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Abstract
Artificial Intelligence (AI) research often aims to develop models that can generalize reliably across complex datasets, 
yet this remains challenging in fields where data is scarce, intricate, or inaccessible. This paper introduces a novel 
approach that leverages three generative models of varying complexity to synthesize one of the most demanding 
structured datasets: Malicious Network Traffic. Our approach uniquely transforms numerical data into text, re-framing 
data generation as a language-modeling task, which not only enhances data regularization but also significantly 
improves generalization and the quality of the synthetic data. Extensive statistical analyses demonstrate that our 
method surpasses state-of-the-art generative models in producing high-fidelity synthetic data. Additionally, we conduct 
a comprehensive study on synthetic data applications, effectiveness, and evaluation strategies, offering valuable insights 
into its role across various domains. Our code and pre-trained models are openly accessible at Github, enabling further 
exploration and application of our methodology.
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1. Introduction
Machine learning algorithms depend heavily on the availability 
and quality of training data. However, acquiring real-world data 
poses challenges due to privacy concerns, limited accessibility, 
and potential biases [1]. Consequently, synthetic data generation 
has attracted increasing interest, aiming to create diverse and 
representative datasets that mitigate issues of data scarcity, 
bias, and privacy  [2]. In recent years, Generative Adversarial 
Networks (GANs) have emerged as a powerful technique for 
producing realistic synthetic data   [3]. GANs are widely applied 
in fields such as image generation, network traffic modeling, 
and healthcare data synthesis [4]. These models replicate the 
statistical properties of real-world data, providing a valuable 
tool for augmenting datasets in cases where data is limited 
or sensitive [5]. Despite their impressive results, GANs face 
challenges. Computational complexity and training instability 
have been widely documented, complicating replication 
across domains [6]. Moreover, GANs’ primary focus on 
unstructured data raises questions about their suitability for 
structured numerical data, which is often critical in fields such 
as cybersecurity, finance, and healthcare [5]. This has fueled 
demand for alternative generative models capable of efficiently 
handling structured data while preserving the original data’s key 
statistical properties. Beyond GANs, Variational Autoencoders 
(VAEs) and other generative models have shown promise for 
synthetic data generation. VAEs effectively capture complex 
data distributions in recommendation systems and collaborative 
filtering [7]. However, they may lack representational power 

compared to GANs, especially with complex datasets [4]. 
Alongside methodological advancements, several studies have 
integrated privacy-preserving mechanisms into generative 
models. Differentially private GANs, for instance, generate 
synthetic data that maintains privacy and minimizes the risk of 
sensitive information leakage [2]. Such approaches are essential 
in sensitive domains like healthcare, where data privacy is 
paramount, requiring a careful balance between data quality and 
ethical considerations.

Existing synthetic data generation methods often focus on 
unstructured data or encounter challenges in specialized fields 
like cybersecurity and financial risk modeling. Furthermore, 
adversarial training and continuous distribution modeling can 
complicate the generation process, particularly for structured 
numerical data with irregularities or outliers [5]. This paper 
builds on existing research by exploring the potential of sequence 
models for synthetic data generation. Sequence models, widely 
used in natural language processing, present a novel approach to 
generating structured data by framing it as a language-modeling 
problem [8]. By leveraging sequence models’ strengths in 
handling both discrete and continuous data, we aim to address 
limitations posed by traditional generative models, particularly in 
domains requiring structured, high-dimensional data. Informed 
by key findings from the literature, we aim to contribute to 
the discourse on synthetic data generation by investigating 
how sequence models can provide a computationally efficient 
alternative to established techniques. While GANs and VAEs 
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have dominated the field, we propose that sequence models offer 
a flexible and scalable approach for generating high-quality 
synthetic data, particularly in scenarios with structured data and 
categorical variables [9].

2. Techniques
Here we describe our techniques for data generation and training 

the generators as language- based classifiers. First, we provide 
background on structured datasets and the data used in our 
experiments.

2.1 Dataset Overview
An overview of the data used in our experiments is presented in 
Table 1.Table 1: Overview of Typical Attributes in Flow-Based Data [Ring et al., 2019]

# Attribute Type Example
1 Date First Seen Timestamp 2018-03-13 12:32:30.383
2 Duration Continuous 0.212
3 Transport Protocol Categorical TCP
4 Source IP Address Categorical 192.168.100.5
5 Source Port Categorical 52128
6 Destination IP Address Categorical 8.8.8.8
7 Destination Port Categorical 80
8 Bytes Numeric 2391
9 Packets Numeric 12
10 TCP Flags Binary/Categorical .A..S.

The dataset used in this project contains attributes typical of unidirectional NetFlow data
[Ring et al., 2019]. NetFlow data is highly heterogeneous, containing continuous, numeric,
categorical, and binary attributes. Most attributes, such as IP addresses and ports, are categorical.
Additionally, there is a timestamp attribute (Date First Seen), a continuous attribute (Duration),
and numeric attributes such as Bytes and Packets.

A key aspect of the dataset is the inclusion of TCP flags, defined here as binary/categorical.
These flags can be interpreted either as six binary attributes (e.g., isSYN flag, isACK flag)
or as a single categorical value, allowing flexibility in data processing and modeling across
generative approaches. This diverse mix of attribute types poses challenges for synthetic data
generation, especially when aiming to preserve the statistical properties of the original data while
maintaining categorical, continuous, and binary relationships.

ii Data Transformation via CICFlowmeter-V4.0 (ISCXFlowMeter)
For our experiments, we converted raw network traffic data into CSV format using CICFlowmeter-
V4.0, formerly known as ISCXFlowMeter. CICFlowmeter is a bi-directional flow generator
and analyzer for Ethernet traffic, specifically designed for anomaly detection in cybersecurity
datasets [Ring et al., 2019].

CICFlowmeter has been extensively used in well-known cybersecurity datasets, including:

• Android Adware-General Malware dataset (CICAAGM2017),

• IPS/IDS dataset (CICIDS2017),

• Android Malware dataset (CICAndMal2017), and

• Distributed Denial of Service (CICDDoS2019).

By leveraging CICFlowmeter, we extracted 80 features from each flow, compiling a compre-
hensive set of flow-based features in CSV format. This structured tabular data includes attributes
such as source and destination IP addresses, transport protocols, port numbers, byte and packet
counts, TCP flags, and other network metrics.

The conversion of network flows into structured tabular data is crucial for our approach, as it
allows for systematic analysis and modeling. The resulting dataset, with its rich set of 80 features,
provides the necessary structured format for advanced machine learning techniques, enabling
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Table 1: Overview of Typical Attributes in Flow-Based Data [5]

Figure 1: PCA Explained Variance Plot: The majority of the variance is captured by the first few principal components, indicating 
that much of the data’s complexity can be explained by a small subset of components.
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each flow, compiling a compre- hensive set of flow-based 
features in CSV format. This structured tabular data includes 
attributes such as source and destination IP addresses, transport 
protocols, port numbers, byte and packet counts, TCP flags, and 
other network metrics.

The conversion of network flows into structured tabular data is 
crucial for our approach, as it allows for systematic analysis and 
modeling. The resulting dataset, with its rich set of 80 features, 
provides the necessary structured format for advanced machine 
learning techniques, enabling effective synthetic data generation 
while preserving relationships between features. Structured data 
in this format facilitates the use of sequence models and other 
generative techniques that rely on well-organized, tabular data 
representations [10].effective synthetic data generation while preserving relationships between features. Structured

data in this format facilitates the use of sequence models and other generative techniques that
rely on well-organized, tabular data representations [Ioffe and Szegedy, 2015].

Figure 1: PCA Explained Variance Plot: The majority of the variance is captured by the first few
principal components, indicating that much of the data’s complexity can be explained by a small
subset of components.

iii Data Transformation to Text Domain - Symbolic Encoding
Our preliminary exploratory data analysis revealed significant complexity within the dataset, as
evidenced by high variance in certain features and the considerable number of unique values
across columns. This complexity makes the dataset unsuitable for traditional statistical sampling
or simple data synthesis techniques, supporting the exploration of advanced synthetic data
generation models.

