
Volume 1 | Issue 2 | 1J Data Analytic Eng Decision Making, 2024

Citation: Zbeeb, M., Ghorayeb, M., Salman, M. (2024). Exploring the Landscape for Generative Sequence Models for
Specialized Data Synthesis. J Data Analytic Eng Decision Making, 1(2), 01-14.

Exploring the Landscape for Generative Sequence Models for Specialized Data
Synthesis

*Corresponding Author
Mohammad Zbeeb, Department of Electrical and Computer Engineering,
American University of Beirut, Lebanon.

Submitted: 2024, Nov 08; Accepted: 2024, Dec 07; Published: 2024, Dec 17

Mohammad Zbeeb*, Mohammad Ghorayeb and Mariam Salman

Department of Electrical and Computer Engineering,
American University of Beirut, Lebanon

Abstract
Artificial Intelligence (AI) research often aims to develop models that can generalize reliably across complex datasets,
yet this remains challenging in fields where data is scarce, intricate, or inaccessible. This paper introduces a novel
approach that leverages three generative models of varying complexity to synthesize one of the most demanding
structured datasets: Malicious Network Traffic. Our approach uniquely transforms numerical data into text, re-framing
data generation as a language-modeling task, which not only enhances data regularization but also significantly
improves generalization and the quality of the synthetic data. Extensive statistical analyses demonstrate that our
method surpasses state-of-the-art generative models in producing high-fidelity synthetic data. Additionally, we conduct
a comprehensive study on synthetic data applications, effectiveness, and evaluation strategies, offering valuable insights
into its role across various domains. Our code and pre-trained models are openly accessible at Github, enabling further
exploration and application of our methodology.

Review Article

Keywords: Data Synthesis, Machine Learning, Traffic Generation, Privacy Preserving Data, Generative Models

1. Introduction
Machine learning algorithms depend heavily on the availability
and quality of training data. However, acquiring real-world data
poses challenges due to privacy concerns, limited accessibility,
and potential biases [1]. Consequently, synthetic data generation
has attracted increasing interest, aiming to create diverse and
representative datasets that mitigate issues of data scarcity,
bias, and privacy [2]. In recent years, Generative Adversarial
Networks (GANs) have emerged as a powerful technique for
producing realistic synthetic data [3]. GANs are widely applied
in fields such as image generation, network traffic modeling,
and healthcare data synthesis [4]. These models replicate the
statistical properties of real-world data, providing a valuable
tool for augmenting datasets in cases where data is limited
or sensitive [5]. Despite their impressive results, GANs face
challenges. Computational complexity and training instability
have been widely documented, complicating replication
across domains [6]. Moreover, GANs’ primary focus on
unstructured data raises questions about their suitability for
structured numerical data, which is often critical in fields such
as cybersecurity, finance, and healthcare [5]. This has fueled
demand for alternative generative models capable of efficiently
handling structured data while preserving the original data’s key
statistical properties. Beyond GANs, Variational Autoencoders
(VAEs) and other generative models have shown promise for
synthetic data generation. VAEs effectively capture complex
data distributions in recommendation systems and collaborative
filtering [7]. However, they may lack representational power

compared to GANs, especially with complex datasets [4].
Alongside methodological advancements, several studies have
integrated privacy-preserving mechanisms into generative
models. Differentially private GANs, for instance, generate
synthetic data that maintains privacy and minimizes the risk of
sensitive information leakage [2]. Such approaches are essential
in sensitive domains like healthcare, where data privacy is
paramount, requiring a careful balance between data quality and
ethical considerations.

Existing synthetic data generation methods often focus on
unstructured data or encounter challenges in specialized fields
like cybersecurity and financial risk modeling. Furthermore,
adversarial training and continuous distribution modeling can
complicate the generation process, particularly for structured
numerical data with irregularities or outliers [5]. This paper
builds on existing research by exploring the potential of sequence
models for synthetic data generation. Sequence models, widely
used in natural language processing, present a novel approach to
generating structured data by framing it as a language-modeling
problem [8]. By leveraging sequence models’ strengths in
handling both discrete and continuous data, we aim to address
limitations posed by traditional generative models, particularly in
domains requiring structured, high-dimensional data. Informed
by key findings from the literature, we aim to contribute to
the discourse on synthetic data generation by investigating
how sequence models can provide a computationally efficient
alternative to established techniques. While GANs and VAEs

Journal of data Analytics and Engineering Decision Making

ISSN: 2998-8713

Volume 1 | Issue 2 | 2J Data Analytic Eng Decision Making, 2024

have dominated the field, we propose that sequence models offer
a flexible and scalable approach for generating high-quality
synthetic data, particularly in scenarios with structured data and
categorical variables [9].

2. Techniques
Here we describe our techniques for data generation and training

the generators as language- based classifiers. First, we provide
background on structured datasets and the data used in our
experiments.

2.1 Dataset Overview
An overview of the data used in our experiments is presented in
Table 1.Table 1: Overview of Typical Attributes in Flow-Based Data [Ring et al., 2019]

Attribute Type Example
1 Date First Seen Timestamp 2018-03-13 12:32:30.383
2 Duration Continuous 0.212
3 Transport Protocol Categorical TCP
4 Source IP Address Categorical 192.168.100.5
5 Source Port Categorical 52128
6 Destination IP Address Categorical 8.8.8.8
7 Destination Port Categorical 80
8 Bytes Numeric 2391
9 Packets Numeric 12
10 TCP Flags Binary/Categorical .A..S.

The dataset used in this project contains attributes typical of unidirectional NetFlow data
[Ring et al., 2019]. NetFlow data is highly heterogeneous, containing continuous, numeric,
categorical, and binary attributes. Most attributes, such as IP addresses and ports, are categorical.
Additionally, there is a timestamp attribute (Date First Seen), a continuous attribute (Duration),
and numeric attributes such as Bytes and Packets.

A key aspect of the dataset is the inclusion of TCP flags, defined here as binary/categorical.
These flags can be interpreted either as six binary attributes (e.g., isSYN flag, isACK flag)
or as a single categorical value, allowing flexibility in data processing and modeling across
generative approaches. This diverse mix of attribute types poses challenges for synthetic data
generation, especially when aiming to preserve the statistical properties of the original data while
maintaining categorical, continuous, and binary relationships.

ii Data Transformation via CICFlowmeter-V4.0 (ISCXFlowMeter)
For our experiments, we converted raw network traffic data into CSV format using CICFlowmeter-
V4.0, formerly known as ISCXFlowMeter. CICFlowmeter is a bi-directional flow generator
and analyzer for Ethernet traffic, specifically designed for anomaly detection in cybersecurity
datasets [Ring et al., 2019].

CICFlowmeter has been extensively used in well-known cybersecurity datasets, including:

• Android Adware-General Malware dataset (CICAAGM2017),

• IPS/IDS dataset (CICIDS2017),

• Android Malware dataset (CICAndMal2017), and

• Distributed Denial of Service (CICDDoS2019).

By leveraging CICFlowmeter, we extracted 80 features from each flow, compiling a compre-
hensive set of flow-based features in CSV format. This structured tabular data includes attributes
such as source and destination IP addresses, transport protocols, port numbers, byte and packet
counts, TCP flags, and other network metrics.

The conversion of network flows into structured tabular data is crucial for our approach, as it
allows for systematic analysis and modeling. The resulting dataset, with its rich set of 80 features,
provides the necessary structured format for advanced machine learning techniques, enabling

3

Table 1: Overview of Typical Attributes in Flow-Based Data [5]

Figure 1: PCA Explained Variance Plot: The majority of the variance is captured by the first few principal components, indicating
that much of the data’s complexity can be explained by a small subset of components.

The dataset used in this project contains attributes typical
of unidirectional NetFlow data [5]. NetFlow data is highly
heterogeneous, containing continuous, numeric, categorical,
and binary attributes. Most attributes, such as IP addresses and
ports, are categorical. Additionally, there is a timestamp attribute
(Date First Seen), a continuous attribute (Duration), and numeric
attributes such as Bytes and Packets. A key aspect of the dataset
is the inclusion of TCP flags, defined here as binary/categorical.
These flags can be interpreted either as six binary attributes
(e.g., isSYN flag, isACK flag) or as a single categorical value,
allowing flexibility in data processing and modeling across
generative approaches. This diverse mix of attribute types poses
challenges for synthetic data generation, especially when aiming
to preserve the statistical properties of the original data while
maintaining categorical, continuous, and binary relationships.

2.2 Data Transformation via CICFlowmeter - V4.0 (ISCX-
FlowMeter)
For our experiments, we converted raw network traffic data
into CSV format using CICFlowmeter- V4.0, formerly known
as ISCXFlowMeter. CICFlowmeter is a bi-directional flow
generator and analyzer for Ethernet traffic, specifically designed
for anomaly detection in cybersecurity datasets [5].

CICFlowmeter has been extensively used in well-known
cybersecurity datasets, including:
• Android Adware-General Malware dataset (CICAAGM2017),
• IPS/IDS dataset (CICIDS2017),
• Android Malware dataset (CICAndMal2017), and
• Distributed Denial of Service (CICDDoS2019).
By leveraging CICFlowmeter, we extracted 80 features from
each flow, compiling a compre- hensive set of flow-based
features in CSV format. This structured tabular data includes
attributes such as source and destination IP addresses, transport
protocols, port numbers, byte and packet counts, TCP flags, and
other network metrics.

The conversion of network flows into structured tabular data is
crucial for our approach, as it allows for systematic analysis and
modeling. The resulting dataset, with its rich set of 80 features,
provides the necessary structured format for advanced machine
learning techniques, enabling effective synthetic data generation
while preserving relationships between features. Structured data
in this format facilitates the use of sequence models and other
generative techniques that rely on well-organized, tabular data
representations [10].effective synthetic data generation while preserving relationships between features. Structured

data in this format facilitates the use of sequence models and other generative techniques that
rely on well-organized, tabular data representations [Ioffe and Szegedy, 2015].

Figure 1: PCA Explained Variance Plot: The majority of the variance is captured by the first few
principal components, indicating that much of the data’s complexity can be explained by a small
subset of components.

iii Data Transformation to Text Domain - Symbolic Encoding
Our preliminary exploratory data analysis revealed significant complexity within the dataset, as
evidenced by high variance in certain features and the considerable number of unique values
across columns. This complexity makes the dataset unsuitable for traditional statistical sampling
or simple data synthesis techniques, supporting the exploration of advanced synthetic data
generation models.

To enhance the representational quality and address the challenges posed by this complexity,
we applied a novel encoding strategy, transforming the dataset from a numeric to a symbolic,
textual domain. Specifically, each numeric feature was discretized into intervals, with each
interval represented by one of 49 unique symbols. Each symbol corresponds to a 1% range of
the respective feature’s values, resulting in a robust dataset of 30,000 examples. Each example
can be considered analogous to a sentence in the symbolic domain [Vaswani et al., 2023].

