
    Volume 4 | Issue 3 | J Eco Res & Rev, 2024 1

Forecasting Maize Production in Mozambique: A Comparative Analysis of 
Arima And Lstm Models

Research Article

Filipe Mahaluça1,2*, Faizal Carsane2 and Alfeu Vilanculos1,3

*Corresponding Author
Filipe Mahaluça, Higher Institute of Accounting and Auditing of 
Mozambique.

Submitted: 2024,  Sep   01;  Accepted:   2024,  Oct  04;  Published:   2024,  Nov  14

Citation: Mahaluça, F., Carsane, F., Vilanculos, A. (2024). Forecasting Maize Production in Mozambique: A Comparative Analysis 
of Arima And Lstm Models. J Eco Res & Rev, 4(3), 01-15.

Abstract 
This study investigates the prediction of maize production in Mozambique, a crucial component for the country's food security, 
using two predictive models: ARIMA and LSTM. The research encompasses historical data from 1961 to 2022, allowing for a 
detailed analysis of trends and variations in production over the decades. The methodology involved ARIMA modeling, known 
for its effectiveness in capturing linear patterns in time series, and the LSTM model, which excels in forecasting nonlinear and 
complex patterns in temporal data. For the ARIMA model, the first step was to conduct an exploratory analysis of the time series, 
identifying the need for transformation to achieve stationarity. The Dickey-Fuller test confirmed the necessity of differencing, 
removing long-term trends. After this transformation, the ARIMA model was fitted, and its parameters were estimated using 
the maximum likelihood method. Three ARIMA models were tested (ARIMA (1,1,0), ARIMA (0,1,1), and ARIMA (1,1,1)), and 
their performance was compared using metrics such as AIC, BIC, RMSE, and MAPE. The ARIMA (1,1,1) model emerged as 
the most robust, offering the best balance between simplicity and accuracy in capturing the dynamics of maize production.

Concurrently, the LSTM model was trained using feedback neural networks, with normalized data to enhance training 
efficiency. The model architecture consisted of two LSTM layers with 50 units each, followed by a dense layer to generate 
predictions. The model was trained for 100 epochs using the Adam optimizer and mean squared error (MSE) loss function. 
LSTM evaluation was conducted using data from 2014 to 2022, which were not used in training, and prediction accuracy 
was measured using RMSE and MAPE. The results indicate that while the ARIMA (1,1,1) model showed solid performance, 
with an RMSE of 390,016.3 and a MAPE of 16.39%, the LSTM model outperformed it in predictive accuracy, achieving a 
significantly lower MAPE of 2.64%. LSTM proved more effective in capturing the complexities of the maize production time 
series, particularly in years of greater variability. These findings corroborate previous studies that highlight the superiority 
of LSTM neural networks in scenarios where time series exhibit nonlinear patterns and complex external influences.

Maize production forecasts for the period 2023 to 2030 were generated using the LSTM model combined with the Bootstrapping 
technique, which allowed the creation of 95% confidence intervals, quantifying the uncertainty of the predictions. The forecasts 
indicate stabilization in maize production, with small annual variations but no significant growth. While the stabilization is 
positive, it raises concerns in the context of food security, particularly considering Sustainable Development Goal 2 (SDG 
2), which aims to eradicate hunger by 2030. The lack of substantial growth may hinder Mozambique's ability to meet the 
growing food needs of its population.

The conclusions of this study demonstrate that the LSTM model is a powerful and more accurate tool than ARIMA for predicting 
maize production in Mozambique, underscoring the need for proactive agricultural policies and continued investments in 
technologies to increase productivity and mitigate food insecurity risks. The uncertainties in the confidence intervals of the 
forecasts highlight the importance of strategic planning and political interventions to ensure the resilience of Mozambique's 
agricultural sector in the face of climate change and economic fluctuations. In addition to advancing scientific knowledge in 
agricultural production forecasting, the study provides valuable insights for public policy formulation aimed at food security 
and sustainable development in Mozambique.
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1. Introduction
Food insecurity and malnutrition remain critical public 
health challenges in several regions worldwide, particularly 
in Sub-Saharan Africa and South Asia, where hunger and 

child malnutrition rates are alarmingly high [1]. The unequal 
distribution of global food production, coupled with the 
stagnation in agricultural sector growth, has exacerbated these 
issues, creating heightened vulnerability among the most 
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disadvantaged populations. Food security, which is defined as 
the consistent access to safe and nutritious food necessary for 
a healthy life, remains an elusive goal for millions of people 
globally, including those in Mozambique [2]. Mozambique is 
among the countries most vulnerable to climate-related disasters 
such as droughts, floods, and cyclones, which severely impact 
food security and the national economy. The 2021 Global Climate 
Risk Index ranked Mozambique as the country most affected 
by extreme weather events, underscoring its vulnerability and 
lack of preparedness to address climate change [3]. This climate 
vulnerability not only jeopardizes Mozambique's economy but 
also threatens its food systems, adding further challenges to 
achieving food security [4].

Between 2021 and 2022, approximately 2 million people in 
Mozambique faced severe levels of acute food insecurity [5]. 
The Mozambican government has acknowledged food and 
nutritional security as one of its top priorities, which is reflected 
in strategic documents such as the Government's Five-Year Plan 
(PQG) and the Economic and Social Plan and State Budget 
(PESOE). These plans aim to improve access to food, strengthen 
human capital, and ensure better living conditions for the 
population. Despite significant economic growth over the past 
two decades, with an average annual rate of 7.9% between 1993 
and 2015, Mozambique continues to grapple with challenges 
such as high unemployment and persistent poverty [6]. The 
unemployment rate, which reached 18.4% in 2022, coupled with 
the growing difficulty for households to access adequate food, 
has exacerbated food insecurity in the country [7]. Moreover, 
endemic corruption in Mozambique exacerbates these issues by 
diverting resources intended for food programs and perpetuating 
socioeconomic inequalities [8,9].

In Mozambique, food insecurity is exacerbated by various 
factors, including poverty, social inequality, conflicts, lack of 
access to healthcare, poor food distribution, and climate change 
[5]. The direct impact of this insecurity is evident in hunger, a 
condition that arises from insufficient consumption of essential 
nutrients, leading to discomfort and compromised health [10]. 
Hunger, while often associated with economic and social issues, 
is also intrinsically linked to natural and political factors, 
making it one of the most pressing global challenges [11]. The 
recent COVID-19 pandemic and the conflict in Ukraine have 
further intensified the global hunger crisis, affecting nearly 
one billion people [12]. Between 2021 and 2022, the number 
of people experiencing hunger increased by 20%, reflecting a 
troubling rise of 196 million individuals since 2019 [13]. The 
persistence of economic and climate shocks, combined with 
ongoing conflicts, has kept food vulnerability at elevated levels, 
particularly in countries like Mozambique, which rely on food 
imports to meet their basic needs [14].

