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Abstract

We introduce a novel algebraic structure, termed algebra B, which generalizes Lie algebras through the definition of a
non-associative and unital algebra. We demonstrate that algebra B retains essential properties such as bilinearity and
antisymmetry, and satisfies both the Jacobi and Malcev identities; this occurs when the product operations of Lie and Malcev
algebras are derived from the product operation defined in our algebra. By examining the connections between algebra B,
Malcev algebras, and Lie algebras, we establish that algebra B effectively generalizes these structures. Furthermore, we
show that algebra B can generate complex entities with a novel structure distinct from those currently known. Our findings
lay the groundwork for future investigations into the practical applications and further theoretical development of this new

algebraic framework.

Keywords: Algebra B, Lie Algebra, Malcev Algebra, Non-Associative Algebra

1. Introduction

Lie algebras are fundamental in both mathematics and theoretical
physics due to their capacity to describe and analyze symmetries
and continuous transformations. They find key applications in
group theory, differential geometry, and representation theory,
providing essential tools for studying algebraic and geometric
structures. In theoretical physics, Lie algebras are crucial in
quantum mechanics, quantum field theory, and general relativity,
where they help understand the fundamental symmetries of
physical laws and the behavior of particles and fields. This
versatility and explanatory power make Lie algebras a central
topic in advanced research [1,2].

The pursuit of generalizing mathematical definitions and
exploring increasingly fundamental entities is a cornerstone of
mathematical research. Lie algebras serve as a bridge between
quantum mechanics and general relativity, motivating the search
for a “unifying algebra” capable of integrating these two pivotal
theories [2,3].

In this study, we present a comprehensive analysis of a novel
algebraic structure, denoted as algebra B, designed to generalize
Lie algebras through the definition of a non-associative and unital
algebra. We demonstrate that the algebra B preserves essential
algebraic properties such as bilinearity and antisymmetric, and
satisfies both the Jacobi and Malcev identities when the products
defining these algebras are derived from the product of the

algebra B. By examining the interrelations between algebra B,
Malcev algebras, and Lie algebras, we establish that algebra B
functions as a valid and broad generalization of these structures.
Moreover, we reveal that algebra B possesses the remarkable
ability to generate imaginary units and complex entities with
unique structures, distinct from those currently known. These
findings open new avenues for theoretical investigation and
practical application, providing a framework for future research
in algebraic symmetries and transformations.

1.1 Lie Algebra

A Lie algebra is an algebraic structure consisting of a vector
space g over a field K, together with a binary operation called
the Lie bracket, denoted by [,] : gxg — g, which satisfies the
following properties [3-5]:

* Bilinearity: VA, y € K; Va, b, ¢ € g: [La + yb, c] = Ala, c] + y[b,
c] and [¢, Aa + yb] =A[c, a] +ylc, b].

* Antisymmetry: Va, b € g: [a, b] =—[b, a]. This property implies
that Va € g: [a, a] = 0.

« Jacobi Identity: [a, [b, c]] + [b, [c, al] *+ [c, [a, b]] =0, Va, b,
cEg.

This structure is not necessarily associative, as the antisymmetric
property and the Jacobi identity do not imply the associativity of
the Lie bracket operation [3,4].

1.2 Malcev Algebras
Malcev algebras, which are a direct generalization of Lie

J Math Techniques Comput Math, 2024

Volume 3 | Issue 10 | 1



algebras, form an important algebraic structure. While every Lie
algebra is inherently a Malcev algebra, the converse is not true;
not all Malcev algebras are Lie algebras. The defining feature
of Malcev algebras is their satisfaction of a specific identity
analogous to the Jacobi identity, known as the Malcev identity
[6,7].

A Malcev algebra is defined as an algebraic structure comprising
a vector space M over a field K, equipped with a binary operation
[,] : M x M — M. This operation adheres to the following
properties [6,7]:

* Antisymmetry: Ya, b € M : [a, b] =—[b, a].

* Malcev Identity: Va, b, ¢c € M : [[a, b], [a, c]] = [[[a, b], c], a]
+[[[b. cl, al, a] +[[lc, al, al, b].

The Malcev identity serves as a generalization of the Jacobi
identity found in Lie algebras. Specifically, within the context
of a Lie algebra, the Malcev identity simplifies to the Jacobi
identity, highlighting the foundational relationship between
these two algebraic structures [6,8].

Therefore, an algebra that aims to generalize both Lie and
Malcev algebras must, by definition, satisfy the bilinearity of
the product, antisymmetric, the Jacobi identity, and the Malcev
identity.

2. Construction of Algebra (}; ©)

2.1 Algebraic Structure of the Vector Space V'

Let the set /" be a mathematical entity that satisfies the Zermelo-
Fraenkel axioms and the Axiom of Choice [9,10].