To enhance the representational quality and address the challenges posed by this complexity,
we applied a novel encoding strategy, transforming the dataset from a numeric to a symbolic,
textual domain. Specifically, each numeric feature was discretized into intervals, with each
interval represented by one of 49 unique symbols. Each symbol corresponds to a 1% range of
the respective feature’s values, resulting in a robust dataset of 30,000 examples. Each example
can be considered analogous to a sentence in the symbolic domain [Vaswani et al., 2023].

This transformation repositions the data generation task as a classification problem rather
than continuous regression. By encoding each data point as a sequence of symbols, we frame
the task as the prediction of the next symbol in a sequence, given a preceding set of symbols,
analogous to language modeling tasks in NLP [Bengio et al., 2000]. The dataset, now framed in
a discrete symbolic space, facilitates the use of classification algorithms designed for categorical
outputs, aligning well with sequence models.
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2.3 Data Transformation to Text Domain - Symbolic 
Encoding
Our preliminary exploratory data analysis revealed significant 
complexity within the dataset, as evidenced by high variance in 
certain features and the considerable number of unique values 
across columns. This complexity makes the dataset unsuitable 
for traditional statistical sampling or simple data synthesis 
techniques, supporting the exploration of advanced synthetic 
data generation models. To enhance the representational 
quality and address the challenges posed by this complexity, 
we applied a novel encoding strategy, transforming the dataset 
from a numeric to a symbolic, textual domain. Specifically, 
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interval represented by one of 49 unique symbols. Each symbol 
corresponds to a 1% range of the respective feature’s values, 
resulting in a robust dataset of 30,000 examples. Each example 
can be considered analogous to a sentence in the symbolic domain 
[9]. This transformation repositions the data generation task as 
a classification problem rather than continuous regression. By 
encoding each data point as a sequence of symbols, we frame the 
task as the prediction of the next symbol in a sequence, given a 
preceding set of symbols, analogous to language modeling tasks 
in NLP  [8]. The dataset, now framed in a discrete symbolic 
space, facilitates the use of classification algorithms designed 
for categorical outputs, aligning well with sequence models.

Algorithm 1: Symbolic Encoding Strategy for Dataset Transformation
Input: Numerical dataset D with 𝑁𝑁 elements
Output: Transformed dataset D′ consisting of 30,000 examples, each represented as a

sequence of symbols
Initialize: Define a set S of 49 distinct symbols, each representing a 1% interval of the
data range;

Divide: Partition the range of each numerical feature into 49 equal intervals
corresponding to the symbols in S;

foreach element 𝑒𝑒 ∈ D do
Determine the interval to which 𝑒𝑒 belongs;
Map 𝑒𝑒 to the corresponding symbol 𝑠𝑠 ∈ S;

end
Augment: For each sequence of data points, prepend a designated start symbol to
indicate the beginning of a packet;

return D′: Transformed dataset as sequences of symbols;

iv Problem Framing
Our study frames the data generation task as the prediction of the next symbol in a sequence,
given the current token. Let 𝑥𝑥 represent the current token, and 𝑦𝑦 the next symbol to be predicted.
The probability mass function (PMF) for the random variable 𝑦𝑦, conditioned on 𝑥𝑥, is given by
𝑃𝑃(𝑦𝑦 |𝑥𝑥), where 𝑃𝑃(𝑦𝑦 |𝑥𝑥) represents the probability of the next symbol 𝑦𝑦, given the current token 𝑥𝑥.
Our goal is to maximize 𝑃𝑃(𝑦𝑦 = 𝑦𝑦true |𝑥𝑥), where 𝑦𝑦true is the true label of the next token.

We frame this task as a classification problem, not a regression problem. Although one might
bypass text transformation by regressing the output directly, regression introduces challenges,
especially when managing high-dimensional, continuous outputs with complex data structures
[He et al., 2015a].

Classification, by contrast, allows the model to discretize decision-making and capture the
data’s discrete nature effectively. In cases where classes occupy distinct manifolds within the
data space, classification models can partition the space, yielding probabilistic predictions and
clearer boundaries.

Figure 2: Comparison of Classification and Regression Manifolds. The left plot represents
the classification problem with a decision boundary, while the right plot shows the regression
problem with a fitted regression line.

5

3. Problem Framing
Our study frames the data generation task as the prediction of 
the next symbol in a sequence, given the current token. Let 
𝑥 represent the current token, and 𝑦 the next symbol to be 
predicted. The probability mass function (PMF) for the random 
variable 𝑦, conditioned on 𝑥, is given by

𝑃, where 𝑃 𝑦 𝑥 represents the probability of the next symbol 𝑦, 
given the current token 𝑥. Our goal is to maximize 𝑃 𝑦 = 𝑦true, 
where 𝑦true is the true label of the next token.

We frame this task as a classification problem, not a regression 
problem. Although one might bypass text transformation by 
regressing the output directly, regression introduces challenges, 
especially when managing high-dimensional, continuous outputs 
with complex data structures [11].

Classification, by contrast, allows the model to discretize 
decision-making and capture the data’s discrete nature 
effectively. In cases where classes occupy distinct manifolds 
within the data space, classification models can partition the 
space, yielding probabilistic predictions and clearer boundaries.

Algorithm 1: Symbolic Encoding Strategy for Dataset Transformation
Input: Numerical dataset D with 𝑁𝑁 elements
Output: Transformed dataset D′ consisting of 30,000 examples, each represented as a

sequence of symbols
Initialize: Define a set S of 49 distinct symbols, each representing a 1% interval of the
data range;

Divide: Partition the range of each numerical feature into 49 equal intervals
corresponding to the symbols in S;

foreach element 𝑒𝑒 ∈ D do
Determine the interval to which 𝑒𝑒 belongs;
Map 𝑒𝑒 to the corresponding symbol 𝑠𝑠 ∈ S;

end
Augment: For each sequence of data points, prepend a designated start symbol to
indicate the beginning of a packet;

return D′: Transformed dataset as sequences of symbols;

iv Problem Framing
Our study frames the data generation task as the prediction of the next symbol in a sequence,
given the current token. Let 𝑥𝑥 represent the current token, and 𝑦𝑦 the next symbol to be predicted.
The probability mass function (PMF) for the random variable 𝑦𝑦, conditioned on 𝑥𝑥, is given by
𝑃𝑃(𝑦𝑦 |𝑥𝑥), where 𝑃𝑃(𝑦𝑦 |𝑥𝑥) represents the probability of the next symbol 𝑦𝑦, given the current token 𝑥𝑥.
Our goal is to maximize 𝑃𝑃(𝑦𝑦 = 𝑦𝑦true |𝑥𝑥), where 𝑦𝑦true is the true label of the next token.

We frame this task as a classification problem, not a regression problem. Although one might
bypass text transformation by regressing the output directly, regression introduces challenges,
especially when managing high-dimensional, continuous outputs with complex data structures
[He et al., 2015a].

Classification, by contrast, allows the model to discretize decision-making and capture the
data’s discrete nature effectively. In cases where classes occupy distinct manifolds within the
data space, classification models can partition the space, yielding probabilistic predictions and
clearer boundaries.

Figure 2: Comparison of Classification and Regression Manifolds. The left plot represents
the classification problem with a decision boundary, while the right plot shows the regression
problem with a fitted regression line.

5

Figure 2: Comparison of Classification and Regression Manifolds. The left plot represents the classification problem with a decision 
boundary, while the right plot shows the regression problem with a fitted regression line. 