This transformation repositions the data generation task as a classification problem rather
than continuous regression. By encoding each data point as a sequence of symbols, we frame
the task as the prediction of the next symbol in a sequence, given a preceding set of symbols,
analogous to language modeling tasks in NLP [Bengio et al., 2000]. The dataset, now framed in
a discrete symbolic space, facilitates the use of classification algorithms designed for categorical
outputs, aligning well with sequence models.

4

Volume 1 | Issue 2 | 3J Data Analytic Eng Decision Making, 2024

2.3 Data Transformation to Text Domain - Symbolic
Encoding
Our preliminary exploratory data analysis revealed significant
complexity within the dataset, as evidenced by high variance in
certain features and the considerable number of unique values
across columns. This complexity makes the dataset unsuitable
for traditional statistical sampling or simple data synthesis
techniques, supporting the exploration of advanced synthetic
data generation models. To enhance the representational
quality and address the challenges posed by this complexity,
we applied a novel encoding strategy, transforming the dataset
from a numeric to a symbolic, textual domain. Specifically,
each numeric feature was discretized into intervals, with each

interval represented by one of 49 unique symbols. Each symbol
corresponds to a 1% range of the respective feature’s values,
resulting in a robust dataset of 30,000 examples. Each example
can be considered analogous to a sentence in the symbolic domain
[9]. This transformation repositions the data generation task as
a classification problem rather than continuous regression. By
encoding each data point as a sequence of symbols, we frame the
task as the prediction of the next symbol in a sequence, given a
preceding set of symbols, analogous to language modeling tasks
in NLP [8]. The dataset, now framed in a discrete symbolic
space, facilitates the use of classification algorithms designed
for categorical outputs, aligning well with sequence models.

Algorithm 1: Symbolic Encoding Strategy for Dataset Transformation
Input: Numerical dataset D with 𝑁𝑁 elements
Output: Transformed dataset D′ consisting of 30,000 examples, each represented as a

sequence of symbols
Initialize: Define a set S of 49 distinct symbols, each representing a 1% interval of the
data range;

Divide: Partition the range of each numerical feature into 49 equal intervals
corresponding to the symbols in S;

foreach element 𝑒𝑒 ∈ D do
Determine the interval to which 𝑒𝑒 belongs;
Map 𝑒𝑒 to the corresponding symbol 𝑠𝑠 ∈ S;

end
Augment: For each sequence of data points, prepend a designated start symbol to
indicate the beginning of a packet;

return D′: Transformed dataset as sequences of symbols;

iv Problem Framing
Our study frames the data generation task as the prediction of the next symbol in a sequence,
given the current token. Let 𝑥𝑥 represent the current token, and 𝑦𝑦 the next symbol to be predicted.
The probability mass function (PMF) for the random variable 𝑦𝑦, conditioned on 𝑥𝑥, is given by
𝑃𝑃(𝑦𝑦 |𝑥𝑥), where 𝑃𝑃(𝑦𝑦 |𝑥𝑥) represents the probability of the next symbol 𝑦𝑦, given the current token 𝑥𝑥.
Our goal is to maximize 𝑃𝑃(𝑦𝑦 = 𝑦𝑦true |𝑥𝑥), where 𝑦𝑦true is the true label of the next token.

We frame this task as a classification problem, not a regression problem. Although one might
bypass text transformation by regressing the output directly, regression introduces challenges,
especially when managing high-dimensional, continuous outputs with complex data structures
[He et al., 2015a].

Classification, by contrast, allows the model to discretize decision-making and capture the
data’s discrete nature effectively. In cases where classes occupy distinct manifolds within the
data space, classification models can partition the space, yielding probabilistic predictions and
clearer boundaries.

Figure 2: Comparison of Classification and Regression Manifolds. The left plot represents
the classification problem with a decision boundary, while the right plot shows the regression
problem with a fitted regression line.

5

3. Problem Framing
Our study frames the data generation task as the prediction of
the next symbol in a sequence, given the current token. Let
𝑥 represent the current token, and 𝑦 the next symbol to be
predicted. The probability mass function (PMF) for the random
variable 𝑦, conditioned on 𝑥, is given by

𝑃, where 𝑃 𝑦 𝑥 represents the probability of the next symbol 𝑦,
given the current token 𝑥. Our goal is to maximize 𝑃 𝑦 = 𝑦true,
where 𝑦true is the true label of the next token.

We frame this task as a classification problem, not a regression
problem. Although one might bypass text transformation by
regressing the output directly, regression introduces challenges,
especially when managing high-dimensional, continuous outputs
with complex data structures [11].

Classification, by contrast, allows the model to discretize
decision-making and capture the data’s discrete nature
effectively. In cases where classes occupy distinct manifolds
within the data space, classification models can partition the
space, yielding probabilistic predictions and clearer boundaries.

Algorithm 1: Symbolic Encoding Strategy for Dataset Transformation
Input: Numerical dataset D with 𝑁𝑁 elements
Output: Transformed dataset D′ consisting of 30,000 examples, each represented as a

sequence of symbols
Initialize: Define a set S of 49 distinct symbols, each representing a 1% interval of the
data range;

Divide: Partition the range of each numerical feature into 49 equal intervals
corresponding to the symbols in S;

foreach element 𝑒𝑒 ∈ D do
Determine the interval to which 𝑒𝑒 belongs;
Map 𝑒𝑒 to the corresponding symbol 𝑠𝑠 ∈ S;

end
Augment: For each sequence of data points, prepend a designated start symbol to
indicate the beginning of a packet;

return D′: Transformed dataset as sequences of symbols;

iv Problem Framing
Our study frames the data generation task as the prediction of the next symbol in a sequence,
given the current token. Let 𝑥𝑥 represent the current token, and 𝑦𝑦 the next symbol to be predicted.
The probability mass function (PMF) for the random variable 𝑦𝑦, conditioned on 𝑥𝑥, is given by
𝑃𝑃(𝑦𝑦 |𝑥𝑥), where 𝑃𝑃(𝑦𝑦 |𝑥𝑥) represents the probability of the next symbol 𝑦𝑦, given the current token 𝑥𝑥.
Our goal is to maximize 𝑃𝑃(𝑦𝑦 = 𝑦𝑦true |𝑥𝑥), where 𝑦𝑦true is the true label of the next token.

We frame this task as a classification problem, not a regression problem. Although one might
bypass text transformation by regressing the output directly, regression introduces challenges,
especially when managing high-dimensional, continuous outputs with complex data structures
[He et al., 2015a].

Classification, by contrast, allows the model to discretize decision-making and capture the
data’s discrete nature effectively. In cases where classes occupy distinct manifolds within the
data space, classification models can partition the space, yielding probabilistic predictions and
clearer boundaries.

Figure 2: Comparison of Classification and Regression Manifolds. The left plot represents
the classification problem with a decision boundary, while the right plot shows the regression
problem with a fitted regression line.

5

Figure 2: Comparison of Classification and Regression Manifolds. The left plot represents the classification problem with a decision
boundary, while the right plot shows the regression problem with a fitted regression line.

Volume 1 | Issue 2 | 4J Data Analytic Eng Decision Making, 2024

4. Overview of Sequence Models Employed in Our Study
4.1 WaveNet-Enhanced Neural Probabilistic Language
Model
We employed the WaveNet architecture to enhance a neural
probabilistic language model, leveraging its capability to capture
intricate sequential dependencies within data. This integration
advances language modeling for synthetic data generation.
Neural probabilistic language models, initially introduced
by Bengio et al. [8]. learn distributed token representations
and predict sequences based on contextual probabilities. By
integrating the WaveNet architecture, developed by Google, we

extend this foundational approach [12].

WaveNet’s use of causal convolutions ensures temporal
consistency in predictions—essential for modeling sequential
data tasks. The architecture predicts each token based on
preceding context, enabling effective capture of linguistic
structure and nuances.

v Overview of Sequence Models Employed in Our Study
a WaveNet-Enhanced Neural Probabilistic Language Model

We employed the WaveNet architecture to enhance a neural probabilistic language model,
leveraging its capability to capture intricate sequential dependencies within data. This integration
advances language modeling for synthetic data generation. Neural probabilistic language models,
initially introduced by Bengio et al. [Bengio et al., 2000], learn distributed token representations
and predict sequences based on contextual probabilities. By integrating the WaveNet architecture,
developed by Google [van den Oord et al., 2016], we extend this foundational approach.

WaveNet’s use of causal convolutions ensures temporal consistency in predictions—essential
for modeling sequential data tasks. The architecture predicts each token based on preceding
context, enabling effective capture of linguistic structure and nuances.

𝑦𝑦𝑡𝑡 = 𝑓𝑓 (𝑥𝑥𝑡𝑡−𝑘𝑘 , 𝑥𝑥𝑡𝑡−𝑘𝑘+1, . . . , 𝑥𝑥𝑡𝑡) =
𝑘𝑘∑︁
𝑖𝑖=0

𝑤𝑤𝑖𝑖 · 𝑥𝑥𝑡𝑡−𝑖𝑖 , for 𝑡𝑡 ≥ 𝑘𝑘

(a) WaveNet Architecture [van den Oord et al.,
2016]

(b) Neural Probabilistic Language Model with
Causal Convolutions

Figure 3: Architectures Used in Our Study

b Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) effectively process sequential data by maintaining a ”memory”
of previous inputs, achieved through feedback loops in the architecture. This enables RNNs to
learn sequence patterns and relationships, producing coherent and contextually relevant text. Our
RNN architecture leverages these capabilities, processing encoded data sequences and capturing
dependencies within each 10-character segment.

6

v Overview of Sequence Models Employed in Our Study
a WaveNet-Enhanced Neural Probabilistic Language Model

We employed the WaveNet architecture to enhance a neural probabilistic language model,
leveraging its capability to capture intricate sequential dependencies within data. This integration
advances language modeling for synthetic data generation. Neural probabilistic language models,
initially introduced by Bengio et al. [Bengio et al., 2000], learn distributed token representations
and predict sequences based on contextual probabilities. By integrating the WaveNet architecture,
developed by Google [van den Oord et al., 2016], we extend this foundational approach.

WaveNet’s use of causal convolutions ensures temporal consistency in predictions—essential
for modeling sequential data tasks. The architecture predicts each token based on preceding
context, enabling effective capture of linguistic structure and nuances.

𝑦𝑦𝑡𝑡 = 𝑓𝑓 (𝑥𝑥𝑡𝑡−𝑘𝑘 , 𝑥𝑥𝑡𝑡−𝑘𝑘+1, . . . , 𝑥𝑥𝑡𝑡) =
𝑘𝑘∑︁
𝑖𝑖=0

𝑤𝑤𝑖𝑖 · 𝑥𝑥𝑡𝑡−𝑖𝑖 , for 𝑡𝑡 ≥ 𝑘𝑘

(a) WaveNet Architecture [van den Oord et al.,
2016]

(b) Neural Probabilistic Language Model with
Causal Convolutions

Figure 3: Architectures Used in Our Study

b Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) effectively process sequential data by maintaining a ”memory”
of previous inputs, achieved through feedback loops in the architecture. This enables RNNs to
learn sequence patterns and relationships, producing coherent and contextually relevant text. Our
RNN architecture leverages these capabilities, processing encoded data sequences and capturing
dependencies within each 10-character segment.

