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Abstract
The intellectual activity of a person is realized by some kind of biological tools, suggesting the possibility of its 
inheritance, and scientific knowledge forms and concentrates its intellectual assets.  Biological tools are able not only 
to operate with the assets of human intelligence, but also to carry out a complex of computational operations on the 
received signal information, determined by the functions of the vital activity of the human body. The description of this 
process through abstractions defines the foundation of mathematical science. 

Knowledge about the architecture of intellectual activity must be considered in the process of correct formalization of 
physical and physiological models in all-natural sciences in order to radically reduce the load on higher mental functions 
of a person. In particular, this necessity concerns the permissibility of certain operations mentioned in order to obtain 
a scientifically based solution to problematic tasks. The successes of AI sciences have determined high requirements 
not only for the "purity and reliability" of data, but also for the accuracy and effectiveness of operations on them. For 
the purposes of AI development in the direction of semantic, intellectual analysis of the received data, an analysis of 
the means of operating with them is also necessary. The proof of the truth of certain statements and the rules applied 
as obvious means for it must also meet the high bar of modern knowledge about the biological essence of intellectual 
activity. Otherwise, operating errors, increasing many times when scaled by AI, will inevitably generate errors and 
dead ends in improving scientific knowledge and means of intellectualization. The article is devoted to the paradoxes in 
mathematical science that create conflict due to the increased requirements for the formalization of knowledge and the 
mathematical tools available for them today, as well as proposals for their elimination.

This article is the first step in justifying the need to use a formal stereotypical logical proof due to the shortcomings of 
a meaningful proof of theorems. The article shows how the formal proof will look like using the given example. Thanks 
to the appearance of this structure of thinking, it becomes possible to formulate a logical objective theorem for the 
numerical solution of a system of linear algebraic equations using the Gauss method. The formulation of this theorem in 
a logical format does not violate the structure of the substantial proof that exists today and allows us to formally verify 
this substantial proof for truth or propose a logical solution with mandatory formal verification.
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1. Introduction
The achievements of the sciences on the functioning of the human 
body, on the governing functions and properties of his brain, 
inherited are habitually used in medicine or biology [1,2]. Today, 
unfortunately, there is no tradition to use this knowledge to analyse 

mathematical results or ideas about the macro or microcosm in 
physics. For example, knowledge about the architecture of 
intellectual activity, in our opinion, should be considered in the 
process of correct formalization of physical and physiological 
models in all-natural sciences in order to radically reduce the 
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load on higher mental functions of a person. But in particular, 
this necessity concerns the permissibility of certain computational 
operations on the information received in order to obtain a 
scientifically based true solution to scientific problem problems. 
The successes of AI sciences have determined high requirements 
not only for the "purity and reliability" of data, but also for the 
accuracy and effectiveness of operations on them. For the purposes 
of AI development in the direction of semantic, intellectual 
analysis of the received data, an analysis of the means of operating 
with them is also necessary.

In Stephen Wolfram's reminiscences about Douglas Lenat and his 
desire to follow the works of Aristotle and Leibniz, we unfortunately 
learned about the death of Douglas Lenat [3]. Doug's aspiration 
to utilize mathematical logic to enhance artificial intelligence 
methods was well-founded and sensible [4,5]. The ultimate 
goal, the attainment of a universal formal reasoning tool, while 
not fully achieved, unveiled vast horizons for AI systems. Doug 
comprehended well that in today's context, efficient algorithms for 
solving complex problems based on methods of intelligent data 
analysis and AI are increasingly in demand [6]. However, this quest 
for algorithms is currently dominated by a behaviourist component 
[7,8]. This very fact motivated a revaluation of the issue from the 
vantage point of fundamental sciences, seeking a solution within 
classical mathematical approaches.

The absence of a well-formed systematic view of the process of 
cognition, from its physiology to the field of AI, and its careful 
revision during the epoch of rapid development in these domains, 
in our view, impedes the transition to the next stage of progress. 
Alongside the remarkable achievements in theoretical and applied 
informatics AI, and MLL, these advancements do not influence 
our understanding of the fundamentals of formalization and the 
development of a methodology for comprehending the surrounding 
world as a whole [9-13]. This can be likened to an old house 
where each successive generation adds a new floor, modernizes 
it, and adorns it with new furniture, without discarding the old and 
without strengthening the foundation.