Volume 1 | Issue 2 | 4J Data Analytic Eng Decision Making, 2024

4. Overview of Sequence Models Employed in Our Study
4.1 WaveNet-Enhanced Neural Probabilistic Language 
Model
We employed the WaveNet architecture to enhance a neural 
probabilistic language model, leveraging its capability to capture 
intricate sequential dependencies within data. This integration 
advances language modeling for synthetic data generation. 
Neural probabilistic language models, initially introduced 
by Bengio et al. [8]. learn distributed token representations 
and predict sequences based on contextual probabilities. By 
integrating the WaveNet architecture, developed by Google, we 

extend this foundational approach [12].

WaveNet’s use of causal convolutions ensures temporal 
consistency in predictions—essential for modeling sequential 
data tasks. The architecture predicts each token based on 
preceding context, enabling effective capture of linguistic 
structure and nuances.

v Overview of Sequence Models Employed in Our Study
a WaveNet-Enhanced Neural Probabilistic Language Model

We employed the WaveNet architecture to enhance a neural probabilistic language model,
leveraging its capability to capture intricate sequential dependencies within data. This integration
advances language modeling for synthetic data generation. Neural probabilistic language models,
initially introduced by Bengio et al. [Bengio et al., 2000], learn distributed token representations
and predict sequences based on contextual probabilities. By integrating the WaveNet architecture,
developed by Google [van den Oord et al., 2016], we extend this foundational approach.

WaveNet’s use of causal convolutions ensures temporal consistency in predictions—essential
for modeling sequential data tasks. The architecture predicts each token based on preceding
context, enabling effective capture of linguistic structure and nuances.

𝑦𝑦𝑡𝑡 = 𝑓𝑓 (𝑥𝑥𝑡𝑡−𝑘𝑘 , 𝑥𝑥𝑡𝑡−𝑘𝑘+1, . . . , 𝑥𝑥𝑡𝑡) =
𝑘𝑘∑︁
𝑖𝑖=0

𝑤𝑤𝑖𝑖 · 𝑥𝑥𝑡𝑡−𝑖𝑖 , for 𝑡𝑡 ≥ 𝑘𝑘

(a) WaveNet Architecture [van den Oord et al.,
2016]

(b) Neural Probabilistic Language Model with
Causal Convolutions

Figure 3: Architectures Used in Our Study

b Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) effectively process sequential data by maintaining a ”memory”
of previous inputs, achieved through feedback loops in the architecture. This enables RNNs to
learn sequence patterns and relationships, producing coherent and contextually relevant text. Our
RNN architecture leverages these capabilities, processing encoded data sequences and capturing
dependencies within each 10-character segment.
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Figure 4: A Recurrent Neural Network

4.2 Recurrent Neural Networks (RNNs)
Recurrent Neural Networks (RNNs) effectively process 
sequential data by maintaining a ”memory” of previous inputs, 
achieved through feedback loops in the architecture. This enables 

RNNs to learn sequence patterns and relationships, producing 
coherent and contextually relevant text. Our RNN architecture 
leverages these capabilities, processing encoded data sequences 
and capturing dependencies within each 10-character segment.

4.3 An Attention-Based Decoder - Transformer
The Transformer sets itself apart from traditional neural networks 
by avoiding recurrent mechanisms and instead leveraging self-
attention, which weighs the importance of different tokens in 
an input sequence in parallel. This enables efficient parallel 
processing and better handling of long-range dependencies [9].

Our Transformer architecture employs an embedding layer with 
size 64 per symbol, followed by 4 Transformer blocks, each with 
4 attention heads, capturing patterns in sequential data. Each 
Transformer block includes multi-head attention, feed-forward 
networks, and layer normalization, supporting robust learning 
of input sequences.

Figure 4: A Recurrent Neural Network

c An Attention-Based Decoder - Transformer

The Transformer [Vaswani et al., 2023] sets itself apart from traditional neural networks
by avoiding recurrent mechanisms and instead leveraging self-attention, which weighs the
importance of different tokens in an input sequence in parallel. This enables efficient parallel
processing and better handling of long-range dependencies.

Our Transformer architecture employs an embedding layer with size 64 per symbol, followed
by 4 Transformer blocks, each with 4 attention heads, capturing patterns in sequential data. Each
Transformer block includes multi-head attention, feed-forward networks, and layer normalization,
supporting robust learning of input sequences.

Figure 5: Transformer Architecture
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5. Experiment Setup - Framework for Generating Synthetic 
Data
This section outlines the models used to create a novel framework 
for generating synthetic data. We detail the rationale behind 
selecting these models, discuss the appropriate loss functions, 
and highlight best practices in training for optimal performance. 
Additionally, we examine trade-offs involved in generating 
synthetic data, focusing on aspects of realism, diversity, and 
privacy preservation.

5.1 Building Intuition
The proposed framework is based on the concept of N-gram 
models [13]. It involves sampling from a distribution where each 
character is characterized by a conditional probability over the 
previous 1 characters.

Mathematically, this is represented as:

This approach has limitations, such as failing to capture long-
range dependencies and contextual semantics. Additionally, as 𝑛 
increases, the number of possible N-grams grows exponentially, 
leading to data sparsity and many zero-count N-grams if the 
training data is insufficient.

Our approach builds upon Bengio’s work on Neural 
Probabilistic Language Models, where he proposed a neural 
network architecture to learn the probability distribution of word 
sequences  [8]. By integrating these ideas with the WaveNet 

architecture, known for its strong performance in modeling 
long-range dependencies in sequential data, we aim to develop a 
powerful language model capable of generating highly realistic 
and diversified synthetic text data [12].

To clarify our methodological choices, we provide intuition 
behind adopting Bengio’s neural network approach and 
emphasize its advantages in our context.

Bengio’s neural network represents each word with a sampled 
vector and feeds it into a neural network that predicts the next 
word in the sequence. This prediction is achieved by turning 
the logits into a distribution via the softmax function, allowing 
sampling from this distribution. The network learns both the 
network parameters and the sampled distribution.

Building on this, we introduce WaveNet. Bengio’s approach 
squashes the input through the network, making it difficult to 
learn long-term dependencies and positional information. In 
contrast, WaveNet heavily relies on dilated causal convolutions, 
specifically designed to capture long-term dependencies by 
applying multiple large dilated convolutions in parallel.

Mathematically, a dilated convolution operation for a sequence 
𝑥 with filter 𝑓 is defined as:
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III Experiment Setup - Framework for Generating Synthetic
Data

This section outlines the models used to create a novel framework for generating synthetic data.
We detail the rationale behind selecting these models, discuss the appropriate loss functions, and
highlight best practices in training for optimal performance. Additionally, we examine trade-offs
involved in generating synthetic data, focusing on aspects of realism, diversity, and privacy
preservation.

i Building Intuition
The proposed framework is based on the concept of N-gram models [Cavnar and Trenkle, 2001].
It involves sampling from a distribution where each character is characterized by a conditional
probability over the previous 𝑛𝑛 − 1 characters.

Mathematically, this is represented as:
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This approach has limitations, such as failing to capture long-range dependencies and
contextual semantics. Additionally, as 𝑛𝑛 increases, the number of possible N-grams grows
exponentially, leading to data sparsity and many zero-count N-grams if the training data is
insufficient.

Our approach builds upon Bengio’s work on Neural Probabilistic Language Models, where
he proposed a neural network architecture to learn the probability distribution of word sequences
[Bengio et al., 2000]. By integrating these ideas with the WaveNet architecture, known for its
strong performance in modeling long-range dependencies in sequential data, we aim to develop
a powerful language model capable of generating highly realistic and diversified synthetic text
data [van den Oord et al., 2016].

To clarify our methodological choices, we provide intuition behind adopting Bengio’s neural
network approach and emphasize its advantages in our context.

Bengio’s neural network represents each word with a sampled vector and feeds it into a neural
network that predicts the next word in the sequence. This prediction is achieved by turning the
logits into a distribution via the softmax function, allowing sampling from this distribution. The
network learns both the network parameters and the sampled distribution.