Let the algebraic structure of the vector space be defined as V
= (V'3, +, ) over the field F, where + is the addition operation
in V 3 and the operation * denotes scalar multiplication of the
elements of V'3 with the elements of the field F. The elements
of V, which we will call vectors, are defined as ordered 3-tuples
of the form (v, v,, v,) such that v, € F. Thus, we have defined
a vector space over a field /' whose vectors contain entries in F
[11,12]. The addition operation + is defined as:

+:VxV->V,

(@ @ @), (b, by b)) = (€, ¢, ),
(a,a,a)+(b,b,b)=(a +b,a,+b,a +b,).

This operation, defined through elements of F, is associative
and commutative. The identity element of the addition is (0, 0,
0) = id,, and the inverse elements correspond to the additive
inverses in F' [11]: (a,, a,, a,) + (—a,, —a,, —a,) = id,. Thus, the
substructure (V3, +) is an abelian group [11,13].

The scalar multiplication operation e is defined as:

FxV—oV,
(/’{‘: (ala aza (13)) '— i * (ap aza a3)5
Ae(a,a,a)=@A*a,r*a,la),A€EF.

This operation is associative, commutative, distributive with
respect to vector addition, and distributive with respect to
addition in F [11]. The identity element corresponds to the
identity in ' : id *(a , a,, a,) = (a,, a,, a,). Thus, the substructure
(V3, *) is a commutative monoid [11,13].

Therefore, the complete structure V= (73, +, *) is a commutative
ring [11,13].

2.2 Definition of the Algebra (}; ©O)
We equip the structure V with a bilinear product operation ©,
thus generating an F -algebra B that we denote as B = (¥, ).

Let the arbitrary 3-tuples (a,, a,, a,) and (b,, b,, b,), we define the
product operation: The operation
© is defined as:

OQ:VxV—>V,

(@, @ @), (b, b,y b)) = (€, ¢, ).
(a,a,a)©(b,b,b)=
=(a,*b,—a,*b,—a,*b,a *b,~a,*b +a, b
a,*b,+a,*b).

In algebra B, the equality between elements is defined as follows:
Va,b€F:(a,a,a)=(b,b,b)=a =b Na,=b,Aa,=b,

2 al.b3+

2.2.1 Bilinearity of the Product

Our definition of the product satisfies (see Appendix A) the
following three properties of bilinearity:

* Left distributivity with respect to addition +: (@, a,, a,) O((b,,
by b)+ey €y €)= (@ @y @) O (b, by b) + () 4y @) O
(¢, ¢y Cy).

* Right distributivity with respect to addition +: ((a,, a,, a,)*(b,,
by BNO(C, ¢y €)= (@), 4y @)O (€, ¢, )+ (b, b, b) O (e,
) Cy).

* Multiplication ¢ of field elements with respect to O: VA € F:
(Ae(a,a,a)Ob,b,b)=(a,a,a)O @A (b,b,b))=4
 ((ay, 4y a) O (by, by, by).

This last property arises directly from the commutativity of the
entries of the vectors, which are elements of F, with respect to
the elements of the field F of the algebra.

2.2.2 Basic Properties of Algebra B

Non-Associativity and Non-Alternativity

Our algebra exhibit non-associativity (see Appendix B), hence:
(@, a4y @) © (b, by, b)) O (cpy ¢y ¢) # (ay, ayy ) O (b, by
b) © (c,, ¢, ).

We define the Associator operator as ASSOC =X QO Y)O Z -
XO YO 2),suchthat X, ¥, Z€ V. According to this definition:
ASSOC=((a,, a,,a,) © (b,,b,, b)) O (¢, c,, ;)

— @, a,a) O (b, b, b)) O (¢, ¢, ¢)))

=(d 1 2

where: d=—(a,*b,*c,) = (a,*b,*c))+(a,*b,*c)+(a,*b,
ce)f=(a e byec)F(ayob,oc)+ (a2 byoc;)—(a, b+
c),andg=(-a,*b,*c)+(a,*b,*c,)—(a,*b,*c)+(a,*b,
* ¢,). This demonstrates that our algebra is a non-associative F’
-algebra.

A non-associative algebra can be an alternative algebra if it
satisfies X(XY) = (XX)Y and (Y X)X =Y (XX) for all X, Y in the
algebra [14,15]. We examine this property because an alternative
algebra may be made into a Malcev algebra by defining the
Malcev product as [X, Y] = XY — Y X [6,8,14,15].

We explored both properties: X(XY ) = (XX)Y and (Y X)X =Y

(XX).
We verified that the property X(XY ) = (XX)Y does not hold in
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our algebra (see Appendix C), and for this property, we defined
an Alternativator operator, ALTER , such that:
ALTER =EXO XOY)-XOXOY.

Our Alternativator ALTER resulted in the following:
ALTER,=-a,*a,*b,+a,*a,*b,,
—a,*a,*b,ta,*a,*b,*+a,ca,*b,—a,*a, b,
a,*a,*b,—a,ca,*b,+ta,*a,*b,—a,*a,*b,.
The property (¥ X)X = Y (XX) also did not hold in our algebra
(see Appendix C). For this case, we defined the Alternativator
operator, ALTER , as follows:
ALTER,=YOXN)OY-YOXOX)=
(=b,ca,*a,+b.*a,*a,,—b,*a,ca,+b.*a.*a,+b *a.,*a,~b *a,a,,
b;eara,~bcaa,th,raca.~b.*a a,).