In Mozambique, approximately 80% of rural households rely on 
subsistence farming, making the agricultural sector crucial for the 
population's survival [15]. However, this sector faces significant 
challenges, including low productivity and dependence on 
imports. Despite an increase in agricultural production from 
2021 to 2022, particularly in cereals and legumes, the country 

continues to struggle with efficient resource management and 
adapting to climate change [16]. The production of maize, one 
of the key staple crops in Mozambique, plays a crucial role in 
the country's food security. Increasing agricultural production 
and productivity, including maize, is essential to reduce food 
insecurity and lessen the dependence on imports [17]. However, 
the growth in production has primarily been driven by the 
expansion of cultivated areas rather than improvements in 
productivity, underscoring the need for more effective strategies 
to optimize the use of agricultural resources [18].

Accurate forecasting of maize production is therefore a critical 
tool for planning strategic interventions that can enhance food 
security in the country. Forecasting models, such as ARIMA 
and LSTM, have been employed to estimate agricultural crop 
production, each with its distinct features. The ARIMA model is 
well-known for its ability to capture linear and short-term patterns 
in time series data, while the LSTM model excels in identifying 
nonlinear patterns and complex dynamics [19]. Studies have 
shown that LSTM models, in particular, outperform traditional 
time series models like ARIMA in scenarios where variability is 
high and relationships between variables are nonlinear [20]. In 
the Mozambican context, where agriculture is highly vulnerable 
to climatic and economic shocks, the application of LSTM 
models can provide more robust and accurate forecasts, aiding 
in the formulation of more resilient agricultural policies [21].

Furthermore, the combination of traditional time series models 
with artificial neural networks, such as LSTM, emerges as a 
promising approach to improve the accuracy of agricultural 
forecasts. This hybrid approach can be especially beneficial 
in Mozambique, where climatic variability and reliance 
on traditional farming practices increase the complexity of 
predicting maize and other crop production [22].

Therefore, the primary objective of this research is to accurately 
estimate maize production in Mozambique using a comparative 
approach between ARIMA and LSTM models. The significance 
of this research lies in its potential to contribute to effective 
strategies that mitigate food insecurity in Mozambique. By 
comparing the performance of ARIMA and LSTM models, 
this study provides an in-depth analysis of the best practices 
for forecasting maize production in the country. This not only 
expands the scientific knowledge base but also offers practical 
guidelines for policymakers with the aim of strengthening the 
agricultural sector and, consequently, improving food security 
in Mozambique [23]. Through the application of advanced 
forecasting models like ARIMA and LSTM, the study hopes 
to contribute to a more resilient agricultural sector capable 
of addressing the challenges posed by climate and economic 
changes.

2. Literature Review
2.1. Global Context of Maize Production
Maize (Zea mays L.) is one of the most significant agricultural 
crops globally, with its cultivation spanning over 160 million 
hectares across diverse regions. The United States, China, and 
Brazil contribute to over 60% of the world's maize production, 
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highlighting their dominance in this sector [24,25]. Originating 
in the highlands of Mexico, maize has become a staple food for 
numerous societies, playing a crucial role in global food security 
and economic stability [26]. In 2022, global maize production 
reached approximately 1.2 billion tons, solidifying its position 
as the most produced cereal crop [24]. The versatility of maize 
is a key factor driving its global demand. Serving as food for 
humans, animal feed, and a raw material for biofuels, maize's 
applications are diverse. Notably, around 60% of the world's 
maize production is allocated for animal feed, with the United 
States leading in production and export [27]. Additionally, 
maize's role in biofuel production, particularly ethanol, is 
expanding, with Brazil and the U.S. being at the forefront of this 
industry [28,29].

This multifunctionality underlines the crop's economic 
importance and its contribution to sustainable energy solutions. 
Historically, maize's domestication can be traced back to the 
Balsas River Valley of Mexico around 2,000 to 2,500 BC, where 
it played a pivotal role in the development of Mesoamerican 
civilizations [26]. Theories about its evolutionary origins vary, 
with some suggesting it resulted from the crossing of teosinte and 
tripsacum, while others propose it evolved from a small-eared 
teosinte [30,31]. Regardless of the theory, maize's evolution 
highlights its adaptability and significance throughout history. 
Maize's remarkable photosynthetic efficiency, particularly under 
high irradiance conditions, distinguishes it from other crops [32]. 
However, its production is closely tied to climatic and hydric 
variables. For optimal yields, maize requires specific planting 
conditions, often determined by the number of consecutive days 
without precipitation, and a total water requirement of 350 to 
500 mm during its growth cycle [33]. Despite these challenges, 
maize remains a crucial food source for over a billion people 
globally, even as the majority of its production is directed 
towards animal feed [25].

Beyond its role in food and feed, maize also contributes to 
renewable energy production. Maize cobs and husks possess 
a high calorific value, making them valuable resources for 
energy generation [34]. Additionally, the residual biomass 
from maize, including leaves and husks, can be utilized for 
energy cogeneration, though the efficiency of this process is 
influenced by factors such as stacking density and airflow [35]. 
This energy potential further underscores maize's versatility 
and its contribution to sustainable agriculture. In the context 
of sustainable agriculture, maize plays a significant role in 
promoting soil health and biodiversity. For example, specific 
maize cultivars with unique root traits are more tolerant to poor 
soil conditions, contributing to enhanced agricultural resilience 
[36].  Moreover, when maize is cultivated alongside cover 
legumes, it promotes soil nutrient accumulation and biodiversity, 
further demonstrating its environmental benefits [37]. However, 
the environmental sensitivity of maize also highlights the need 
for sustainable practices to mitigate potential negative impacts.

Nutritionally, maize is rich in essential vitamins, including 
vitamin A and vitamin E, with variations across different varieties 
[26].The presence of pro-vitamin A carotenoids and tocopherols 

enhances its potential in preventing conditions such as blindness 
and macular degeneration [38]. However, challenges related to air 
pollution, mycotoxin contamination, and heavy metal exposure 
in maize production pose significant public health concerns [39], 
highlighting the need for improved safety and quality control 
measures in maize cultivation. The debate surrounding maize's 
use in biofuel production, particularly ethanol, has intensified 
over the years. Corn ethanol has emerged as a viable alternative 
to fossil fuels, reducing greenhouse gas emissions and enhancing 
energy security in key regions like the U.S. and Brazil [28,40]. 
However, despite the rapid growth in maize-based biofuel 
production between 2007 and 2020, recent projections suggest 
a slight decline in consumption due to market saturation and 
international biofuel policies [29], underscoring the complex 
dynamics of this sector.