Building on this, we introduce WaveNet. Bengio’s approach squashes the input through the
network, making it difficult to learn long-term dependencies and positional information. In
contrast, WaveNet heavily relies on dilated causal convolutions, specifically designed to capture
long-term dependencies by applying multiple large dilated convolutions in parallel.
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Where:
• 𝑦 (𝑡) is the output at time step 𝑡,
• 𝐾 is the filter size,
• 𝑓 (𝑘) represents the filter weights,
• 𝑥 (𝑡 − 𝑟 · 𝑘) are the input values with dilation rate 𝑟.

Using dilated convolutions, WaveNet can efficiently model 
dependencies over much longer sequences. This is achieved 
by applying multiple layers of dilated convolutions in parallel, 
with exponentially increasing dilation rates [12]. This allows the 
network to capture a broader context at each layer, effectively 
modeling long-term dependencies. Wave Net not only models 
bigrams but also higher-order n-grams (e.g., fourgrams) by 
progressively squashing the input through these convolutional 
layers. This gradual reduction in dimensionality captures more 
semantics, resulting in more realistic and contextually aware 
synthetic data generation   [12].

Moving to other language models for synthetic data generation, 
we include the well-known Recurrent Neural Network (RNN). 
In an RNN, we hold a state ℎ𝑡 and pass it to the forward neuron 
to maintain contextual information. Mathematically, this is 
represented as:

ℎ𝑡 = 𝜎 (𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏)

where:
• ℎ𝑡 is the hidden state at time step 𝑡,
• 𝑊ℎ and 𝑊𝑥 are weight matrices,
• 𝑥𝑡 is the input at time step 𝑡,
• 𝑏 is the bias,
• 𝜎  is the activation function (e.g., tanh or ReLU).

Next, we examine the Transformer model. In the Transformer, 
we maintain key, query, and value vectors. The self-attention 
mechanism in Transformers can be represented as [9]:

where:
• 𝑄 is the query matrix,
• 𝐾 is the key matrix,
• 𝑉 is the value matrix,
• 𝑑𝑘 is the dimension of the key vectors.

To enhance vector representation, we add the original vector to 
the value vector. Once character representation is well-learned, 
we can stack a probabilistic model on top of the Transformer. 
Even simpler models can effectively predict the next character 
in the sequence. For example, we can use a simple probabilistic 
model such as a softmax layer:

where   represents the probability of character 𝑐𝑖 given 
the previous characters          and 𝑧𝑖 is the logit for character 𝑐𝑖.

5.2 Loss
For generative tasks, where we predict the next character in a 

sequence from a distribution, cross-entropy loss is commonly 
used. This loss measures the difference between the true 
distribution and the predicted distribution for each packet 
(sequence) in the dataset.

To compute the loss over an entire sequence of packets, we sum 
the cross-entropy loss over all characters (or time steps) within 
each sequence, and then average the loss over all sequences in 
the dataset. The cross-entropy loss for the dataset can be defined 
as:

where: 

• 𝑀 is the total number of sequences (or packets) in the dataset,
• 𝐶 is the number of classes (characters or possible outputs for 
each token),
• 𝑁 is the number of time steps in a sequence,
• 𝑦𝑖, 𝑗 is the true probability of class 𝑖 in sequence 𝑗 (typically 0 
or 1),
• 𝑦ˆ𝑖, 𝑗 is the predicted probability of class 𝑖 in sequence.

This loss formulation ensures that the model sums the loss over 
all time steps in each sequence, then sums over all sequences 
in the dataset, and finally averages the loss by the number of 
sequences 𝑀.

5.3 Training Practices
Generative models require additional care to ensure they produce 
high-quality and realistic synthetic data. Our framework includes 
best practices to address these needs effectively.

To address tanh issues in Bengio’s approach, we reference [11]. 
During the forward pass, the activations passing through the tanh 
layer tend to be extreme, often lying on the tails at either positive 
one or negative one. During the backward pass, when neurons 
with tanh activation function update their weights, they often 
encounter a zero gradient. Consequently, in the update step:
 

the neuron behaves in a shut-off mode due to a zero gradient, 
resulting in no weight change. To address this, we manage the 
standard distribution of activations entering the tanh activated 
layer to have a gain of    over   , allowing the neurons to 
learn normally.

For covariant shift resulting from high-dimensional datasets 
(curse of dimensionality), we apply batch normalization [10] as 
best practice for normalizing the flow (backward and forward)  
[14]. For a layer with 𝑑-dimensional input      we 
normalize each dimension 𝑥(𝑘) as follows:

where:
• 𝑥(𝑘) is the 𝑘-th dimension of the input,

• 𝑥𝑥(𝑡𝑡 − 𝑟𝑟 · 𝑘𝑘) are the input values with dilation rate 𝑟𝑟.

Using dilated convolutions, WaveNet can efficiently model dependencies over much longer
sequences. This is achieved by applying multiple layers of dilated convolutions in parallel, with
exponentially increasing dilation rates [van den Oord et al., 2016]. This allows the network to
capture a broader context at each layer, effectively modeling long-term dependencies.

WaveNet not only models bigrams but also higher-order n-grams (e.g., fourgrams) by
progressively squashing the input through these convolutional layers. This gradual reduction
in dimensionality captures more semantics, resulting in more realistic and contextually aware
synthetic data generation [van den Oord et al., 2016].

Moving to other language models for synthetic data generation, we include the well-known
Recurrent Neural Network (RNN). In an RNN, we hold a state ℎ𝑡𝑡 and pass it to the forward
neuron to maintain contextual information. Mathematically, this is represented as:

ℎ𝑡𝑡 = 𝜎𝜎(𝑊𝑊ℎℎ𝑡𝑡−1 +𝑊𝑊𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑏𝑏)
where:

• ℎ𝑡𝑡 is the hidden state at time step 𝑡𝑡,

• 𝑊𝑊ℎ and 𝑊𝑊𝑥𝑥 are weight matrices,

• 𝑥𝑥𝑡𝑡 is the input at time step 𝑡𝑡,

• 𝑏𝑏 is the bias,

• 𝜎𝜎 is the activation function (e.g., tanh or ReLU).

Next, we examine the Transformer model. In the Transformer, we maintain key, query, and
value vectors. The self-attention mechanism in Transformers can be represented as [Vaswani
et al., 2023]:

Attention(𝑄𝑄𝑄 𝑄𝑄𝑄𝑄𝑄) = softmax
(
𝑄𝑄𝑄𝑄𝑇𝑇

√
𝑑𝑑𝑘𝑘

)
𝑄𝑄

where:

• 𝑄𝑄 is the query matrix,

• 𝑄𝑄 is the key matrix,

• 𝑄𝑄 is the value matrix,

• 𝑑𝑑𝑘𝑘 is the dimension of the key vectors.

To enhance vector representation, we add the original vector to the value vector. Once
character representation is well-learned, we can stack a probabilistic model on top of the
Transformer. Even simpler models can effectively predict the next character in the sequence. For
example, we can use a simple probabilistic model such as a softmax layer:

𝑃𝑃(𝑐𝑐𝑖𝑖 | 𝑐𝑐<𝑖𝑖) =
exp(𝑧𝑧𝑖𝑖)∑
𝑗𝑗 exp(𝑧𝑧 𝑗𝑗 )

where 𝑃𝑃(𝑐𝑐𝑖𝑖 | 𝑐𝑐<𝑖𝑖) represents the probability of character 𝑐𝑐𝑖𝑖 given the previous characters 𝑐𝑐<𝑖𝑖,
and 𝑧𝑧𝑖𝑖 is the logit for character 𝑐𝑐𝑖𝑖.
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ii Loss
For generative tasks, where we predict the next character in a sequence from a distribution,
cross-entropy loss is commonly used. This loss measures the difference between the true
distribution and the predicted distribution for each packet (sequence) in the dataset.