Therefore, the algebra B is non-associative and non-alternative.

2.2.3 Non-Commutativity and Antisymmetry

We define the Commutator (or Bracket) operator [X, Y | =X O
Y- YO X, where X, Y € V. According to this definition:

[(a,, ay, a). (b, b,, b)] =
(a,a,a)Ob,b,b)—(b,b,b)O(a,a,a)=(0,a,b,—
b,*a,a,*b,—b,*a)=pF-(01,1),

where f =a, * b, — b, * a,, | represents the identity element
for multiplication ¢ in the field /', and 0 denotes the identity
element for addition in F. This demonstrates that our algebra is
non-commutative.

Note that the commutator results in the cancellation of the first
component. Furthermore, it reveals the field element f = a, °
b, = b, * a,. In this way, our commutator has the structure of a

2
determinant:

where u=(1,0,0),a=(a,a,a)andb=(b, b, b,).

Therefore, we can define our commutator generically as:
[(a, a,, a), (b, b, by)] = —det(u, a, b) * (0, 1, 1),

If we evaluate the commutator of the same element, we have:
(a, a, a), (a,, a,, a)] = (a,, a,, a) O (a,, a,, a,) = (a, a,, a,)
O (a,a,a)=(0,0,0).

On the other hand, let’s analyze the following commutators:

Thus:

[(ala 612, a ) (bln 2 b3)] = (09 a3 * b2 - b3 ° az’ a} ° b2 - b3 N aZ)’
[(bla 20 b) (ap a29 a )] = _(09 a3 ° bz - a2 * b3’ a} * b2 - b3 ¢ aZ)
=-l(a,, a,, a,), (b, b,, b))].
[(a,, a,, a), (b, b, b)] =—{(b, b,, b)), (a,, a,, a))],

where this property manifests as the antisymmetry of the
operation [X, Y | when defined via the product

© in algebra B.

Note that algebra B itself is not antisymmetric, due to:

(av a4y a ) © (bl’ 2 bs) i (bv 2 b3) O (aP a4y a3)'

2.2.4 Identity Element

The identity element of the product © in Bis (1, 0, 0). According
to this, we have: (a,, a,, ;) © (1,0,0)=(1,0,0) © (@, a,, a,)
=(a,, a, a,).

Knowing that u = (1, 0, 0), we can redefine the commutator as:
[(a,, a, a), (b, b,, b))] = — det(id, a, D) * (0, 1, 1), where we
have redefined u as id j = (1, 0, 0).

The existence of an identity element makes our algebra a unital
algebra.

2.3 Relation of Algebra B with Malcev and Lie Algebras
Our algebra is non-commutative and non-associative. Due to
their structural properties, Malcev and Lie algebras could be
related to our algebra. To verify the similarities between algebra
B and both Malcev and Lie algebras, we need to demonstrate
that algebra B satisfies the defining properties of Malcev and
Lie algebras.

2.3.1 Relation of Algebra B with Lie Algebra

To demonstrate that a Lie algebra derives from our algebra B,
it is necessary to show that the Lie bracket defined from our
product © satisfies the properties of bilinearity and the Jacobi
identity, as anti- symmetry has been previously demonstrated in
section “2.2.2. Non-Commutativity and Antisymmetry”.

* Bilinearity of the Commutator

We have established that the bilinearity of the Lie bracket,
defined from the product (, holds true (see Appendix D). This
confirms that the following property is satisfied in our algebra:
Vi, y€F:[Ma,a,a)+yb,b,b), (c,c,c)]=a,a,a,),
CRIS R OIS

* Jacobi Identity

The Jacobi identity [3, 4] holds in algebra B when we define
the Lie bracket through our product ©. Therefore, the Jacobi
identity is a property that represents a particular case in algebra
B (see Appendix E).

2.3.2 Construction of Malcev Algebra through Algebra B
The Malcev identity is satisfied if Va, b, c € M : [[a, D], [a, c]] =
[[[a. b], c], a] + [[[D. <], al, a] + [[[c, al, a], b] [6, 7].

We verify that the algebra B satisfies the Malcev identity by
defining the brackets in terms of the product © (see Appendix
F). In fact, it satisfies the identity in a particular way; in our
algebra, this identity has the following structure:

Va, b, c € V:[[a, b], [a, c]] =][[a b], c], a] +[[[b, c], a], a] +
[[[c. a], al, b]= (0, 0, 0).

Thus, for algebra B, the following identities hold:

[[[a. b], c], al =—([[b, c], al, a] = [[[c. a], al, b],

([, c], al, al = —(l[[a, b], c], a] = [[[c. a], al, b],

[[[c. a], al, b1 =—[lla, b], c], a] = [[[b, c], al, a].

3. Generation of Complex Entities from B

We extracted other basic properties of the algebra B by evaluating
the product of several vectors with particular structures. From
this analysis, imaginary units emerged for our algebra. Thus, the
algebra B is capable of generating complex entities.