6

Figure 3: Architectures Used in Our Study

Figure 4: A Recurrent Neural Network

4.2 Recurrent Neural Networks (RNNs)
Recurrent Neural Networks (RNNs) effectively process
sequential data by maintaining a ”memory” of previous inputs,
achieved through feedback loops in the architecture. This enables

RNNs to learn sequence patterns and relationships, producing
coherent and contextually relevant text. Our RNN architecture
leverages these capabilities, processing encoded data sequences
and capturing dependencies within each 10-character segment.

4.3 An Attention-Based Decoder - Transformer
The Transformer sets itself apart from traditional neural networks
by avoiding recurrent mechanisms and instead leveraging self-
attention, which weighs the importance of different tokens in
an input sequence in parallel. This enables efficient parallel
processing and better handling of long-range dependencies [9].

Our Transformer architecture employs an embedding layer with
size 64 per symbol, followed by 4 Transformer blocks, each with
4 attention heads, capturing patterns in sequential data. Each
Transformer block includes multi-head attention, feed-forward
networks, and layer normalization, supporting robust learning
of input sequences.

Figure 4: A Recurrent Neural Network

c An Attention-Based Decoder - Transformer

The Transformer [Vaswani et al., 2023] sets itself apart from traditional neural networks
by avoiding recurrent mechanisms and instead leveraging self-attention, which weighs the
importance of different tokens in an input sequence in parallel. This enables efficient parallel
processing and better handling of long-range dependencies.

Our Transformer architecture employs an embedding layer with size 64 per symbol, followed
by 4 Transformer blocks, each with 4 attention heads, capturing patterns in sequential data. Each
Transformer block includes multi-head attention, feed-forward networks, and layer normalization,
supporting robust learning of input sequences.

Figure 5: Transformer Architecture

7

Volume 1 | Issue 2 | 5J Data Analytic Eng Decision Making, 2024

Figure 4: A Recurrent Neural Network

c An Attention-Based Decoder - Transformer

The Transformer [Vaswani et al., 2023] sets itself apart from traditional neural networks
by avoiding recurrent mechanisms and instead leveraging self-attention, which weighs the
importance of different tokens in an input sequence in parallel. This enables efficient parallel
processing and better handling of long-range dependencies.

Our Transformer architecture employs an embedding layer with size 64 per symbol, followed
by 4 Transformer blocks, each with 4 attention heads, capturing patterns in sequential data. Each
Transformer block includes multi-head attention, feed-forward networks, and layer normalization,
supporting robust learning of input sequences.

Figure 5: Transformer Architecture

7

Figure 5: Transformer Architecture

5. Experiment Setup - Framework for Generating Synthetic
Data
This section outlines the models used to create a novel framework
for generating synthetic data. We detail the rationale behind
selecting these models, discuss the appropriate loss functions,
and highlight best practices in training for optimal performance.
Additionally, we examine trade-offs involved in generating
synthetic data, focusing on aspects of realism, diversity, and
privacy preservation.

5.1 Building Intuition
The proposed framework is based on the concept of N-gram
models [13]. It involves sampling from a distribution where each
character is characterized by a conditional probability over the
previous 1 characters.

Mathematically, this is represented as:

This approach has limitations, such as failing to capture long-
range dependencies and contextual semantics. Additionally, as 𝑛
increases, the number of possible N-grams grows exponentially,
leading to data sparsity and many zero-count N-grams if the
training data is insufficient.

Our approach builds upon Bengio’s work on Neural
Probabilistic Language Models, where he proposed a neural
network architecture to learn the probability distribution of word
sequences [8]. By integrating these ideas with the WaveNet

architecture, known for its strong performance in modeling
long-range dependencies in sequential data, we aim to develop a
powerful language model capable of generating highly realistic
and diversified synthetic text data [12].

To clarify our methodological choices, we provide intuition
behind adopting Bengio’s neural network approach and
emphasize its advantages in our context.

Bengio’s neural network represents each word with a sampled
vector and feeds it into a neural network that predicts the next
word in the sequence. This prediction is achieved by turning
the logits into a distribution via the softmax function, allowing
sampling from this distribution. The network learns both the
network parameters and the sampled distribution.

Building on this, we introduce WaveNet. Bengio’s approach
squashes the input through the network, making it difficult to
learn long-term dependencies and positional information. In
contrast, WaveNet heavily relies on dilated causal convolutions,
specifically designed to capture long-term dependencies by
applying multiple large dilated convolutions in parallel.

Mathematically, a dilated convolution operation for a sequence
𝑥 with filter 𝑓 is defined as:

III Experiment Setup - Framework for Generating Synthetic
Data

This section outlines the models used to create a novel framework for generating synthetic data.
We detail the rationale behind selecting these models, discuss the appropriate loss functions, and
highlight best practices in training for optimal performance. Additionally, we examine trade-offs
involved in generating synthetic data, focusing on aspects of realism, diversity, and privacy
preservation.

i Building Intuition
The proposed framework is based on the concept of N-gram models [Cavnar and Trenkle, 2001].
It involves sampling from a distribution where each character is characterized by a conditional
probability over the previous 𝑛𝑛 − 1 characters.

Mathematically, this is represented as:

𝑃𝑃(𝑐𝑐𝑖𝑖 | 𝑐𝑐𝑖𝑖−(𝑛𝑛−1) , . . . , 𝑐𝑐𝑖𝑖−1) (1)

This approach has limitations, such as failing to capture long-range dependencies and
contextual semantics. Additionally, as 𝑛𝑛 increases, the number of possible N-grams grows
exponentially, leading to data sparsity and many zero-count N-grams if the training data is
insufficient.

Our approach builds upon Bengio’s work on Neural Probabilistic Language Models, where
he proposed a neural network architecture to learn the probability distribution of word sequences
[Bengio et al., 2000]. By integrating these ideas with the WaveNet architecture, known for its
strong performance in modeling long-range dependencies in sequential data, we aim to develop
a powerful language model capable of generating highly realistic and diversified synthetic text
data [van den Oord et al., 2016].

To clarify our methodological choices, we provide intuition behind adopting Bengio’s neural
network approach and emphasize its advantages in our context.

Bengio’s neural network represents each word with a sampled vector and feeds it into a neural
network that predicts the next word in the sequence. This prediction is achieved by turning the
logits into a distribution via the softmax function, allowing sampling from this distribution. The
network learns both the network parameters and the sampled distribution.

Building on this, we introduce WaveNet. Bengio’s approach squashes the input through the
network, making it difficult to learn long-term dependencies and positional information. In
contrast, WaveNet heavily relies on dilated causal convolutions, specifically designed to capture
long-term dependencies by applying multiple large dilated convolutions in parallel.

Mathematically, a dilated convolution operation for a sequence 𝑥𝑥 with filter 𝑓𝑓 is defined as:

𝑦𝑦(𝑡𝑡) =
𝐾𝐾−1∑︁
𝑘𝑘=0

𝑓𝑓 (𝑘𝑘) · 𝑥𝑥(𝑡𝑡 − 𝑟𝑟 · 𝑘𝑘)

where:

• 𝑦𝑦(𝑡𝑡) is the output at time step 𝑡𝑡,

• 𝐾𝐾 is the filter size,

• 𝑓𝑓 (𝑘𝑘) represents the filter weights,

8

III Experiment Setup - Framework for Generating Synthetic
Data

This section outlines the models used to create a novel framework for generating synthetic data.
We detail the rationale behind selecting these models, discuss the appropriate loss functions, and
highlight best practices in training for optimal performance. Additionally, we examine trade-offs
involved in generating synthetic data, focusing on aspects of realism, diversity, and privacy
preservation.

i Building Intuition
The proposed framework is based on the concept of N-gram models [Cavnar and Trenkle, 2001].
It involves sampling from a distribution where each character is characterized by a conditional
probability over the previous 𝑛𝑛 − 1 characters.

Mathematically, this is represented as:

𝑃𝑃(𝑐𝑐𝑖𝑖 | 𝑐𝑐𝑖𝑖−(𝑛𝑛−1) , . . . , 𝑐𝑐𝑖𝑖−1) (1)

This approach has limitations, such as failing to capture long-range dependencies and
contextual semantics. Additionally, as 𝑛𝑛 increases, the number of possible N-grams grows
exponentially, leading to data sparsity and many zero-count N-grams if the training data is
insufficient.

Our approach builds upon Bengio’s work on Neural Probabilistic Language Models, where
he proposed a neural network architecture to learn the probability distribution of word sequences
[Bengio et al., 2000]. By integrating these ideas with the WaveNet architecture, known for its
strong performance in modeling long-range dependencies in sequential data, we aim to develop
a powerful language model capable of generating highly realistic and diversified synthetic text
data [van den Oord et al., 2016].

To clarify our methodological choices, we provide intuition behind adopting Bengio’s neural
network approach and emphasize its advantages in our context.

Bengio’s neural network represents each word with a sampled vector and feeds it into a neural
network that predicts the next word in the sequence. This prediction is achieved by turning the
logits into a distribution via the softmax function, allowing sampling from this distribution. The
network learns both the network parameters and the sampled distribution.

Building on this, we introduce WaveNet. Bengio’s approach squashes the input through the
network, making it difficult to learn long-term dependencies and positional information. In
contrast, WaveNet heavily relies on dilated causal convolutions, specifically designed to capture
long-term dependencies by applying multiple large dilated convolutions in parallel.

Mathematically, a dilated convolution operation for a sequence 𝑥𝑥 with filter 𝑓𝑓 is defined as:

𝑦𝑦(𝑡𝑡) =
𝐾𝐾−1∑︁
𝑘𝑘=0

𝑓𝑓 (𝑘𝑘) · 𝑥𝑥(𝑡𝑡 − 𝑟𝑟 · 𝑘𝑘)

where:

• 𝑦𝑦(𝑡𝑡) is the output at time step 𝑡𝑡,

• 𝐾𝐾 is the filter size,

• 𝑓𝑓 (𝑘𝑘) represents the filter weights,

8

III Experiment Setup - Framework for Generating Synthetic
Data

This section outlines the models used to create a novel framework for generating synthetic data.
We detail the rationale behind selecting these models, discuss the appropriate loss functions, and
highlight best practices in training for optimal performance. Additionally, we examine trade-offs
involved in generating synthetic data, focusing on aspects of realism, diversity, and privacy
preservation.

i Building Intuition
The proposed framework is based on the concept of N-gram models [Cavnar and Trenkle, 2001].
It involves sampling from a distribution where each character is characterized by a conditional
probability over the previous 𝑛𝑛 − 1 characters.

Mathematically, this is represented as:

𝑃𝑃(𝑐𝑐𝑖𝑖 | 𝑐𝑐𝑖𝑖−(𝑛𝑛−1) , . . . , 𝑐𝑐𝑖𝑖−1) (1)

This approach has limitations, such as failing to capture long-range dependencies and
contextual semantics. Additionally, as 𝑛𝑛 increases, the number of possible N-grams grows
exponentially, leading to data sparsity and many zero-count N-grams if the training data is
insufficient.