To compute the loss over an entire sequence of packets, we sum the cross-entropy loss over
all characters (or time steps) within each sequence, and then average the loss over all sequences
in the dataset. The cross-entropy loss for the dataset can be defined as:

Lcross-entropy = − 1
𝑀𝑀

𝑀𝑀∑︁
𝑗𝑗=1

𝑁𝑁∑︁
𝑖𝑖=1

𝐶𝐶∑︁
𝑐𝑐=1

𝑦𝑦𝑖𝑖𝑖 𝑗𝑗 log( �̂�𝑦𝑖𝑖𝑖 𝑗𝑗 )

where:

• 𝑀𝑀 is the total number of sequences (or packets) in the dataset,

• 𝐶𝐶 is the number of classes (characters or possible outputs for each token),

• 𝑁𝑁 is the number of time steps in a sequence,

• 𝑦𝑦𝑖𝑖𝑖 𝑗𝑗 is the true probability of class 𝑖𝑖 in sequence 𝑗𝑗 (typically 0 or 1),

• �̂�𝑦𝑖𝑖𝑖 𝑗𝑗 is the predicted probability of class 𝑖𝑖 in sequence 𝑗𝑗 .

This loss formulation ensures that the model sums the loss over all time steps in each
sequence, then sums over all sequences in the dataset, and finally averages the loss by the number
of sequences 𝑀𝑀 .

iii Training Practices
Generative models require additional care to ensure they produce high-quality and realistic
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• E[𝑥(𝑘)] is the expected value (mean) of 𝑥(𝑘),
• Var[𝑥(𝑘)] is the variance of 𝑥(𝑘).

By normalizing each dimension of the input, batch normalization 
mitigates covariant shift effects, improving network stability and 
performance during training.

To address high initial loss in classification generative tasks, we 
scale output weights during initialization by a small value ( ), 
allowing similar probabilities across alphabets during the first 
pass.

Let 𝑊out be the weight matrix connecting the hidden layer to the 
output layer, and let 𝑈out be the bias vector at the output layer, 

initialized as:

𝑊out ∼ 𝑈(−𝜖, 𝜖), 

𝑈out ∼ 𝑈(−𝜖, 𝜖), 

where 𝑈(−𝜖, 𝜖) is a uniform distribution. This initialization 
strategy ensures that weights and biases are scaled by 𝜖, yielding 
a roughly uniform probability distribution for output activations.

𝑊out (𝑖, 𝑗 ) ∼ 𝑈(−𝜖, 𝜖),  ∀𝑖, 𝑗 , 

𝑈out (𝑖) ∼ 𝑈(−𝜖, 𝜖), ∀𝑖.

• 𝑥𝑥 (𝑘𝑘) is the 𝑘𝑘-th dimension of the input,

• E[𝑥𝑥 (𝑘𝑘)] is the expected value (mean) of 𝑥𝑥 (𝑘𝑘) ,

• Var[𝑥𝑥 (𝑘𝑘)] is the variance of 𝑥𝑥 (𝑘𝑘) .

By normalizing each dimension of the input, batch normalization mitigates covariant shift
effects, improving network stability and performance during training.

To address high initial loss in classification generative tasks, we scale output weights during
initialization by a small value (𝜖𝜖), allowing similar probabilities across alphabets during the first
pass.

Let 𝑊𝑊out be the weight matrix connecting the hidden layer to the output layer, and let 𝑈𝑈out be
the bias vector at the output layer, initialized as:

𝑊𝑊out ∼ 𝑈𝑈 (−𝜖𝜖𝜖 𝜖𝜖)𝜖
𝑈𝑈out ∼ 𝑈𝑈 (−𝜖𝜖𝜖 𝜖𝜖)𝜖

where𝑈𝑈 (−𝜖𝜖𝜖 𝜖𝜖) is a uniform distribution. This initialization strategy ensures that weights and
biases are scaled by 𝜖𝜖 , yielding a roughly uniform probability distribution for output activations.

𝑊𝑊out(𝑖𝑖𝜖 𝑖𝑖) ∼ 𝑈𝑈 (−𝜖𝜖𝜖 𝜖𝜖)𝜖∀𝑖𝑖𝜖 𝑖𝑖 𝜖
𝑈𝑈out(𝑖𝑖) ∼ 𝑈𝑈 (−𝜖𝜖𝜖 𝜖𝜖)𝜖∀𝑖𝑖𝑖

(a) Latent Space (b) General Decay of the Loss

Figure 6: Post Learning State - Symbols being learnt and Loss decay

IV Statistical Framework for Testing Generative Examples
We posit that if the distribution of generated data closely aligns with the real data distribution, it
should effectively train machine learning models. To assess this, we can train a separate classifier
on real data to evaluate the statistical validity of the generated data. Logically, training machine
learning systems on synthetic data that closely mirrors real data should not harm performance.
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6. Statistical Framework for Testing Generative Examples
We posit that if the distribution of generated data closely aligns 
with the real data distribution, it should effectively train machine 
learning models. To assess this, we can train a separate classifier 
on real data to evaluate the statistical validity of the generated 
data. Logically, training machine learning systems on synthetic 
data that closely mirrors real data should not harm performance. 
Overfitting typically arises when a model is overly complex 
relative to the dataset size, often occurring when there are more 
parameters than data points.

However, our generated data mitigates this risk by significantly 
expanding the dataset, providing a more robust foundation 
for model training. Mathematically, with an original dataset 
size of 𝑁 and generated data size 𝑀, the total dataset size 
becomes 𝑁 + 𝑀. Ensuring that the generated data adheres to the 

original distribution, 𝑃real (𝑥) ≈ 𝑃gen (𝑥), helps prevent model 
memorization of specific examples, promoting the learning 
of generalizable patterns [15]. Consequently, incorporating 
generated data enhances the model’s generalization to unseen 
examples, rather than leading to overfitting.

Underfitting, which occurs when a classifier fails to capture 
underlying patterns in the data, resulting in suboptimal 
performance, is effectively addressed by the generated data. 
By training on a broader range of examples, the model can 
better recognize diverse features and gain a comprehensive 
understanding of the underlying data patterns.

Thus, we employed a one-class Support Vector Machine (SVM) 
with a linear kernel to determine whether the generated data is 
statistically similar to real data.
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Overfitting typically arises when a model is overly complex relative to the dataset size, often
occurring when there are more parameters than data points.

However, our generated data mitigates this risk by significantly expanding the dataset,
providing a more robust foundation for model training. Mathematically, with an original dataset
size of 𝑁𝑁 and generated data size 𝑀𝑀, the total dataset size becomes 𝑁𝑁 + 𝑀𝑀. Ensuring that the
generated data adheres to the original distribution, 𝑃𝑃real(𝑥𝑥) ≈ 𝑃𝑃gen(𝑥𝑥), helps prevent model
memorization of specific examples, promoting the learning of generalizable patterns [Sallab
et al., 2019]. Consequently, incorporating generated data enhances the model’s generalization to
unseen examples, rather than leading to overfitting.

Underfitting, which occurs when a classifier fails to capture underlying patterns in the data,
resulting in suboptimal performance, is effectively addressed by the generated data. By training
on a broader range of examples, the model can better recognize diverse features and gain a
comprehensive understanding of the underlying data patterns.

Thus, we employed a one-class Support Vector Machine (SVM) with a linear kernel to
determine whether the generated data is statistically similar to real data.

Figure 7: Pseudo Visualization of The Latent Space Post Classifying Inliers

V Results
In our experiments, we evaluated each model’s ability to generate synthetic data that closely
aligns with the original data distribution. The primary evaluation metric was the percentage of
inliers, defined as the proportion of generated data points that fall within the distribution of the
original data.

The results indicate that while all models performed well, the Recurrent Neural Network
(RNN) achieved the highest percentage of inliers at 87.9%, followed by the Transformer-based
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7. Results
In our experiments, we evaluated each model’s ability to 
generate synthetic data that closely aligns with the original data 
distribution. The primary evaluation metric was the percentage 
of inliers, defined as the proportion of generated data points that 
fall within the distribution of the original data.

