantum new
physics corresponding to classical and quantum physics
systems, because this Lagrangian is a general Lagrangian.

For all times, both the Lagrangian and the action con-
tain the systems’ dynamics, and the real appearance case
is that the path taken by the systems during [t1, t2] takes
extreme value corresponding ∆A = 0, which means that
the systems can not only choose but also make the least
extremum choice and further choose the minimum abso-
lute extremum of the general extremum functional F .

We discover that, up to now, all the investigations on
variational principle and Noether theorem for different
physics systems have missed the key studies on the dou-
ble extremum processes related to the general extremum
functional F that is deduced via the least action princi-
ple and should be key largely taken in deducing all the
physics laws, but the current variational principle and
current Noether theorem have neglected the general ex-
treme function F and F ’s minimum extremum, which
results in the crisis and the hidden logic cycle of no ob-
jectively deducing all physics laws. Using the studies on
the double extremum processes related to the general ex-

tremum functional F in this paper, the crisis and the
hidden logic cycle are not only solved, but also the new
mathematical and physical double extremum processes
and their new mathematical and physical pictures are
discovered. Therefore, the general variantional principle
and the general Noether theorem for finite freedom sys-
tems are given, which solve the crisis and the hidden logic
cycle.

IV.Unification studies on variational principle
and Noether theorem for infinite freedom systems

For general field variables X(x) = {Ψ(x), ϕ(x),
ωµ(x), gµν(x), ..., } , the exact mathematical description-
s of the least action principle for a general case are:
the variation of the action about N field components
X = (X1, X2,...,XN ) is

∆A = A′ −A =

∫ x′
2

x′
1

L′(X ′(x′), ∂′
αX

′(x′), ∂′
α∂

′
βX

′(x′), x′)dx′4

−
∫ x2

x1

L((X(x), ∂αX(x), ∂α∂βX(x), x)dx4 = 0.

(19)

in which the general infinitesimal transformations are [28,
29]

x′µ = xµ+∆xµ = xµ+εσ(x)τ
µσ(x,X(x), ∂αX(x), ∂α∂βX(x)),

(20)

X ′α(x′) = Xa(x)+εσ(x)ξ
aσ(x,X(x), ∂µX(x), ∂µ∂νX(x))

(21)
where X ′α(x′) = Xα(x) + ∆Xα(x), ω = (ω1, ω2, ..., ωm)
are independent continuous variable parameters of Lie
group G and

τµσ =
∂xµ(x,X(x), ∂µX(x), ∂µ∂νX(x), ω)

∂ωσ
|ωσ=0 , (22)

ξaσ =
∂Xα(x,X(x), ∂αX(x), ∂α∂βX(x), ω)

∂ωσ
|ωσ=0 ,

(23)
where τµσ and ξaσ(σ = 1, 2, ...,m) are infinitesimal trans-
formation functions.

Eqs.(22) and (23) are the infinitesimal generating func-
tion under the operation of group G, εσ (σ = 1,2,. . . ,m)
are independent infinitesimal parameters corresponding
to ω.
Without loss of generality, we define

L′(X ′(x′), ∂′
αX

′(x′), ∂α∂βX
′(x′), x′) = L(X ′(x′), ∂′

αX
′(x′),

∂′
α∂

′
βX

′(x′), x′) + εσ∂µΩ
σ(X(x), ∂αX(x), ∂α∂βX(x), x),

(24)
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− d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω]dt = 0 (18)

thus the first line of Eq.(18) is equivalent to case (ii),
and the sum of the second and third lines of Eq.(18) are
equivalent to case (i), all these can give physics laws.
Namely, the general extremum functional F takes the
minimum absolute value, i.e., zero, all the physics laws
can be deduced, otherwise, all the physics laws cannot be
deduced. That is, Eq.(17) is deduced from the variational
extremum, Eq.(18) is further taking the absolute extreme
value zero, i.e., the minimum absolute extremum, of the
general extremum functional F . Therefore, we, for the
first time, discover that it is the double extreme values
(i.e., the extreme functional F ’s extremum) that result
in that all the physics laws can be deduced, otherwise,
all the physics laws cannot be deduced. These are very
important classical and quantum new physics processes
of general physics systems.

Therefore, the systems first choose extreme value (i.e.,
via Eq.(1)) of the Lagrangian, and then we naturally d-
educe Eq.(9), there are needs as usual in advance to as-
sume existing case (i) or (ii), because which are equiva-
lent to Euler-Lagrange equations and conservation quan-
tities, and then deducing Euler-Lagrange equations and
conservation quantities, which are related to a hidden
logic cycle and are not both exact and natural.

Actually, there naturally exists the general extremum
functional F so that we can choose the absolute extreme
value zero of the general extremum functional F , then
case (i) or (ii) can be naturally deduced ( e.g., see the s-
tudies below Eq.(18) ). Making these natural deductions
reflects the systems’ intrinsical properties, namely, the in-
trinsical mathematical and physical double extreme value
procceses. Otherwise, the systems cannot get real physi-
cal laws. These results are not only supplementary devel-
opments of the current variational principle and current
Noether theorem but also classsical and quantum new
physics corresponding to classical and quantum physics
systems, because this Lagrangian is a general Lagrangian.

For all times, both the Lagrangian and the action con-
tain the systems’ dynamics, and the real appearance case
is that the path taken by the systems during [t1, t2] takes
extreme value corresponding ∆A = 0, which means that
the systems can not only choose but also make the least
extremum choice and further choose the minimum abso-
lute extremum of the general extremum functional F .

We discover that, up to now, all the investigations on
variational principle and Noether theorem for different
physics systems have missed the key studies on the dou-
ble extremum processes related to the general extremum
functional F that is deduced via the least action princi-
ple and should be key largely taken in deducing all the
physics laws, but the current variational principle and
current Noether theorem have neglected the general ex-
treme function F and F ’s minimum extremum, which
results in the crisis and the hidden logic cycle of no ob-
jectively deducing all physics laws. Using the studies on
the double extremum processes related to the general ex-

tremum functional F in this paper, the crisis and the
hidden logic cycle are not only solved, but also the new
mathematical and physical double extremum processes
and their new mathematical and physical pictures are
discovered. Therefore, the general variantional principle
and the general Noether theorem for finite freedom sys-
tems are given, which solve the crisis and the hidden logic
cycle.

IV.Unification studies on variational principle
and Noether theorem for infinite freedom systems

For general field variables X(x) = {Ψ(x), ϕ(x),
ωµ(x), gµν(x), ..., } , the exact mathematical description-
s of the least action principle for a general case are:
the variation of the action about N field components
X = (X1, X2,...,XN ) is

∆A = A′ −A =

∫ x′
2

x′
1

L′(X ′(x′), ∂′
αX

′(x′), ∂′
α∂

′
βX

′(x′), x′)dx′4

−
∫ x2

x1

L((X(x), ∂αX(x), ∂α∂βX(x), x)dx4 = 0.

(19)

in which the general infinitesimal transformations are [28,
29]

x′µ = xµ+∆xµ = xµ+εσ(x)τ
µσ(x,X(x), ∂αX(x), ∂α∂βX(x)),

(20)

X ′α(x′) = Xa(x)+εσ(x)ξ
aσ(x,X(x), ∂µX(x), ∂µ∂νX(x))

(21)
where X ′α(x′) = Xα(x) + ∆Xα(x), ω = (ω1, ω2, ..., ωm)
are independent continuous variable parameters of Lie
group G and

τµσ =
∂xµ(x,X(x), ∂µX(x), ∂µ∂νX(x), ω)

∂ωσ
|ωσ=0 , (22)

ξaσ =
∂Xα(x,X(x), ∂αX(x), ∂α∂βX(x), ω)

∂ωσ
|ωσ=0 ,

(23)
where τµσ and ξaσ(σ = 1, 2, ...,m) are infinitesimal trans-
formation functions.

Eqs.(22) and (23) are the infinitesimal generating func-
tion under the operation of group G, εσ (σ = 1,2,. . . ,m)
are independent infinitesimal parameters corresponding
to ω.
Without loss of generality, we define

L′(X ′(x′), ∂′
αX

′(x′), ∂α∂βX
′(x′), x′) = L(X ′(x′), ∂′

αX
′(x′),

∂′
α∂

′
βX

′(x′), x′) + εσ∂µΩ
σ(X(x), ∂αX(x), ∂α∂βX(x), x),

(24)
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where Dℒ/Dxµ is whole derivative for the whole Lagrangian. 
Using the technique of deducing Euler-Lagrange equations to 
make Eq. (25) into order and neglecting two order in_nitesimal 
quantities, we get

Omitting the higher order infinitesimal quantities, Eq. (26) is 
simplified as

in which Ω = εσΩ
σ(σ = 1, 2, …,m) is one order infinitesimal 

quantity: Eq.(27) cannot directly give Euler-Lagrange equations, 
and there are some additional degrees of freedom.

For Eq. (27), about the degree of freedom, there are still three 

cases:

Case (I): When assuming

using Eq. (28), one has

because δXa (a = 1, 2,…,N) are independent each other. Eq. (29) 
are just the usual Euler-Lagrange equations.
Using Eq. (28), we deduce a general continuous equation

and its general conservation current

Eqs. (30) and (31) can be rewritten as

and a general conservation current

Namely, eq. (34) is the variational principle's result.

Using Eqs. (20) and (21), we achieve m continuos equations and 
their conservative currents

5

where σ = 1, 2, ...,m. Putting Eq.(24) into Eq.(19), one
has

∆A =

∫ x′
2

x′
1

[L(X ′(x′), ∂′
αX

′(x′), ∂′
α∂

′
βX

′(x′), x′)+εσ∂µΩ
σ(X(

x), ∂αX(x), ∂α∂βX(x), x)− L(X(x′), ∂′
αX(x′), ∂′

α∂
′
βX(x′), x′)

+ L(X(x′), ∂′
αX(x′), ∂′

α∂
′
βX(x′), x′)]dx′4 −

∫ x2

x1

L(X(x),

∂αX(x), ∂α∂βX(x), x)dx4 =

∫ x′
2

x′
1

[δ(L(X ′(x′), ∂′
αX

′(x′),

∂′
α∂

′
βX

′(x′), x′) + εσ∂µΩ
σ(X(x), ∂αX(x), ∂α∂βX(x), x) +

L+
DL
Dxµ

∆xµ]dx′4 −
∫ x2

x1

L(X(x), ∂αX(x), ∂α∂βX(x),

x)dx4 =

∫ x2

x1

[(
∂L
∂Xa

δXa +
∂L
∂X,aν

δ∂νX
a+

∂L
∂X,aνρ

δ∂ν∂ρX
a)dx4 +

∫ x2

x1

[εσ∂µΩ
σ + L+

DL
Dxµ

∆xµ](

1 +
∂∆xβ

∂xβ
)dx4 −

∫ x2

x1

L(X(x), ∂αX(x), ∂α∂βX(x), x)dx4

(25)
where DL/Dxµ is whole derivative for the whole La-
grangian. Using the technique of deducing Euler-
Lagrange equations to make Eq.(25) into order and ne-
glecting two order infinitesimal quantities, we get

∆A =

∫

M4

{εσ∂µΩσ(X(x), ∂αX(x), ∂α∂βX(x), x)+[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa +

∂L
∂Xa,µν

δXa,ν + L∆xµ]}d4x (26)

