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Abstract
The reactions of nitridation of the surface of single-crystallyne germanium in wet ammonia, in hydrazine and hydrazine-hydrate 
vapors have been studied. In these processes, nitride is formed - a mixture of the α- and β-modifications of germanium nitride 
Ge3N4. In this case, the relative content of the α-phase increases with the degree of humidity of the gas reagent. The formation of 
nitride is preceded by the process of etching the surface of germanium with water vapor contained in ammonia and hydrazine.  
The activation energies of this process are ~46 kcal/mol in the case of ammonia, ~53 kcal/mol in the case of concentrated 
hydrazine and ~48 kcal/mol in the case of hydrazine-hydrate.
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1. Introduction
Etching of germanium surface is widely used in semiconductor 
technology. The most common components of germanium 
etchants are HNO3, HF and H2O2. Nitric acid is a strong oxidizer 
of germanium, and hydrofluoric acid dissolves germanium dioxide 
well. Additives that act as accelerators of the chemical reaction (Br) 
or retarders (C2H4O2) are sometimes added to the main components 
of the etchant.  NH4OH, H2O, mixture H2O2-NH4OH-H2O, HBr, 
HNO3-H2O, HF-HNO3, HF-HNO3-CH3COOH, Cl2 or CF4 RF 
plasma Cl2-HBr, H3PO4-CH3COOH-HNO3-H2O, N(CH3)4OH or 
other alkaline solutions, HF-H2O2-CH3COOH, CH3CO3H and 
others [1-13].

Etching of germanium is mainly used to clean the surface before 
the technological process. But it can also be carried out by 
interaction of germanium with gases containing water vapor. In 
particular, this occurs during the nitridation of germanium with 
moistened ammonia or hydrazine vapor, which almost always 
contains a certain amount of water (see below).

2. Experimental
In the experiments, we used plates of single-crystal germanium 
doped with Sb (concentration of charge carriers ≅2∙1014cm-3, 
resistivity ≅35 Ohmcm, orientation {111}). They were successively 
degreased in boiling toluene, dried in the air, etched in a liquid 
etchant HF-HNO3-CH3COOH = 1:15:1 for (4-5) min and, washed 
in running distilled water, followed by drying. Ammonia (freezing 

point -33.4°C) was purified by passing it through a trap cooled 
with a mixture of liquid nitrogen and alcohol. Water vapor was 
then introduced into the reactor at different pressures (pressure of 
ammonia itself PNH3 ≅2∙103Pa). Commercial hydrazine-hydrate 
 
(50 mol% or 64 wt% N2H4) was dehydrated by Raschig's method 

with modification: before distillation, it was boiled with NaOH in 
an inert N2 atmosphere at 120℃ for 2 hours [14]. The resulting 
liquid had a density (at 20℃) of ρ≅1.008 g/cm3 and a refractive 
index of nD

20≅1.471. The inlet pressure of hydrazine vapors was 
PN2 H4 ≅1.6∙103Pa, which increased (1.7÷2.9) times during the 
process depending on temperature of reaction. Its interval was 650-
800oC. In the experiments were used methods of X-ray analysis 
(diffractometer HZG-4A, CuKα radiation) and microgravimetry 
(scales designed by the Institute of Physical Chemistry with a 
sensitivity of 10-6 g). On the germanium surface the scale were 
formed, where according to X-ray analysis, was a mixture of α- 
and β-modifications of germanium nitride Ge3N4. The kinetics of 
reactions was studied using the gravimetric method the kinetics of 
reactions was studied.

3. Results and Discussion
Joint reactions 3Ge+4NH3→Ge3N4+6H2 and Ge+H2O→GeO+H2
The interaction of ammonia with germanium has been studied in 
a fairly large number of works [15-26]. The work found that by 
varying the degree of humidity of ammonia and the temperature 
of the process, it is possible to obtain nitride in the form of pure 
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α- and β-Ge3N4* as well as their mixtures with practically any ratio 
[26]. It was also shown that during the simultaneous occurrence 
of nitridation and oxidation reactions of the germanium surface, 
an amorphous oxynitride (GexOyNz) film is deposited on the 
semiconductor (Si, GaAs, InP) substrate located in the cold zone 
of the reactor.