Significant progress in the search for sought-after algorithms can 
be achieved by focusing on a systematic re-examination of the 
foundations of our understanding of intelligence, primarily natural 
intelligence, the thinking process, and knowledge concentration 
through formalization and formal sciences. The author's attempt 
to do so ultimately led to a formalization methodology with 
breakthrough effects in solving intellectual tasks and addressing a 
range of scientific problems. This endeavour resulted in a highly 
effective method of intelligent analysis [14,15].

The aim of this article is to outline the fundamental obstacles 
that slow down the development of mathematical science [16]. 
Abstract principles regularly employed by researchers in their 
daily routines affect the accuracy of results and, consequently, 
the efficiency of the entire scientific chain, in which mathematics 
serves as a tool [17].

Doubt about the validity of the modus ponens rule (and others 
discussed in the article), as well as the corresponding logical 
law (relating to the transition from the statement of a conditional 
statement and its antecedent to the statement of its subsequent) casts 
doubt on the truth of existing proofs of theorems where this rule is 
used as one of the basic ones [18]. Consequently, this implies the 
necessity for a new formal proof for every scientific assertion and 
a reassessment of all traditionally substantiated assertions to date. 
This might seem daunting and implausible; however, the extent of 
the significance of this matter can only be gauged through a more 
detailed exploration of the concepts associated with it.

Various works discuss the rules of modus ponens, syllogism, and 
other fundamental abstractions established as laws during the 
formalization of scientific theory [19]. In reality, mathematicians 
employ these abstractions in their day-to-day work and such 
practice is considered legitimate analysis from the perspective 
of formalization sciences and brain physiology [20]. This topic 
is relegated to philosophical discourse, typically unrelated to 
research practice [21].

In advancing the science of artificial intelligence, it is crucial to 
contemplate the functioning of natural intelligence, particularly 
when constructing its models. The aspect of intellectualization 
in informatics and computer science was addressed in 2019 with 
interest predominantly observed in the field of brain physiology, 
engaging neurologists in relation to pathology and philosophers, 
but not mathematicians [22].

The perception of mathematics solely evolving by expanding 
its structure and enlarging its domain, without considering 
foundational corrections, is currently unsubstantiated. This is 
associated with the radical complexity of tasks and the challenges 
posed to it by the sciences leveraging its services. The original 
role of formalization as a means of knowledge concentration and 
unifying computational procedures has not been fully realized 
for the needs of computer science and AI, hence necessitating 
inevitable changes. In order to move on to these changes, we need 
to start by analysing the basic computational procedures [23].

Our readiness for such changes and the degree of mobility among 
representatives of fundamental sciences, without compromising 
the truth and constructiveness of the scientific structure itself, 
will determine the prospects of science to dominate in society and 
society as a whole – for survival. This is not an exaggeration, but 
a mere acknowledgment of the necessity for radical changes in the 
foundations of the classical sciences, driven by the advancement 
of applied sciences.

Deep learning showcases the 'enigmas of intellectualization', 
contingent upon dimensionality [24,25]. From our perspective, 
this phenomenon is entirely explicable in terms of the physiology 
of mental processes and its physics. We envision the solution to 
demonstrate such a connection in the ability to amalgamate the 
achievements of physiologists, biologists, AI sciences, and the 
phenomenon of intellectualization, provided it is experimentally 
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validated, into a singular task.

Only a proficient, scientifically substantiated mathematical for-
malization can offer us this possibility, and this is now the concern 
of mathematicians. The efficiency of the created formalization 
methodology will determine the timing for unravelling the 'enig-
ma of intellectualization' and an effective algorithm for solving 
intellectual tasks, all within the strict framework of the updated 
structure of mathematical science.

The objective of this article is to initiate the process of reform 
starting from fundamental mathematical concepts, defined by the 
physiology of human thought. 

2. Materials and Methods     
The limited applicability of commonly accepted statements and 
tautologies in classical mathematics for theorem proof.