Omitting the higher order infinitesimal quantities,
Eq.(26) is simplified as

∆A = 0 =

∫

M4

{[ ∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x (27)

in which Ω = εσΩ
σ(σ = 1, 2, ...,m) is one order in-

finitesimal quantity. Eq.(27) cannot directly give Euler-
Lagrange equations, and there are some additional de-
grees of freedom.
For Eq.(27)), about the degree of freedom, there are

still three cases:
Case (I): When assuming

∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x = 0, (28)

using Eq.(28), one has

∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

= 0 (29)

because δXa (a = 1, 2, . . . , N) are independent each oth-
er. Eq.(29) are just the usual Euler-Lagrange equations.
Using Eq.(28), we deduce a general continuous equa-

tion

∂µJ
µ = 0 = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ +Ωµ] (30)

and its general conservation current

Jµ = (
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν +L∆xµ+Ωµ

(31)
Because

δXa = ∆Xa −Xa,ν ∆xν ; δX,aβ = ∆X,aβ −X,aβν ∆xν ,
(32)

Eqs. (30) and (31) can be rewritten as

∂µJ
µ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(∆Xa −Xa,ν′ ∆xν′

)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ] = 0

(33)

and a general conservation current

Jµ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ (34)

Namely, eq.(34) is the variational principle’s result.
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where σ = 1, 2, ...,m. Putting Eq.(24) into Eq.(19), one
has

∆A =

∫ x′
2

x′
1

[L(X ′(x′), ∂′
αX

′(x′), ∂′
α∂

′
βX

′(x′), x′)+εσ∂µΩ
σ(X(

x), ∂αX(x), ∂α∂βX(x), x)− L(X(x′), ∂′
αX(x′), ∂′

α∂
′
βX(x′), x′)

+ L(X(x′), ∂′
αX(x′), ∂′

α∂
′
βX(x′), x′)]dx′4 −

∫ x2

x1

L(X(x),

∂αX(x), ∂α∂βX(x), x)dx4 =

∫ x′
2

x′
1

[δ(L(X ′(x′), ∂′
αX

′(x′),

∂′
α∂

′
βX

′(x′), x′) + εσ∂µΩ
σ(X(x), ∂αX(x), ∂α∂βX(x), x) +

L+
DL
Dxµ

∆xµ]dx′4 −
∫ x2

x1

L(X(x), ∂αX(x), ∂α∂βX(x),

x)dx4 =

∫ x2

x1

[(
∂L
∂Xa

δXa +
∂L
∂X,aν

δ∂νX
a+

∂L
∂X,aνρ

δ∂ν∂ρX
a)dx4 +

∫ x2

x1

[εσ∂µΩ
σ + L+

DL
Dxµ

∆xµ](

1 +
∂∆xβ

∂xβ
)dx4 −

∫ x2

x1

L(X(x), ∂αX(x), ∂α∂βX(x), x)dx4

(25)
where DL/Dxµ is whole derivative for the whole La-
grangian. Using the technique of deducing Euler-
Lagrange equations to make Eq.(25) into order and ne-
glecting two order infinitesimal quantities, we get

∆A =

∫

M4

{εσ∂µΩσ(X(x), ∂αX(x), ∂α∂βX(x), x)+[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa +

∂L
∂Xa,µν

δXa,ν + L∆xµ]}d4x (26)

Omitting the higher order infinitesimal quantities,
Eq.(26) is simplified as

∆A = 0 =

∫

M4

{[ ∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x (27)

in which Ω = εσΩ
σ(σ = 1, 2, ...,m) is one order in-

finitesimal quantity. Eq.(27) cannot directly give Euler-
Lagrange equations, and there are some additional de-
grees of freedom.
For Eq.(27)), about the degree of freedom, there are

still three cases:
Case (I): When assuming

∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x = 0, (28)

using Eq.(28), one has

∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

= 0 (29)

because δXa (a = 1, 2, . . . , N) are independent each oth-
er. Eq.(29) are just the usual Euler-Lagrange equations.
Using Eq.(28), we deduce a general continuous equa-

tion

∂µJ
µ = 0 = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ +Ωµ] (30)

and its general conservation current

Jµ = (
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν +L∆xµ+Ωµ

(31)
Because

δXa = ∆Xa −Xa,ν ∆xν ; δX,aβ = ∆X,aβ −X,aβν ∆xν ,
(32)

Eqs. (30) and (31) can be rewritten as

∂µJ
µ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(∆Xa −Xa,ν′ ∆xν′

)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ] = 0

(33)

and a general conservation current

Jµ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ (34)

Namely, eq.(34) is the variational principle’s result.
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where σ = 1, 2, ...,m. Putting Eq.(24) into Eq.(19), one
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DL
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DL
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∂xβ
)dx4 −
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x1

L(X(x), ∂αX(x), ∂α∂βX(x), x)dx4

(25)
where DL/Dxµ is whole derivative for the whole La-
grangian. Using the technique of deducing Euler-
Lagrange equations to make Eq.(25) into order and ne-
glecting two order infinitesimal quantities, we get

∆A =

∫

M4

{εσ∂µΩσ(X(x), ∂αX(x), ∂α∂βX(x), x)+[
∂L
∂Xa
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∂Xa,µν

δXa,ν + L∆xµ]}d4x (26)

Omitting the higher order infinitesimal quantities,
Eq.(26) is simplified as

∆A = 0 =

∫

M4

{[ ∂L
∂Xa
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∂L

∂Xa,µ
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)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x (27)

in which Ω = εσΩ
σ(σ = 1, 2, ...,m) is one order in-

finitesimal quantity. Eq.(27) cannot directly give Euler-
Lagrange equations, and there are some additional de-
grees of freedom.
For Eq.(27)), about the degree of freedom, there are

still three cases:
Case (I): When assuming

∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x = 0, (28)

using Eq.(28), one has

∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

= 0 (29)

because δXa (a = 1, 2, . . . , N) are independent each oth-
er. Eq.(29) are just the usual Euler-Lagrange equations.
Using Eq.(28), we deduce a general continuous equa-

tion

∂µJ
µ = 0 = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν
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−∂ν
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∂Xa,µν

)δXa+
∂L
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(31)
Because

δXa = ∆Xa −Xa,ν ∆xν ; δX,aβ = ∆X,aβ −X,aβν ∆xν ,
(32)

Eqs. (30) and (31) can be rewritten as

∂µJ
µ = ∂µ[(
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∂Xa,µ

− ∂ν
∂L
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)+
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∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
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(33)

and a general conservation current

Jµ = (
∂L

∂Xa,µ
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∂L
∂Xa,µν
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)+
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∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ (34)

Namely, eq.(34) is the variational principle’s result.
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1 +
∂∆xβ

∂xβ
)dx4 −

∫ x2

x1

L(X(x), ∂αX(x), ∂α∂βX(x), x)dx4

(25)
where DL/Dxµ is whole derivative for the whole La-
grangian. Using the technique of deducing Euler-
Lagrange equations to make Eq.(25) into order and ne-
glecting two order infinitesimal quantities, we get

∆A =

∫

M4

{εσ∂µΩσ(X(x), ∂αX(x), ∂α∂βX(x), x)+[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa +

∂L
∂Xa,µν

δXa,ν + L∆xµ]}d4x (26)

Omitting the higher order infinitesimal quantities,
Eq.(26) is simplified as

∆A = 0 =

∫

M4

{[ ∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x (27)

in which Ω = εσΩ
σ(σ = 1, 2, ...,m) is one order in-

finitesimal quantity. Eq.(27) cannot directly give Euler-
Lagrange equations, and there are some additional de-
grees of freedom.
For Eq.(27)), about the degree of freedom, there are

still three cases:
Case (I): When assuming

∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x = 0, (28)

using Eq.(28), one has

∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

= 0 (29)

because δXa (a = 1, 2, . . . , N) are independent each oth-
er. Eq.(29) are just the usual Euler-Lagrange equations.
Using Eq.(28), we deduce a general continuous equa-

tion

∂µJ
µ = 0 = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ +Ωµ] (30)

and its general conservation current

Jµ = (
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν +L∆xµ+Ωµ

(31)
Because

δXa = ∆Xa −Xa,ν ∆xν ; δX,aβ = ∆X,aβ −X,aβν ∆xν ,
(32)

Eqs. (30) and (31) can be rewritten as

∂µJ
µ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(∆Xa −Xa,ν′ ∆xν′

)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ] = 0

(33)

and a general conservation current

Jµ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ (34)

Namely, eq.(34) is the variational principle’s result.
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(25)
where DL/Dxµ is whole derivative for the whole La-
grangian. Using the technique of deducing Euler-
Lagrange equations to make Eq.(25) into order and ne-
glecting two order infinitesimal quantities, we get

∆A =

∫

M4

{εσ∂µΩσ(X(x), ∂αX(x), ∂α∂βX(x), x)+[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ

− ∂ν
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δXa,ν + L∆xµ]}d4x (26)

Omitting the higher order infinitesimal quantities,
Eq.(26) is simplified as

∆A = 0 =

∫

M4
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∂Xa

− ∂µ
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δXa,ν + L∆xµ +Ωµ]}d4x (27)

in which Ω = εσΩ
σ(σ = 1, 2, ...,m) is one order in-

finitesimal quantity. Eq.(27) cannot directly give Euler-
Lagrange equations, and there are some additional de-
grees of freedom.
For Eq.(27)), about the degree of freedom, there are

still three cases:
Case (I): When assuming

∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x = 0, (28)

using Eq.(28), one has

∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

= 0 (29)

because δXa (a = 1, 2, . . . , N) are independent each oth-
er. Eq.(29) are just the usual Euler-Lagrange equations.
Using Eq.(28), we deduce a general continuous equa-

tion

∂µJ
µ = 0 = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ +Ωµ] (30)

and its general conservation current

Jµ = (
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν +L∆xµ+Ωµ

(31)
Because

δXa = ∆Xa −Xa,ν ∆xν ; δX,aβ = ∆X,aβ −X,aβν ∆xν ,
(32)

Eqs. (30) and (31) can be rewritten as

∂µJ
µ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(∆Xa −Xa,ν′ ∆xν′

)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ] = 0

(33)

and a general conservation current

Jµ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ (34)

Namely, eq.(34) is the variational principle’s result.
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where DL/Dxµ is whole derivative for the whole La-
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Lagrange equations to make Eq.(25) into order and ne-
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in which Ω = εσΩ
σ(σ = 1, 2, ...,m) is one order in-

finitesimal quantity. Eq.(27) cannot directly give Euler-
Lagrange equations, and there are some additional de-
grees of freedom.
For Eq.(27)), about the degree of freedom, there are

still three cases:
Case (I): When assuming
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because δXa (a = 1, 2, . . . , N) are independent each oth-
er. Eq.(29) are just the usual Euler-Lagrange equations.
Using Eq.(28), we deduce a general continuous equa-

tion

∂µJ
µ = 0 = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ +Ωµ] (30)

and its general conservation current

Jµ = (
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν +L∆xµ+Ωµ

(31)
Because

δXa = ∆Xa −Xa,ν ∆xν ; δX,aβ = ∆X,aβ −X,aβν ∆xν ,
(32)

Eqs. (30) and (31) can be rewritten as

∂µJ
µ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(∆Xa −Xa,ν′ ∆xν′

)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ] = 0

(33)

and a general conservation current

Jµ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ (34)

Namely, eq.(34) is the variational principle’s result.
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where σ = 1, 2, ...,m. Putting Eq.(24) into Eq.(19), one
has

∆A =

∫ x′
2

x′
1

[L(X ′(x′), ∂′
αX

′(x′), ∂′
α∂

′
βX

′(x′), x′)+εσ∂µΩ
σ(X(

x), ∂αX(x), ∂α∂βX(x), x)− L(X(x′), ∂′
αX(x′), ∂′

α∂
′
βX(x′), x′)