Maize cultivation, however, faces growing challenges from 
climate change, which poses significant risks to agricultural 
productivity worldwide. Extreme temperatures and precipitation 
fluctuations are expected to reduce maize yields, particularly in 
vulnerable regions such as Sub-Saharan Africa and Southeast 
Asia [41,42]. To address these challenges, there has been a surge 
in research focused on developing maize varieties that are more 
resilient to adverse climatic conditions, emphasizing the need 
for innovation in maize breeding and agricultural practices [43].
 
Maize production is deeply intertwined with global trade 
dynamics, as evidenced by recent disruptions caused by 
geopolitical conflicts. For example, the war between Ukraine 
and Russia has significantly impacted global grain supply 
chains, leading to price volatility and raising concerns about food 
security [29,44]. These challenges underscore the importance of 
diversifying supply sources and implementing effective trade 
policies to ensure the continued growth and sustainability of 
global maize production [45,46]. Looking forward, while global 
maize production is projected to continue increasing, the pace of 
growth may slow, highlighting the need for sustainable practices 
and technological advancements in the sector [34,47].

2.2. Maize Production in Mozambique
In Mozambique, maize is the primary food crop and plays a 
crucial role in the country's food security, being cultivated by 
over 70% of farming households, mainly on smallholder farms 
[48,49]. Maize production in Mozambique is heavily reliant on 
rainfall, with yields significantly affected by climatic variability, 
such as droughts and floods, which are frequent in the country 
[50,51]. From 1961 to 2022, maize production in Mozambique 
increased from 641.8 thousand tons to 2.51 million tons, a 
growth attributed to improvements in agricultural practices 
and the expansion of cultivated areas [24]. However, maize 
productivity in the country remains low, with an average yield 
of only 1.1 tons per hectare in 2022, which is lower than in 
many other countries in the region, such as South Africa and 
Zambia [52]. This highlights the need for greater investments in 
agricultural technologies, such as improved seeds and irrigation 
systems [41,51].

In 2022, the area harvested for maize in Mozambique expanded to 
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1.8 million hectares, a 10.6% increase compared to 2019. Yields 
reached 1.1 tonnes per hectare, reflecting a 21.7% improvement 
over 2019 levels. As a result, total maize production in the 
country increased to approximately 2 million tonnes in 2022, 
a significant 34.6% rise from the previous year. This growth 
can largely be attributed to the SUSTENTA programme, which 
introduced initiatives to enhance agricultural productivity, 
expand cultivated areas, and promote sustainable farming 
practices. Comparing maize production from 2022 to 2014, 
Mozambique experienced a 43.9% increase, with a 60.5% rise 
since the implementation of the Sustainable Development Goals 
(SDGs) in 2016, indicating consistent growth and significant 
progress in the agricultural sector [24]. Despite these gains, 
Mozambique continues to face challenges in meeting domestic 
maize demand due to limited agricultural practices and external 
dependencies.

The provinces of Tete, Zambézia, and Manica are the leading 
maize-producing regions in Mozambique, accounting for more 
than 48% of the national production [53]. These provinces 
benefit from favorable agroecological conditions, such as fertile 
soils and regular rainfall, although they also face challenges 
related to limited access to agricultural inputs and inadequate 
infrastructure [49]. Maize commercialization is limited, with 
most of the production being destined for local consumption, 
and only 17.7% being marketed [53]. The government of 
Mozambique has implemented programs like SUSTENTA, 
which aim to improve agricultural productivity and promote 
sustainable farming practices, [54]. This program has contributed 
to increasing maize production in the country, especially in 
irrigated areas, where yields can be significantly higher than 
in rainfed areas. However, the dependence on maize imports, 
mainly from South Africa, remains a challenge for the country’s 
food security [52].

Post-harvest losses are another significant challenge for 
Mozambican farmers. On average, about 13.5% of the maize 
produced is lost after harvest due to inadequate storage and 
transportation conditions [53,55]. Reducing these losses 
is essential to improving food security and increasing 
farmers' incomes, particularly in rural areas [56]. Looking 
ahead, Mozambique is expected to continue investing in 
the modernization of its agricultural sector, with a focus on 
increasing maize productivity and reducing reliance on imports. 
Promoting sustainable farming practices, enhancing farmer 
training, and improving rural infrastructure will be essential 
to ensure the country can meet the growing food demands of 
its population and contribute to food security in the Southern 
African region [50].

3. Materials and Methods
3.1. Materials
This study focused on analyzing maize production in 
Mozambique, using annual data from 1961 to 2022, covering 61 
observations. The choice of 1961 as the starting point is based 
on its historical and methodological significance, marking the 
beginning of the FAOSTAT statistical series. This starting point 
ensures a consistent and comprehensive analysis of agricultural 

production trends in Mozambique over time, providing valuable 
insights into the evolution of maize production across six 
decades. The data analysis was conducted using Python 3.12.5, 
chosen for its robustness and the wide range of specialized 
libraries available, such as Pandas, Numpy, TensorFlow, and 
Scikit-learn. These tools are essential for data manipulation and 
predictive modelling, particularly in the context of time series. 
To capture trends and patterns in maize production, advanced 
models such as LSTM feedback neural networks and ARIMA 
were employed. Python’s widespread use in scientific research 
ensured the precision and reliability of the results obtained.

3.2. Data Source
The maize production data was sourced from FAOSTAT, 
maintained by the Food and Agriculture Organization of the 
United Nations (FAO). This secondary database provides 
extensive statistical information on agriculture and food security, 
serving as a crucial resource for academic research and public 
policy.

3.3. Methods
3.3.1. Arima Modeling
i. Model Identification
To model maize production in Mozambique, the time series 
properties were first analyzed, including autocorrelation 
(ACF) and partial autocorrelation (PACF) plots, to identify 
the appropriate order of the ARIMA model. The original series 
was tested for stationarity using the Augmented Dickey-Fuller 
(ADF) test, and if non-stationary, differencing was applied to 
remove long-term trends.
ii. Parameter Estimation
With the time series stationary, the ARIMA models were 
fitted, and their parameters were estimated using the maximum 
likelihood method. The models were then compared using 
metrics such as AIC, BIC, RMSE, and MAPE to identify the 
model with the best fit and highest predictive accuracy.
iii. Validation and Evaluation
The ARIMA models were validated using real data from 
2010 to 2020, which were not included in the training phase. 
The predictive performance of each model was assessed by 
comparing the forecasts with actual data, using RMSE and 
MAPE to quantify accuracy. The best-performing model was 
then used to forecast maize production from 2023 to 2030.