Our approach builds upon Bengio’s work on Neural Probabilistic Language Models, where
he proposed a neural network architecture to learn the probability distribution of word sequences
[Bengio et al., 2000]. By integrating these ideas with the WaveNet architecture, known for its
strong performance in modeling long-range dependencies in sequential data, we aim to develop
a powerful language model capable of generating highly realistic and diversified synthetic text
data [van den Oord et al., 2016].

To clarify our methodological choices, we provide intuition behind adopting Bengio’s neural
network approach and emphasize its advantages in our context.

Bengio’s neural network represents each word with a sampled vector and feeds it into a neural
network that predicts the next word in the sequence. This prediction is achieved by turning the
logits into a distribution via the softmax function, allowing sampling from this distribution. The
network learns both the network parameters and the sampled distribution.

Building on this, we introduce WaveNet. Bengio’s approach squashes the input through the
network, making it difficult to learn long-term dependencies and positional information. In
contrast, WaveNet heavily relies on dilated causal convolutions, specifically designed to capture
long-term dependencies by applying multiple large dilated convolutions in parallel.

Mathematically, a dilated convolution operation for a sequence 𝑥𝑥 with filter 𝑓𝑓 is defined as:

𝑦𝑦(𝑡𝑡) =
𝐾𝐾−1∑︁
𝑘𝑘=0

𝑓𝑓 (𝑘𝑘) · 𝑥𝑥(𝑡𝑡 − 𝑟𝑟 · 𝑘𝑘)

where:

• 𝑦𝑦(𝑡𝑡) is the output at time step 𝑡𝑡,

• 𝐾𝐾 is the filter size,

• 𝑓𝑓 (𝑘𝑘) represents the filter weights,

8

Volume 1 | Issue 2 | 6J Data Analytic Eng Decision Making, 2024

Where:
• 𝑦 (𝑡) is the output at time step 𝑡,
• 𝐾 is the filter size,
• 𝑓 (𝑘) represents the filter weights,
• 𝑥 (𝑡 − 𝑟 · 𝑘) are the input values with dilation rate 𝑟.

Using dilated convolutions, WaveNet can efficiently model
dependencies over much longer sequences. This is achieved
by applying multiple layers of dilated convolutions in parallel,
with exponentially increasing dilation rates [12]. This allows the
network to capture a broader context at each layer, effectively
modeling long-term dependencies. Wave Net not only models
bigrams but also higher-order n-grams (e.g., fourgrams) by
progressively squashing the input through these convolutional
layers. This gradual reduction in dimensionality captures more
semantics, resulting in more realistic and contextually aware
synthetic data generation [12].

Moving to other language models for synthetic data generation,
we include the well-known Recurrent Neural Network (RNN).
In an RNN, we hold a state ℎ𝑡 and pass it to the forward neuron
to maintain contextual information. Mathematically, this is
represented as:

ℎ𝑡 = 𝜎 (𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏)

where:
•	 ℎ𝑡 is the hidden state at time step 𝑡,
•	 𝑊ℎ and 𝑊𝑥 are weight matrices,
•	 𝑥𝑡 is the input at time step 𝑡,
•	 𝑏 is the bias,
•	 𝜎 is the activation function (e.g., tanh or ReLU).

Next, we examine the Transformer model. In the Transformer,
we maintain key, query, and value vectors. The self-attention
mechanism in Transformers can be represented as [9]:

where:
•	 𝑄 is the query matrix,
•	 𝐾 is the key matrix,
•	 𝑉 is the value matrix,
•	 𝑑𝑘 is the dimension of the key vectors.

To enhance vector representation, we add the original vector to
the value vector. Once character representation is well-learned,
we can stack a probabilistic model on top of the Transformer.
Even simpler models can effectively predict the next character
in the sequence. For example, we can use a simple probabilistic
model such as a softmax layer:

where		 represents the probability of character 𝑐𝑖 given
the previous characters and 𝑧𝑖 is the logit for character 𝑐𝑖.

5.2 Loss
For generative tasks, where we predict the next character in a

sequence from a distribution, cross-entropy loss is commonly
used. This loss measures the difference between the true
distribution and the predicted distribution for each packet
(sequence) in the dataset.

To compute the loss over an entire sequence of packets, we sum
the cross-entropy loss over all characters (or time steps) within
each sequence, and then average the loss over all sequences in
the dataset. The cross-entropy loss for the dataset can be defined
as:

where:

• 𝑀 is the total number of sequences (or packets) in the dataset,
• 𝐶 is the number of classes (characters or possible outputs for
each token),
• 𝑁 is the number of time steps in a sequence,
• 𝑦𝑖, 𝑗 is the true probability of class 𝑖 in sequence 𝑗 (typically 0
or 1),
• 𝑦ˆ𝑖, 𝑗 is the predicted probability of class 𝑖 in sequence.

This loss formulation ensures that the model sums the loss over
all time steps in each sequence, then sums over all sequences
in the dataset, and finally averages the loss by the number of
sequences 𝑀.

5.3 Training Practices
Generative models require additional care to ensure they produce
high-quality and realistic synthetic data. Our framework includes
best practices to address these needs effectively.

To address tanh issues in Bengio’s approach, we reference [11].
During the forward pass, the activations passing through the tanh
layer tend to be extreme, often lying on the tails at either positive
one or negative one. During the backward pass, when neurons
with tanh activation function update their weights, they often
encounter a zero gradient. Consequently, in the update step:

the neuron behaves in a shut-off mode due to a zero gradient,
resulting in no weight change. To address this, we manage the
standard distribution of activations entering the tanh activated
layer to have a gain of over	 , allowing the neurons to
learn normally.

For covariant shift resulting from high-dimensional datasets
(curse of dimensionality), we apply batch normalization [10] as
best practice for normalizing the flow (backward and forward)
[14]. For a layer with 𝑑-dimensional input 		 we
normalize each dimension 𝑥(𝑘) as follows:

where:
• 𝑥(𝑘) is the 𝑘-th dimension of the input,

• 𝑥𝑥(𝑡𝑡 − 𝑟𝑟 · 𝑘𝑘) are the input values with dilation rate 𝑟𝑟.

Using dilated convolutions, WaveNet can efficiently model dependencies over much longer
sequences. This is achieved by applying multiple layers of dilated convolutions in parallel, with
exponentially increasing dilation rates [van den Oord et al., 2016]. This allows the network to
capture a broader context at each layer, effectively modeling long-term dependencies.

WaveNet not only models bigrams but also higher-order n-grams (e.g., fourgrams) by
progressively squashing the input through these convolutional layers. This gradual reduction
in dimensionality captures more semantics, resulting in more realistic and contextually aware
synthetic data generation [van den Oord et al., 2016].

Moving to other language models for synthetic data generation, we include the well-known
Recurrent Neural Network (RNN). In an RNN, we hold a state ℎ𝑡𝑡 and pass it to the forward
neuron to maintain contextual information. Mathematically, this is represented as:

ℎ𝑡𝑡 = 𝜎𝜎(𝑊𝑊ℎℎ𝑡𝑡−1 +𝑊𝑊𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑏𝑏)
where:

• ℎ𝑡𝑡 is the hidden state at time step 𝑡𝑡,

• 𝑊𝑊ℎ and 𝑊𝑊𝑥𝑥 are weight matrices,

• 𝑥𝑥𝑡𝑡 is the input at time step 𝑡𝑡,

• 𝑏𝑏 is the bias,

• 𝜎𝜎 is the activation function (e.g., tanh or ReLU).

Next, we examine the Transformer model. In the Transformer, we maintain key, query, and
value vectors. The self-attention mechanism in Transformers can be represented as [Vaswani
et al., 2023]:

Attention(𝑄𝑄𝑄 𝑄𝑄𝑄𝑄𝑄) = softmax
(
𝑄𝑄𝑄𝑄𝑇𝑇

√
𝑑𝑑𝑘𝑘

)
𝑉𝑉

where:

• 𝑄𝑄 is the query matrix,

• 𝐾𝐾 is the key matrix,

• 𝑉𝑉 is the value matrix,

• 𝑑𝑑𝑘𝑘 is the dimension of the key vectors.

To enhance vector representation, we add the original vector to the value vector. Once
character representation is well-learned, we can stack a probabilistic model on top of the
Transformer. Even simpler models can effectively predict the next character in the sequence. For
example, we can use a simple probabilistic model such as a softmax layer:

𝑃𝑃(𝑐𝑐𝑖𝑖 | 𝑐𝑐<𝑖𝑖) =
exp(𝑧𝑧𝑖𝑖)∑
𝑗𝑗 exp(𝑧𝑧 𝑗𝑗)

where 𝑃𝑃(𝑐𝑐𝑖𝑖 | 𝑐𝑐<𝑖𝑖) represents the probability of character 𝑐𝑐𝑖𝑖 given the previous characters 𝑐𝑐<𝑖𝑖,
and 𝑧𝑧𝑖𝑖 is the logit for character 𝑐𝑐𝑖𝑖.

9

• 𝑥𝑥(𝑡𝑡 − 𝑟𝑟 · 𝑘𝑘) are the input values with dilation rate 𝑟𝑟.

Using dilated convolutions, WaveNet can efficiently model dependencies over much longer
sequences. This is achieved by applying multiple layers of dilated convolutions in parallel, with
exponentially increasing dilation rates [van den Oord et al., 2016]. This allows the network to
capture a broader context at each layer, effectively modeling long-term dependencies.

WaveNet not only models bigrams but also higher-order n-grams (e.g., fourgrams) by
progressively squashing the input through these convolutional layers. This gradual reduction
in dimensionality captures more semantics, resulting in more realistic and contextually aware
synthetic data generation [van den Oord et al., 2016].

Moving to other language models for synthetic data generation, we include the well-known
Recurrent Neural Network (RNN). In an RNN, we hold a state ℎ𝑡𝑡 and pass it to the forward
neuron to maintain contextual information. Mathematically, this is represented as:

ℎ𝑡𝑡 = 𝜎𝜎(𝑊𝑊ℎℎ𝑡𝑡−1 +𝑊𝑊𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑏𝑏)
where:

• ℎ𝑡𝑡 is the hidden state at time step 𝑡𝑡,

• 𝑊𝑊ℎ and 𝑊𝑊𝑥𝑥 are weight matrices,

• 𝑥𝑥𝑡𝑡 is the input at time step 𝑡𝑡,

• 𝑏𝑏 is the bias,

• 𝜎𝜎 is the activation function (e.g., tanh or ReLU).

Next, we examine the Transformer model. In the Transformer, we maintain key, query, and
value vectors. The self-attention mechanism in Transformers can be represented as [Vaswani
et al., 2023]:

Attention(𝑄𝑄𝑄 𝑄𝑄𝑄𝑄𝑄) = softmax
(
𝑄𝑄𝑄𝑄𝑇𝑇

√
𝑑𝑑𝑘𝑘

)
𝑉𝑉

where:

• 𝑄𝑄 is the query matrix,

• 𝐾𝐾 is the key matrix,

• 𝑉𝑉 is the value matrix,

• 𝑑𝑑𝑘𝑘 is the dimension of the key vectors.