The results indicate that while all models performed well, 

the Recurrent Neural Network (RNN) achieved the highest 
percentage of inliers at 87.9%, followed by the Transformer-
based Decoder at 84.9%. WaveNet, although effective in 
modeling long-range dependencies, had the lowest inlier rate at 
69.2%, likely due to its convolutional structure, which may not 
capture certain complex dependencies as efficiently as the RNN 
and Transformer models.

Decoder at 84.9%. WaveNet, although effective in modeling long-range dependencies, had
the lowest inlier rate at 69.2%, likely due to its convolutional structure, which may not capture
certain complex dependencies as efficiently as the RNN and Transformer models.

Table 2: Inliers with Respect to Each Model

Model Inliers (%)
WaveNet 69.2%
RNN 87.9%
Transformer Decoder 84.9%

The RNN outperformed the other models in terms of generating inliers, likely due to its
ability to capture sequential dependencies in the data. However, as datasets grow more complex,
particularly with higher dimensionality or heterogeneity, the Transformer-based Decoder model is
expected to excel. This is due to the Transformer’s self-attention mechanism, which is particularly
suited for handling complex dependencies and long-range interactions, which become more
significant with increased data complexity.

While WaveNet is designed to model long-range dependencies through dilated convolutions,
it may not have been as effective for this dataset due to its convolutional architecture, which can
limit its capacity to capture fine-grained patterns in structured data [van den Oord et al., 2016].
Nevertheless, its performance might improve with further fine-tuning and optimization.

VI Synthetic Data Generation: A Survey
Synthetic data generation has emerged as a vital solution in artificial intelligence (AI) and
machine learning, offering unique advantages for both research and practical applications. In
response to growing privacy concerns and limited access to real-world data, synthetic data has
evolved as a powerful alternative, enabling model training, testing, and deployment without
compromising sensitive information. This survey examines the diverse applications of synthetic
data generation, from vision and voice technologies to business intelligence, and highlights
its potential to transform data-driven fields. By synthesizing insights from recent studies, this
survey aims to provide a comprehensive overview of how synthetic data is revolutionizing AI
across various domains while addressing privacy and ethical considerations.

VII Applications
Synthetic data presents numerous compelling benefits, making it a highly attractive option across
a wide range of applications. By streamlining the processes of training, testing, and deploying
AI solutions, synthetic data enables more efficient and effective development. Furthermore,
this cutting-edge technology mitigates the risk of exposing sensitive information, thereby
safeguarding customer security and privacy. As researchers transition synthetic data from the
laboratory to practical implementations, its real-world applications continue to expand. This
section examines several notable domains where synthetic data generation substantially impacts
addressing real-world challenges.

13

The RNN outperformed the other models in terms of generating 
inliers, likely due to its ability to capture sequential dependencies 
in the data. However, as datasets grow more complex, particularly 
with higher dimensionality or heterogeneity, the Transformer-
based Decoder model is expected to excel. This is due to the 
Transformer’s self-attention mechanism, which is particularly 
suited for handling complex dependencies and long-range 
interactions, which become more significant with increased 
data complexity. While Wave Net is designed to model long-
range dependencies through dilated convolutions, it may not 
have been as effective for this dataset due to its convolutional 
architecture, which can limit its capacity to capture fine-grained 
patterns in structured data [12]. Nevertheless, its performance 
might improve with further fine-tuning and optimization.

8. Synthetic Data Generation: A Survey
Synthetic data generation has emerged as a vital solution in 
artificial intelligence (AI) and machine learning, offering 
unique advantages for both research and practical applications. 
In response to growing privacy concerns and limited access 
to real-world data, synthetic data has evolved as a powerful 
alternative, enabling model training, testing, and deployment 
without compromising sensitive information. This survey 

examines the diverse applications of synthetic data generation, 
from vision and voice technologies to business intelligence, 
and highlights its potential to transform data-driven fields. By 
synthesizing insights from recent studies, this survey aims to 
provide a comprehensive overview of how synthetic data is 
revolutionizing AI across various domains while addressing 
privacy and ethical considerations.

9. Applications
Synthetic data presents numerous compelling benefits, making 
it a highly attractive option across a wide range of applications. 
By streamlining the processes of training, testing, and deploying 
AI solutions, synthetic data enables more efficient and effective 
development. Furthermore, this cutting-edge technology 
mitigates the risk of exposing sensitive information, thereby 
safeguarding customer security and privacy. As researchers 
transition synthetic data from the laboratory to practical 
implementations, its real-world applications continue to expand. 
This section examines several notable domains where synthetic 
data generation substantially impacts addressing real-world 
challenges.
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9.1 Vision
Generating synthetic data for computer vision tasks has proven 
highly effective, as it allows for the creation of large, diverse 
datasets that can be used to train models without the need for 
costly and time-consuming data collection efforts [16]. These 
synthetically generated datasets can capture a wide range of 
scenarios, including complex lighting conditions, occlusions, 
and diverse object appearances, which are crucial for developing 
robust vision-based systems. GANs and other generative models 
have emerged as powerful tools for producing such high-quality 
synthetic data  [17-19].

In computer vision, manual labeling remains essential for 
certain tasks [20]. However, tasks like segmentation, depth 
estimation, and optical flow estimation can be particularly 
arduous to label manually due to their inherent complexity. To 
alleviate this burden, synthetic data has become a transformative 
tool, streamlining the labeling process significantly [21]. 
Sankaranarayanan et al. proposed a generative adversarial 
network (GAN) designed to bridge the gap between embeddings 
in the learned feature space, which is instrumental in Visual 
Domain Adaptation [22]. This methodology enables semantic 
segmentation across varied domains by using a generator to 
map features onto the image space, allowing the discriminator 
to operate effectively on these projections. The discriminator’s 
output serves as the basis for adversarial losses   [23]. Research 
has demonstrated that applying adversarial losses to the projected 
image space consistently outperforms applications to the feature 
space alone, yielding notably enhanced performance [23]. In a 
recent study, a team at Microsoft Research validated the efficacy 
of synthetic data in face-related tasks by leveraging a parametric 
3D face model, enriched with a comprehensive library of hand-
crafted assets [24]. This approach allowed for the rendering of 
training images with high levels of realism and diversity. The 
researchers demonstrated that machine learning models trained 
on synthetic data achieved accuracy comparable to models 
trained on real data for tasks like landmark localization and face 
parsing. Notably, synthetic data alone was sufficient for robust 
face detection in unconstrained environments [24].

9.2 Voice
The synthetic voice industry is at the cutting edge of technological 
progress, evolving at an unprecedented rate. The rise of machine 
learning and deep learning has enabled the creation of synthetic 
voices for applications like video production, digital assistants, 
and video games [25], making the process more accessible and 
accurate than ever. This field lies at the intersection of multiple 
domains, including acoustics, linguistics, and signal processing. 
Researchers continuously seek to enhance the accuracy and 
naturalness of synthetic voices. As technology continues to 
advance, synthetic voices are expected to become increasingly 
integrated into daily life, offering valuable support across 
various domains and enriching user experiences  [25]. Earlier 
research involved spectral modeling techniques for statistical 
parametric speech synthesis, utilizing low-level, unmodified 
spectral envelope parameters for generating synthetic voices. 
These spectral envelopes are represented through graphical 
models with multiple hidden variables, incorporating structures 
like restricted Boltzmann machines and deep belief networks 
(DBNs) [26]. Enhancements to traditional hidden Markov model 
(HMM)-based speech synthesis systems have shown substantial 

improvements in achieving a more natural sound while reducing 
oversmoothing effects [27]. Synthetic data has also found 
applications in Text-to-Speech (TTS) systems, achieving a level 
of naturalness close to that of human speech  [28,29]. Synthetic 
speech (SynthASR) has emerged as a solution for automatic 
speech recognition in cases where real data is sparse or limited. 
By integrating techniques like weighted multi-style training, data 
augmentation, encoder freezing, and parameter regularization, 
researchers have tackled issues like catastrophic forgetting. 
This innovative approach enables state-of-the-art training for a 
broad array of end-to-end (E2E) automatic speech recognition 
(ASR) models, reducing dependency on production data and the 
associated costs.