+ L(X(x′), ∂′
αX(x′), ∂′

α∂
′
βX(x′), x′)]dx′4 −

∫ x2

x1

L(X(x),

∂αX(x), ∂α∂βX(x), x)dx4 =

∫ x′
2

x′
1

[δ(L(X ′(x′), ∂′
αX

′(x′),

∂′
α∂

′
βX

′(x′), x′) + εσ∂µΩ
σ(X(x), ∂αX(x), ∂α∂βX(x), x) +

L+
DL
Dxµ

∆xµ]dx′4 −
∫ x2

x1

L(X(x), ∂αX(x), ∂α∂βX(x),

x)dx4 =

∫ x2

x1

[(
∂L
∂Xa

δXa +
∂L
∂X,aν

δ∂νX
a+

∂L
∂X,aνρ

δ∂ν∂ρX
a)dx4 +

∫ x2

x1

[εσ∂µΩ
σ + L+

DL
Dxµ

∆xµ](

1 +
∂∆xβ

∂xβ
)dx4 −

∫ x2

x1

L(X(x), ∂αX(x), ∂α∂βX(x), x)dx4

(25)
where DL/Dxµ is whole derivative for the whole La-
grangian. Using the technique of deducing Euler-
Lagrange equations to make Eq.(25) into order and ne-
glecting two order infinitesimal quantities, we get

∆A =

∫

M4

{εσ∂µΩσ(X(x), ∂αX(x), ∂α∂βX(x), x)+[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa +

∂L
∂Xa,µν

δXa,ν + L∆xµ]}d4x (26)

Omitting the higher order infinitesimal quantities,
Eq.(26) is simplified as

∆A = 0 =

∫

M4

{[ ∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x (27)

in which Ω = εσΩ
σ(σ = 1, 2, ...,m) is one order in-

finitesimal quantity. Eq.(27) cannot directly give Euler-
Lagrange equations, and there are some additional de-
grees of freedom.
For Eq.(27)), about the degree of freedom, there are

still three cases:
Case (I): When assuming

∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x = 0, (28)

using Eq.(28), one has

∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

= 0 (29)

because δXa (a = 1, 2, . . . , N) are independent each oth-
er. Eq.(29) are just the usual Euler-Lagrange equations.
Using Eq.(28), we deduce a general continuous equa-

tion

∂µJ
µ = 0 = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ +Ωµ] (30)

and its general conservation current

Jµ = (
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν +L∆xµ+Ωµ

(31)
Because

δXa = ∆Xa −Xa,ν ∆xν ; δX,aβ = ∆X,aβ −X,aβν ∆xν ,
(32)

Eqs. (30) and (31) can be rewritten as

∂µJ
µ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(∆Xa −Xa,ν′ ∆xν′

)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ] = 0

(33)

and a general conservation current

Jµ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ (34)

Namely, eq.(34) is the variational principle’s result.
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where σ = 1, 2, ...,m. Putting Eq.(24) into Eq.(19), one
has

∆A =
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DL
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∆xµ]dx′4 −
∫ x2
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L(X(x), ∂αX(x), ∂α∂βX(x),

x)dx4 =

∫ x2

x1

[(
∂L
∂Xa

δXa +
∂L
∂X,aν

δ∂νX
a+

∂L
∂X,aνρ

δ∂ν∂ρX
a)dx4 +

∫ x2

x1

[εσ∂µΩ
σ + L+

DL
Dxµ

∆xµ](

1 +
∂∆xβ

∂xβ
)dx4 −

∫ x2

x1

L(X(x), ∂αX(x), ∂α∂βX(x), x)dx4

(25)
where DL/Dxµ is whole derivative for the whole La-
grangian. Using the technique of deducing Euler-
Lagrange equations to make Eq.(25) into order and ne-
glecting two order infinitesimal quantities, we get

∆A =

∫

M4

{εσ∂µΩσ(X(x), ∂αX(x), ∂α∂βX(x), x)+[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa +

∂L
∂Xa,µν

δXa,ν + L∆xµ]}d4x (26)

Omitting the higher order infinitesimal quantities,
Eq.(26) is simplified as

∆A = 0 =

∫

M4

{[ ∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x (27)

in which Ω = εσΩ
σ(σ = 1, 2, ...,m) is one order in-

finitesimal quantity. Eq.(27) cannot directly give Euler-
Lagrange equations, and there are some additional de-
grees of freedom.
For Eq.(27)), about the degree of freedom, there are

still three cases:
Case (I): When assuming

∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x = 0, (28)

using Eq.(28), one has

∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

= 0 (29)

because δXa (a = 1, 2, . . . , N) are independent each oth-
er. Eq.(29) are just the usual Euler-Lagrange equations.
Using Eq.(28), we deduce a general continuous equa-

tion

∂µJ
µ = 0 = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ +Ωµ] (30)

and its general conservation current

Jµ = (
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν +L∆xµ+Ωµ

(31)
Because

δXa = ∆Xa −Xa,ν ∆xν ; δX,aβ = ∆X,aβ −X,aβν ∆xν ,
(32)

Eqs. (30) and (31) can be rewritten as

∂µJ
µ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(∆Xa −Xa,ν′ ∆xν′

)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ] = 0

(33)

and a general conservation current

Jµ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ (34)

Namely, eq.(34) is the variational principle’s result.
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where σ = 1, 2, ...,m. Putting Eq.(24) into Eq.(19), one
has

∆A =

∫ x′
2

x′
1

[L(X ′(x′), ∂′
αX

′(x′), ∂′
α∂

′
βX

′(x′), x′)+εσ∂µΩ
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αX(x′), ∂′
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βX(x′), x′)]dx′4 −
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L(X(x),

∂αX(x), ∂α∂βX(x), x)dx4 =

∫ x′
2

x′
1

[δ(L(X ′(x′), ∂′
αX

′(x′),

∂′
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′
βX

′(x′), x′) + εσ∂µΩ
σ(X(x), ∂αX(x), ∂α∂βX(x), x) +

L+
DL
Dxµ

∆xµ]dx′4 −
∫ x2

x1

L(X(x), ∂αX(x), ∂α∂βX(x),

x)dx4 =

∫ x2

x1

[(
∂L
∂Xa

δXa +
∂L
∂X,aν

δ∂νX
a+

∂L
∂X,aνρ

δ∂ν∂ρX
a)dx4 +

∫ x2

x1

[εσ∂µΩ
σ + L+

DL
Dxµ

∆xµ](

1 +
∂∆xβ

∂xβ
)dx4 −

∫ x2

x1

L(X(x), ∂αX(x), ∂α∂βX(x), x)dx4

(25)
where DL/Dxµ is whole derivative for the whole La-
grangian. Using the technique of deducing Euler-
Lagrange equations to make Eq.(25) into order and ne-
glecting two order infinitesimal quantities, we get

∆A =

∫

M4

{εσ∂µΩσ(X(x), ∂αX(x), ∂α∂βX(x), x)+[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa +

∂L
∂Xa,µν

δXa,ν + L∆xµ]}d4x (26)

Omitting the higher order infinitesimal quantities,
Eq.(26) is simplified as

∆A = 0 =

∫

M4

{[ ∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x (27)

in which Ω = εσΩ
σ(σ = 1, 2, ...,m) is one order in-

finitesimal quantity. Eq.(27) cannot directly give Euler-
Lagrange equations, and there are some additional de-
grees of freedom.
For Eq.(27)), about the degree of freedom, there are

still three cases:
Case (I): When assuming

∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x = 0, (28)

using Eq.(28), one has

∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

= 0 (29)

because δXa (a = 1, 2, . . . , N) are independent each oth-
er. Eq.(29) are just the usual Euler-Lagrange equations.
Using Eq.(28), we deduce a general continuous equa-

tion

∂µJ
µ = 0 = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ +Ωµ] (30)

and its general conservation current

Jµ = (
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν +L∆xµ+Ωµ

(31)
Because

δXa = ∆Xa −Xa,ν ∆xν ; δX,aβ = ∆X,aβ −X,aβν ∆xν ,
(32)

Eqs. (30) and (31) can be rewritten as

∂µJ
µ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(∆Xa −Xa,ν′ ∆xν′

)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ] = 0

(33)

and a general conservation current

Jµ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ (34)

Namely, eq.(34) is the variational principle’s result.
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(25)
where DL/Dxµ is whole derivative for the whole La-
grangian. Using the technique of deducing Euler-
Lagrange equations to make Eq.(25) into order and ne-
glecting two order infinitesimal quantities, we get
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Omitting the higher order infinitesimal quantities,
Eq.(26) is simplified as

∆A = 0 =

∫
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+
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in which Ω = εσΩ
σ(σ = 1, 2, ...,m) is one order in-

finitesimal quantity. Eq.(27) cannot directly give Euler-
Lagrange equations, and there are some additional de-
grees of freedom.
For Eq.(27)), about the degree of freedom, there are

still three cases:
Case (I): When assuming

∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x = 0, (28)

using Eq.(28), one has

∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

= 0 (29)

because δXa (a = 1, 2, . . . , N) are independent each oth-
er. Eq.(29) are just the usual Euler-Lagrange equations.
Using Eq.(28), we deduce a general continuous equa-

tion

∂µJ
µ = 0 = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ +Ωµ] (30)

and its general conservation current

Jµ = (
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν +L∆xµ+Ωµ

(31)
Because

δXa = ∆Xa −Xa,ν ∆xν ; δX,aβ = ∆X,aβ −X,aβν ∆xν ,
(32)

Eqs. (30) and (31) can be rewritten as

∂µJ
µ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(∆Xa −Xa,ν′ ∆xν′

)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ] = 0

(33)

and a general conservation current

Jµ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ (34)

Namely, eq.(34) is the variational principle’s result.
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where σ = 1, 2, ...,m. Putting Eq.(24) into Eq.(19), one
has

∆A =

∫ x′
2

x′
1

[L(X ′(x′), ∂′
αX

′(x′), ∂′
α∂

′
βX

′(x′), x′)+εσ∂µΩ
σ(X(

x), ∂αX(x), ∂α∂βX(x), x)− L(X(x′), ∂′
αX(x′), ∂′

α∂
′
βX(x′), x′)

+ L(X(x′), ∂′
αX(x′), ∂′

α∂
′
βX(x′), x′)]dx′4 −

∫ x2

x1

L(X(x),

∂αX(x), ∂α∂βX(x), x)dx4 =

∫ x′
2

x′
1

[δ(L(X ′(x′), ∂′
αX

′(x′),

∂′
α∂

′
βX

′(x′), x′) + εσ∂µΩ
σ(X(x), ∂αX(x), ∂α∂βX(x), x) +

L+
DL
Dxµ

∆xµ]dx′4 −
∫ x2

x1

L(X(x), ∂αX(x), ∂α∂βX(x),

x)dx4 =

∫ x2

x1

[(
∂L
∂Xa

δXa +
∂L
∂X,aν

δ∂νX
a+

∂L
∂X,aνρ

δ∂ν∂ρX
a)dx4 +

∫ x2

x1

[εσ∂µΩ
σ + L+

DL
Dxµ

∆xµ](

1 +
∂∆xβ

∂xβ
)dx4 −

∫ x2

x1

L(X(x), ∂αX(x), ∂α∂βX(x), x)dx4

(25)
where DL/Dxµ is whole derivative for the whole La-
grangian. Using the technique of deducing Euler-
Lagrange equations to make Eq.(25) into order and ne-
glecting two order infinitesimal quantities, we get

∆A =

∫

M4

{εσ∂µΩσ(X(x), ∂αX(x), ∂α∂βX(x), x)+[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa +

∂L
∂Xa,µν

δXa,ν + L∆xµ]}d4x (26)

Omitting the higher order infinitesimal quantities,
Eq.(26) is simplified as

∆A = 0 =

∫

M4

{[ ∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x (27)

in which Ω = εσΩ
σ(σ = 1, 2, ...,m) is one order in-

finitesimal quantity. Eq.(27) cannot directly give Euler-
Lagrange equations, and there are some additional de-
grees of freedom.
For Eq.(27)), about the degree of freedom, there are

still three cases:
Case (I): When assuming

∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]}d4x = 0, (28)

using Eq.(28), one has

∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

= 0 (29)

because δXa (a = 1, 2, . . . , N) are independent each oth-
er. Eq.(29) are just the usual Euler-Lagrange equations.
Using Eq.(28), we deduce a general continuous equa-

tion

∂µJ
µ = 0 = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ +Ωµ] (30)

and its general conservation current

Jµ = (
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν +L∆xµ+Ωµ

(31)
Because

δXa = ∆Xa −Xa,ν ∆xν ; δX,aβ = ∆X,aβ −X,aβν ∆xν ,
(32)

Eqs. (30) and (31) can be rewritten as

∂µJ
µ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(∆Xa −Xa,ν′ ∆xν′

)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ] = 0

(33)

and a general conservation current

Jµ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆xµ +Ωµ (34)

Namely, eq.(34) is the variational principle’s result.
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Using Eqs.(20) and (21), we achieve m continuos equa-
tions and their conservative currents

∂µJ
µσ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(ξaσ −Xa,ν′ τν

′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ] = 0

(35)

Jµσ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(ξaσ −Xa,ν′ τν
′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ (36)

where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(36) is the
Noetther theorem’s result.
Using Eqs.(34) and (36) and

∫
M3 ∂0J

0dV =

−
∫
M2 J

idSi → 0, ( Si → ∞, J i → 0), we achieve
conservation charges of variational principle and
Noether theorem, respectively

Qvp =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,0ν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆x0 +Ω0]dV, (37)

Qσ
Nt =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(ξaσ −Xa,ν′ τν
′σ) +

∂L
∂Xa,0ν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτ0σ +Ω0σdV,(38)

where σ = 1, 2, . . . ,m. We can see that both variational
principle and Noether theorem all give the same Euler-
Lagrange equations (29), but they give the convervation
currents (charges) are very different, i.e., Eq.(34) and
Eq.(36) (Eq.(37) and Eq.(38)) respectively.
Case (II): When assuming that there are Eq.(29), then

putting Eq.(29) into Eq.(27), one has Eq.(28). In the fol-
lowing, there the almost same discussions below Eq.(29)
in Case (I).
V.Crisis of deducing physics laws and its solu-

tion to the crisis for infinite freedom systems
Case (III): Using Eq.(27), we generally have

∫

M4

{[ ∂L
∂Xa

−∂µ
∂L

∂Xa,µ
+∂µ∂ν

∂L
∂Xa,µν

]δXad4x = −
∫

M4

∂µ[(

∂L
∂Xa,µ

−∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ+Ωµ]}d4x

(39)

Eq.(39) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the systems have
no Eq.(28) or Eq.(29), or no Eqs.(28) and (29), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (III) [28, 29].
Cases (I) and (II) are necessary and sufficient condi-

tions that just give real physics laws, and accordint to
current variational principle and current Noether theo-
rem [28, 29], case (III) at all cannot give real physics
laws.
Using Eq.(39) derived from the variational extremum,

we can exactly define a general extremum functional

G =

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x (40)

The new general equal equation functional G between
the functional G1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional G2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., G = G1 = −G2,
namely, G1 + G2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.
When the absolute value of the general extremum func-

tion G is taken as zero, because the minimum absolute
value of any function is zero, i.e., a general extremum (
because the general extremum functional G may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x = 0

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x = 0 (41)

thus the first line of Eq.(41) is equivalent to case (II),
and the sum of the second and third lines of Eq.(41)
are equivalent to case (I), these all can give physics laws.
Namely, the general extremum function G takes the min-
imum absolute value, i.e., zero, all the physics laws can
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where we have used that                            are independent 
infinitesimal parameters. Namely, eq. (36) is the Noetther 
theorem's result.

conservation charges of variational principle and Noether 
theorem, respectively

where σ = 1, 2,…,m. We can see that both variational principle 
and Noether theorem all give the same Euler-Lagrange equations 
(29), but they give the convervation currents (charges) are very 
different, i.e., Eq. (34) and Eq. (36) (Eq. (37) and Eq. (38) 
respectively.

Case (II): When assuming that there are Eq. (29), then putting 
Eq. (29) into Eq. (27), one has Eq. (28). In the following,
there the almost same discussions below Eq. (29) in Case (I).

5. Crisis of Deducing Physics Laws and Its Solution to the 
Crisis for Infinite Freedom Systems
Case (III): Using Eq. (27), we generally have

Eq. (39) comes from the general systems' taking extremum of 
the Lagrangian, but when the systems have no Eq. (28) or Eq. 
(29), or no Eqs. (28) and (29), then the systems cannot give 
Euler-Lagrange equations and the corresponding conservation 
quantities. Namely, this case cannot give real physics laws, 
which is just the reason that current variational principle and 
current Noether theorem have missed the case (III) [28, 29].

Cases (I) and (II) are necessary and sufficient conditions that 
just give real physics laws, and accordint to current variational 

principle and current Noether theorem, case (III) at all cannot 
give real physics laws [28, 29].

Using Eq. (39) derived from the variational extremum, we can 
exactly define a general extremum functional

The new general equal equation functional G between the 
functional G1 of deducing Euler-Lagrange equations having 
merged like terms relevant to Euler-Lagrange equations and the 
functional G2 of deducing the general conservation quantities 
having merged like terms relevant to the general conservation 
quantities is deduced by satisfying variational principle, i.e., G = 
G1 = -G2, namely, G1 + G2 = 0, which just shows the variational 
extreme value, but these still cannot give real physics, see the 
studies below, these are very important classical and quantum 
new physics processes of general physics systems, because this 
Lagrangian is a general classical or quantum Lagrangian.

When the absolute value of the general extremum function G 
is taken as zero, because the minimum absolute value of any 
function is zero, i.e., a general extremum (because the general 
extremum functional G may generally take a lot of different 
values, e.g., arbitrary positive and/or negative values), then we 
generally have

thus the first line of Eq. (41) is equivalent to case (II), and the 
sum of the second and third lines of Eq. (41) are equivalent to 
case (I), these all can give physics laws. Namely, the general 
extremum function G takes the minimum absolute value, i.e., 
zero, all the physics laws can be deduced. Otherwise, all the 
physics laws cannot be deduced. That is, Eq.(39) is deduced from 
the variational extremum, Eq.(41) is further taking the absolute 
extreme value zero, i.e., the minimum absolute extremum, of the 
general extremum functional G, therefore, we, for the first time, 
discover that it is the double extreme values (i.e., the extreme 
functional G’s extremum) that result in that all the physics 
laws can be deduced, otherwise, all the physics laws cannot be 
deduced. These are very important classical and quantum new 
physics processes of general physics systems.

Therefore, the systems first choose extreme value (i.e., via Eq. 

6

Using Eqs.(20) and (21), we achieve m continuos equa-
tions and their conservative currents

∂µJ
µσ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(ξaσ −Xa,ν′ τν

′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ] = 0

(35)

Jµσ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(ξaσ −Xa,ν′ τν
′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ (36)

where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(36) is the
Noetther theorem’s result.
Using Eqs.(34) and (36) and

∫
M3 ∂0J

0dV =

−
∫
M2 J

idSi → 0, ( Si → ∞, J i → 0), we achieve
conservation charges of variational principle and
Noether theorem, respectively

Qvp =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,0ν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆x0 +Ω0]dV, (37)

Qσ
Nt =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(ξaσ −Xa,ν′ τν
′σ) +

∂L
∂Xa,0ν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτ0σ +Ω0σdV,(38)

where σ = 1, 2, . . . ,m. We can see that both variational
principle and Noether theorem all give the same Euler-
Lagrange equations (29), but they give the convervation
currents (charges) are very different, i.e., Eq.(34) and
Eq.(36) (Eq.(37) and Eq.(38)) respectively.
Case (II): When assuming that there are Eq.(29), then

putting Eq.(29) into Eq.(27), one has Eq.(28). In the fol-
lowing, there the almost same discussions below Eq.(29)
in Case (I).
V.Crisis of deducing physics laws and its solu-

tion to the crisis for infinite freedom systems
Case (III): Using Eq.(27), we generally have

∫

M4

{[ ∂L
∂Xa

−∂µ
∂L

∂Xa,µ
+∂µ∂ν

∂L
∂Xa,µν

]δXad4x = −
∫

M4

∂µ[(

∂L
∂Xa,µ

−∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ+Ωµ]}d4x

(39)

Eq.(39) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the systems have
no Eq.(28) or Eq.(29), or no Eqs.(28) and (29), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (III) [28, 29].
Cases (I) and (II) are necessary and sufficient condi-

tions that just give real physics laws, and accordint to
current variational principle and current Noether theo-
rem [28, 29], case (III) at all cannot give real physics
laws.
Using Eq.(39) derived from the variational extremum,

we can exactly define a general extremum functional

G =

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x (40)

The new general equal equation functional G between
the functional G1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional G2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., G = G1 = −G2,
namely, G1 + G2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.
When the absolute value of the general extremum func-

tion G is taken as zero, because the minimum absolute
value of any function is zero, i.e., a general extremum (
because the general extremum functional G may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x = 0

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x = 0 (41)

thus the first line of Eq.(41) is equivalent to case (II),
and the sum of the second and third lines of Eq.(41)
are equivalent to case (I), these all can give physics laws.
Namely, the general extremum function G takes the min-
imum absolute value, i.e., zero, all the physics laws can
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Using Eqs.(20) and (21), we achieve m continuos equa-
tions and their conservative currents

∂µJ
µσ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(ξaσ −Xa,ν′ τν

′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ] = 0

(35)

Jµσ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(ξaσ −Xa,ν′ τν
′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ (36)

where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(36) is the
Noetther theorem’s result.
Using Eqs.(34) and (36) and

∫
M3 ∂0J

0dV =

−
∫
M2 J

idSi → 0, ( Si → ∞, J i → 0), we achieve
conservation charges of variational principle and
Noether theorem, respectively

Qvp =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,0ν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆x0 +Ω0]dV, (37)

Qσ
Nt =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(ξaσ −Xa,ν′ τν
′σ) +

∂L
∂Xa,0ν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτ0σ +Ω0σdV,(38)

where σ = 1, 2, . . . ,m. We can see that both variational
principle and Noether theorem all give the same Euler-
Lagrange equations (29), but they give the convervation
currents (charges) are very different, i.e., Eq.(34) and
Eq.(36) (Eq.(37) and Eq.(38)) respectively.
Case (II): When assuming that there are Eq.(29), then

putting Eq.(29) into Eq.(27), one has Eq.(28). In the fol-
lowing, there the almost same discussions below Eq.(29)
in Case (I).
V.Crisis of deducing physics laws and its solu-

tion to the crisis for infinite freedom systems
Case (III): Using Eq.(27), we generally have

∫

M4

{[ ∂L
∂Xa

−∂µ
∂L

∂Xa,µ
+∂µ∂ν

∂L
∂Xa,µν

]δXad4x = −
∫

M4

∂µ[(

∂L
∂Xa,µ

−∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ+Ωµ]}d4x

(39)