2.1 Problem Statement
The article analyses the frequently used standard list of tautologies:

•	 modus ponens:                                                                      (1) 
•	 modus tollens: ((A ═˃ B) Ʌ ΊB) ═˃ ΊA                                                  (2) 
•	 syllogism: ((A ═˃ B) Ʌ (B ═˃ C)) ═˃ (A ═˃ C)                                   (3)           
•	 contraposition: (A ═˃ B) ═˃ (ΊB ═˃ ΊA)                                               (4)

2.2 The Proposed Method of Solving the Problem
Proof of the unsuitability of the modus ponens rule for proving 

theorems
Formula of the modus ponens rule:                                                     (1)
in classical mathematics, it is invariant to the initial truth values of 
the component sub formulas A and B [22,23]. And it is even more 
invariant to the components of sub formulas A and B, if these sub 
formulas are composite. The modus ponens rule itself does not 
declare the elementary nature of sub formulas A and B [24]. 

However, in real life, researchers have to work exclusively with 
axioms (facts of full-scale experimentation with these phenomena) 
when formulating and proving theorems about the phenomena of 
the universe, which have received two alternative names in the 
foundations of mathematics [25]:  
•	 elementary logical formulas,  
•	 one-letter clauses. 
And that's when the formula modus ponens: 

                                                                                                    (1)

being left alone exclusively with one-letter disjuncts, it not only 
does not indicate the way to obtain the truth of the conclusion from 
the truth of the premises in a purely theoretical way, but also puts 
the problem solver in front of the fact that when proving theorems, 
the truth of both the logical variable A and the logical variable B 
must be known in advance so that there are no contradictions. with 
the semantics of the predicate logic language, functionally fully 
presented in the following table 1:
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X Y ˥X X  ˄  Y X  ˅ Y X => Y X <=> Y
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

 Table 1: Semantics of the predicate logic language

Indeed, in this case, it can be seen from the first line that the 
formula (1) gets the true value when all premises are true and the 
conclusion of the theorem is true. 

However, the semantics of the first-order predicate logic language 
indicates that the formula (1) can obtain a true value even with the 
truth values of one-letter disjuncts corresponding to lines 3 and 4 of 
the language semantics table. This contradicts the natural logic of 
human thinking, leading to paradoxical results in theorem proving. 
False monoliteral disjunctions reflecting the meaning of specific 
real axioms obtained through natural experimentation are not 
permissible in theorem premises. In the case of the modus ponens 
rule, the theorem should be considered incorrectly formulated. 
However, formulating any theorem correctly within the degrees 
of freedom in defining the modus ponens rule is fundamentally 
challenging.

Human thinking operates through physiological algorithms, the 
ultimate goal of which is survival, both personally and for the 

offspring (in general) [26]. Studying the surrounding world and 
improving it for this purpose serve as a means to achieve this goal. 
The process of prediction, involving hypothesis formation, is part 
of the cognitive process [27]. However, in each specific case, proof 
of the truth of our hypothesis is required for its systematic use.

We propose to collectively analyse, as a scientific community, the 
author's hypothesis regarding the inadequacy of the considered 
abstractions or rules by which we construct standard mathematical 
reasoning. This is how we formally think today when proving 
statements, both in mathematics and in other fields of knowledge, 
and forms the second, more significant goal of this article.

Our collective decision, if confirmed, will inevitably lead to a 
revision of proof rules and will affect the foundations of sciences. 
Everyone should be prepared for such a resolution. Special 
attention from the mathematical community to this issue will be 
the key to success.      
Such reasoning indicates the limited applicability of the modus 



J Math Techniques Comput Math, 2025 Volume 4 | Issue 1 | 4

tollens rule: 

                                    ((A ═˃ B) Ʌ ΊB) ═˃ ΊA                                           (2)            

in theorem proving, as the formula [2] can attain a true value even 
when the truth values of the single-letter disjuncts corresponding 
to rows 1, 2, and 4 of Table 1 in the language's semantics are true. 
This does not align with the natural logic of human thinking, 
leading to paradoxical results during theorem proving.   
Similar reasoning indicates the limited applicability of the 
syllogism rule: 
                                                

                        ((A ═˃ B) Ʌ (B ═˃ C)) ═˃ (A ═˃ C)            (3)      
    

in theorem proving, as the formula (3) can attain a true value even 
when the truth values of the single-letter disjuncts corresponding 
to rows 1, 2, and 4 of Table 1 in the language's semantics are true. 
This also does not align with the natural logic of human thinking, 
leading to paradoxical results during theorem proving.   
Similar reasoning points to the limited applicability of 
contraposition:
 
                                      (A ═˃ B) ═˃ ( ΊB ═˃ ΊA)                                            (4)            

in theorem proving, as the formula [4] can attain a true value even 
when the truth values of the single-letter disjuncts corresponding 
to rows 1, 2, 3, and 4 of Table 1 in the language's semantics are 
true. This does not align with the natural logic of human thinking, 
leading to paradoxical results during theorem proving.     