9.3 Business
The risk of compromising or exposing original data remains a 
constant concern, especially in the business sector, where strict 
restrictions govern data sharing both within and beyond the 
organization. This has led to an increased focus on developing 
financial datasets that replicate the characteristics of ”real 
data” while safeguarding the privacy of all parties involved. 
Although technologies such as encryption, anonymization, and 
advanced privacy-preserving methods have been employed 
to secure original data [?], residual risks persist. Data-derived 
information can sometimes still be used to trace individuals, thus 
compromising privacy   [30]. Synthetic data offers a compelling 
solution by removing the need to expose sensitive data, 
effectively ensuring privacy and security for both companies 
and their customers [?]. Additionally, synthetic data allows 
organizations faster data access by circumventing certain privacy 
and security protocols. Historically, institutions with large data 
reserves were well-positioned to assist decision- makers in 
tackling a range of issues. However, even internal data access 
was often restricted due to confidentiality concerns. Today, 
companies leverage synthetic data to refresh and model original 
datasets, generating ongoing insights that drive organizational 
performance improvements [?].

10. Privacy Risks and Prevention
Synthetic data generation has emerged as a key solution for 
data privacy and sharing in sectors where sensitive data cannot 
be disclosed, such as clinical, genomic, and financial domains. 
However, the generation of synthetic data that preserves the 
statistical properties of real datasets introduces privacy risks, as 
models may unintentionally expose underlying patterns, thereby 
compromising individual privacy. Membership inference 
attacks, for example, can identify whether specific data points 
were included in the training set, posing significant privacy 
concerns. To address these risks, privacy-enhancing methods fall 
into two primary categories: anonymization-based approaches 
and differential privacy (DP) methods.

Anonymization techniques, including 𝑘-anonymity and nearest 
marginal sanitization, replace sensitive information with 
fictitious yet realistic data, providing foundational privacy 
protection, though often lacking rigorous guarantees. Differential 
privacy methods, on the other hand, offer more robust protection 
by introducing noise to data, thus maintaining privacy while 
preserving data utility. Advanced implementations, such as 
GAN-based DP models (e.g., DPGAN and PATE-GAN) and 
local differential privacy (LDP) frameworks, support secure 



Volume 1 | Issue 2 | 10J Data Analytic Eng Decision Making, 2024

synthetic data generation, particularly in distributed contexts.

Alongside privacy, fairness in synthetic data is increasingly 
critical, as models trained on biased datasets may unfairly 
represent minority groups, reinforcing existing disparities. Three 
main approaches address fairness in synthetic data: preprocessing, 
which adjusts input data c to remove correlations with sensitive 
attributes; in-processing, which incorporates fairness constraints 

during model training; and post-processing, which adjusts model 
predictions to enhance equity. Preprocessing remains the most 
commonly applied fairness technique, especially for addressing 
subgroup imbalances through balanced synthetic datasets. 
Overall, privacy-enhanced synthetic data generation, coupled 
with fairness-aware strategies, is crucial for secure and ethical 
data sharing that meets both privacy and fairness standards in 
research and industry applications.

to remove correlations with sensitive attributes; in-processing, which incorporates fairness
constraints during model training; and post-processing, which adjusts model predictions to
enhance equity. Preprocessing remains the most commonly applied fairness technique, especially
for addressing subgroup imbalances through balanced synthetic datasets.

Overall, privacy-enhanced synthetic data generation, coupled with fairness-aware strategies,
is crucial for secure and ethical data sharing that meets both privacy and fairness standards in
research and industry applications.

Table 3: Summary of Some Privacy-Enhancing Techniques in Generative AI for Synthetic Data
[Lu et al., 2024]

Paper Privacy Technique Model Data Format Notes
? Differential Privacy Autoencoder Attribute -
Lee et al.
[2020]

Differential Privacy VAE + GAN, Recurrent Autoen-
coder

EHR -

Acs et al.
[2018]

Differential Privacy Generative Artificial Neural
Networks

Image and Text Kernel k-means

Jordon et al.
[2018]

Differential Privacy (PATE) GAN Attribute DNN

? Differential Privacy n-gram Sequential/Time Series w.o. DNN
Cunningham
et al. [2021]

Local Differential Privacy n-gram Trajectory w.o. DNN

Du et al.
[2023]

Local Differential Privacy Markov Probabilistic Model Trajectory w.o. DNN

He et al.
[2015b]

Differential Privacy Markov Probabilistic Model Trajectory w.o. DNN

Wang and
Sinnott
[2017]

Differential Privacy Markov Probabilistic Model Social Media Trajectory

Gursoy et al.
[2018]

Differential Privacy Markov Probabilistic Model Trajectory w.o. DNN

Mir et al.
[2013]

Differential Privacy Distribution Estimation Location w.o. DNN

Roy et al.
[2016]

Differential Privacy Distribution Estimation Trajectory w.o. DNN

Bindschaedler
and Shokri
[2016]

Plausible Deniability Hidden Markov Models Trajectory w.o. DNN

Wang et al.
[2023]

Differential Privacy Markov Chain Model Trajectory w.o. DNN

Narita et al.
[2024]

Differential Privacy Probabilistic Transform Trajectory w.o. DNN

Bindschaedler
et al. [2017]

Plausible Deniability Probabilistic Transform Attribute w.o. DNN

Tseng and
Wu [2020]

Compressive Privacy GAN Image DNN

Zhang et al.
[2018]

Differential Privacy GAN Image DNN

Xie et al.
[2018]

Differential Privacy GAN Image and EHR DNN

Xu et al.
[2019]

Differential Privacy GAN Image DNN

Liu et al.
[2019]

Differential Privacy GAN Image DNN

Triastcyn
and Faltings
[2020]

Differential Privacy GAN Attribute (Tabular) and
Graph

DNN

Ge et al.
[2020]

Differential Privacy GAN Image and EHR DNN

IX Evaluation
Evaluating the quality of synthetic data is essential to validate its effectiveness and applicability
in practical applications. Key strategies include human evaluation, which relies on expert
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Table 3: Summary of Some Privacy-Enhancing Techniques in Generative AI for Synthetic Data [1]

11. Evaluation
Evaluating the quality of synthetic data is essential to validate 
its effectiveness and applicability in practical applications. Key 
strategies include human evaluation, which relies on expert 
assessments to judge data quality but is often resource-intensive 
and may not scale well for high-dimensional datasets. Statistical 
evaluation offers a quantitative approach by comparing real 
and synthetic datasets across various metrics, allowing for 
objective assessments of data fidelity. Additionally, pre-trained 
machine learning models can serve as discriminators, assessing 
how closely synthetic data approximates real data, a common 