3.1 Imaginary Unitiin B
Let the product (0, a,, 0) © (0, b,, 0) = (—a, * b,, 0, 0). In this
way, for the case a, = b, =1, we have: (0, 1,0) O (0,1, 0) = (-1,
0,0)=-1i
Which, if we define i = (0, 1, 0) and # =i © i results in:
2=-id ..

o)
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Note also that (=1, 0,0) © (-1,0,0)=(1,0,0)=id .

3.2 Imaginary Unitj in B

Let the product (0, 0, a,) O (0, 0, b,) = (=a, * b,, 0, 0). In this
way, if a, = b, = 1, we have:

0,0,1) © (0,0, 1) =—id,.

Defining j = (0, 0, 1) results in:

JP=-idg,.
We then define the complex number b = (b, b,, b,) such that:

b, = Re(b),

b,=1Im,(b), b, = Im,(b),

where Re(b) is read as “real part of b”, Im () is read as “first
imaginary part of b”, and Im,(b) is read as “second imaginary
part of b”.

Consistent with this, we may consider the elements (b1, b2, b3)
of the algebra B as complex entities, such that the following
expression can be defined:

b=(b,b,,b)=b *(1,0,0)+b,*(0,1,0)+b,+(0,0,1)=b +
bysi+b, +j,i*=;=-id.

4. Other Properties

4.1 Nullification of the Productasi O bej

In our algebra, the product of the form (0, a2, 0) [ (0, 0, b3)
results in a null vector, 0 = (0,0,0).

Therefore,

a*i®Obe+j=0.

We will call this property “orthomulearity”, simply because it
resembles the orthogonality of vector spaces under the inner
product. In our algebra, when two elements of the type a ¢ i and
b +j are multiplied with

©, the result nullifies regardless of the factors involved.

4.2 Product a, * j Ob,ei

Let (0, 0, a,) © (0, b,, 0), we have:

0,0,a,) ©(0,b,,0)=(0,a,*b,,a,*b)=a,*b,*(0,1,1),
and, fora, =b,=1:

0,0,1) O (0, 1,0)=(0, 1, 1).

Writing (0, 0, a,) © (0, b,, 0) in the form a, * j O b, * i, we have:
a,*jOb,ci=(a,*b)*jOi=(a,*b)*(0,1,1)=(a,*b,)*
(0,0, 1) © (0, 1, 0)).

5. Conclusions

We have introduced a novel algebraic structure termed algebra
B, which generalizes Lie algebras through the definition of a
non-associative and unital algebra. Our results demonstrate that
algebra B retains essential properties such as bilinearity and
antisymmetry, and satisfies both the Jacobi and Malcev identities
when we define the product of their corresponding algebras
through the product of our algebra.

We have shown that algebra B can be considered a valid
generalization of Malcev and Lie algebras, highlighting

its potential to integrate fundamental algebraic structures.
Additionally, the ability of algebra B to generate imaginary
units and complex entities opens new avenues for research in
algebraic symmetries and transformations.

Future research should focus on exploring its practical
applications and extending the theoretical framework established
here.

Our study significantly contributes to the field of algebra
theory, offering a new perspective and potential tools for the
investigation of algebraic structures and their applications across
various scientific disciplines. This research sets the stage for
future explorations in the quest for a unifying algebra that can
integrate key concepts in mathematics and theoretical physics.
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A. Proof of the bilinearity of the product ©
Left distributivity with respect to Addition +

(a1, az, a3) O (b1, by, b3) +(c1, €2, €3)) = (a1, az, az) O (by, by, b3) +(ay, az, az) O (cy, 2, 3).
Lefi-hand side: Expanding -
(a1, az, az) O ((b1, ba, b3) + (c1, ¢2, c3)) = (a1, a2, a3) © (b1 + c1, by + ¢z, b3 + ¢3)
=(a; - (bi+c1))—a2 - (by+cy)—a3 - (b3 +c3),
a; - (byt+tcy)t+ay (b +cy)+ad - (b +cy),
a; - (b3+c3)+az - (byt+co)taz-(by+cr))
=@ bhtara-a - bh-a a-ab—a3c,
ai byta-ata bitaata-btas o,

ay-bys+ay-cstay-bytas-cytasbyt+az- o).

Right-Hand Side:
(a1, az, az) O (b1, by, b3)+(ay, az, a3) O(ci, e, c3)=(@-b—a-bh—a-bsta a—a o—a-c,
arbta bta-bhta-ata ata-o,

abyta-bhta-bita-ataata-c).

Left-Hand Side = Right-Hand Side.

Right Distributivity with respect to Addition +
((a1, az, a3) + (b, by, b3)) © (c1, €2, c3) = (a1, az, a3) © (c1, 2, 3) + (b1, by, b3) © (c1, ¢, C3).
Left-Hand Side:
(a1, a2, a3) + (b1, ba, b3)) O (c1, €2, €3) = (a1 + by, az + b, a3 + b3) © (¢, €2, €3)
=((a1+b1) c1—(ax+by) ca—(az+b3) " cs,
(@1 +b1) cat(aat b)) c1+(azs+bs3) e
(@ +b1) cst+(azthy) cat(az+bs)
=(a-citbica—ay ca—by-crx—az c3— by s,
ajcctbratacitbctascatbc,

al'C3+b1'C3+a3'Cz+b3'02+a3'01+b3'01).