Thus, a profound paradox arises in the foundations of mathematics. 
Indeed, only one correct solution emerges from this paradox, but it 
fundamentally alters the understanding of the modus ponens rule, 
excluding it from the list of universals and triggering a crisis. The 
way out of the crisis lies in limiting the number of degrees of freedom 
when defining operands in the modus ponens rule. This rule should 
use exclusively true axioms that fully functionally characterize all 
permissible states of the observed phenomenon. These axioms 
should be obtained solely through natural experimentation with 
this phenomenon. Importantly, this requirement should apply 
equally to the axioms serving as premises of the theorem and those 
serving as conclusions. However, even with this limitation, which 
allows for a proper formulation of the theorem, the challenge 
remains to achieve a purely theoretical formal proof of the truth of 
the theorem's conclusion based on the truth of the conjunction of 
its premises in the present time.

3. Results 
The outcome of the foregoing can be defined as an urgent necessity 
to consider the nature of human thinking in the creation of a 
modern mathematical toolkit for understanding the surrounding 
world. The article presents facts that, at first glance, may seem 
rather simple but have the potential to represent a revolution. 
However, identifying their presence as facts and the collection of 
these facts define an entirely new perspective on formalization and 
set a new course for the development of the sciences of thought.

4. Discussion 
In this article, we have investigated issues related to formalization 
and mathematical abstractions used in fundamental sciences and 
artificial intelligence. Our results underscore the necessity of 
revisiting fundamental mathematical concepts used in scientific 
theory and practical applications, especially in the context of the 
rapid development of artificial intelligence and machine learning.

First and foremost, we raise an important question regarding the 
need for formal proof of statements, as the existing method of 
theorem proving, relying on rules like modus ponens and similar 
ones discussed in the article, can no longer meet the requirements 
for precision in modern science. Additionally, the need for cost-
effectiveness in solving highly complex problems dictates a 
departure from spontaneity in deciding which mathematical 
structure or method to apply for solving an intellectual task, 
moving away from the behaviouristic component in the search 
for efficient algorithms. Despite the fantastic advancements in 
theoretical and practical informatics today, there is a sense that we 
are constructing new floors on an existing building without paying 
sufficient attention to the reinforcing foundation.

Our analysis of fundamental mathematical rules such as modus 
ponens or modus tollens, for example, shows that their initial 
use as abstract laws leads in certain cases to unsatisfactory 
results especially in mathematics itself and in the context of the 
development of artificial intelligence [28,29]. Rethinking these 
rules may require new approaches to proving theorems, perhaps 
clarifying existing results, but undoubtedly this is another natural 
step towards improving mathematical theory and formalizing our 
knowledge.

One of the key points of discussion is the necessity to rethink 
the concept of proving statements. Aligning the mathematical 
apparatus that implements the formalization of thinking with the 
level of modern knowledge about thinking is a significant task that 
will undoubtedly be the subject of professional debate. The value 
of such discussions is beyond doubt for mathematicians, as this 
represents a new direction in the natural process of development, 
as well as for a range of modern sciences where they will serve as 
the starting impulse for comprehensive processes of formalization 
and automatic formal proof of statements.

The traditional perception of mathematics as an unchanging tool 
for expanding knowledge may face challenges and complexities 
in the sciences that utilize its methods. In reality, by proposing 
the classical mathematical structure with a 2500-year history of 
formalization, we only strengthen the position of mathematics as 
the 'queen of sciences,' opening new possibilities for contemporary 
knowledge. Our work emphasizes that formalization should be at 
the forefront to ensure the efficient functioning of AI and related 
sciences.

As a demonstration of the possibility to move away from the 
traditional proofs defined by the rules discussed in the article for 
equivalent transformations during the proof of statements, we 
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propose examining the author's formal proof method [30]. This 
method offers an alternative approach to establishing the validity 
of mathematical statements, departing from conventional rules 
while still ensuring rigorous reasoning and logical coherence.
 
4.1 Example: Solving a System of Linear Algebraic Equations 
using the Gaussian Elimination Method
The algorithm for solving a system of linear algebraic equations 
using the Gaussian elimination method [31].