Foonnote:
*Ge3N4 exists in several crystalline modifications: α-, β- and 
δ-(hexagonal syngonies), γ-(cubic syngony) [27-29]. Theoretically, 
t- (tetragonal), m- (monoclinic) and o- (orthorhombic) syngonies 
of nitride are also considered [30,31]. Among these modifications, 
only the α- and β-phases are stable at normal pressures and 
temperatures.

Fig.1 shows kinetic curves of the decrease of the mass of a 
germanium sample at the initial stage of the process at different 
degrees of ammonia humidity. It is evident that at the same 
temperatures, the intensity of the mass reduction is greater, the 
higher the value of P. This decrease is due to the etching of the 
germanium surface by water vapor with the formation of volatile 
GeO (Fig.2). It is also evident that at a fixed P, the etching rate 
increases with increasing process temperature. (Figures of the 
etching of surface Ge {111} are shown in the photo - Fig.2.) As for 
the phase composition of the solid products of reaction, a tendency 
is observed for a decrease of the relative content of the β-phase in 
the nitride with increasing P. 

Figure 1: Kinetic Curves of the Change of the Mass of a Germanium Sample for P≡PH2O/PNH3=0.02 (1), 0.05 (2) at 800oC and 0.1 (3), 
0.25 (4) at 700oC.

Figure 2: Typical Etching Figures of the Ge {111} Surface (1x200).
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Fig.3 shows the temperature dependences of the etching rate of the 
germanium surface in Arrhenius coordinates at different degrees 
of ammonia humidity. The activation energy determined from 
them lies within the range of 46 kcal/mol, which is in satisfactory 
agreement with the literature data on the heat of evaporation of 
GeO (45-55 kkal/mol) [32,33]. Based on all of the above, it can be 
assumed that the phase composition of Ge3N4 is an indicator of 
the degree of ammonia humidity.

Joint reactions 3Ge+2N2H4→Ge3N4+4H2 and Ge+H2O→GeO+H2

Hydrazine is widely used in technology and industry, in particular, 
it is a component of the fuel of space rockets [34-44]. Hydrazine 
is called “high-purity” when its water content does not exceed 1 
mass.%  and “ultra-pure” when its water content is a maximum 
of 0.5 mass.% H2O. Based on the physical characteristics of 

the hydrazine we used (see section “Experimental”), it could 
be concluded that it is 100% N2H4, according to the literature 
data. However, this is not the case, as shown in work, where 
the preliminary stages of the process of interaction of hydrazine 
vapor with the surface of germanium were studied in detail [25]. 
In particular, it has been shown that the physical characteristics 
of freshly distilled hydrazine do not change for several months. 
However, the kinetics of its interaction with the germanium 
surface changes over time - a gradual increase in the etching rate 
occurs at the same temperature (Fig.3). And in the surface product, 
the relative content of the phase increases, as in the case of gradual 
moistening of ammonia (Fig.4). Control experiments were carried 
out using hydrazine-hydrate, in the vapors of which nitride is no 
longer formed and only intensive etching of the germanium surface 
occurs (Fig.3). Thus, here too, all of the above can be considered 
an indicator of the degree of humidity of the gas reagent.

Figure 4: Histograms of the ratio of the intensities of the main X-ray reflections of the α- and β-Ge3N4 obtained by nitridation of 
germanium at 700°C: a process carried out immediately after distillation of hydrazine (1), two weeks after distillation (2), and a month 
later (3).

4. Conclusion
The reactions of nitridation of the surface of single-crystal 
germanium in wet ammonia, in hydrazine and hydrazine-hydrate 
vapors have been studied. In wet ammonia and concentrated 
hydrazine vapor, nitride Ge3N4 is formed, and in the vapor of 

hydrazine hydrate, nitride is no longer formed the formation 
of nitride is preceded by the process of etching the surface 
of germanium with water vapor contained in ammonia and 
hydrazine. The activation energies of this process are ~58 kcal/mol 
in the case of ammonia, ~53 kcal/mol in the case of concentrated 

Figure 3: Temperature Dependences of the Etching Rate of the Germanium Surface in Wet Ammonia at P=0.02 (1), 0.04 (2), 0.1 (3), 
0.125 (4), in concentrated hydrazine vapors (5) and hydrazine-hydrate (6).
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hydrazine and ~48 kcal/mol in the case of hydrazine-hydra
te.                                                                                                                                                                            
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