Right-Hand Side:
(a1, az, az) O (c1, ¢, 3) (b1, by, b3) O (c1,c2,¢3)= ar-ci1—ax-c2—az ¢,

ai-crtax-citaz o,
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ai-c3taz-crtasy-c))t(bi-ci—byca—b3c,
bi-catby-ci+bs ey
b] ‘C3+b3‘6‘2+b3'01
=(ai"ci—ax-ca—ay-cstbrrci—byca—byc,
airtay-citazcatbireatbyeitbyo,

ay 'C3+a3'02+a3'61+b1 'C3+b3'Cz+b3 *C1.

Left-Hand Side = Right-Hand Side.

Multiplication - of field elements with respect to
(A - (a1, az, az)) O (b, by, b3) = (a1, az, az) O (A - (b1, by, b3)) =4 - ((a1, az, a3) O (b1, by, b3)), A EF.

This last property arises directly from the commutativity that exists in the entries of the vectors, which are elen

elements of the field F' of the algebra.

B Proof of the Non-Associativity of the Product (&

We initially evaluate:

((ab ay, 613) O(bl; by, b3)) O(Cl, 2, 03) = ((al “by—ay-by—az- b,
ay bytay bi+az- b,

ar-bytas-byt+az-by) O(ci, ¢ ¢3))
=((a"bi—a-by—as b))
—(a1"bytay-bit+az b)) c
— (a1 -bytaz-bytaz-by)-cs,
(@ -bi—ay-by—ay b3)
+(a) bytay bi+as b)) ¢
+(a1-bstay-bytas-by)-c
(a1b1—ayby—as b3) e
(a1 bstas-batas b))
+(a1-bst+az-bytas-by)-c).
Now we evaluate:
(a1, az, a3) O ((b1, ba, b3) O (c1, ¢2, ¢3)) = (a1, az, a3) O (b1-c1—by-ca— b3 c3,
bi-catby-citbs o
by c3t+by-crt+by-cy)
=ar-(bi-ci—byca— b3 c3)
—ay (b1 catby-cit+bs )

—a3-(b1 'C3+b3'02+b3'01), a - (b] ‘Cz+b2 1 +b3 '02)
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Comparing component by component:

First Component:

Second Component:

Third Component:
In this way:

tay (b cr— by cr— by ¢3)
tay-(b1-catby-citby-c),
ar (br-cstbs-catbs-cr)
tay-(bi-catbycitby )

+a3'(b1'6‘1_b2'6'2_b3'03).

(@b ci—ay-by-ci—az-bs-cr)

—(a1-by crtay-bi-cataz by cy)
—(ar1-bs-cstaz-by-c3taz by cs)
#a"bi-ci—ai-by-co—ai- by c3)

—(ay by cytay by citay b )

—(a3-b1 'C3+a3'b3'C2+a3'b3'Cl).

— (a3 by c2) — (a3 b2 ¢3)
#—(ay b3~ c2)— (a3~ b3~ ).

(a1-bi-ca—ay by ca—a3 bz )

+(a1-by-citax-bi-citaz-by-c)
t(ar by crtaz-by-crtaz b))
#(a1-bi-cytay-by-cita by )
t(abi-ci—ayby-ca—ay by c3)

+(Cl3 'bl 'Cz+(l3 'b2'6‘1+a3'b3'6‘2).

(—az-by-co))t(az by c2)

#(=ay-by-c3)+(as- by ca).

(@1-bi-c3—ay-by-c3—az b3 c3)
+(ai-bs-catas-by-crtas - by-cy)
(a1 by-citaz by-citazbr-cy)
#(ar-bi-cstar-bs-cytar-bs-c)
t(az by crtaz by citaz by o)
t(az-bi-ci—az-byca—a3 b3 c).
(—ax-by-c3)t(az by 2)

#(a3 b3 )+ (—az by o).
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(a1, a, az) O (b1, by, b3)) O (cy, 2, ¢3)

— (a1, a3, az) O ((by, by, b3) O (¢, 2, ¢3))

=(—(as by c2)— (a3 by c3)+(az b3 ) +(as b3 ),
(a3 b3 )t (as by ca)t(az b3 c3) = (a3 b3 ),

(—az by C3)+ (a3 by Cz) - (a3 b3+ 6‘2) + (a3 by Cz)).