To enhance vector representation, we add the original vector to the value vector. Once
character representation is well-learned, we can stack a probabilistic model on top of the
Transformer. Even simpler models can effectively predict the next character in the sequence. For
example, we can use a simple probabilistic model such as a softmax layer:

𝑃𝑃(𝑐𝑐𝑖𝑖 | 𝑐𝑐<𝑖𝑖) =
exp(𝑧𝑧𝑖𝑖)∑
𝑗𝑗 exp(𝑧𝑧 𝑗𝑗)

where 𝑃𝑃(𝑐𝑐𝑖𝑖 | 𝑐𝑐<𝑖𝑖) represents the probability of character 𝑐𝑐𝑖𝑖 given the previous characters 𝑐𝑐<𝑖𝑖,
and 𝑧𝑧𝑖𝑖 is the logit for character 𝑐𝑐𝑖𝑖.

9

• 𝑥𝑥(𝑡𝑡 − 𝑟𝑟 · 𝑘𝑘) are the input values with dilation rate 𝑟𝑟.

Using dilated convolutions, WaveNet can efficiently model dependencies over much longer
sequences. This is achieved by applying multiple layers of dilated convolutions in parallel, with
exponentially increasing dilation rates [van den Oord et al., 2016]. This allows the network to
capture a broader context at each layer, effectively modeling long-term dependencies.

WaveNet not only models bigrams but also higher-order n-grams (e.g., fourgrams) by
progressively squashing the input through these convolutional layers. This gradual reduction
in dimensionality captures more semantics, resulting in more realistic and contextually aware
synthetic data generation [van den Oord et al., 2016].

Moving to other language models for synthetic data generation, we include the well-known
Recurrent Neural Network (RNN). In an RNN, we hold a state ℎ𝑡𝑡 and pass it to the forward
neuron to maintain contextual information. Mathematically, this is represented as:

ℎ𝑡𝑡 = 𝜎𝜎(𝑊𝑊ℎℎ𝑡𝑡−1 +𝑊𝑊𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑏𝑏)
where:

• ℎ𝑡𝑡 is the hidden state at time step 𝑡𝑡,

• 𝑊𝑊ℎ and 𝑊𝑊𝑥𝑥 are weight matrices,

• 𝑥𝑥𝑡𝑡 is the input at time step 𝑡𝑡,

• 𝑏𝑏 is the bias,

• 𝜎𝜎 is the activation function (e.g., tanh or ReLU).

Next, we examine the Transformer model. In the Transformer, we maintain key, query, and
value vectors. The self-attention mechanism in Transformers can be represented as [Vaswani
et al., 2023]:

Attention(𝑄𝑄𝑄 𝑄𝑄𝑄𝑄𝑄) = softmax
(
𝑄𝑄𝑄𝑄𝑇𝑇

√
𝑑𝑑𝑘𝑘

)
𝑉𝑉

where:

• 𝑄𝑄 is the query matrix,

• 𝐾𝐾 is the key matrix,

• 𝑉𝑉 is the value matrix,

• 𝑑𝑑𝑘𝑘 is the dimension of the key vectors.

To enhance vector representation, we add the original vector to the value vector. Once
character representation is well-learned, we can stack a probabilistic model on top of the
Transformer. Even simpler models can effectively predict the next character in the sequence. For
example, we can use a simple probabilistic model such as a softmax layer:

𝑃𝑃(𝑐𝑐𝑖𝑖 | 𝑐𝑐<𝑖𝑖) =
exp(𝑧𝑧𝑖𝑖)∑
𝑗𝑗 exp(𝑧𝑧 𝑗𝑗)

where 𝑃𝑃(𝑐𝑐𝑖𝑖 | 𝑐𝑐<𝑖𝑖) represents the probability of character 𝑐𝑐𝑖𝑖 given the previous characters 𝑐𝑐<𝑖𝑖,
and 𝑧𝑧𝑖𝑖 is the logit for character 𝑐𝑐𝑖𝑖.

9

• 𝑥𝑥(𝑡𝑡 − 𝑟𝑟 · 𝑘𝑘) are the input values with dilation rate 𝑟𝑟.

Using dilated convolutions, WaveNet can efficiently model dependencies over much longer
sequences. This is achieved by applying multiple layers of dilated convolutions in parallel, with
exponentially increasing dilation rates [van den Oord et al., 2016]. This allows the network to
capture a broader context at each layer, effectively modeling long-term dependencies.

WaveNet not only models bigrams but also higher-order n-grams (e.g., fourgrams) by
progressively squashing the input through these convolutional layers. This gradual reduction
in dimensionality captures more semantics, resulting in more realistic and contextually aware
synthetic data generation [van den Oord et al., 2016].

Moving to other language models for synthetic data generation, we include the well-known
Recurrent Neural Network (RNN). In an RNN, we hold a state ℎ𝑡𝑡 and pass it to the forward
neuron to maintain contextual information. Mathematically, this is represented as:

ℎ𝑡𝑡 = 𝜎𝜎(𝑊𝑊ℎℎ𝑡𝑡−1 +𝑊𝑊𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑏𝑏)
where:

• ℎ𝑡𝑡 is the hidden state at time step 𝑡𝑡,

• 𝑊𝑊ℎ and 𝑊𝑊𝑥𝑥 are weight matrices,

• 𝑥𝑥𝑡𝑡 is the input at time step 𝑡𝑡,

• 𝑏𝑏 is the bias,

• 𝜎𝜎 is the activation function (e.g., tanh or ReLU).

Next, we examine the Transformer model. In the Transformer, we maintain key, query, and
value vectors. The self-attention mechanism in Transformers can be represented as [Vaswani
et al., 2023]:

Attention(𝑄𝑄𝑄 𝑄𝑄𝑄𝑄𝑄) = softmax
(
𝑄𝑄𝑄𝑄𝑇𝑇

√
𝑑𝑑𝑘𝑘

)
𝑉𝑉

where:

• 𝑄𝑄 is the query matrix,

• 𝐾𝐾 is the key matrix,

• 𝑉𝑉 is the value matrix,

• 𝑑𝑑𝑘𝑘 is the dimension of the key vectors.

To enhance vector representation, we add the original vector to the value vector. Once
character representation is well-learned, we can stack a probabilistic model on top of the
Transformer. Even simpler models can effectively predict the next character in the sequence. For
example, we can use a simple probabilistic model such as a softmax layer:

𝑃𝑃(𝑐𝑐𝑖𝑖 | 𝑐𝑐<𝑖𝑖) =
exp(𝑧𝑧𝑖𝑖)∑
𝑗𝑗 exp(𝑧𝑧 𝑗𝑗)

where 𝑃𝑃(𝑐𝑐𝑖𝑖 | 𝑐𝑐<𝑖𝑖) represents the probability of character 𝑐𝑐𝑖𝑖 given the previous characters 𝑐𝑐<𝑖𝑖,
and 𝑧𝑧𝑖𝑖 is the logit for character 𝑐𝑐𝑖𝑖.

9

ii Loss
For generative tasks, where we predict the next character in a sequence from a distribution,
cross-entropy loss is commonly used. This loss measures the difference between the true
distribution and the predicted distribution for each packet (sequence) in the dataset.

To compute the loss over an entire sequence of packets, we sum the cross-entropy loss over
all characters (or time steps) within each sequence, and then average the loss over all sequences
in the dataset. The cross-entropy loss for the dataset can be defined as:

Lcross-entropy = − 1
𝑀𝑀

𝑀𝑀∑︁
𝑗𝑗=1

𝑁𝑁∑︁
𝑖𝑖=1

𝐶𝐶∑︁
𝑐𝑐=1

𝑦𝑦𝑖𝑖𝑖 𝑖𝑖 log(𝑦̂𝑦𝑖𝑖𝑖 𝑖𝑖)

where:

• 𝑀𝑀 is the total number of sequences (or packets) in the dataset,

• 𝐶𝐶 is the number of classes (characters or possible outputs for each token),

• 𝑁𝑁 is the number of time steps in a sequence,

• 𝑦𝑦𝑖𝑖𝑖 𝑖𝑖 is the true probability of class 𝑖𝑖 in sequence 𝑗𝑗 (typically 0 or 1),

• 𝑦̂𝑦𝑖𝑖𝑖 𝑖𝑖 is the predicted probability of class 𝑖𝑖 in sequence 𝑗𝑗 .

This loss formulation ensures that the model sums the loss over all time steps in each
sequence, then sums over all sequences in the dataset, and finally averages the loss by the number
of sequences 𝑀𝑀 .

iii Training Practices
Generative models require additional care to ensure they produce high-quality and realistic
synthetic data. Our framework includes best practices to address these needs effectively.

To address tanh issues in Bengio’s approach, we reference He et al. [2015a]. During the
forward pass, the activations passing through the tanh layer tend to be extreme, often lying on
the tails at either positive one or negative one.

During the backward pass, when neurons with tanh activation function update their weights,
they often encounter a zero gradient. Consequently, in the update step:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
← 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 𝑗𝑗
𝑈𝑈𝑗𝑗 ,

the neuron behaves in a shut-off mode due to a zero gradient, resulting in no weight change.
To address this, we manage the standard distribution of activations entering the tanh activated

layer to have a gain of 5
3 over

√
fan in, allowing the neurons to learn normally.

For covariant shift resulting from high-dimensional datasets (curse of dimensionality),
we apply batch normalization [Ioffe and Szegedy, 2015] as best practice for normalizing the
flow (backward and forward) [Wu and Johnson, 2021]. For a layer with 𝑑𝑑-dimensional input
x = (𝑥𝑥 (1) , . . . , 𝑥𝑥 (𝑑𝑑)), we normalize each dimension 𝑥𝑥 (𝑘𝑘) as follows:

𝑥𝑥
(𝑘𝑘)
norm =

𝑥𝑥 (𝑘𝑘) − E[𝑥𝑥 (𝑘𝑘)]√︁
Var[𝑥𝑥 (𝑘𝑘)]

where:

10

ii Loss
For generative tasks, where we predict the next character in a sequence from a distribution,
cross-entropy loss is commonly used. This loss measures the difference between the true
distribution and the predicted distribution for each packet (sequence) in the dataset.

To compute the loss over an entire sequence of packets, we sum the cross-entropy loss over
all characters (or time steps) within each sequence, and then average the loss over all sequences
in the dataset. The cross-entropy loss for the dataset can be defined as:

Lcross-entropy = − 1
𝑀𝑀

𝑀𝑀∑︁
𝑗𝑗=1

𝑁𝑁∑︁
𝑖𝑖=1

𝐶𝐶∑︁
𝑐𝑐=1

𝑦𝑦𝑖𝑖𝑖 𝑖𝑖 log(𝑦̂𝑦𝑖𝑖𝑖 𝑖𝑖)

where:

• 𝑀𝑀 is the total number of sequences (or packets) in the dataset,

• 𝐶𝐶 is the number of classes (characters or possible outputs for each token),

• 𝑁𝑁 is the number of time steps in a sequence,

• 𝑦𝑦𝑖𝑖𝑖 𝑖𝑖 is the true probability of class 𝑖𝑖 in sequence 𝑗𝑗 (typically 0 or 1),

• 𝑦̂𝑦𝑖𝑖𝑖 𝑖𝑖 is the predicted probability of class 𝑖𝑖 in sequence 𝑗𝑗 .