3.3.2. Lstm Neural Networks
i. Data Preparation
For the LSTM (Long Short-Term Memory) neural network 
modeling, historical maize production data from 1961 to 2013 
were normalized to enhance training efficiency. The time series 
was split into input and output sequences, enabling the model to 
capture temporal dependencies effectively.
ii. Model Architecture and Training
The LSTM model architecture consisted of two LSTM layers, 
each with 50 units, followed by a dense layer for generating 
predictions. The model was trained over 100 epochs using the 
Adam optimizer and mean squared error (MSE) loss function. 
During training, the model adjusted its parameters to capture 
underlying patterns in the time series.
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iii. Evaluation and Validation
After training, the LSTM model was evaluated using data 
from 2014 to 2022, which were not used in training. Prediction 
accuracy was measured using RMSE and MAPE, allowing for 
the assessment of the model’s ability to generalize to new data. 
The model’s predictions were compared with actual production 
values to validate its performance.
iv. Forecasting for 2023 to 2030
To forecast maize production from 2023 to 2030, the LSTM 
model was combined with the Bootstrapping technique, 
generating multiple samples to quantify forecast uncertainty. 
Predictions were accompanied by 95% confidence intervals, 
providing robust estimates for the future evolution of maize 
production in Mozambique.

3.3.3. Selection of the Best Model for Estimating Agricultural 
Production
To determine the most suitable model for forecasting maize 
production in Mozambique, the performance of the ARIMA 
and LSTM models was compared using the MAPE metric. The 
model with the lowest MAPE was selected as the most accurate 
and thus the most appropriate for future projections. This 
approach ensured greater reliability in the estimates, providing 
solid support for decision-making in agricultural and food 
security policies.

4. Results
4.1. Exploratory Analysis of the Maize Time Series
The analysis of maize production data in Mozambique from 

1961 to 2022 (n=62) reveals important statistical characteristics 
(Table 1). The mean maize production over this period is 
829,501.85 tons, reflecting the average annual volume. The 
median, at 494,743 tons, indicates that in more than half of 
the years, production was lower than the average, highlighting 
an asymmetric distribution, further confirmed by the positive 
skewness of 0.92. This skewness suggests that there are years 
with exceptionally high production that pull the average upwards, 
indicating the presence of outliers that boost production. The 
mode, or most frequent value, is 330,000 tons, which may 
indicate a common production level under certain historical 
conditions. The standard deviation of 561,189.75 tons, along 
with the high variance of 314,933,932,830.95, demonstrates 
considerable variability in the data. This high variability is also 
reflected in the coefficient of variation of 67.65%, indicating 
that the variation relative to the mean is significant, pointing to 
considerable instability in maize production.

The production range of 2,222,731 tons, resulting from the 
difference between the maximum of 2,354,778 tons (in 2012) 
and the minimum of 132,047 tons (in 1992), highlights the 
significant fluctuations in maize production over the decades. 
The kurtosis measure of -0.07 indicates a slightly platykurtic 
distribution, suggesting that the data has fewer outliers than a 
normal distribution, although this difference is small and may not 
be statistically significant. However, along with the skewness, it 
helps characterize the distribution as right-skewed but without 
significant extremes.

Descriptive Statistics Value
Mean 152485.9355
Median 99378.5
Mode 85000
Variance 12143686621
Standard Deviation 110198.3966
Coeficient of variation 0.722679087
Maximum 413000
Minimum 32618
Skewness 1.294974685
Kurtosis 0.180718385
Range 380382
n 62

Table 1: Descriptive Measures of the Annual Maize Production Series
4.2. Stationarity Test or Unit Root Test of the Maize Series
Stationarity is crucial for the application of many time series 
models, as it suggests that the statistical properties of the series 
are consistent over time, allowing for more accurate modeling 
and forecasting.

4.2.1. Analysis of the Time Series for Maize Production in 
Mozambique
The original time series plot of maize production in Mozambique 
from 1961 to 2022 (Figure 1) reveals a significant upward 

trend over the years, particularly from the 1990s onwards. 
However, the series also exhibits notable fluctuations in certain 
years, likely reflecting the influence of external factors such as 
extreme weather conditions or changes in agricultural policies. 
The absence of clear repetitive patterns in the graph further 
supports the notion that the series is non-stationary, as evidenced 
by the upward trend over time. The differenced series, on the 
other hand, represents the annual changes in maize production, 
effectively removing long-term trends and enabling a more 
focused analysis of short-term fluctuations. Differencing helps 
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highlight interannual variations that might be obscured by the 
overall upward trend in the original series.

This approach facilitates the identification of abrupt changes 
and anomalies that could be driven by external factors, 

providing a clearer understanding of the underlying dynamics 
of maize production in Mozambique. By removing the trend, 
the differenced series approximates stationary behavior, which 
is essential for the application of analytical methods that assume 
constant statistical properties over time.

The differenced series, on the other hand, represents the annual changes in maize 
production, effectively removing long-term trends and enabling a more focused analysis of 
short-term fluctuations. Differencing helps highlight interannual variations that might be 
obscured by the overall upward trend in the original series. 

This approach facilitates the identification of abrupt changes and anomalies that could be 
driven by external factors, providing a clearer understanding of the underlying dynamics of 
maize production in Mozambique. By removing the trend, the differenced series 
approximates stationary behavior, which is essential for the application of analytical methods 
that assume constant statistical properties over time. 

 
Figure 1: Analysis of the Time Series (Original and Differenced) of Maize Production in 
Mozambique (1961-2022) 

4.2.2. Decomposition of the Time Series of Maize Production in Mozambique 

The decomposition of the time series allows for the identification of three main components: 
trend, seasonality, and residuals (Figure 2). The trend component reveals a sharp increase 
in production over the decades. 

Seasonality is virtually absent, indicating a lack of consistent seasonal patterns, suggesting 
that maize production is not significantly influenced by annual seasonal factors but rather by 
long-term trends. The residuals, on the other hand, reflect the remaining random variations 
after removing the trend and seasonality components, indicating that other unmodeled 
variables may influence maize production, though they do not follow a clear structure. 
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The decomposition of the time series allows for the identification 
of three main components: trend, seasonality, and residuals 
(Figure 2). The trend component reveals a sharp increase in 
production over the decades. Seasonality is virtually absent, 
indicating a lack of consistent seasonal patterns, suggesting 

that maize production is not significantly influenced by annual 
seasonal factors but rather by long-term trends. The residuals, 
on the other hand, reflect the remaining random variations after 
removing the trend and seasonality components, indicating that 
other unmodeled variables may influence maize production, 
though they do not follow a clear structure.
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4.2.3. Autocorrelation Function (ACF) of Maize Production in Mozambique  

The ACF plot for maize production in the original series (Figure 3) does not show significant 
peaks at specific lags, indicating the absence of seasonality. The rapid decline in 
autocorrelation values after a few initial lags suggests that successive observations are not 
strongly correlated in the long term, except for the presence of a trend. This implies that the 
original series is dominated by a trend component that obscures any potential seasonal 
patterns or regular cycles over time. 