C Proof of the Non-Alternativity of the Product ©
A non-associative algebra is alternative if: X(XY )= (XX)Y and (Y X)X =Y (XX) for all X, ¥ in the algebra. Defin
by, b3), we have:
X(XY):
(a1, ay, a3) O(a1-bi—ay-by—az by, a1 -batay by +ay-by, a1 -by+as-by+as b)=
ar-(ar"by—ay-by—az-by)
—ay (a1 batay-bi+asby)
—ay (a1"bytaz-bytas-by), ar (a1 by+ay bi+as by
tay-(ar-br—ay by~ az bs)
tay-(ar-bytay-bitaz-by), ar-(ar-bs+as-by+as- b
+tay-(a1-bytay-bitas-b)
tas-(a1-by—ax-by—az-b3) .
XX r:
(ar-a1—ay-ax—as-as, a1 atay-artas-ayar-aztas-aytay-a)) O (b, by, b3)=
(@1 a1~ ay-ay—as-as) b
—(a-;mtaata-ay) b
—(a1raztas-axtaz-ar) b,
(ar-a1—a-ay—asy-a3) b
(@ ;mta-aitas - a) b
t(arastas-axtas-ar) by
(a1 a1—ay-ax—as-a3) by
(a1 aztaz-artas-ay) b
+(ay-astas-artaz-ay): b
X(XY) — (XX)Y :
X(XY) — (XX)Y =

(—613 *az’ b2+a3 ‘ay’ b3,—a2 ‘as 'b3+a3 ‘as: b2+a3 ‘as 'bz—a3 ‘ayr bz,a3 ‘ajs 'bz—a3 ‘ar: b2+a2 ‘a2 b3—a3 ‘ar bz)

Y (XX):
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(b1,b2,b3) © (a1 - a1 —ax  ay—a3 - a3, a1 aytay " artas " ap, a1 az + a3 - axtaz - ar) =

(by (a1 a1—ay ax—as " as)
—by (a1 -ax+a; atas- ay)
—by (a1 astas ar+as- a),
by (a1 ayta a+as- ay)
+by(a-ar—a; a,—as - as)
+bs (a1 -axtay a+a a),
by (a1 -as+as ar+az a)
+by (a1 axt+a; atas- ay)

+b3-(a1 -al—az-az—a3-a3)).

(Y X)X:

(b1 - a1=by - ay=b3 - a3, by - ay +by - ay +b3 - az, by - a3 +by - ay +bs - ar) O (a1, az, a3) =
((br-ar—by ax—bs a3) @
(b axtbhartb @) a
—(b1-ay+bs-ay+ by al)- as,
(b a1=byax—b3 a3) a
T atbhatb @) a
T (b1 a3+ by ayt by al) a,
(b a1—by ay—bs"a3) " a3
T astby-axtbya) a

+(b1~a3+b3~a2+b3~a1)-a1).

(YX)X - Y (XX):
(YX)X~ Y (XX) =

(=by a3 axtbs ar ar,—by a3 aztbs-ay artby az-ar—bs-ay as, by az-a,—bz-ay artby a> az—bz-ax ay).

D Proof of the Bilinearity of the Lie Bracket defined from ©
Bilinearity holds if, for all 4, y € F':
[4-(an, ay, az) Ty - (b1, by, b3), (c1, 2, c3)] =4 - [(a1, az, a3), (c1, ¢, c3)]+y - [(b1, ba, b3), (c1, c2, ¢3)].

Left-Hand Side:
[4 - (a1, az, a3)+y - (b1, by, b3), (1, 2, c3)] =
A- (611, ay, 613) +y . (b], bz, b3) O(Cl, Co, 03) - (C], Co, C3) O/l . (Cl], ay, a3)+y . (b], bz, b3)
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First Term:

A (a1, ay, az) +y - (by, by, b3) O (c1, ¢2, ¢3)

=(A-arty -b,A-ayty by A-azty-bs) Ocy, ey c3)

= A-aity-b))y-ci—(A-axty b)) ca—(A-az+y - b3)cj,
A-arty b)) cat(A-axty -by)-cit(A-az+y  b3)-cy
A-ar+ty -b)-cst(A-az+y -b3) - cat(A-az+y-b3) c

= Aaircaity-birai—A-aycr—y-byrca—Aazsc3—y-by-cs,
Aray-crty -bi-cati-ar-city -by-citi-as-caty by ey
A-ayczty-by-csti-as-cyty -by-cati-az-city-by-cy.

Second Term:

(c1, 2, c3) O A~ (ay, ay, az) +y - (by, by, b3)

=(c,crc3) O@-ar+y - -bi,A-ayy by i-asy-bs)
=ci-A-aity-b)—ca-(A-axty -b))—c3-(A-azs+y-b3),
ci-(A-axty -by)tc-(A-arty -b)tces-(A-axty by,
ci-(Arazty -by))tes-(A-axty -by)+tes-(A-ai+y-by)
=(ci*A-aitcry-bi—cxA-ax—cry -br—c3 A az—c3y-bs,
ci'h-ayterry -bytey d-aiteyy bitesA-axteyy by,

ci A azstceyry bytes A-aytesy bates A-artesy by

First Term - Second Term:
A-ay-crty-bici—A-ayca—y-byco—A-azs-c3—y-bs-cs
Aray-crty -bi-cytl-ay-city -byciti-azs-cty bi-c,

i-a1-03+y-b1-03+/1-a3-cz+y-b3-cz+i-a3-cl+y-b3-cl)

—(61'1'6114‘61']/'bl—Cz'/l'az—Cz'y'b2—03'ﬂ.‘a3—6‘3'y'b3,

cirA-axterry -bytcey drartery -bitesA-aytesy by,
cidrazterry biteyA-artesy-bytes-A-artcesy b))
=0, A a3 2ty -byca—c3A-ar—c3y by

i'a3'6‘2+]}'b3'Cz—C3'/1'a2—C3'y'bz).