This loss formulation ensures that the model sums the loss over all time steps in each
sequence, then sums over all sequences in the dataset, and finally averages the loss by the number
of sequences 𝑀𝑀 .

iii Training Practices
Generative models require additional care to ensure they produce high-quality and realistic
synthetic data. Our framework includes best practices to address these needs effectively.

To address tanh issues in Bengio’s approach, we reference He et al. [2015a]. During the
forward pass, the activations passing through the tanh layer tend to be extreme, often lying on
the tails at either positive one or negative one.

During the backward pass, when neurons with tanh activation function update their weights,
they often encounter a zero gradient. Consequently, in the update step:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
← 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 𝑗𝑗
𝑈𝑈𝑗𝑗 ,

the neuron behaves in a shut-off mode due to a zero gradient, resulting in no weight change.
To address this, we manage the standard distribution of activations entering the tanh activated

layer to have a gain of 5
3 over

√
fan in, allowing the neurons to learn normally.

For covariant shift resulting from high-dimensional datasets (curse of dimensionality),
we apply batch normalization [Ioffe and Szegedy, 2015] as best practice for normalizing the
flow (backward and forward) [Wu and Johnson, 2021]. For a layer with 𝑑𝑑-dimensional input
x = (𝑥𝑥 (1) , . . . , 𝑥𝑥 (𝑑𝑑)), we normalize each dimension 𝑥𝑥 (𝑘𝑘) as follows:

𝑥𝑥
(𝑘𝑘)
norm =

𝑥𝑥 (𝑘𝑘) − E[𝑥𝑥 (𝑘𝑘)]√︁
Var[𝑥𝑥 (𝑘𝑘)]

where:

10

ii Loss
For generative tasks, where we predict the next character in a sequence from a distribution,
cross-entropy loss is commonly used. This loss measures the difference between the true
distribution and the predicted distribution for each packet (sequence) in the dataset.

To compute the loss over an entire sequence of packets, we sum the cross-entropy loss over
all characters (or time steps) within each sequence, and then average the loss over all sequences
in the dataset. The cross-entropy loss for the dataset can be defined as:

Lcross-entropy = − 1
𝑀𝑀

𝑀𝑀∑︁
𝑗𝑗=1

𝑁𝑁∑︁
𝑖𝑖=1

𝐶𝐶∑︁
𝑐𝑐=1

𝑦𝑦𝑖𝑖𝑖 𝑖𝑖 log(𝑦̂𝑦𝑖𝑖𝑖 𝑖𝑖)

where:

• 𝑀𝑀 is the total number of sequences (or packets) in the dataset,

• 𝐶𝐶 is the number of classes (characters or possible outputs for each token),

• 𝑁𝑁 is the number of time steps in a sequence,

• 𝑦𝑦𝑖𝑖𝑖 𝑖𝑖 is the true probability of class 𝑖𝑖 in sequence 𝑗𝑗 (typically 0 or 1),

• 𝑦̂𝑦𝑖𝑖𝑖 𝑖𝑖 is the predicted probability of class 𝑖𝑖 in sequence 𝑗𝑗 .

This loss formulation ensures that the model sums the loss over all time steps in each
sequence, then sums over all sequences in the dataset, and finally averages the loss by the number
of sequences 𝑀𝑀 .

iii Training Practices
Generative models require additional care to ensure they produce high-quality and realistic
synthetic data. Our framework includes best practices to address these needs effectively.

To address tanh issues in Bengio’s approach, we reference He et al. [2015a]. During the
forward pass, the activations passing through the tanh layer tend to be extreme, often lying on
the tails at either positive one or negative one.

During the backward pass, when neurons with tanh activation function update their weights,
they often encounter a zero gradient. Consequently, in the update step:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
← 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 𝑗𝑗
𝑈𝑈𝑗𝑗 ,

the neuron behaves in a shut-off mode due to a zero gradient, resulting in no weight change.
To address this, we manage the standard distribution of activations entering the tanh activated

layer to have a gain of 5
3 over

√
fan in, allowing the neurons to learn normally.

For covariant shift resulting from high-dimensional datasets (curse of dimensionality),
we apply batch normalization [Ioffe and Szegedy, 2015] as best practice for normalizing the
flow (backward and forward) [Wu and Johnson, 2021]. For a layer with 𝑑𝑑-dimensional input
x = (𝑥𝑥 (1) , . . . , 𝑥𝑥 (𝑑𝑑)), we normalize each dimension 𝑥𝑥 (𝑘𝑘) as follows:

𝑥𝑥
(𝑘𝑘)
norm =

𝑥𝑥 (𝑘𝑘) − E[𝑥𝑥 (𝑘𝑘)]√︁
Var[𝑥𝑥 (𝑘𝑘)]

where:

10

ii Loss
For generative tasks, where we predict the next character in a sequence from a distribution,
cross-entropy loss is commonly used. This loss measures the difference between the true
distribution and the predicted distribution for each packet (sequence) in the dataset.

To compute the loss over an entire sequence of packets, we sum the cross-entropy loss over
all characters (or time steps) within each sequence, and then average the loss over all sequences
in the dataset. The cross-entropy loss for the dataset can be defined as:

Lcross-entropy = − 1
𝑀𝑀

𝑀𝑀∑︁
𝑗𝑗=1

𝑁𝑁∑︁
𝑖𝑖=1

𝐶𝐶∑︁
𝑐𝑐=1

𝑦𝑦𝑖𝑖𝑖 𝑖𝑖 log(𝑦̂𝑦𝑖𝑖𝑖 𝑖𝑖)

where:

• 𝑀𝑀 is the total number of sequences (or packets) in the dataset,

• 𝐶𝐶 is the number of classes (characters or possible outputs for each token),

• 𝑁𝑁 is the number of time steps in a sequence,

• 𝑦𝑦𝑖𝑖𝑖 𝑖𝑖 is the true probability of class 𝑖𝑖 in sequence 𝑗𝑗 (typically 0 or 1),

• 𝑦̂𝑦𝑖𝑖𝑖 𝑖𝑖 is the predicted probability of class 𝑖𝑖 in sequence 𝑗𝑗 .

This loss formulation ensures that the model sums the loss over all time steps in each
sequence, then sums over all sequences in the dataset, and finally averages the loss by the number
of sequences 𝑀𝑀 .

iii Training Practices
Generative models require additional care to ensure they produce high-quality and realistic
synthetic data. Our framework includes best practices to address these needs effectively.

To address tanh issues in Bengio’s approach, we reference He et al. [2015a]. During the
forward pass, the activations passing through the tanh layer tend to be extreme, often lying on
the tails at either positive one or negative one.

During the backward pass, when neurons with tanh activation function update their weights,
they often encounter a zero gradient. Consequently, in the update step:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
← 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 𝑗𝑗
𝑈𝑈𝑗𝑗 ,

the neuron behaves in a shut-off mode due to a zero gradient, resulting in no weight change.
To address this, we manage the standard distribution of activations entering the tanh activated

layer to have a gain of 5
3 over

√
fan in, allowing the neurons to learn normally.

For covariant shift resulting from high-dimensional datasets (curse of dimensionality),
we apply batch normalization [Ioffe and Szegedy, 2015] as best practice for normalizing the
flow (backward and forward) [Wu and Johnson, 2021]. For a layer with 𝑑𝑑-dimensional input
x = (𝑥𝑥 (1) , . . . , 𝑥𝑥 (𝑑𝑑)), we normalize each dimension 𝑥𝑥 (𝑘𝑘) as follows:

𝑥𝑥
(𝑘𝑘)
norm =

𝑥𝑥 (𝑘𝑘) − E[𝑥𝑥 (𝑘𝑘)]√︁
Var[𝑥𝑥 (𝑘𝑘)]

where:

10

ii Loss
For generative tasks, where we predict the next character in a sequence from a distribution,
cross-entropy loss is commonly used. This loss measures the difference between the true
distribution and the predicted distribution for each packet (sequence) in the dataset.

To compute the loss over an entire sequence of packets, we sum the cross-entropy loss over
all characters (or time steps) within each sequence, and then average the loss over all sequences
in the dataset. The cross-entropy loss for the dataset can be defined as:

Lcross-entropy = − 1
𝑀𝑀

𝑀𝑀∑︁
𝑗𝑗=1

𝑁𝑁∑︁
𝑖𝑖=1

𝐶𝐶∑︁
𝑐𝑐=1

𝑦𝑦𝑖𝑖𝑖 𝑖𝑖 log(𝑦̂𝑦𝑖𝑖𝑖 𝑖𝑖)

where:

• 𝑀𝑀 is the total number of sequences (or packets) in the dataset,

• 𝐶𝐶 is the number of classes (characters or possible outputs for each token),

• 𝑁𝑁 is the number of time steps in a sequence,

• 𝑦𝑦𝑖𝑖𝑖 𝑖𝑖 is the true probability of class 𝑖𝑖 in sequence 𝑗𝑗 (typically 0 or 1),

• 𝑦̂𝑦𝑖𝑖𝑖 𝑖𝑖 is the predicted probability of class 𝑖𝑖 in sequence 𝑗𝑗 .

This loss formulation ensures that the model sums the loss over all time steps in each
sequence, then sums over all sequences in the dataset, and finally averages the loss by the number
of sequences 𝑀𝑀 .

iii Training Practices
Generative models require additional care to ensure they produce high-quality and realistic
synthetic data. Our framework includes best practices to address these needs effectively.

To address tanh issues in Bengio’s approach, we reference He et al. [2015a]. During the
forward pass, the activations passing through the tanh layer tend to be extreme, often lying on
the tails at either positive one or negative one.

During the backward pass, when neurons with tanh activation function update their weights,
they often encounter a zero gradient. Consequently, in the update step:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
← 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 𝑗𝑗
𝑈𝑈𝑗𝑗 ,

the neuron behaves in a shut-off mode due to a zero gradient, resulting in no weight change.
To address this, we manage the standard distribution of activations entering the tanh activated

layer to have a gain of 5
3 over

√
fan in, allowing the neurons to learn normally.

For covariant shift resulting from high-dimensional datasets (curse of dimensionality),
we apply batch normalization [Ioffe and Szegedy, 2015] as best practice for normalizing the
flow (backward and forward) [Wu and Johnson, 2021]. For a layer with 𝑑𝑑-dimensional input
x = (𝑥𝑥 (1) , . . . , 𝑥𝑥 (𝑑𝑑)), we normalize each dimension 𝑥𝑥 (𝑘𝑘) as follows:

𝑥𝑥
(𝑘𝑘)
norm =

𝑥𝑥 (𝑘𝑘) − E[𝑥𝑥 (𝑘𝑘)]√︁
Var[𝑥𝑥 (𝑘𝑘)]

where:

10

ii Loss
For generative tasks, where we predict the next character in a sequence from a distribution,
cross-entropy loss is commonly used. This loss measures the difference between the true
distribution and the predicted distribution for each packet (sequence) in the dataset.