technique in Generative Adversarial Networks (GANs) [31]. 
The”Train on Synthetic, Test on Real” (TSTR) approach 
evaluates synthetic data by training models on it and measuring 
performance on real data, thus gauging its utility for downstream 
tasks. Lastly, application-specific evaluations consider unique 
domain requirements, such as regulatory compliance and 
usability, to ensure synthesized data meets specific standards. 
By combining these methods, researchers can achieve a 
comprehensive understanding of synthetic data’s strengths and 
limitations, which is pivotal for advancing generation techniques 
and expanding their applications across fields.
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11.1 Human-Based Evaluation
Human evaluation is a fundamental, though often challenging, 
method to assess the quality of synthetic data [32]. This 
approach involves gathering feedback from domain experts 
or general users to judge the data’s realism, usability, and 
similarity to actual data within specific applications. Human 
evaluation plays a particularly crucial role in tasks where 
subjective interpretation is essential, such as speech synthesis 
[33]. where evaluators rate the perceived naturalness and clarity 
of synthesized voices compared to real human speech in a 
blind, side-by-side manner [8]. This method allows evaluators 
to provide insights into subtle nuances that automated metrics 
might overlook, such as intonation, articulation, and fluidity, 
which are vital for creating high-quality, user-friendly synthetic 
voices. Similarly, in computer vision, human judges may assess 
the accuracy and realism of synthetic images, examining details 
like texture, lighting, and object consistency, which can be 
critical for applications in virtual reality and gaming. Despite 
its advantages, human evaluation has notable limitations. It is 
resource-intensive, requiring both time and financial investment 
to gather and analyze opinions from experts or a broad range of 
users. This method is also subject to variability and potential bias, 
as human judgments can differ due to individual perceptions, 
experiences, and interpretation of quality standards. Scalability 
becomes another hurdle, as this process does not easily extend 
to evaluating large volumes of high-dimensional data, such 
as complex image or video datasets, which cannot be fully 
examined by a human evaluator due to time constraints. High-
dimensional synthetic data often contains intricate patterns or 
attributes that are challenging to assess through visual inspection 
alone. Moreover, for areas like medical image synthesis or 
genomic data, human evaluators may lack the ability to validate 
highly technical details, further limiting the utility of this 
approach. As a result, while human evaluation provides valuable 
qualitative insights, it is often best complemented with objective, 
automated evaluation techniques to obtain a more comprehensive 
assessment of synthetic data quality and applicability.

11.2 Statistical-Based Evaluation
Statistical difference evaluation is a widely-used strategy to 
quantitatively assess the quality of synthetic data by comparing 
statistical metrics between synthetic and real datasets. This 
approach involves calculating key statistics, such as mean, 
variance, and correlation, for individual features within both 
datasets. The closer these statistical properties are, the better 
the quality and fidelity of the synthetic data. For instance, in 
electronic health record (EHR) data generation, metrics like the 
frequency and correlation of medical concepts, as well as patient-
level clinical features, are examined to ensure that synthetic 
data closely mirrors real-world patterns [8]. Smaller statistical 
differences suggest that the synthetic data has successfully 
captured the underlying distribution of the real data, making it a 
valuable proxy for various downstream applications. Advanced 
techniques such as Support Vector Machines (SVMs) can be 
utilized to enhance statistical difference evaluation. By training 
SVMs on synthetic and real datasets, researchers can examine 
how well the models separate or align these two datasets. In 
cases where the SVM achieves a high accuracy in differentiating 
between real and synthetic data, it may indicate notable 
differences in their distributions. Conversely, if the model 
struggles to separate them, it suggests that the synthetic data 

closely approximates the real data distribution. These methods 
offer a robust, objective means to evaluate similarity, allowing 
researchers to refine synthetic data generation techniques to 
achieve better quality and utility across various applications.

11.3 Using Pretrained Models
Using a pre-trained machine learning model to evaluate 
synthetic data quality provides an automated, robust method for 
assessing how well the synthetic data approximates real data. 
In the context of Generative Adversarial Networks (GANs) [3]. 
this approach leverages the discriminator, a model trained to 
distinguish between real and synthetic (fake) data, as a quality 
measure. As the generator improves, it learns to produce data that 
increasingly”fools” the discriminator, making it difficult for the 
discriminator to differentiate synthetic data from real data. The 
discriminator’s accuracy or confidence level when evaluating 
the synthetic data thus serves as an indicator of the generator’s 
success in producing realistic data. A low performance of the 
discriminator suggests that the synthetic data closely resembles 
the real data, signifying a high-quality output.

This evaluation strategy is not limited to GANs. Pre-trained 
machine learning models, such as image classifiers or language 
models, can also serve this purpose across various types of 
synthetic data. For example, in synthetic image generation, a 
pre-trained image classifier can be used to evaluate the synthetic 
images by measuring how well it classifies them compared to real 
images. Similarly, for text data, a language model’s perplexity 
on synthetic data relative to real data can provide insights into 
quality. The strength of this approach lies in its ability to provide 
automated, task-specific feedback on the realism of synthetic 
data, making it a versatile evaluation tool across different 
generative models and domains. This method helps researchers 
refine generative techniques, ultimately enhancing the realism 
and applicability of synthetic data in practical settings.

11.4 Train on Synthetic, Test on Real
The ”Train on Synthetic, Test on Real” (TSTR) strategy is a 
powerful evaluation method for assessing the quality of synthetic 
data in terms of its utility for machine learning applications. 
In this approach, models are trained exclusively on synthetic 
data, then tested on real data to measure their performance in 
downstream tasks. High performance on real test data implies 
that the synthetic data effectively captures the essential 
characteristics and patterns of the real data, making it a viable 
substitute for training purposes. This approach is particularly 
useful in scenarios where access to real data is restricted due 
to privacy or availability concerns, as it enables researchers to 
assess whether models trained on synthetic data can generalize 
well to real-world conditions. For example, in, synthetic data 
is used to train machine-learning models, and their prediction 
performance is then evaluated on real test data in healthcare 
applications [34]. This method provides valuable insights into 
the generalizability of models trained on synthetic datasets, as 
high TSTR performance across diverse applications—such as 
classification, regression, or segmentation tasks—indicates that 
the synthetic data can serve as an effective proxy. Additionally, 
TSTR enables developers to identify specific aspects where 
synthetic data may fall short, guiding further improvements in 
data generation methods to enhance real-world applicability. 
This strategy thus not only evaluates synthetic data quality but 
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also supports broader adoption of synthetic data in fields where 
high-quality, representative data is often scarce or sensitive.

12. Future Work
To further advance the field of synthetic data generation, several 
key areas warrant additional exploration and development. 
One significant avenue is the capability to generate larger and 
more diverse datasets. Expanding the capacity to synthesize 
extensive datasets with high variability would greatly enhance 
the applicability of synthetic data in machine learning tasks, 
especially in domains where data scarcity remains a challenge. 
Moreover, exploring innovative architectures beyond the current 
models can lead to substantial advancements. Investigating 
new generative models or enhancing existing ones could 
improve the quality and diversity of synthetic data. Importantly, 
demonstrating that these advancements can be achieved 
using accessible computational resources, such as a personal 
computer with a well-coded pipeline, would underscore 
the feasibility of cutting-edge AI developments without the 
need for extensive infrastructure. This democratization of 
technology could encourage broader participation in the field 
and accelerate innovation. Additionally, integrating more robust 
privacy-preserving techniques into the data generation process 
remains a critical area for future work. As privacy, concerns 
continue to grow, developing methods that ensure data utility 
while rigorously protecting sensitive information is essential. 
Combining differential privacy mechanisms with generative 
models could provide stronger guarantees and expand the 
adoption of synthetic data in sensitive domains.

Finally, applying synthetic data generation techniques to a 
wider range of applications, including those with complex data 
types such as time-series, graphs, and multimodal data, would 
significantly broaden the impact of this research. Tailoring 
generative models to handle these complex data structures 
effectively could open new opportunities in various fields, from 
healthcare to finance, where such data types are prevalent.

13. Conclusion
In conclusion, our framework for synthetic data generation, 
complemented by an extensive survey of existing methods, 
has demonstrated its effectiveness in producing high-quality 
synthetic data across a range of applications. Through this 
survey, we highlighted the strengths and limitations of various 
approaches, offering insights into their real-world applicability 
and potential for enhancing privacy-preserving practices. 
Our results show that sequence models, in particular, can be 
effectively utilized to generate large-scale, structured numerical 
datasets, even in scenarios where original data is limited or 
subject to strict privacy constraints. By addressing these key 
limitations and integrating privacy-preserving techniques, our 
approach not only improves data availability but also ensures 
the integrity and confidentiality of sensitive information. The 
scalability and adaptability of our framework, combined with 
the insights from our survey, position it as a valuable tool for 
advancing machine learning systems across diverse domains, 
enabling secure, ethical, and effective synthetic data generation 
[35-56].
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