Right-Hand Side:

j. N [(al, ay, a3), (Cl, Cy, C3)] + y . [(b], bz, b3), (C], Co, C3)].

J Math Techniques Comput Math, 2024

Volume 3 | Issue 10 | 10



First Term:

j. . [(611, as, a;), (C], Co, 03)] =)~ -(a1 *Cl— dy-"Cr—as-cs,
ar-ctaxcitaz-cy

al -03+a3-cz+a3~c1)

— A (cirai—crrar—c3ra,

crra)tcrraptceza

c;raztcs -a2+03~a1)

:(0,/1'613'02_1’03'612,

1'03'02—1'03'622)

:i'(a3'(22—03'a2)'(0, ], ]).

Second Term: Y- [(b], bz, b3), (Cl, Cy, C3)] =y (b3 *Cr— C3 bz) . (O, 1, 1)

First Term + Second Term:

A(@ca—c3a) (0,1, 1)ty (b3 ca—c3-b2) (0,1, 1)
=0, (az-cr—c3 ), A (as-cr—c3- @)
10,y (b3 ca—c3ba),y (b3 2= c3°b2))

=0, (as-c2—c3ax)ty (bs-ca—c3 by),
A(az-ca—c3-ax)+y (b3 cr—c3° b))
=(A-(as-ca—c3rar))ty-(bs-ca—c3-b2))- (0, 1, 1).

Therefore:

(0, A-as-caty -bs-co—c3-A-ax—c3y by
Araz-cyty-bs-ca—c3A-ax—c3y-b)
=0, A-a3-cr—A-cs-ayty -by-ca—y-c3 by

i’a3'02_i'03'612+})'b3'02_j}'6‘3'b2).

E Proof of the Jacobi Identity

The Jacobi identity is satisfied when:
[(a1, az, a3), [(by, b2, b3), (c1, 2, c3)]1+
[(b1, b2, b3), [(cy, 2, €3), (a1, az, a3)]]+
[(c1, 2, ¢3), [(a1, a2, a3), (b1, b2, b3)]] =
(0, 0, 0).

Proof:

[(bl, bz, b3), (C1, Cy, C3)] = (b3 *Cr—C3° bz) : (O, 1, 1) = (O, b3 *Cr—C3° bz, b3 *Cr—C3° bz)
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[(Cll, ay, 613), [(bl, bz, b3), (C], Co, C3)]] = (a3 . (b3 *Cr—C3° bz) - (b3 *Cr—C3" bz) . az) . (0, 1, 1) [(al, ay, a3), [(bl, bz, b3), (Cl
= (al, a, 613) O(O, b3 *Cr— C3 'bz, b3 *Cr— C3 bz)
— (0, b3 *Cr—C3¢ bz, b3 *Cr—C3° bz) O(Cll, a, a3).

(a1, az, a3) O0,b3-ca—c3 by, by ca—c3°by):
(a1, a2 a3) O0,b3-c2—c3:by, b3-ca—c3b)
=(—ay-(bs-ca—c3 b))~ a3 (b3 cr2—c3-by),
ai-(by-ca—c3-by)taz-(by-cr—c3-by),

ay (bs-ca—c3-by)+az-(bs-ca—c3- b))

(0, b3-ca—c3- by, b3 ca—c3-by) O(ay, az, a3):
(0, b3-ca—c3-by, b3 cr—c3-by) O(ay, a, a3)
=(—(bs-cr—c3 by)-ar—(bs-ca—c3-by) - as,
(by-ca—ci b)) a1+ (bs-ca—c3 b)) a,

(bs-cr—c3 b)) -ar+(bs-ca—c3-by)-ay).

(Cabyartacbh—abiaatacbyabyca—aircsbhhtasbyrca—az ci by arrbyrca—aircsbata
— (b mtabraa—biraataba,byrcarai—cibyraitbycaaraa—cytbya,
by-cyray—c3by-artby-crrar—c3 by ay)

=(0,a3-(bs-ca—c3by)—(bs-ca—c3-ba) ap, a3 (b3 ca—c3-ba) = (b3 ca— ¢33 b2) - a2)
=(a3-(bs-ca—c3-b))—(b3-ca—c3-by)-ax)- (0, 1, 1).