Eq.(39) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the systems have
no Eq.(28) or Eq.(29), or no Eqs.(28) and (29), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (III) [28, 29].
Cases (I) and (II) are necessary and sufficient condi-

tions that just give real physics laws, and accordint to
current variational principle and current Noether theo-
rem [28, 29], case (III) at all cannot give real physics
laws.
Using Eq.(39) derived from the variational extremum,

we can exactly define a general extremum functional

G =

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x (40)

The new general equal equation functional G between
the functional G1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional G2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., G = G1 = −G2,
namely, G1 + G2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.
When the absolute value of the general extremum func-

tion G is taken as zero, because the minimum absolute
value of any function is zero, i.e., a general extremum (
because the general extremum functional G may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x = 0

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x = 0 (41)

thus the first line of Eq.(41) is equivalent to case (II),
and the sum of the second and third lines of Eq.(41)
are equivalent to case (I), these all can give physics laws.
Namely, the general extremum function G takes the min-
imum absolute value, i.e., zero, all the physics laws can
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Using Eqs.(20) and (21), we achieve m continuos equa-
tions and their conservative currents

∂µJ
µσ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(ξaσ −Xa,ν′ τν

′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ] = 0

(35)

Jµσ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(ξaσ −Xa,ν′ τν
′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ (36)

where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(36) is the
Noetther theorem’s result.
Using Eqs.(34) and (36) and

∫
M3 ∂0J

0dV =

−
∫
M2 J

idSi → 0, ( Si → ∞, J i → 0), we achieve
conservation charges of variational principle and
Noether theorem, respectively

Qvp =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,0ν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆x0 +Ω0]dV, (37)

Qσ
Nt =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(ξaσ −Xa,ν′ τν
′σ) +

∂L
∂Xa,0ν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτ0σ +Ω0σdV,(38)

where σ = 1, 2, . . . ,m. We can see that both variational
principle and Noether theorem all give the same Euler-
Lagrange equations (29), but they give the convervation
currents (charges) are very different, i.e., Eq.(34) and
Eq.(36) (Eq.(37) and Eq.(38)) respectively.
Case (II): When assuming that there are Eq.(29), then

putting Eq.(29) into Eq.(27), one has Eq.(28). In the fol-
lowing, there the almost same discussions below Eq.(29)
in Case (I).
V.Crisis of deducing physics laws and its solu-

tion to the crisis for infinite freedom systems
Case (III): Using Eq.(27), we generally have

∫

M4

{[ ∂L
∂Xa

−∂µ
∂L

∂Xa,µ
+∂µ∂ν

∂L
∂Xa,µν

]δXad4x = −
∫

M4

∂µ[(

∂L
∂Xa,µ

−∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ+Ωµ]}d4x

(39)

Eq.(39) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the systems have
no Eq.(28) or Eq.(29), or no Eqs.(28) and (29), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (III) [28, 29].
Cases (I) and (II) are necessary and sufficient condi-

tions that just give real physics laws, and accordint to
current variational principle and current Noether theo-
rem [28, 29], case (III) at all cannot give real physics
laws.
Using Eq.(39) derived from the variational extremum,

we can exactly define a general extremum functional

G =

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x (40)

The new general equal equation functional G between
the functional G1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional G2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., G = G1 = −G2,
namely, G1 + G2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.
When the absolute value of the general extremum func-

tion G is taken as zero, because the minimum absolute
value of any function is zero, i.e., a general extremum (
because the general extremum functional G may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x = 0

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x = 0 (41)

thus the first line of Eq.(41) is equivalent to case (II),
and the sum of the second and third lines of Eq.(41)
are equivalent to case (I), these all can give physics laws.
Namely, the general extremum function G takes the min-
imum absolute value, i.e., zero, all the physics laws can
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Using Eqs.(20) and (21), we achieve m continuos equa-
tions and their conservative currents

∂µJ
µσ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(ξaσ −Xa,ν′ τν

′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ] = 0

(35)

Jµσ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(ξaσ −Xa,ν′ τν
′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ (36)

where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(36) is the
Noetther theorem’s result.
Using Eqs.(34) and (36) and

∫
M3 ∂0J

0dV =

−
∫
M2 J

idSi → 0, ( Si → ∞, J i → 0), we achieve
conservation charges of variational principle and
Noether theorem, respectively

Qvp =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,0ν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆x0 +Ω0]dV, (37)

Qσ
Nt =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(ξaσ −Xa,ν′ τν
′σ) +

∂L
∂Xa,0ν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτ0σ +Ω0σdV,(38)

where σ = 1, 2, . . . ,m. We can see that both variational
principle and Noether theorem all give the same Euler-
Lagrange equations (29), but they give the convervation
currents (charges) are very different, i.e., Eq.(34) and
Eq.(36) (Eq.(37) and Eq.(38)) respectively.
Case (II): When assuming that there are Eq.(29), then

putting Eq.(29) into Eq.(27), one has Eq.(28). In the fol-
lowing, there the almost same discussions below Eq.(29)
in Case (I).
V.Crisis of deducing physics laws and its solu-

tion to the crisis for infinite freedom systems
Case (III): Using Eq.(27), we generally have

∫

M4

{[ ∂L
∂Xa

−∂µ
∂L

∂Xa,µ
+∂µ∂ν

∂L
∂Xa,µν

]δXad4x = −
∫

M4

∂µ[(

∂L
∂Xa,µ

−∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ+Ωµ]}d4x

(39)

Eq.(39) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the systems have
no Eq.(28) or Eq.(29), or no Eqs.(28) and (29), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (III) [28, 29].
Cases (I) and (II) are necessary and sufficient condi-

tions that just give real physics laws, and accordint to
current variational principle and current Noether theo-
rem [28, 29], case (III) at all cannot give real physics
laws.
Using Eq.(39) derived from the variational extremum,

we can exactly define a general extremum functional

G =

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x (40)

The new general equal equation functional G between
the functional G1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional G2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., G = G1 = −G2,
namely, G1 + G2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.
When the absolute value of the general extremum func-

tion G is taken as zero, because the minimum absolute
value of any function is zero, i.e., a general extremum (
because the general extremum functional G may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x = 0

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x = 0 (41)

thus the first line of Eq.(41) is equivalent to case (II),
and the sum of the second and third lines of Eq.(41)
are equivalent to case (I), these all can give physics laws.
Namely, the general extremum function G takes the min-
imum absolute value, i.e., zero, all the physics laws can
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Using Eqs.(20) and (21), we achieve m continuos equa-
tions and their conservative currents

∂µJ
µσ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(ξaσ −Xa,ν′ τν

′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ] = 0

(35)

Jµσ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(ξaσ −Xa,ν′ τν
′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ (36)

where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(36) is the
Noetther theorem’s result.
Using Eqs.(34) and (36) and

∫
M3 ∂0J

0dV =

−
∫
M2 J

idSi → 0, ( Si → ∞, J i → 0), we achieve
conservation charges of variational principle and
Noether theorem, respectively

Qvp =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,0ν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆x0 +Ω0]dV, (37)

Qσ
Nt =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(ξaσ −Xa,ν′ τν
′σ) +

∂L
∂Xa,0ν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτ0σ +Ω0σdV,(38)

where σ = 1, 2, . . . ,m. We can see that both variational
principle and Noether theorem all give the same Euler-
Lagrange equations (29), but they give the convervation
currents (charges) are very different, i.e., Eq.(34) and
Eq.(36) (Eq.(37) and Eq.(38)) respectively.
Case (II): When assuming that there are Eq.(29), then

putting Eq.(29) into Eq.(27), one has Eq.(28). In the fol-
lowing, there the almost same discussions below Eq.(29)
in Case (I).
V.Crisis of deducing physics laws and its solu-

tion to the crisis for infinite freedom systems
Case (III): Using Eq.(27), we generally have

∫

M4

{[ ∂L
∂Xa

−∂µ
∂L

∂Xa,µ
+∂µ∂ν

∂L
∂Xa,µν

]δXad4x = −
∫

M4

∂µ[(

∂L
∂Xa,µ

−∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ+Ωµ]}d4x

(39)

Eq.(39) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the systems have
no Eq.(28) or Eq.(29), or no Eqs.(28) and (29), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (III) [28, 29].
Cases (I) and (II) are necessary and sufficient condi-

tions that just give real physics laws, and accordint to
current variational principle and current Noether theo-
rem [28, 29], case (III) at all cannot give real physics
laws.
Using Eq.(39) derived from the variational extremum,

we can exactly define a general extremum functional

G =

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x (40)

The new general equal equation functional G between
the functional G1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional G2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., G = G1 = −G2,
namely, G1 + G2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.
When the absolute value of the general extremum func-

tion G is taken as zero, because the minimum absolute
value of any function is zero, i.e., a general extremum (
because the general extremum functional G may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x = 0

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x = 0 (41)

thus the first line of Eq.(41) is equivalent to case (II),
and the sum of the second and third lines of Eq.(41)
are equivalent to case (I), these all can give physics laws.
Namely, the general extremum function G takes the min-
imum absolute value, i.e., zero, all the physics laws can
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Using Eqs.(20) and (21), we achieve m continuos equa-
tions and their conservative currents

∂µJ
µσ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(ξaσ −Xa,ν′ τν

′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ] = 0

(35)

Jµσ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(ξaσ −Xa,ν′ τν
′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ (36)

where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(36) is the
Noetther theorem’s result.

Using Eqs.(34) and (36) and
∫
M3 ∂0J

0dV =

−
∫
M2 J

idSi → 0, ( Si → ∞, J i → 0), we achieve
conservation charges of variational principle and
Noether theorem, respectively

Qvp =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,0ν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆x0 +Ω0]dV, (37)

Qσ
Nt =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(ξaσ −Xa,ν′ τν
′σ) +

∂L
∂Xa,0ν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτ0σ +Ω0σdV,(38)

where σ = 1, 2, . . . ,m. We can see that both variational
principle and Noether theorem all give the same Euler-
Lagrange equations (29), but they give the convervation
currents (charges) are very different, i.e., Eq.(34) and
Eq.(36) (Eq.(37) and Eq.(38)) respectively.
Case (II): When assuming that there are Eq.(29), then

putting Eq.(29) into Eq.(27), one has Eq.(28). In the fol-
lowing, there the almost same discussions below Eq.(29)
in Case (I).
V.Crisis of deducing physics laws and its solu-

tion to the crisis for infinite freedom systems
Case (III): Using Eq.(27), we generally have

∫

M4

{[ ∂L
∂Xa

−∂µ
∂L

∂Xa,µ
+∂µ∂ν

∂L
∂Xa,µν

]δXad4x = −
∫

M4

∂µ[(

∂L
∂Xa,µ

−∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ+Ωµ]}d4x

(39)

Eq.(39) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the systems have
no Eq.(28) or Eq.(29), or no Eqs.(28) and (29), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (III) [28, 29].
Cases (I) and (II) are necessary and sufficient condi-

tions that just give real physics laws, and accordint to
current variational principle and current Noether theo-
rem [28, 29], case (III) at all cannot give real physics
laws.
Using Eq.(39) derived from the variational extremum,

we can exactly define a general extremum functional

G =

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x (40)

The new general equal equation functional G between
the functional G1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional G2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., G = G1 = −G2,
namely, G1 + G2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.
When the absolute value of the general extremum func-

tion G is taken as zero, because the minimum absolute
value of any function is zero, i.e., a general extremum (
because the general extremum functional G may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x = 0

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x = 0 (41)

thus the first line of Eq.(41) is equivalent to case (II),
and the sum of the second and third lines of Eq.(41)
are equivalent to case (I), these all can give physics laws.
Namely, the general extremum function G takes the min-
imum absolute value, i.e., zero, all the physics laws can
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Using Eqs.(20) and (21), we achieve m continuos equa-
tions and their conservative currents