After differencing the series, the ACF plot reveals that autocorrelation values drop quickly 
after the initial lags, indicating that the series does not have a significant long-term 
correlation structure. This rapid decline strongly suggests that the differenced series 
approaches more stationary behavior. 
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4.2.4. Partial Autocorrelation Function (PACF) of Maize Production in Mozambique 

The PACF plot for the original series (Figure 4) shows significant peaks at the first few lags, 
suggesting a possible low-order autoregressive structure. This indicates that past values 
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4.2.3. Autocorrelation Function (ACF) of Maize Production 
in Mozambique 
The ACF plot for maize production in the original series (Figure 
3) does not show significant peaks at specific lags, indicating 
the absence of seasonality. The rapid decline in autocorrelation 
values after a few initial lags suggests that successive 
observations are not strongly correlated in the long term, except 
for the presence of a trend. This implies that the original series 

is dominated by a trend component that obscures any potential 
seasonal patterns or regular cycles over time. After differencing 
the series, the ACF plot reveals that autocorrelation values drop 
quickly after the initial lags, indicating that the series does not 
have a significant long-term correlation structure. This rapid 
decline strongly suggests that the differenced series approaches 
more stationary behavior.
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The PACF plot for the original series (Figure 4) shows significant 
peaks at the first few lags, suggesting a possible low-order 
autoregressive structure. This indicates that past values have 
a limited but discernible influence on predicting future values, 
implying that the series could be effectively modeled with a low-
order autoregressive component. This structure suggests that 
values close in time exert some influence on subsequent values, 
which can be useful in predictive modeling.

After differencing, the PACF plot still shows some peaks at the 
initial lags, indicating the presence of low-order autoregressive 
components in the differenced series. This suggests that even 
after removing long-term trends, past values still have a moderate 
influence on future values. This persistent autocorrelation in the 
first few lags implies that a simple autoregressive model could 
capture the essential dynamics of the differenced series, enabling 
more accurate short-term predictions of maize production 
variations.
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4.2.5. Augmented Dickey-Fuller (ADF) Test for the Maize Series 

The ADF test yields a p-value of 0.762 for the original time series (Table 2), indicating that 
the series is non-stationary. The null hypothesis of a unit root cannot be rejected, confirming 
the presence of a trend in the series. To achieve stationarity, it is necessary to apply a 
differencing transformation, which removes this long-term trend, allowing for a more 
accurate analysis of the data. 

After differencing, the ADF test returns a p-value of 0.000, suggesting that the null 
hypothesis of a unit root is rejected, and the differenced series is stationary. This implies that 
the statistical properties of the series, such as the mean and variance, remain constant over 
time, making it suitable for the application of forecasting models that assume stationarity, 
such as ARIMA. 

After differencing, the maize production series became stationary, as confirmed by the 
Augmented Dickey-Fuller test and the analysis of the ACF and PACF plots. This indicates 
that differencing was effective in removing long-term trends and stabilizing the series, 
making it suitable for modeling with the ARIMA framework. 

Table 2:  Augmented Dickey-Fuller (ADF) Test for the Maize Series 
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Statistic 

  
Lags  

 
n 

Critical Value 
p-Value  (1%)  (5%)  (10%) 

Orginal Series 
-0.973 0.762 0 61 -3.542 -2.910 -2.593 

Differenced Series 
-7.217 0.0000 1 60 -3.544 -2.911 -2.593 
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4.2.5. Augmented Dickey-Fuller (ADF) Test for the Maize 
Series
The ADF test yields a p-value of 0.762 for the original time 
series (Table 2), indicating that the series is non-stationary. The 
null hypothesis of a unit root cannot be rejected, confirming the 

presence of a trend in the series. To achieve stationarity, it is 
necessary to apply a differencing transformation, which removes 
this long-term trend, allowing for a more accurate analysis of the 
data. After differencing, the ADF test returns a p-value of 0.000, 
suggesting that the null hypothesis of a unit root is rejected, 
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and the differenced series is stationary. This implies that the 
statistical properties of the series, such as the mean and variance, 
remain constant over time, making it suitable for the application 
of forecasting models that assume stationarity, such as ARIMA.

After differencing, the maize production series became 

stationary, as confirmed by the Augmented Dickey-Fuller test 
and the analysis of the ACF and PACF plots. This indicates that 
differencing was effective in removing long-term trends and 
stabilizing the series, making it suitable for modeling with the 
ARIMA framework.

Test Statistic p-Value Lags n Critical Value
 (1%)  (5%)  (10%)

Orginal Series
-0.973 0.762 0 61 -3.542 -2.910 -2.593
Differenced Series
-7.217 0.0000 1 60 -3.544 -2.911 -2.593

Table 2: Augmented Dickey-Fuller (ADF) Test for the Maize Series

4.3. Estimation with Time Series Models (ARIMA) for Maize 
Production
4.3.1. Model Identification
After differencing the time series of maize production in 
Mozambique, three ARIMA models were suggested and 
evaluated based on the analysis of the Autocorrelation (ACF) 
and Partial Autocorrelation (PACF) plots. The ARIMA (1, 1, 
0) model was considered due to the presence of a significant 
peak at the first lag in the PACF plot, indicating a first-order 
autoregressive component.
The ARIMA (0, 1, 1) model was suggested based on the 
observation of a peak at the first lag in the ACF plot, indicating 
the presence of a first-order moving average component. Finally, 
the ARIMA (1, 1, 1) model was proposed to capture both 
autoregressive and moving average characteristics, potentially 
enhancing the model's predictive capability by considering more 
complex interactions between past values of the series.

4.3.2. Parameter Estimation
Table 3 presents the parameter estimates for the three ARIMA 
models fitted to maize production in Mozambique: ARIMA 
(1,1,0), ARIMA (0,1,1), and ARIMA (1,1,1). All estimated 
parameters in each model are highly significant, as indicated by 

very low p-values (0.0000), suggesting that both autoregressive 
(AR) and moving average (MA) components are important 
for capturing the dynamics of the time series. In the ARIMA 
(1,1,0) model, the AR(1) parameter has an estimate of -0.1155, 
indicating a negative influence of past lags on future production, 
although this effect is relatively small. In the ARIMA (0,1,1) 
model, the MA(1) parameter has an estimate of 0.6718, 
suggesting that past random fluctuations have a moderate and 
positive influence on production. The ARIMA (1,1,1) model 
combines both components, with the AR(1) parameter estimated 
at -0.8272 and the MA(1) parameter at 0.7465, indicating that 
this model captures both the effects of past lags and random 
fluctuations.