To compute the loss over an entire sequence of packets, we sum the cross-entropy loss over
all characters (or time steps) within each sequence, and then average the loss over all sequences
in the dataset. The cross-entropy loss for the dataset can be defined as:

Lcross-entropy = − 1
𝑀𝑀

𝑀𝑀∑︁
𝑗𝑗=1

𝑁𝑁∑︁
𝑖𝑖=1

𝐶𝐶∑︁
𝑐𝑐=1

𝑦𝑦𝑖𝑖𝑖 𝑖𝑖 log(𝑦̂𝑦𝑖𝑖𝑖 𝑖𝑖)

where:

• 𝑀𝑀 is the total number of sequences (or packets) in the dataset,

• 𝐶𝐶 is the number of classes (characters or possible outputs for each token),

• 𝑁𝑁 is the number of time steps in a sequence,

• 𝑦𝑦𝑖𝑖𝑖 𝑖𝑖 is the true probability of class 𝑖𝑖 in sequence 𝑗𝑗 (typically 0 or 1),

• 𝑦̂𝑦𝑖𝑖𝑖 𝑖𝑖 is the predicted probability of class 𝑖𝑖 in sequence 𝑗𝑗 .

This loss formulation ensures that the model sums the loss over all time steps in each
sequence, then sums over all sequences in the dataset, and finally averages the loss by the number
of sequences 𝑀𝑀 .

iii Training Practices
Generative models require additional care to ensure they produce high-quality and realistic
synthetic data. Our framework includes best practices to address these needs effectively.

To address tanh issues in Bengio’s approach, we reference He et al. [2015a]. During the
forward pass, the activations passing through the tanh layer tend to be extreme, often lying on
the tails at either positive one or negative one.

During the backward pass, when neurons with tanh activation function update their weights,
they often encounter a zero gradient. Consequently, in the update step:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
← 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 𝑗𝑗
𝑈𝑈𝑗𝑗 ,

the neuron behaves in a shut-off mode due to a zero gradient, resulting in no weight change.
To address this, we manage the standard distribution of activations entering the tanh activated

layer to have a gain of 5
3 over

√
fan in, allowing the neurons to learn normally.

For covariant shift resulting from high-dimensional datasets (curse of dimensionality),
we apply batch normalization [Ioffe and Szegedy, 2015] as best practice for normalizing the
flow (backward and forward) [Wu and Johnson, 2021]. For a layer with 𝑑𝑑-dimensional input
x = (𝑥𝑥 (1) , . . . , 𝑥𝑥 (𝑑𝑑)), we normalize each dimension 𝑥𝑥 (𝑘𝑘) as follows:

𝑥𝑥
(𝑘𝑘)
norm =

𝑥𝑥 (𝑘𝑘) − E[𝑥𝑥 (𝑘𝑘)]√︁
Var[𝑥𝑥 (𝑘𝑘)]

where:

10

Volume 1 | Issue 2 | 7J Data Analytic Eng Decision Making, 2024

• E[𝑥(𝑘)] is the expected value (mean) of 𝑥(𝑘),
• Var[𝑥(𝑘)] is the variance of 𝑥(𝑘).

By normalizing each dimension of the input, batch normalization
mitigates covariant shift effects, improving network stability and
performance during training.

To address high initial loss in classification generative tasks, we
scale output weights during initialization by a small value (),
allowing similar probabilities across alphabets during the first
pass.

Let 𝑊out be the weight matrix connecting the hidden layer to the
output layer, and let 𝑈out be the bias vector at the output layer,

initialized as:

𝑊out ∼ 𝑈(−𝜖, 𝜖),

𝑈out ∼ 𝑈(−𝜖, 𝜖),

where 𝑈(−𝜖, 𝜖) is a uniform distribution. This initialization
strategy ensures that weights and biases are scaled by 𝜖, yielding
a roughly uniform probability distribution for output activations.

𝑊out (𝑖, 𝑗) ∼ 𝑈(−𝜖, 𝜖), ∀𝑖, 𝑗 ,

𝑈out (𝑖) ∼ 𝑈(−𝜖, 𝜖), ∀𝑖.

• 𝑥𝑥 (𝑘𝑘) is the 𝑘𝑘-th dimension of the input,

• E[𝑥𝑥 (𝑘𝑘)] is the expected value (mean) of 𝑥𝑥 (𝑘𝑘) ,

• Var[𝑥𝑥 (𝑘𝑘)] is the variance of 𝑥𝑥 (𝑘𝑘) .

By normalizing each dimension of the input, batch normalization mitigates covariant shift
effects, improving network stability and performance during training.

To address high initial loss in classification generative tasks, we scale output weights during
initialization by a small value (𝜖𝜖), allowing similar probabilities across alphabets during the first
pass.

Let 𝑊𝑊out be the weight matrix connecting the hidden layer to the output layer, and let 𝑈𝑈out be
the bias vector at the output layer, initialized as:

𝑊𝑊out ∼ 𝑈𝑈 (−𝜖𝜖𝜖 𝜖𝜖),
𝑈𝑈out ∼ 𝑈𝑈 (−𝜖𝜖𝜖 𝜖𝜖),

where𝑈𝑈 (−𝜖𝜖𝜖 𝜖𝜖) is a uniform distribution. This initialization strategy ensures that weights and
biases are scaled by 𝜖𝜖 , yielding a roughly uniform probability distribution for output activations.

𝑊𝑊out(𝑖𝑖𝑖 𝑖𝑖) ∼ 𝑈𝑈 (−𝜖𝜖𝜖 𝜖𝜖),∀𝑖𝑖𝑖 𝑖𝑖 𝑖
𝑈𝑈out(𝑖𝑖) ∼ 𝑈𝑈 (−𝜖𝜖𝜖 𝜖𝜖),∀𝑖𝑖𝑖

(a) Latent Space (b) General Decay of the Loss

Figure 6: Post Learning State - Symbols being learnt and Loss decay

IV Statistical Framework for Testing Generative Examples
We posit that if the distribution of generated data closely aligns with the real data distribution, it
should effectively train machine learning models. To assess this, we can train a separate classifier
on real data to evaluate the statistical validity of the generated data. Logically, training machine
learning systems on synthetic data that closely mirrors real data should not harm performance.

11

Figure 6: Post Learning State - Symbols being learnt and Loss decay

6. Statistical Framework for Testing Generative Examples
We posit that if the distribution of generated data closely aligns
with the real data distribution, it should effectively train machine
learning models. To assess this, we can train a separate classifier
on real data to evaluate the statistical validity of the generated
data. Logically, training machine learning systems on synthetic
data that closely mirrors real data should not harm performance.
Overfitting typically arises when a model is overly complex
relative to the dataset size, often occurring when there are more
parameters than data points.

However, our generated data mitigates this risk by significantly
expanding the dataset, providing a more robust foundation
for model training. Mathematically, with an original dataset
size of 𝑁 and generated data size 𝑀, the total dataset size
becomes 𝑁 + 𝑀. Ensuring that the generated data adheres to the

original distribution, 𝑃real (𝑥) ≈ 𝑃gen (𝑥), helps prevent model
memorization of specific examples, promoting the learning
of generalizable patterns [15]. Consequently, incorporating
generated data enhances the model’s generalization to unseen
examples, rather than leading to overfitting.

Underfitting, which occurs when a classifier fails to capture
underlying patterns in the data, resulting in suboptimal
performance, is effectively addressed by the generated data.
By training on a broader range of examples, the model can
better recognize diverse features and gain a comprehensive
understanding of the underlying data patterns.

Thus, we employed a one-class Support Vector Machine (SVM)
with a linear kernel to determine whether the generated data is
statistically similar to real data.

Volume 1 | Issue 2 | 8J Data Analytic Eng Decision Making, 2024

Overfitting typically arises when a model is overly complex relative to the dataset size, often
occurring when there are more parameters than data points.

However, our generated data mitigates this risk by significantly expanding the dataset,
providing a more robust foundation for model training. Mathematically, with an original dataset
size of 𝑁𝑁 and generated data size 𝑀𝑀, the total dataset size becomes 𝑁𝑁 + 𝑀𝑀. Ensuring that the
generated data adheres to the original distribution, 𝑃𝑃real(𝑥𝑥) ≈ 𝑃𝑃gen(𝑥𝑥), helps prevent model
memorization of specific examples, promoting the learning of generalizable patterns [Sallab
et al., 2019]. Consequently, incorporating generated data enhances the model’s generalization to
unseen examples, rather than leading to overfitting.

Underfitting, which occurs when a classifier fails to capture underlying patterns in the data,
resulting in suboptimal performance, is effectively addressed by the generated data. By training
on a broader range of examples, the model can better recognize diverse features and gain a
comprehensive understanding of the underlying data patterns.

Thus, we employed a one-class Support Vector Machine (SVM) with a linear kernel to
determine whether the generated data is statistically similar to real data.

Figure 7: Pseudo Visualization of The Latent Space Post Classifying Inliers

V Results
In our experiments, we evaluated each model’s ability to generate synthetic data that closely
aligns with the original data distribution. The primary evaluation metric was the percentage of
inliers, defined as the proportion of generated data points that fall within the distribution of the
original data.

The results indicate that while all models performed well, the Recurrent Neural Network
(RNN) achieved the highest percentage of inliers at 87.9%, followed by the Transformer-based

12

Figure 7: Pseudo Visualization of The Latent Space Post Classifying Inliers

Table 2: Inliers with Respect to Each Model

7. Results
In our experiments, we evaluated each model’s ability to
generate synthetic data that closely aligns with the original data
distribution. The primary evaluation metric was the percentage
of inliers, defined as the proportion of generated data points that
fall within the distribution of the original data.

The results indicate that while all models performed well,

the Recurrent Neural Network (RNN) achieved the highest
percentage of inliers at 87.9%, followed by the Transformer-
based Decoder at 84.9%. WaveNet, although effective in
modeling long-range dependencies, had the lowest inlier rate at
69.2%, likely due to its convolutional structure, which may not
capture certain complex dependencies as efficiently as the RNN
and Transformer models.

Decoder at 84.9%. WaveNet, although effective in modeling long-range dependencies, had
the lowest inlier rate at 69.2%, likely due to its convolutional structure, which may not capture
certain complex dependencies as efficiently as the RNN and Transformer models.

Table 2: Inliers with Respect to Each Model

Model Inliers (%)
WaveNet 69.2%
RNN 87.9%
Transformer Decoder 84.9%

The RNN outperformed the other models in terms of generating inliers, likely due to its
ability to capture sequential dependencies in the data. However, as datasets grow more complex,
particularly with higher dimensionality or heterogeneity, the Transformer-based Decoder model is
expected to excel. This is due to the Transformer’s self-attention mechanism, which is particularly
suited for handling complex dependencies and long-range interactions, which become more
significant with increased data complexity.

While WaveNet is designed to model long-range dependencies through dilated convolutions,
it may not have been as effective for this dataset due to its convolutional architecture, which can
limit its capacity to capture fine-grained patterns in structured data [van den Oord et al., 2016].
Nevertheless, its performance might improve with further fine-tuning and optimization.