∂µJ
µσ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(ξaσ −Xa,ν′ τν

′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ] = 0

(35)

Jµσ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(ξaσ −Xa,ν′ τν
′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ (36)

where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(36) is the
Noetther theorem’s result.
Using Eqs.(34) and (36) and

∫
M3 ∂0J

0dV =

−
∫
M2 J

idSi → 0, ( Si → ∞, J i → 0), we achieve
conservation charges of variational principle and
Noether theorem, respectively

Qvp =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,0ν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆x0 +Ω0]dV, (37)

Qσ
Nt =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(ξaσ −Xa,ν′ τν
′σ) +

∂L
∂Xa,0ν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτ0σ +Ω0σdV,(38)

where σ = 1, 2, . . . ,m. We can see that both variational
principle and Noether theorem all give the same Euler-
Lagrange equations (29), but they give the convervation
currents (charges) are very different, i.e., Eq.(34) and
Eq.(36) (Eq.(37) and Eq.(38)) respectively.
Case (II): When assuming that there are Eq.(29), then

putting Eq.(29) into Eq.(27), one has Eq.(28). In the fol-
lowing, there the almost same discussions below Eq.(29)
in Case (I).
V.Crisis of deducing physics laws and its solu-

tion to the crisis for infinite freedom systems
Case (III): Using Eq.(27), we generally have

∫

M4

{[ ∂L
∂Xa

−∂µ
∂L

∂Xa,µ
+∂µ∂ν

∂L
∂Xa,µν

]δXad4x = −
∫

M4

∂µ[(

∂L
∂Xa,µ

−∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ+Ωµ]}d4x

(39)

Eq.(39) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the systems have
no Eq.(28) or Eq.(29), or no Eqs.(28) and (29), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (III) [28, 29].
Cases (I) and (II) are necessary and sufficient condi-

tions that just give real physics laws, and accordint to
current variational principle and current Noether theo-
rem [28, 29], case (III) at all cannot give real physics
laws.
Using Eq.(39) derived from the variational extremum,

we can exactly define a general extremum functional

G =

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x (40)

The new general equal equation functional G between
the functional G1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional G2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., G = G1 = −G2,
namely, G1 + G2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.
When the absolute value of the general extremum func-

tion G is taken as zero, because the minimum absolute
value of any function is zero, i.e., a general extremum (
because the general extremum functional G may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x = 0

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x = 0 (41)

thus the first line of Eq.(41) is equivalent to case (II),
and the sum of the second and third lines of Eq.(41)
are equivalent to case (I), these all can give physics laws.
Namely, the general extremum function G takes the min-
imum absolute value, i.e., zero, all the physics laws can
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Using Eqs.(20) and (21), we achieve m continuos equa-
tions and their conservative currents

∂µJ
µσ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(ξaσ −Xa,ν′ τν

′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ] = 0

(35)

Jµσ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(ξaσ −Xa,ν′ τν
′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ +Ωµσ (36)

where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(36) is the
Noetther theorem’s result.
Using Eqs.(34) and (36) and

∫
M3 ∂0J

0dV =

−
∫
M2 J

idSi → 0, ( Si → ∞, J i → 0), we achieve
conservation charges of variational principle and
Noether theorem, respectively

Qvp =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(∆Xa −Xa,ν′ ∆xν′
)+

∂L
∂Xa,0ν

(∆X,aν −Xa,νν′ ∆xν′
) + L∆x0 +Ω0]dV, (37)

Qσ
Nt =

∫

M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(ξaσ −Xa,ν′ τν
′σ) +

∂L
∂Xa,0ν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτ0σ +Ω0σdV,(38)

where σ = 1, 2, . . . ,m. We can see that both variational
principle and Noether theorem all give the same Euler-
Lagrange equations (29), but they give the convervation
currents (charges) are very different, i.e., Eq.(34) and
Eq.(36) (Eq.(37) and Eq.(38)) respectively.
Case (II): When assuming that there are Eq.(29), then

putting Eq.(29) into Eq.(27), one has Eq.(28). In the fol-
lowing, there the almost same discussions below Eq.(29)
in Case (I).
V.Crisis of deducing physics laws and its solu-

tion to the crisis for infinite freedom systems
Case (III): Using Eq.(27), we generally have

∫

M4

{[ ∂L
∂Xa

−∂µ
∂L

∂Xa,µ
+∂µ∂ν

∂L
∂Xa,µν

]δXad4x = −
∫

M4

∂µ[(

∂L
∂Xa,µ

−∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ+Ωµ]}d4x

(39)

Eq.(39) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the systems have
no Eq.(28) or Eq.(29), or no Eqs.(28) and (29), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (III) [28, 29].
Cases (I) and (II) are necessary and sufficient condi-

tions that just give real physics laws, and accordint to
current variational principle and current Noether theo-
rem [28, 29], case (III) at all cannot give real physics
laws.
Using Eq.(39) derived from the variational extremum,

we can exactly define a general extremum functional

G =

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x (40)

The new general equal equation functional G between
the functional G1 of deducing Euler-Lagrange equation-
s having merged like terms relevant to Euler-Lagrange
equations and the functional G2 of deducing the gener-
al conservation quantities having merged like terms rel-
evant to the general conservation quantities is deduced
by satisfying variational principle, i.e., G = G1 = −G2,
namely, G1 + G2 = 0, which just shows the variational
extreme value, but these still cannot give real physics,
see the studies below, these are very important classical
and quantum new physics processes of general physics
systems, because this Lagrangian is a general classical or
quantum Lagrangian.
When the absolute value of the general extremum func-

tion G is taken as zero, because the minimum absolute
value of any function is zero, i.e., a general extremum (
because the general extremum functional G may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have

∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x = 0

= −
∫

M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ +Ωµ]d4x = 0 (41)

thus the first line of Eq.(41) is equivalent to case (II),
and the sum of the second and third lines of Eq.(41)
are equivalent to case (I), these all can give physics laws.
Namely, the general extremum function G takes the min-
imum absolute value, i.e., zero, all the physics laws can
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(19) of the Lagrangian, and then we naturally deduce Eq. (27), 
there are needs as usual in advance to assume existing case (I) or 
(II), because which are equivalent to Euler-Lagrange equations 
and conservation quantities, and then deducing Euler-Lagrange 
equations and conservation quantities, which are related to a 
hidden logic cycle and are not both exact and natural.

Actually, there naturally exists the general extremum functional 
G so that we can choose the absolute extreme value zero of 
the general extremum functional G, then case (I) or (II) can 
be naturally deduced (e.g., see the studies below Eq. (41). 
Making these natural deductions reflects the systems’ intrinsical 
properties, namely, the intrinsical mathematical and physical 
double extreme value procceses. Otherwise, the systems cannot 
get real physical laws. These results are not only supplementary 
developments of the current variational principle and current 
Noether theorem for infinite freedom systems, but also classsical 
and quantum new physics corresponding to classical and 
quantum physics systems, because this Lagrangian is a general 
Lagrangian. We discover that, up to now, all the investigations 
on variational principle and Noether theorem for different 
physics systems and infinite freedom systems have missed the 
key studies on the double extremum processes related to the 
general extremum functional G that both is deduced via the least 
action principle and should be key largely taken in deducing all 
the physics laws, but the current variational principle and current 
Noether theorem for infinite freedom systems have missed the 
general extreme functional G and G’s minimum extremum, 
which results in the crisis and the hidden logic cycle of no 
objectively deducing all physics laws. Using the studies on the 
double extremum processes related to the general extremum 
functional G in this paper, the crisis and the hidden logic cycle 
are not only solved, but also the new mathematical and physical 
double extremum processes and their new mathematical and 
physical pictures are discovered. Therefore, general variantional 
principle and general Noether theorem for infinite freedom 
systems are given, which solve the crisis and the hidden logic 
cycle.

6. Discussions and Applications
Using Eq. (17) derived from the variational extremum, we have 
a general extremum functional expression for finite freedom 
systems

where f can take any functional value and 
When the absolute value of the general extremum functional f 
is taken as zero, namely, taking the minimum absolute extreme 
value of the general extremum functional f, i.e., the general 
extremum functional f’s extremum, that is, the double extremum 
process, Eq. (42) can directly deduce Euler-Lagrange equations 
due to the linear independent properties of δqi and the general 
conservation quantity due to having taken the second line of Eq. 
(42) as zero.

Using Eq. (40) derived from the variational extremum, we 
deduce a general extremum functional expression for infinite 
freedom systems

where g can take any functional value and                 
When the absolute value of the general extremum functional g 
is taken as zero, namely, taking the minimum absolute extreme 
value of the general extremum functional g, i.e., the general 
extremum functional g’s extremum, that is, the double extremum 
process, Eq. (43) can directly deduce Euler-Lagrange equations 
due to the linear independent properties of δXa and the general 
conservation current due to having taken the second line of Eq. 
(43) as zero.

Therefore, this paper discovers that the processes no choosing 
the minimum absolute extremum zero of the general extremum 
functional F (G) statisfying the variational extremum principle 
are still the virtual processes, because all current refererenes, 
e.g., refs, think of cases (iii) and (III) satisfying the variational 
extreme value cannot derive out Euler-Lagrange equations and 
their correspoonding conservation quantities [2, 4, 5, 10–14]. 
Thus for choosing the processes of minimam absolute extremum 
zero of the general extremum functional F (G), the processes of 
the physics systems are just real physics processes and can give 
Euler-Lagrange eqautions and their corresponding conservation 
quantities. Especially, cases (i) and (ii) ((I) and (II)) are the two 
special taken value cases and are included in case (iii) ((III)) as 
special cases, and there is the hidden logic cycle between case 
(i) (assuming to exist Eq.(10) of deducing conservation quantity, 
then putting Eq.(10) into Eq.(9), one can deduce Euler-Lagrange 
Eq.(11) and case (ii) (assuming to exist Euler-Lagrange Eq.(11), 
then putting Eq.(11) into Eq.(9), one can deduce Eq.(10) of 
deducing conservation quantity), namely, cases (i) and (ii) are 
equivalent with each other, which means that one assumes Euler-
Lagrange equations in case (ii), and then he finally deduces 
Euler-Lagrange equations in case (i) via the equivalent relation 
between cases (i) and (ii) in the whole processes, which is just 
the hidden logic cycle, so does Eq.(10) of deducing conservation 
quantity (similar for cases (I) and (II)). Especially, from this 
paper it can be seen that the current investigations about cases 
(i-iii) ((I-III)) in all current references, e.g., refs, are no the exact 
general investigations [2, 4, 5, 10–14].