Given that the ARIMA (1,1,1) model incorporates both the 
autoregressive and moving average components, with both 
parameters being highly significant, it is the most suitable model 
for forecasting maize production. This model is capable of more 
comprehensively capturing the underlying dynamics of the time 
series, which may result in more accurate and robust forecasts 
compared to the simpler ARIMA (1,1,0) and ARIMA (0,1,1) 
models.

Model Parameter Estimates t-Stat P-value
ARIMA (1,1,0) AR (1) -0.1155 -10.849 0.0000
ARIMA (1,1,0) ∅2

4.783e+10 7.18e+13 0.0000
ARIMA (0,1,1) MA (1) 0.6718 11.211 0.0000
ARIMA (0,1,1) ∅2

4.795e+10 13.05e+07 0.0000
ARIMA (1,1,1) AR (1) -0.8272 -11.671 0.0000
ARIMA (1,1,1) MA (1) 0.7465 11.256 0.0000
ARIMA (1,1,1) ∅2

5.017e+10 4.05e+23 0.0000

Table 3: Parameter Estimates for the ARIMA (p, d, q) Model Fitted to Maize Production

4.3.3. Diagnostic Test of Residuals for Maize Production 
Models
Table 4 presents the results of diagnostic tests applied to the 
residuals of the ARIMA (1,1,0), ARIMA (0,1,1), and ARIMA 
(1,1,1) models used to forecast maize production. The p-values 
from the Box-Pierce test indicate that there is no significant 

autocorrelation in the residuals of any of the models, with all 
p-values above 0.75. This suggests that all models adequately 
capture the time series structure, leaving no unmodeled patterns 
in the residuals. The ARCH test assesses the presence of 
heteroscedasticity in the residuals, and the high p-values (all 
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above 0.76) indicate no significant heteroscedasticity in any of 
the models. Therefore, the residual variance is constant over 
time, which is desirable for ensuring model stability.

However, all models fail the residual normality test, as evidenced 

by very low p-values (0.0000) in the Shapiro-Wilk and Jarque-
Bera tests. This violation of residual normality is common in 
time series, but the ARIMA (1,1,1) model shows the lowest 
Jarque-Bera value, suggesting that its residuals are slightly 
closer to normal distribution compared to the other models.

Model Box-Pierce ARCH Shapiro-WilK Jarque-Bera
Q p-value TR2 p-value W p-value JB p-value

ARIMA 
(1,1,0) 

0.01557 0.9006 6.5238 0.7695 2.4864 0.0000 479.033 0.0000

ARIMA 
(0,1,1)

0.03701 0.8474 6.5434 0.7677 2.4311 0.0000 475.417 0.0000

ARIMA 
(1,1,1)

0.09830 0.7538 6.3387 0.7860 2.5881 0.0000 454.534 0.0000

Table 4: Diagnostic Test of Residuals for Maize Production Models

Although residual normality is desirable in ARIMA models, its 
absence does not invalidate the model,  as these models are robust 
and effective in forecasting complex time series often influenced 
by external factors that introduce deviations. They can be 
evaluated using metrics such as AIC, BIC, RMSE, and MAPE, 
which are more relevant for measuring predictive performance. 
These metrics allow for adjustments and transformations to 
improve model fit without compromising forecasting capability, 
especially when the primary focus is on prediction rather than 
statistical inference. Therefore, considering all diagnostics, 
the ARIMA (1,1,1) model is the most robust among the 
three analyzed and is the most suitable for forecasting maize 
production.

4.3.4. Comparison of Model Performance
Table 5 provides a comparison of the performance of three 
ARIMA models (ARIMA (1,1,0), ARIMA (0,1,1), and ARIMA 
(1,1,1)) applied to maize production forecasting, using metrics 

such as AIC, BIC, HQIC, RMSE, and MAPE. The ARIMA 
(1,1,0) model shows the lowest AIC, BIC, and HQIC values, 
suggesting a good balance between fit and complexity. However, 
its relatively high RMSE and MAPE values indicate that, while 
parsimonious, its predictive accuracy is limited. The ARIMA 
(0,1,1) model also has low AIC, BIC, and HQIC values, and 
it significantly improves accuracy compared to ARIMA (1,1,0), 
with a lower RMSE of 543,375.9 and a MAPE of 36.24%. This 
indicates that the ARIMA (0,1,1) model offers a reasonable 
trade-off between simplicity and accuracy, capturing the time 
series dynamics more effectively than ARIMA (1,1,0).

The ARIMA (1,1,1) model, although having slightly higher AIC, 
BIC, and HQIC values, stands out with the lowest RMSE and 
MAPE values, at 390,016.3 and 16.39%, respectively. These 
results indicate that ARIMA (1,1,1) is the most accurate and 
robust model among the three, better capturing the variations in 
maize production.

Model AIC BIC HQIC RMSE MAPE
ARIMA (1,1,0) 1676.157 1680.379 1677.811 641974.5 43.39%
ARIMA (0,1,1) 1676.345 1680.567 1678 543375.9 36.24%
ARIMA (1,1,1) 1677.804 1684.136 1680.285 390016.3 16.39%

Table 5: Comparison of Model Performance for Maize Production

Therefore, despite being slightly more complex, the ARIMA 
(1,1,1) model offers the best predictive performance, making it 
the optimal choice for estimating maize production.

4.3.5. Training and Evaluation of ARIMA Models with Real 
Data from 2010 to 2020
Table 6 presents a comparison of three ARIMA models (ARIMA 
(1,1,0), ARIMA (0,1,1), and ARIMA (1,1,1)) applied to forecast 
maize production in Mozambique between 2010 and 2020. The 
RMSE and MAPE values provide a measure of each model's 

accuracy. The ARIMA (1,1,1) model stands out with the lowest 
RMSE (390,016.30) and MAPE (16.39%), indicating that it 
offers the most accurate predictions in both absolute and relative 
terms. The ARIMA (0,1,1) model, while showing a lower RMSE 
(535,915.2) and MAPE (36.24%) compared to ARIMA (1,1,0), 
still does not achieve the same level of precision as ARIMA 
(1,1,1). On the other hand, ARIMA (1,1,0) has the highest 
RMSE (634,241.40) and MAPE (43.39%), suggesting that this 
model is the least effective at capturing the dynamics of maize 
production during the analyzed period.
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Year Actual Dada Predicted Data
ARIMA (1,1,0) ARIMA (0,1,1) ARIMA (1,1,1)

2010 2089890 1586757.36 1613384.30 1609372
2011 2178842 1650922.98 1654076.68 2053309
2012 2354778 1715088.61 1694220.17 2198976
2013 1173709 1779254.24 1734008.37 2325558
2014 1357220 1843420.11 1773404.80 1290778
2015 1262038 1907585.99 1812439.18 1255025
2016 1217000 1971752.16 1851161.63 1346005
2017 1224000 2035918.12 1889613.97 1157950
2018 1406794 2100084.47 1927838.13 1267517
2019 1451686 2164250.67 1965856.34 1359565
2020 1632321 2228416.68 2003684.43 1483323
RMSE 634241.40 535915.2 390016.30
MAPE 43.39% 36.24% 16.39%

Table 6: Training and Evaluation of ARIMA Models with Real Maize Production Data from 2010 to 2020

Considering the results, the ARIMA (1,1,1) model is clearly the 
most suitable for estimating maize production in Mozambique. 
Its superior accuracy compared to the other models makes it the 
best choice for future forecasts, as it more robustly captures the 
variations in maize production over the years.