In the first stage, the so-called forward elimination is performed. 
Through elementary row operations, the system is transformed 
into a row echelon or triangular form, or it is determined that the 
system is inconsistent. Specifically, among the elements of the first 
column of the matrix, a nonzero element is selected, moved to the 
topmost position by permuting the rows, and then subtracted from 
the remaining rows. This subtraction involves multiplying the first 
row (after permutation) by a factor equal to the ratio of the first 
element of each of these rows to the first element of the first row, 
effectively zeroing out the column below it. After these operations, 
the first row and the first column are mentally eliminated, and the 
process continues until the matrix becomes of zero size. If, during 
any iteration, a nonzero element is not found among the elements 
of the first column, the process moves to the next column, and a 
similar operation is performed.

In the second stage, the so-called back substitution is performed. 
Its essence is to express all obtained basic variables in terms of 
non-basic ones and to construct the fundamental solution set, or 
if all variables are basic, to express the unique solution of the 
system of linear equations in numerical form. This procedure starts 
from the last equation, where the corresponding basic variable is 
expressed (there is only one basic variable in that equation) and 
substitutes it into the previous equation, and so on, moving up the 
'steps'. Each row corresponds to exactly one basic variable, so at 
each step, except the last (the topmost one), the situation precisely 
mirrors the case of the last row. 

Let's demonstrate how the Gauss method can be used to solve the 
following system:

Let's rewrite the system of equations in matrix form:

Divide the 1st line by 2:

To the 2nd line, add the 1st line multiplied by 3. To the 3rd line, 

add the 1st line multiplied by 2:

Divide the 2nd line by 0.5:

From the 1st line we subtract the 2nd line multiplied by 0.5. From 
the 3rd line we subtract the 2nd line multiplied by 2:

Divide the 3rd line by -1:

Add the 3rd line to the 1st line. We subtract the 3rd line from the 
2nd line:

So, we have:

Thus, the original system is solved.

2.4 The Transformation of a Numerical Problem-Solving 
Algorithm into Logical Reasoning
Let's denote the equation #1 by the subject variable R1: 
(2x + y – z = 8) = R1    
Let's denote the equation #2 by the subject variable R2: 
(-3x – y +2z = -11) = R2 
Let's denote the equation #3 by the subject variable R3: 
(-2x + y + 2z = -3) = R3  
According to the Gaussian elimination algorithm, the matrix 
is transformed into a triangular form through a step-by-step 
elimination of unknowns using valid elementary row operations, 
followed by applying row addition or subtraction operations.

Let's denote the resulting new equations that arise from transforming 
the matrix into a triangular form using new identifiers: 
((R1 *1.5) + R2) = R4 = ((0.5y + 0.5) = 1)
(R1 + R3) = R5 = ((2y + z) = 5)
(R5 - (R4 * 4)) = R6 = (z= -1)
Substituting the value of z into R5, we obtain the value of y = 3.
Substituting the values of z and y into R3, we obtain the value of 
x = 2.
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Divide the 3rd line by -1: 

�
1 0 −1 3
0 1 1 2
0 0 1 −1

� 

 

Add the 3rd line to the 1st line. We subtract the 3rd line from the 2nd line: 

�
1 0 0 2
0 1 0 3
0 0 1 −1

� 

 

So, we have: 

�
𝑥 = 2
𝑦 = 3
𝑧 = −1

 

 Thus, the original system is solved. 

The Transformation of a Numerical Problem-Solving Algorithm into Logical Reasoning 

Let's denote the equation #1 by the subject variable R1:  

(2x + y – z = 8) = R1     

Let's denote the equation #2 by the subject variable R2:  

(-3x – y +2z = -11) = R2  

Let's denote the equation #3 by the subject variable R3:  

(-2x + y + 2z = -3) = R3   

According to the Gaussian elimination algorithm, the matrix is transformed into a triangular 
form through a step-by-step elimination of unknowns using valid elementary row operations, 
followed by applying row addition or subtraction operations. 

Let's denote the resulting new equations that arise from transforming the matrix into a 
triangular form using new identifiers:  

((R1 *1.5) + R2) = R4 = ((0.5y + 0.5𝑧) = 1) 

(R1 + R3) = R5 = ((2y + z) = 5) 

(R5 - (R4 * 4)) = R6 = (z= -1) 

Substituting the value of z into R5, we obtain the value of y = 3. 