Continuation of the Proof:

[(b1, b2, b3), [(c1, €2, ¢3), (a1, a2, a3)]]

=3 (c3ar—az-cr))—(c3:ar—az-¢c2) b))~ (0, 1, 1),
[(c1, c2 ¢3), [(a, az, a3), (by, b2, b3)]]

=(cs (a3 by—bs-ax)—(az-br—bs-ay)-c2)- (0, 1, 1).
(azs-(bs-ca—c3-by))— (b3 ca—c3-b2)-a2) (0,1, 1)
+(bs (srax—as-c))—(c3-ax—az-c2) b)) (0,1, 1)
T (a-ba—by-a)—(a3-ba—b3-az) ) (0,1, 1)
=(az-(bs-ca—c3 b))— (b3 ca—c3by)-az) (0,1, 1)
(b3 (c3-ax—az-ca)—(c3-ax—az-c2)"by)-(0, 1, 1)
(s (@ -by—bs-ar)—(asby—bs-az)- ) (0,1, 1)
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=(az-bs-ca—azs-c3-b))— (b3 cr-ar,—c3-by-a2))- (0, 1, 1)
+((bs s ar—byas-cr)—(c3-ax-by—az-ca- b)) (0,1, 1)
+((csazsby—c3bs-ay)—(azs-by-ca—bs-a,-¢2) (0,1, 1)
=@ by-cr—asc3by—by crrartcy by ap
+by-cyrar—bsrazcao—c3rarbytaz-cr by
tcsrazby—c3byrar—ay by catbyrar ) (0,1, 1)

=(0, 0, 0).

F Proof of the Malcev Identity
The Malcev identity holds if: Va, b, c €M :[[a, b], [a, c]]=[l[a, b], c], a]l +[[[b, c], al, a]l +[[[c, al, a], b].
Defining these a, b, ¢ as a =(ay, az, a3), b = (b1, by, b3), and ¢ =(cy, ¢z, ¢3), we have:
[a, b]=(as-b,— b3 -ay)- (0, 1, 1).
[a, c]=(as-ca—c3-ap) (0, 1, 1).
[[a, b], [a, c]]
=(a3 by—b3 a) (0,1, 1) O(as-ca—c3-a2)- (0,1, 1)
—(as ca—c3ran) (0,1, 1) O(as-by—b3-ax)- (0,1, 1)
=(a3-by—bs @) (a3 ca—c3-ax)*(0,1,1) ©(0, 1, 1)
—(asca—c3sran) (a3 ba—b3-ax)-(0,1,1) ©(0, 1, 1)
=@ by—bs-ay)-(az-ca—c3ap)-(—1—1,1, 1)
—(@waa—ca)(a-b—by-a)(—-1-1,1,1)
=((a3ba—by- @) (a3 c2—¢c3-a)
—(@-aa—ca)(a-by—by-a)) (-1-1,1,1)
=(0, 0, 0).
[[a, b], c]=[(as b2— b3 az) (c2—¢c3)- (0, 1, D)].

[[[a, b], c], a]

=[(az-ba—b3-ax) (c2—¢3)- (0, 1, 1) O(ay, az, a3)

— (a1, az, a3) O (a3 ba— b3 az) - (c2—¢3) (0, 1, 1)]
=(az by— b3 a) (2~ ¢c3)

[(Fa2—as a1 tay, axtar) — (—a2— a3, a1 +as, a1 +a3))]
=(az-by— by a) (c2—¢3) (0, a0 — a3, ap — a3)

=(az b= by @) (ca—¢c3) (aa—a3)- (0,1, 1).
[[b,cl,al=(bs-ca—c3 b)) (aa—a3) (0, 1, 1).
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[[[b, c], a], d]

=(bs-cr—c3 b)) (a2—a3) (0,1, 1) O(ay, az, a3)

—(a, az, a3) O(bs-ca—c3:by) (a2—a3) (0, 1, 1)
=(bs-cr—c3 b)) (a2~ @)

X[((maz— a3, a1 tay ax+a)) — (—ay— as, a; +as, a1 +a3))]
=(b3-cr—c3 b)) (aa—a3) (0, a— as, a, — a3)

=3 ca—c3 b)) (aa—a3) (aa—a3) (0, 1, 1).

[[c,al, al=(c3-ax—asz-c2) (ax—a3)- (0, 1, 1).

[[[c. al. a], b]

=(csrar—az-c2) (aa—a3) (0,1, 1) O (b, by, b3)

— (b1, b2, b3) O(c3-ar—az-¢c2) (ax—az)- (0,1, 1)

=(csrax—az ) (a2~ a3)

X [((=ba = b3, b1 + by, by +b1) = (=by = bs, by + bs, by + b3))]
=(czrax—az-c) (ax—az) (ba—b3)- (0, 1, 1).

[[[a. b], c], a] +[[[b, c]. a], a] +[[[c, a], a], ]

=(a3 by—by-ay) (ca—c3) (ax—a3)-(0, 1, 1)

+(bs-ca—c3 b)) (ar—a3) (aa—a3)- (0,1, 1)

t(esrar—az-c) (aa—as) (by—b3)- (0,1, 1)

=(a3 by ca—as by cs—byay-crtby-ay ¢
+byscrrar—bycrraz—c3 by artey by s
tesray-by—ciraybs—az-crabytas-cy by)-(aa—a3)- (0,1, 1)
=(0, 0, 0).

[[a b]. [a, c]]1=[la, b], c]. a] +[[[b. c], a]. a] *[[[c, al, a], b] = (0, 0, 0).
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