4.3.6. Forecasted Maize Production in Mozambique from 
2023 to 2030
Table 7 presents the forecasted maize production in Mozambique 
from 2023 to 2030, as estimated by the ARIMA model, along with 
95% confidence intervals. The forecast values indicate relative 

stability in maize production over the years, with small annual 
variations, maintaining levels around 1.93 to 1.94 million tons. 
However, the confidence intervals widen over time, reflecting 
increasing uncertainty in the forecasts. The lower bound of the 
confidence intervals shows a gradual decline, from around 1.49 
million tons in 2023 to approximately 753 thousand tons by 2030, 
while the upper bound increases, reaching over 3.13 million 
tons by 2030. These results suggest that although the ARIMA 
model predicts stable production, there is growing uncertainty 
regarding the impact of external factors as the forecast horizon 
extends, which is captured by the broader confidence intervals.

Year Forecasted Value Confidence Intervals (95%)
Lower Bound Upper Bound

2023 1931958.86 1492953.58 2370964.14
2024 1948520.54 1352183.90 2544857.17
2025 1934821.25 1197930.78 2671711.71
2026 1946152.86 1103531.49 2788774.24
2027 1936779.71 991373.16 2882186.26
2028 1944532.88 913203.93 2975861.83
2029 1938119.71 822335.61 3053903.80
2030 1943424.48 753139.32 3133709.64

Table 7: Forecasted Maize Production in Mozambique from 2023 to 2030 by the ARIMA Model

4.4. Estimation with the LSTM Model for Maize Production
4.4.1. Model Training with LSTM
To analyze maize production in Mozambique and forecast its 
future trajectory, a feedback neural network of the LSTM type 
was utilized. This model was trained using historical data from 
1961 to 2013 over 100 epochs. The model architecture consisted 
of two LSTM layers with 50 units each, followed by a dense 
layer that generated the predictions. During training, the model 
adjusted its parameters to capture temporal dependencies present 
in the historical series, preparing it to forecast future production 
based on identified patterns.

4.4.2. Model Evaluation
After training, the model was evaluated using data from 2014 
to 2022, which were not included in the training (Table 8). This 
evaluation was crucial to verify the model's ability to accurately 
predict maize production outside the training period, ensuring its 
generalization capability. The predictions were compared with 
actual values using RMSE and MAPE metrics to confirm the 
model's precision and reliability for future forecasts. The LSTM 
model evaluation, as presented in Table 8, demonstrates robust 
performance in forecasting maize production in Mozambique 
from 2014 to 2022, with an average RMSE of 39.2 thousand 
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tons and a MAPE of 2.64%. These values indicate that the model 
was able to predict annual production with reasonable accuracy, 
maintaining relatively low percentage deviations, especially in 

years like 2014, 2017, and 2022, where percentage errors were 
below 1%.

Year Actual Dada LSTM Model
Predicted Data RMSE MAPE

2014 1357220 1341043.72 16176.28 1.19%
2015 1262038 1316075.77 54037.77 4.28%
2016 1217000 1243821.98 26821.98 2.20%
2017 1224000 1235472.01 11472.01 0.94%
2018 1406794 1360822.46 45971.54 3.27%
2019 1451686 1404244.15 47441.85 3.27%
2020 1632321 1563792.81 68528.19 4.20%
2021 1824281 1887741.78 63460.78 3.48%
2022 1951981 1970731.59 18750.59 0.96%
Mean 1480813.44 1480416.25 39184.55 2.64%

Table 8: LSTM Model Evaluation with Real Maize Production Data from 2014 to 2022
Although years like 2015 and 2020 showed larger discrepancies, 
indicating that the model may struggle to capture more abrupt 
production variations, it proved effective in most cases. These 
results indicate that the model is accurate and reliable for 
agricultural production forecasting, adequately capturing trends 
and variations in historical data, justifying its suitability for 
future forecasts.

4.4.3. Forecasts for 2023 to 2030
To forecast maize production in Mozambique from 2023 to 2030, 
a combination of the LSTM neural network and Bootstrapping 
technique was employed. The trained LSTM model generated 
forecasts, while Bootstrapping quantified the uncertainty 
associated with these predictions by generating multiple data 

samples. This combination resulted in forecasts accompanied 
by 95% confidence intervals, providing a robust and reliable 
estimate of the future evolution of maize production in the 
country.  The maize production forecast for Mozambique from 
2023 to 2030, as presented in Table 20, indicates a modest average 
annual growth of 0.12%, with annual variations reflecting both 
slight growth and decline periods. The LSTM model, combined 
with the Bootstrapping technique, suggests that production does 
not follow a constant growth pattern; instead, there are predicted 
years with reductions in production, such as in 2026, 2028, 
and 2030. The 95% confidence interval for each year reflects 
the uncertainty associated with these predictions, with ranges 
suggesting considerable variability in future production.

Year Forecasted Value Confidence Intervals (95%)
Lower Bound  Upper Bound

2023 1960841.68 1871827.39 2049855.97
2024 1979037.82 1897064.65 2061010.99
2025 1951807.73 1878687.84 2024927.62
2026 1917306.30 1829982.78 2004629.82
2027 1925061.04 1840899.58 2009222.49
2028 1888144.87 1798746.67 1977543.07
2029 1913252.87 1839006.08 1987499.65
2030 1888902.89 1815234.80 1962570.98

Table 9: Forecasted Maize Production in Mozambique from 2023 to 2030 by the LSTM Model and Bootstrapping Technique.

Overall, the forecast points to a stabilization in maize production, 
with small fluctuations over the years, without significant growth 
or decline trends.