Therefore, this paper corrects the current key mistake concepts 
that when physics systems choose the variational extreme values, 
the appearing processes of the physics systems are real physics 
processes, otherwise, are virtual processes in all current articles, 
reviews and (text)books, e.g., [2, 4, 5, 10–14]. The real physics 
should be what after choosing the variational extreme values of 
physics systems, the general extremum functional F (G) of the 
physics systems needs to further choose the minimum absolute 
extremum zero of the general extremum functional F (G), 
otherwise, the appearing processes of physics systems are still 
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be deduced. Otherwise, all the physics laws cannot be d-
educed. That is, Eq.(39) is deduced from the variational
extremum, Eq.(41) is further taking the absolute extreme
value zero, i.e., the minimum absolute extremum, of the
general extremum functional G, therefore, we, for the
first time, discover that it is the double extreme values
(i.e., the extreme functional G’s extremum) that result
in that all the physics laws can be deduced, otherwise,
all the physics laws cannot be deduced. These are very
important classical and quantum new physics processes
of general physics systems.
Therefore, the systems first choose extreme value (i.e.,

via Eq.(19)) of the Lagrangian, and then we naturally
deduce Eq.(27), there are needs as usual in advance to
assume existing case (I) or (II), because which are e-
quivalent to Euler-Lagrange equations and conservation
quantities, and then deducing Euler-Lagrange equations
and conservation quantities, which are related to a hid-
den logic cycle and are not both exact and natural.
Actually, there naturally exists the general extremum

functional G so that we can choose the absolute extreme
value zero of the general extremum functional G, then
case (I) or (II) can be naturally deduced ( e.g., see the
studies below Eq.(41) ). Making these natural deduc-
tions reflects the systems’ intrinsical properties, namely,
the intrinsical mathematical and physical double extreme
value procceses. Otherwise, the systems cannot get real
physical laws. These results are not only supplementary
developments of the current variational principle and cur-
rent Noether theorem for infinite freedom systems, but
also classsical and quantum new physics corresponding
to classical and quantum physics systems, because this
Lagrangian is a general Lagrangian.
We discover that, up to now, all the investigations on

variational principle and Noether theorem for different
physics systems and infinite freedom systems have missed
the key studies on the double extremum processes relat-
ed to the general extremum functional G that both is
deduced via the least action principle and should be key
largely taken in deducing all the physics laws, but the
current variational principle and current Noether theo-
rem for infinite freedom systems have missed the gen-
eral extreme functional G and G’s minimum extremum,
which results in the crisis and the hidden logic cycle of no
objectively deducing all physics laws. Using the studies
on the double extremum processes related to the general
extremum functional G in this paper, the crisis and the
hidden logic cycle are not only solved, but also the new
mathematical and physical double extremum processes
and their new mathematical and physical pictures are
discovered. Therefore, general variantional principle and
general Noether theorem for infinite freedom systems are
given, which solve the crisis and the hidden logic cycle.
VI. Discussions and applications

Using Eq.(17) derived from the variational extremum,
we have a general extremum functional expression for
finite freedom systems

f =
∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqi =

− d

dt
[
∑
i

(
∂L

∂q̇i
δqi+

∂L

∂q̈i
δq̇i−

d

dt

∂L

∂q̈i
δqi)+L∆(t)+Ω]. (42)

where f can take any functional value and F =
∫ t2

t1
fdt.

When the absolute value of the general extremum func-
tional f is taken as zero, namely, taking the minimum
absolute extreme value of the general extremum func-
tional f , i.e., the general extremum functional f ’s ex-
tremum, that is, the double extremum process, Eq.(42)
can directly deduce Euler-Lagrange equations due to the
linear independent properties of δqi and the general con-
servation quantity due to having taken the second line of
Eq.(42) as zero.
Using Eq.(40) derived from the variational extremum,

we deduce a general extremum functional expression for
infinite freedom systems

g = [
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa =

−∂µ[(
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν+L∆xµ+Ωµ]

(43)
where g can take any functional value and G =

∫
M4 gd

4x.
When the absolute value of the general extremum func-

tional g is taken as zero, namely, taking the minimum ab-
solute extreme value of the general extremum functional
g, i.e., the general extremum functional g’s extremum,
that is, the double extremum process, Eq.(43) can di-
rectly deduce Euler-Lagrange equations due to the linear
independent properties of δXa and the general conser-
vation current due to having taken the second line of
Eq.(43) as zero.
Therefore, this paper discovers that the processes no

choosing the minimum absolute extremum zero of the
general extremum functional F (G) statisfying the varia-
tional extremum principle are still the virtual processes,
because all current refererenes, e.g., refs.[4, 5],[2, 10–14],
think of cases (iii) and (III) satisfying the variational
extreme value cannot derive out Euler-Lagrange equa-
tions and their correspoonding conservation quantities.
Thus for choosing the processes of minimam absolute ex-
tremum zero of the general extremum functional F (G),
the processes of the physics systems are just real physic-
s processes and can give Euler-Lagrange eqautions and
their corresponding conservation quantities. Especially,
cases (i) and (ii) ((I) and (II)) are the two special taken
value cases and are included in case (iii) ((III)) as special
cases, and there is the hidden logic cycle between case
(i) (assuming to exist Eq.(10) of deducing conservation

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 October 2020 doi:10.20944/preprints202008.0334.v3

7

be deduced. Otherwise, all the physics laws cannot be d-
educed. That is, Eq.(39) is deduced from the variational
extremum, Eq.(41) is further taking the absolute extreme
value zero, i.e., the minimum absolute extremum, of the
general extremum functional G, therefore, we, for the
first time, discover that it is the double extreme values
(i.e., the extreme functional G’s extremum) that result
in that all the physics laws can be deduced, otherwise,
all the physics laws cannot be deduced. These are very
important classical and quantum new physics processes
of general physics systems.
Therefore, the systems first choose extreme value (i.e.,

via Eq.(19)) of the Lagrangian, and then we naturally
deduce Eq.(27), there are needs as usual in advance to
assume existing case (I) or (II), because which are e-
quivalent to Euler-Lagrange equations and conservation
quantities, and then deducing Euler-Lagrange equations
and conservation quantities, which are related to a hid-
den logic cycle and are not both exact and natural.
Actually, there naturally exists the general extremum

functional G so that we can choose the absolute extreme
value zero of the general extremum functional G, then
case (I) or (II) can be naturally deduced ( e.g., see the
studies below Eq.(41) ). Making these natural deduc-
tions reflects the systems’ intrinsical properties, namely,
the intrinsical mathematical and physical double extreme
value procceses. Otherwise, the systems cannot get real
physical laws. These results are not only supplementary
developments of the current variational principle and cur-
rent Noether theorem for infinite freedom systems, but
also classsical and quantum new physics corresponding
to classical and quantum physics systems, because this
Lagrangian is a general Lagrangian.
We discover that, up to now, all the investigations on

variational principle and Noether theorem for different
physics systems and infinite freedom systems have missed
the key studies on the double extremum processes relat-
ed to the general extremum functional G that both is
deduced via the least action principle and should be key
largely taken in deducing all the physics laws, but the
current variational principle and current Noether theo-
rem for infinite freedom systems have missed the gen-
eral extreme functional G and G’s minimum extremum,
which results in the crisis and the hidden logic cycle of no
objectively deducing all physics laws. Using the studies
on the double extremum processes related to the general
extremum functional G in this paper, the crisis and the
hidden logic cycle are not only solved, but also the new
mathematical and physical double extremum processes
and their new mathematical and physical pictures are
discovered. Therefore, general variantional principle and
general Noether theorem for infinite freedom systems are
given, which solve the crisis and the hidden logic cycle.
VI. Discussions and applications

Using Eq.(17) derived from the variational extremum,
we have a general extremum functional expression for
finite freedom systems

f =
∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqi =

− d

dt
[
∑
i

(
∂L

∂q̇i
δqi+

∂L

∂q̈i
δq̇i−

d

dt

∂L

∂q̈i
δqi)+L∆(t)+Ω]. (42)

where f can take any functional value and F =
∫ t2

t1
fdt.

When the absolute value of the general extremum func-
tional f is taken as zero, namely, taking the minimum
absolute extreme value of the general extremum func-
tional f , i.e., the general extremum functional f ’s ex-
tremum, that is, the double extremum process, Eq.(42)
can directly deduce Euler-Lagrange equations due to the
linear independent properties of δqi and the general con-
servation quantity due to having taken the second line of
Eq.(42) as zero.
Using Eq.(40) derived from the variational extremum,

we deduce a general extremum functional expression for
infinite freedom systems

g = [
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa =

−∂µ[(
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν+L∆xµ+Ωµ]

(43)
where g can take any functional value and G =

∫
M4 gd

4x.
When the absolute value of the general extremum func-

tional g is taken as zero, namely, taking the minimum ab-
solute extreme value of the general extremum functional
g, i.e., the general extremum functional g’s extremum,
that is, the double extremum process, Eq.(43) can di-
rectly deduce Euler-Lagrange equations due to the linear
independent properties of δXa and the general conser-
vation current due to having taken the second line of
Eq.(43) as zero.
Therefore, this paper discovers that the processes no

choosing the minimum absolute extremum zero of the
general extremum functional F (G) statisfying the varia-
tional extremum principle are still the virtual processes,
because all current refererenes, e.g., refs.[4, 5],[2, 10–14],
think of cases (iii) and (III) satisfying the variational
extreme value cannot derive out Euler-Lagrange equa-
tions and their correspoonding conservation quantities.
Thus for choosing the processes of minimam absolute ex-
tremum zero of the general extremum functional F (G),
the processes of the physics systems are just real physic-
s processes and can give Euler-Lagrange eqautions and
their corresponding conservation quantities. Especially,
cases (i) and (ii) ((I) and (II)) are the two special taken
value cases and are included in case (iii) ((III)) as special
cases, and there is the hidden logic cycle between case
(i) (assuming to exist Eq.(10) of deducing conservation
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be deduced. Otherwise, all the physics laws cannot be d-
educed. That is, Eq.(39) is deduced from the variational
extremum, Eq.(41) is further taking the absolute extreme
value zero, i.e., the minimum absolute extremum, of the
general extremum functional G, therefore, we, for the
first time, discover that it is the double extreme values
(i.e., the extreme functional G’s extremum) that result
in that all the physics laws can be deduced, otherwise,
all the physics laws cannot be deduced. These are very
important classical and quantum new physics processes
of general physics systems.
Therefore, the systems first choose extreme value (i.e.,

via Eq.(19)) of the Lagrangian, and then we naturally
deduce Eq.(27), there are needs as usual in advance to
assume existing case (I) or (II), because which are e-
quivalent to Euler-Lagrange equations and conservation
quantities, and then deducing Euler-Lagrange equations
and conservation quantities, which are related to a hid-
den logic cycle and are not both exact and natural.
Actually, there naturally exists the general extremum

functional G so that we can choose the absolute extreme
value zero of the general extremum functional G, then
case (I) or (II) can be naturally deduced ( e.g., see the
studies below Eq.(41) ). Making these natural deduc-
tions reflects the systems’ intrinsical properties, namely,
the intrinsical mathematical and physical double extreme
value procceses. Otherwise, the systems cannot get real
physical laws. These results are not only supplementary
developments of the current variational principle and cur-
rent Noether theorem for infinite freedom systems, but
also classsical and quantum new physics corresponding
to classical and quantum physics systems, because this
Lagrangian is a general Lagrangian.
We discover that, up to now, all the investigations on

variational principle and Noether theorem for different
physics systems and infinite freedom systems have missed
the key studies on the double extremum processes relat-
ed to the general extremum functional G that both is
deduced via the least action principle and should be key
largely taken in deducing all the physics laws, but the
current variational principle and current Noether theo-
rem for infinite freedom systems have missed the gen-
eral extreme functional G and G’s minimum extremum,
which results in the crisis and the hidden logic cycle of no
objectively deducing all physics laws. Using the studies
on the double extremum processes related to the general
extremum functional G in this paper, the crisis and the
hidden logic cycle are not only solved, but also the new
mathematical and physical double extremum processes
and their new mathematical and physical pictures are
discovered. Therefore, general variantional principle and
general Noether theorem for infinite freedom systems are
given, which solve the crisis and the hidden logic cycle.
VI. Discussions and applications

Using Eq.(17) derived from the variational extremum,
we have a general extremum functional expression for
finite freedom systems

f =
∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqi =

− d

dt
[
∑
i

(
∂L

∂q̇i
δqi+

∂L

∂q̈i
δq̇i−

d

dt

∂L

∂q̈i
δqi)+L∆(t)+Ω]. (42)

where f can take any functional value and F =
∫ t2

t1
fdt.