Substituting the values of z and y into R3, we obtain the value of x = 2. 
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Let's transform the provided algebraic solution model into a logical 
model. To do this, we will replace the subject physical variables 
identifying algebraic equations R1 – R6 with the corresponding 
logical variables, called predicates. 

p1(R1, (R2, R3, R4, R5, R6, y, z)) – equation R1 is solvable in 
conjunction with equations (R2, R3, R4, R5, R6) and known 
values of variables y, z.
p2(R2, (R1, R3, R4, R5, R6, z)) - equation R2 is solvable in 
conjunction with equations (R1, R3, R4, R5, R6) and the known 
value of variable z. 
p3(R3, (R1, R2, R4, R5, R6)) - equation R3 is solvable in 
conjunction with equations (R1, R2, R4, R5, R6)
p4(y, R5, z) – the value of y is computed by substituting z into R5. 
p5(x, R3, z) – the value of x is computed by substituting z and y 
into R3.

Other authors have previously written about the disadvantages 
of the modus ponens and modus tollens rules [32-34]. The point 
of recognizing a certain inconsistency of these rules is to obtain 
grounds for moving to mandatory formal verifications of the 
truth of all scientific statements. And these formal checks can 
be in the format of automatic proofs of 1st-order logic theorems. 
In order to use these tools, it is necessary to find a stereotypical 
opportunity that allows you to move from a meaningful proof to 
a formal one. This task was solved by the author's stereotype of 
the logical construction of thinking for meaningful and formal 
proof of theorems, created considering the peculiarities of human 
thinking [14].

The logical conjunction of predicates p1...p5 ensures obtaining the 
solution (predicate p6(x, y, z)) of the system of equations R1...R3 
using the Gauss method.

    ((p1(…) Ʌ p2(…) Ʌ p3(…) Ʌ p4(…) Ʌ p5(…)) Ʌ Ίp6(x,y,z)) Ʌ 
    Ί((p1(…) Ʌ p2(…) Ʌ p3(…) Ʌ p4(…) Ʌ p5(…)) Ʌ Ίp6(2,3,-
1))                                                                                                 (1) 

Using formulas for equivalent transformations, let's simplify the 
expression of formula (1).
We will denote the formula by the identifier F1 (...): 

(p1(…) Ʌ p2(…) Ʌ p3(…) Ʌ p4(…) Ʌ p5(…)) 
F1 (…) = (p1(…) Ʌ p2(…) Ʌ p3(…) Ʌ p4(…) Ʌ p5(…)). 

Then formula [1] will have the form:

(F1 (…) Ʌ Ίp6(x,y,z)) Ʌ Ί(F1 (…) Ʌ Ίp6(2,3,-1))                                                 (2)
 
There are 27 formulas of equivalent transformations in the first-
order predicate logic language. Let's use several formulas to 
transform formula (2) into a canonical form:

(F1 (…) Ʌ Ίp6(x,y,z)) Ʌ ( ΊF1 (…) V p6(2,3,-1))                                                   (3.1)
ΊF1 (…) V p6(2,3,-1)                                                                                               (3.2)
Ίp6(x,y,z))                                                                                                                 (3.3)

F1 (…)                                                                                                                       (3.4)

From the set of formulas (3.2) – (3.4), we obtain an empty resolvent, 
which will correspond to a successful proof of the theorem.
Comparing (3.2) first with (3.4), and then with (3.3), we obtain an 
empty resolvent on the second step.
The results of solving the problem are assigned to the corresponding 
variables at the moment of eliminating empty resolvents. In our 
case, on the last step, the variables obtained their values: 

                                    x = 2; y = 3; z = -1.

The statement is proven. 
The more detailed description of the formal method of proof 
could be the subject of a future article. The purpose of this article 
is to emphasize the importance of transitioning from traditional 
theorem proving to a formalized procedure.

In addition, we emphasize the need to integrate various 
disciplines, including physiology, biology, artificial intelligence 
and mathematics, for a deeper understanding of intellectualization. 
Proper mathematical formalization can provide a path to the 
creation of effective algorithms for solving intellectual problems 
in all spheres of society.

Thus, the purpose of our article is to initiate a scientific discussion 
about the prospects of research. We are faced with the task of 
clarifying fundamental mathematical concepts in order to better 
adapt them to modern challenges and tasks. This is a difficult task 
that requires flexibility and the active participation of scientists to 
ensure the stability and development of society [34-38].
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