5. Discussion
The exploratory analysis of maize production in Mozambique 
reveals an asymmetrical distribution, with a mean of 829,501.85 
tonnes and a median of 494,743 tonnes. This positive skewness, 
reflected by a value of 0.92, indicates that maize production has 

been marked by years of high output, influenced by exceptional 
events. Studies suggest that such asymmetries in agricultural 
time series may be linked to exogenous shocks, such as 
favorable agricultural policies or technological innovations 
that significantly boost productivity in certain years [57]. 
Additionally, the high variability, evidenced by a coefficient 
of variation of 67.65%, also reflects the dependence of maize 
production on external factors, such as climate change and 
market fluctuations, as discussed by [58]. The time series 
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analysis and decomposition revealed an upward trend starting 
in the 1990s, with no clear seasonal patterns. This aligns with 
studies indicating that agricultural liberalisation policies and 
increased investment in agricultural technology have driven 
maize production in Mozambique in recent decades [59]. The 
absence of seasonality suggests that maize production is more 
influenced by long-term factors, such as structural changes 
in the agricultural economy, rather than seasonal cycles. This 
corroborates the analysis of, who point to increased resilience of 
maize crops in response to seasonal variations in Sub-Saharan 
Africa [60].

The Augmented Dickey-Fuller test confirms that the maize 
production series is non-stationary, which is expected given 
the observed growth over time. Various findings suggest that 
maize production series exhibit non-stationary characteristics, 
influenced by both environmental factors and modelling 
approaches [61,62]. Studies such as highlight the importance of 
transforming non-stationary series for forecasting models like 
ARIMA to achieve more accurate estimates. Differencing the 
time series proved effective in achieving stationarity, enabling 
the application of predictive models, as discussed by, who 
advocates differencing as a key technique for modelling non-
stationary time series [63,64].

The estimation of ARIMA models revealed that ARIMA (1,1,1) is 
the most suitable for capturing the dynamics of maize production 
in Mozambique, combining both autoregressive and moving 
average components. This result is consistent with studies 
demonstrating the effectiveness of ARIMA (1,1,1) in modelling 
agricultural time series with long-term trends and random 
fluctuations [65]. Furthermore, model diagnostics indicate that 
although the residuals do not follow a normal distribution, the 
ARIMA (1,1,1) model still offers robust predictive capabilities, 
as evidenced by its lower RMSE and MAPE values compared to 
other models.

The performance evaluation of ARIMA models using real data 
from 2010 to 2020 reinforces the superiority of ARIMA (1,1,1) 
in terms of predictive accuracy. With a MAPE of 16.39% and 
RMSE of 390,016.3 tonnes, the model stands out in predicting 
maize production in Mozambique, offering a reliable tool 
for future projections. This aligns with the conclusions, who 
assert that ARIMA is one of the most effective models for 
forecasting complex agricultural time series [66]. Comparing 
the performance of the ARIMA (1,1,1) model with the LSTM 
model for forecasting maize production in Mozambique shows 
that LSTM offers superior performance in terms of MAPE. 
While ARIMA (1,1,1) recorded a MAPE of 16.39%, the LSTM 
model achieved a significantly lower MAPE of 2.64%. This 
result highlights LSTM's ability to capture the complexities 
of the maize production time series more accurately, which is 
consistent with studies such as that demonstrate the efficacy of 
neural networks, particularly LSTM, in predicting time series 
with nonlinear patterns and complex dynamics [67].

The evaluation of the LSTM model for the period 2014 to 2022 
shows that, despite some discrepancies in years like 2015 and 

2020, the model successfully predicted maize production in most 
years. These results corroborate studies that identify LSTM as a 
robust tool for forecasting in agricultural scenarios where time 
series are often influenced by external factors such as climate 
conditions and agricultural policies [68,69]. Moreover, LSTM's 
ability to handle long-term temporal dependencies makes it 
particularly well-suited for forecasting crops with complex 
production cycles, such as maize. Regarding forecasts for 2023 
to 2030, combining the LSTM model with the Bootstrapping 
technique provides an interesting approach, enabling not only 
future production predictions but also quantifying the uncertainty 
associated with these forecasts.

Studies advocate the use of Bootstrapping alongside neural 
network models to improve forecast robustness, especially 
in scenarios of high variability and uncertainty [70,71].  The 
forecasts indicate a stabilization of maize production, with 
limited annual variations but no signs of significant growth. 
This scenario is concerning in the context of food insecurity 
in Mozambique, particularly in light of the Sustainable 
Development Goals (SDGs), especially SDG 2, which aims to 
end hunger and achieve food security by 2030. Stagnant maize 
production, a crucial staple food, may hinder the achievement of 
these goals, highlighting the need for policy interventions and 
investments in sustainable agriculture.

Moreover, the wide confidence intervals suggest considerable 
uncertainties, emphasising the urgency of actions to mitigate 
food insecurity risks. The forecasted stabilisation is consistent 
with trends observed in other agricultural regions facing similar 
challenges due to structural and environmental limitations, as 
noted by [72]. The small predicted fluctuations over the years 
reinforce the importance of proactive agricultural policies to 
boost growth and ensure food security in the country.

6. Conclusions
The analysis of maize production in Mozambique from 1961 to 
2022 revealed an asymmetrical distribution and the influence 
of external factors, such as climate and agricultural policies, 
on production variability. Since the 1990s, production growth 
has been driven by structural changes, with no significant 
seasonal influence. The Dickey-Fuller test confirmed the need 
for differencing to achieve precise modeling, with the ARIMA 
(1,1,1) model standing out for its superior predictive accuracy, 
validated with real data from 2010 to 2020. When comparing 
the ARIMA model with the LSTM model, LSTM demonstrated 
superiority in terms of accuracy, particularly in handling the 
nonlinear patterns and complex dynamics of maize production. 
The LSTM model achieved a significantly lower MAPE, 
highlighting its capability to forecast maize production with 
greater precision. This superiority aligns with recent studies 
emphasizing the effectiveness of LSTM networks in time series 
forecasting, especially in scenarios with long-term dependencies 
and external influences.

The forecasts for 2023 to 2030, generated using the LSTM 
model combined with the Bootstrapping technique, suggest 
a stabilization in maize production with modest annual 
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variations. However, the wide confidence intervals highlight 
significant uncertainties, underscoring the need for continued 
investment in agricultural innovation and political support. The 
lack of substantial growth in maize production, a staple food 
in Mozambique, raises concerns about the country's ability to 
achieve the Sustainable Development Goals, particularly SDG 
2, which aims to end hunger and achieve food security by 2030. 
In conclusion, while the LSTM model offers a powerful tool 
for forecasting maize production in Mozambique, the results 
underscore the importance of proactive agricultural policies 
to address food insecurity challenges and promote sustainable 
growth in the agricultural sector. The findings of this study 
provide a foundation for future research and policy interventions 
aimed at improving maize production and ensuring food security 
in Mozambique.
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