When the absolute value of the general extremum func-
tional f is taken as zero, namely, taking the minimum
absolute extreme value of the general extremum func-
tional f , i.e., the general extremum functional f ’s ex-
tremum, that is, the double extremum process, Eq.(42)
can directly deduce Euler-Lagrange equations due to the
linear independent properties of δqi and the general con-
servation quantity due to having taken the second line of
Eq.(42) as zero.
Using Eq.(40) derived from the variational extremum,

we deduce a general extremum functional expression for
infinite freedom systems

g = [
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa =

−∂µ[(
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν+L∆xµ+Ωµ]

(43)
where g can take any functional value and G =

∫
M4 gd

4x.
When the absolute value of the general extremum func-

tional g is taken as zero, namely, taking the minimum ab-
solute extreme value of the general extremum functional
g, i.e., the general extremum functional g’s extremum,
that is, the double extremum process, Eq.(43) can di-
rectly deduce Euler-Lagrange equations due to the linear
independent properties of δXa and the general conser-
vation current due to having taken the second line of
Eq.(43) as zero.
Therefore, this paper discovers that the processes no

choosing the minimum absolute extremum zero of the
general extremum functional F (G) statisfying the varia-
tional extremum principle are still the virtual processes,
because all current refererenes, e.g., refs.[4, 5],[2, 10–14],
think of cases (iii) and (III) satisfying the variational
extreme value cannot derive out Euler-Lagrange equa-
tions and their correspoonding conservation quantities.
Thus for choosing the processes of minimam absolute ex-
tremum zero of the general extremum functional F (G),
the processes of the physics systems are just real physic-
s processes and can give Euler-Lagrange eqautions and
their corresponding conservation quantities. Especially,
cases (i) and (ii) ((I) and (II)) are the two special taken
value cases and are included in case (iii) ((III)) as special
cases, and there is the hidden logic cycle between case
(i) (assuming to exist Eq.(10) of deducing conservation
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be deduced. Otherwise, all the physics laws cannot be d-
educed. That is, Eq.(39) is deduced from the variational
extremum, Eq.(41) is further taking the absolute extreme
value zero, i.e., the minimum absolute extremum, of the
general extremum functional G, therefore, we, for the
first time, discover that it is the double extreme values
(i.e., the extreme functional G’s extremum) that result
in that all the physics laws can be deduced, otherwise,
all the physics laws cannot be deduced. These are very
important classical and quantum new physics processes
of general physics systems.
Therefore, the systems first choose extreme value (i.e.,

via Eq.(19)) of the Lagrangian, and then we naturally
deduce Eq.(27), there are needs as usual in advance to
assume existing case (I) or (II), because which are e-
quivalent to Euler-Lagrange equations and conservation
quantities, and then deducing Euler-Lagrange equations
and conservation quantities, which are related to a hid-
den logic cycle and are not both exact and natural.
Actually, there naturally exists the general extremum

functional G so that we can choose the absolute extreme
value zero of the general extremum functional G, then
case (I) or (II) can be naturally deduced ( e.g., see the
studies below Eq.(41) ). Making these natural deduc-
tions reflects the systems’ intrinsical properties, namely,
the intrinsical mathematical and physical double extreme
value procceses. Otherwise, the systems cannot get real
physical laws. These results are not only supplementary
developments of the current variational principle and cur-
rent Noether theorem for infinite freedom systems, but
also classsical and quantum new physics corresponding
to classical and quantum physics systems, because this
Lagrangian is a general Lagrangian.
We discover that, up to now, all the investigations on

variational principle and Noether theorem for different
physics systems and infinite freedom systems have missed
the key studies on the double extremum processes relat-
ed to the general extremum functional G that both is
deduced via the least action principle and should be key
largely taken in deducing all the physics laws, but the
current variational principle and current Noether theo-
rem for infinite freedom systems have missed the gen-
eral extreme functional G and G’s minimum extremum,
which results in the crisis and the hidden logic cycle of no
objectively deducing all physics laws. Using the studies
on the double extremum processes related to the general
extremum functional G in this paper, the crisis and the
hidden logic cycle are not only solved, but also the new
mathematical and physical double extremum processes
and their new mathematical and physical pictures are
discovered. Therefore, general variantional principle and
general Noether theorem for infinite freedom systems are
given, which solve the crisis and the hidden logic cycle.
VI. Discussions and applications

Using Eq.(17) derived from the variational extremum,
we have a general extremum functional expression for
finite freedom systems

f =
∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+

d2

dt2
∂L

∂q̈i
]δqi =

− d

dt
[
∑
i

(
∂L

∂q̇i
δqi+

∂L

∂q̈i
δq̇i−

d

dt

∂L

∂q̈i
δqi)+L∆(t)+Ω]. (42)

where f can take any functional value and F =
∫ t2

t1
fdt.

When the absolute value of the general extremum func-
tional f is taken as zero, namely, taking the minimum
absolute extreme value of the general extremum func-
tional f , i.e., the general extremum functional f ’s ex-
tremum, that is, the double extremum process, Eq.(42)
can directly deduce Euler-Lagrange equations due to the
linear independent properties of δqi and the general con-
servation quantity due to having taken the second line of
Eq.(42) as zero.
Using Eq.(40) derived from the variational extremum,

we deduce a general extremum functional expression for
infinite freedom systems

g = [
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa =

−∂µ[(
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν+L∆xµ+Ωµ]

(43)
where g can take any functional value and G =

∫
M4 gd

4x.
When the absolute value of the general extremum func-

tional g is taken as zero, namely, taking the minimum ab-
solute extreme value of the general extremum functional
g, i.e., the general extremum functional g’s extremum,
that is, the double extremum process, Eq.(43) can di-
rectly deduce Euler-Lagrange equations due to the linear
independent properties of δXa and the general conser-
vation current due to having taken the second line of
Eq.(43) as zero.
Therefore, this paper discovers that the processes no

choosing the minimum absolute extremum zero of the
general extremum functional F (G) statisfying the varia-
tional extremum principle are still the virtual processes,
because all current refererenes, e.g., refs.[4, 5],[2, 10–14],
think of cases (iii) and (III) satisfying the variational
extreme value cannot derive out Euler-Lagrange equa-
tions and their correspoonding conservation quantities.
Thus for choosing the processes of minimam absolute ex-
tremum zero of the general extremum functional F (G),
the processes of the physics systems are just real physic-
s processes and can give Euler-Lagrange eqautions and
their corresponding conservation quantities. Especially,
cases (i) and (ii) ((I) and (II)) are the two special taken
value cases and are included in case (iii) ((III)) as special
cases, and there is the hidden logic cycle between case
(i) (assuming to exist Eq.(10) of deducing conservation
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virtual processes because the virtual process cases cannot deduce 
Euler-Lagrange equations and their corresponding conservation 
quantities. All the investigations on functionals F and G in 
this paper give the corresponding integral descriptions, using 
functional f and g we can give the corresponding differantial 
descriptions, the two descriptions are entirely equivalent, thus 
we don’t repeat more here.

7. Summary and Conclusions
People can deduce Euler-Lagrange equations and corresponding 
conservation quantities by utilizing the variational principle 
and Noether theorem. But we discover the fact that the systems 
generally have extra intrinsical freedoms of choice. And if not 
assuming to exist Eq. (10) or (11) (Eq. (28) or (29)), then the 
Lagrange systems cannot give true physical laws. Actually, 
Eqs. (10) and (11) (Eqs. (28) and (29)) are equivalent to Euler-
Lagrange equations and conservation quantities, and then 
deducing Euler-Lagrange equations and conservation quantities, 
which are related to a hidden logic cycle and are not both exact 
and natural. This paper discovers that the processes no choosing 
the minimum absolute extremum zero of the general extremum 
functional F (G) statisfying the variational extremum principle 
are still the virtual processes, because all current refererenes 
think cases (iii) and (III) satisfying the variational extreme 
value cannot derive out Euler-Lagrange equations and their 
correspoonding conservation current. For choosing the processes 
of minimam absolute extremum zero of the general extremum 
functional F (G), the processes of the physics systems are just 
real physics processes and can give Euler-Lagrange eqautions 
and their corresponding conservation quantities, which are the 
key new physics.

Especially, cases (i) and (ii) ((I) and (II)) are included in case 
(iii) ((III)) as special cases of case (iii) ((III)), and there is the 
hidden logic cycle between case (i) and case (ii) ((I) and (II)), 
namely, cases (i) and (ii) ((I) and (II)) are equivalent with each 
other, which means that one assumes Euler-Lagrange equations, 
and then he finally deduces Euler-Lagrange equations via the 
equivalent relation between cases (i) and (ii) ((I) and (II)) in the 
whole processes, which is just the hidden logic cycle, so does 
Eq.(10) of deducing conservation quantity. This paper corrects 
the current key mistakes that when physics systems choose 
the variational extreme values, the appearing processes of 
the physics systems are real physics processes, otherwise, are 
virtual processes in all current articles, reviews and (text)books. 
The real physics should be what after choosing the variational 
extreme values of physics systems, the general extremum 
functional F (G) of the physics systems needs to further choose 
the minimum absolute extremum zero of the general extremum 
functional F (G), otherwise, the appearing processes of physics 
systems are still virtual processes because the virtual process 
case (iii) (III) cannot deduce Euler-Lagrange equations and their 
corresponding conservation quantities.

The systems first choose extreme value, and then must choose 
the minimum absolute extremum of the general extremum 
functional F (G), then cases (i) or (ii) (cases (I) or (II)) can be 
naturally deduced. Making these deductions shows the systems’ 
intrinsical properties of taking double extreme values, otherwise 
cannot get real physical laws according exact deduction logic. 

These results are not only supplementary developments of the 
current variational principle and current Noether theorem for 
finite (infinite) freedom system, but also classsical and quantum 
new physics corresponding to classical and quantum physics 
systems, because our Lagrangian is the most general. This paper 
discovers, up to now, all the studies on variational principle 
and Noether theorem for different physics systems with finite 
(infinite) freedom systems have neglected the key studies on the 
double extremum processes of the general extremum functional 
F (G) that both is deduced by the least action principle and is key 
largely taken in deducing all the physics laws, but these have 
not been done, which result in the crisis of deducing relevant 
mathematical laws and all physics laws. Using the above studies 
on the double extremum processes of the general extremum 
functional F (G) in this paper, i.e., on the double extreme values, 
the crisis and the hidden logic cycle are not only solved, but also 
the new mathematical and physical double extremum processes 
and their new mathematical pictures and physics are discovered. 
Therefore, general variantional principle and general Noether 
theorem for (in)finite freedom systems are given in this paper, 
which solve both the crisis having existed for over a century since 
Noether’s proposing her famous theorem and the hidden logic 
cycle. Therefore, this paper gives general variational principle, 
general Noether theorem, their classical and quantum new 
physics and solution to crisis deducing all fundamental physics 
laws, opens a new area of research on variational principle 
and Noether theorem for finite (infinite) freedom systems by 
choosing optima of the double extreme values to explain origins 
of physics laws etc., and will significantly influence and rewrite 
the research of others in relevant different branches of science, 
because the least action principle or variational principle and 
Noether theorem are the key firm bases in modern physics, and 
we just discover new right avenues of research in the established 
variational principle & Noether theorem for finite (infinite) 
freedom systems, their applications and so on in modern 
sciences, and all the relevant current articles and (text)books 
would be rewritten, supplied and updated.
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