VI Synthetic Data Generation: A Survey
Synthetic data generation has emerged as a vital solution in artificial intelligence (AI) and
machine learning, offering unique advantages for both research and practical applications. In
response to growing privacy concerns and limited access to real-world data, synthetic data has
evolved as a powerful alternative, enabling model training, testing, and deployment without
compromising sensitive information. This survey examines the diverse applications of synthetic
data generation, from vision and voice technologies to business intelligence, and highlights
its potential to transform data-driven fields. By synthesizing insights from recent studies, this
survey aims to provide a comprehensive overview of how synthetic data is revolutionizing AI
across various domains while addressing privacy and ethical considerations.

VII Applications
Synthetic data presents numerous compelling benefits, making it a highly attractive option across
a wide range of applications. By streamlining the processes of training, testing, and deploying
AI solutions, synthetic data enables more efficient and effective development. Furthermore,
this cutting-edge technology mitigates the risk of exposing sensitive information, thereby
safeguarding customer security and privacy. As researchers transition synthetic data from the
laboratory to practical implementations, its real-world applications continue to expand. This
section examines several notable domains where synthetic data generation substantially impacts
addressing real-world challenges.

13

The RNN outperformed the other models in terms of generating
inliers, likely due to its ability to capture sequential dependencies
in the data. However, as datasets grow more complex, particularly
with higher dimensionality or heterogeneity, the Transformer-
based Decoder model is expected to excel. This is due to the
Transformer’s self-attention mechanism, which is particularly
suited for handling complex dependencies and long-range
interactions, which become more significant with increased
data complexity. While Wave Net is designed to model long-
range dependencies through dilated convolutions, it may not
have been as effective for this dataset due to its convolutional
architecture, which can limit its capacity to capture fine-grained
patterns in structured data [12]. Nevertheless, its performance
might improve with further fine-tuning and optimization.

8. Synthetic Data Generation: A Survey
Synthetic data generation has emerged as a vital solution in
artificial intelligence (AI) and machine learning, offering
unique advantages for both research and practical applications.
In response to growing privacy concerns and limited access
to real-world data, synthetic data has evolved as a powerful
alternative, enabling model training, testing, and deployment
without compromising sensitive information. This survey

examines the diverse applications of synthetic data generation,
from vision and voice technologies to business intelligence,
and highlights its potential to transform data-driven fields. By
synthesizing insights from recent studies, this survey aims to
provide a comprehensive overview of how synthetic data is
revolutionizing AI across various domains while addressing
privacy and ethical considerations.

9. Applications
Synthetic data presents numerous compelling benefits, making
it a highly attractive option across a wide range of applications.
By streamlining the processes of training, testing, and deploying
AI solutions, synthetic data enables more efficient and effective
development. Furthermore, this cutting-edge technology
mitigates the risk of exposing sensitive information, thereby
safeguarding customer security and privacy. As researchers
transition synthetic data from the laboratory to practical
implementations, its real-world applications continue to expand.
This section examines several notable domains where synthetic
data generation substantially impacts addressing real-world
challenges.

Volume 1 | Issue 2 | 9J Data Analytic Eng Decision Making, 2024

9.1 Vision
Generating synthetic data for computer vision tasks has proven
highly effective, as it allows for the creation of large, diverse
datasets that can be used to train models without the need for
costly and time-consuming data collection efforts [16]. These
synthetically generated datasets can capture a wide range of
scenarios, including complex lighting conditions, occlusions,
and diverse object appearances, which are crucial for developing
robust vision-based systems. GANs and other generative models
have emerged as powerful tools for producing such high-quality
synthetic data [17-19].

In computer vision, manual labeling remains essential for
certain tasks [20]. However, tasks like segmentation, depth
estimation, and optical flow estimation can be particularly
arduous to label manually due to their inherent complexity. To
alleviate this burden, synthetic data has become a transformative
tool, streamlining the labeling process significantly [21].
Sankaranarayanan et al. proposed a generative adversarial
network (GAN) designed to bridge the gap between embeddings
in the learned feature space, which is instrumental in Visual
Domain Adaptation [22]. This methodology enables semantic
segmentation across varied domains by using a generator to
map features onto the image space, allowing the discriminator
to operate effectively on these projections. The discriminator’s
output serves as the basis for adversarial losses [23]. Research
has demonstrated that applying adversarial losses to the projected
image space consistently outperforms applications to the feature
space alone, yielding notably enhanced performance [23]. In a
recent study, a team at Microsoft Research validated the efficacy
of synthetic data in face-related tasks by leveraging a parametric
3D face model, enriched with a comprehensive library of hand-
crafted assets [24]. This approach allowed for the rendering of
training images with high levels of realism and diversity. The
researchers demonstrated that machine learning models trained
on synthetic data achieved accuracy comparable to models
trained on real data for tasks like landmark localization and face
parsing. Notably, synthetic data alone was sufficient for robust
face detection in unconstrained environments [24].

9.2 Voice
The synthetic voice industry is at the cutting edge of technological
progress, evolving at an unprecedented rate. The rise of machine
learning and deep learning has enabled the creation of synthetic
voices for applications like video production, digital assistants,
and video games [25], making the process more accessible and
accurate than ever. This field lies at the intersection of multiple
domains, including acoustics, linguistics, and signal processing.
Researchers continuously seek to enhance the accuracy and
naturalness of synthetic voices. As technology continues to
advance, synthetic voices are expected to become increasingly
integrated into daily life, offering valuable support across
various domains and enriching user experiences [25]. Earlier
research involved spectral modeling techniques for statistical
parametric speech synthesis, utilizing low-level, unmodified
spectral envelope parameters for generating synthetic voices.
These spectral envelopes are represented through graphical
models with multiple hidden variables, incorporating structures
like restricted Boltzmann machines and deep belief networks
(DBNs) [26]. Enhancements to traditional hidden Markov model
(HMM)-based speech synthesis systems have shown substantial

improvements in achieving a more natural sound while reducing
oversmoothing effects [27]. Synthetic data has also found
applications in Text-to-Speech (TTS) systems, achieving a level
of naturalness close to that of human speech [28,29]. Synthetic
speech (SynthASR) has emerged as a solution for automatic
speech recognition in cases where real data is sparse or limited.
By integrating techniques like weighted multi-style training, data
augmentation, encoder freezing, and parameter regularization,
researchers have tackled issues like catastrophic forgetting.
This innovative approach enables state-of-the-art training for a
broad array of end-to-end (E2E) automatic speech recognition
(ASR) models, reducing dependency on production data and the
associated costs.

9.3 Business
The risk of compromising or exposing original data remains a
constant concern, especially in the business sector, where strict
restrictions govern data sharing both within and beyond the
organization. This has led to an increased focus on developing
financial datasets that replicate the characteristics of ”real
data” while safeguarding the privacy of all parties involved.
Although technologies such as encryption, anonymization, and
advanced privacy-preserving methods have been employed
to secure original data [?], residual risks persist. Data-derived
information can sometimes still be used to trace individuals, thus
compromising privacy [30]. Synthetic data offers a compelling
solution by removing the need to expose sensitive data,
effectively ensuring privacy and security for both companies
and their customers [?]. Additionally, synthetic data allows
organizations faster data access by circumventing certain privacy
and security protocols. Historically, institutions with large data
reserves were well-positioned to assist decision- makers in
tackling a range of issues. However, even internal data access
was often restricted due to confidentiality concerns. Today,
companies leverage synthetic data to refresh and model original
datasets, generating ongoing insights that drive organizational
performance improvements [?].

10. Privacy Risks and Prevention
Synthetic data generation has emerged as a key solution for
data privacy and sharing in sectors where sensitive data cannot
be disclosed, such as clinical, genomic, and financial domains.
However, the generation of synthetic data that preserves the
statistical properties of real datasets introduces privacy risks, as
models may unintentionally expose underlying patterns, thereby
compromising individual privacy. Membership inference
attacks, for example, can identify whether specific data points
were included in the training set, posing significant privacy
concerns. To address these risks, privacy-enhancing methods fall
into two primary categories: anonymization-based approaches
and differential privacy (DP) methods.

Anonymization techniques, including 𝑘-anonymity and nearest
marginal sanitization, replace sensitive information with
fictitious yet realistic data, providing foundational privacy
protection, though often lacking rigorous guarantees. Differential
privacy methods, on the other hand, offer more robust protection
by introducing noise to data, thus maintaining privacy while
preserving data utility. Advanced implementations, such as
GAN-based DP models (e.g., DPGAN and PATE-GAN) and
local differential privacy (LDP) frameworks, support secure

Volume 1 | Issue 2 | 10J Data Analytic Eng Decision Making, 2024

synthetic data generation, particularly in distributed contexts.

Alongside privacy, fairness in synthetic data is increasingly
critical, as models trained on biased datasets may unfairly
represent minority groups, reinforcing existing disparities. Three
main approaches address fairness in synthetic data: preprocessing,
which adjusts input data c to remove correlations with sensitive
attributes; in-processing, which incorporates fairness constraints

during model training; and post-processing, which adjusts model
predictions to enhance equity. Preprocessing remains the most
commonly applied fairness technique, especially for addressing
subgroup imbalances through balanced synthetic datasets.
Overall, privacy-enhanced synthetic data generation, coupled
with fairness-aware strategies, is crucial for secure and ethical
data sharing that meets both privacy and fairness standards in
research and industry applications.

to remove correlations with sensitive attributes; in-processing, which incorporates fairness
constraints during model training; and post-processing, which adjusts model predictions to
enhance equity. Preprocessing remains the most commonly applied fairness technique, especially
for addressing subgroup imbalances through balanced synthetic datasets.

Overall, privacy-enhanced synthetic data generation, coupled with fairness-aware strategies,
is crucial for secure and ethical data sharing that meets both privacy and fairness standards in
research and industry applications.

Table 3: Summary of Some Privacy-Enhancing Techniques in Generative AI for Synthetic Data
[Lu et al., 2024]

Paper Privacy Technique Model Data Format Notes
? Differential Privacy Autoencoder Attribute -
Lee et al.
[2020]

Differential Privacy VAE + GAN, Recurrent Autoen-
coder

EHR -

Acs et al.
[2018]

Differential Privacy Generative Artificial Neural
Networks

Image and Text Kernel k-means

Jordon et al.
[2018]

Differential Privacy (PATE) GAN Attribute DNN

? Differential Privacy n-gram Sequential/Time Series w.o. DNN
Cunningham
et al. [2021]

Local Differential Privacy n-gram Trajectory w.o. DNN

Du et al.
[2023]

Local Differential Privacy Markov Probabilistic Model Trajectory w.o. DNN

He et al.
[2015b]

Differential Privacy Markov Probabilistic Model Trajectory w.o. DNN

Wang and
Sinnott
[2017]

Differential Privacy Markov Probabilistic Model Social Media Trajectory

Gursoy et al.
[2018]

Differential Privacy Markov Probabilistic Model Trajectory w.o. DNN

Mir et al.
[2013]

Differential Privacy Distribution Estimation Location w.o. DNN

Roy et al.
[2016]

Differential Privacy Distribution Estimation Trajectory w.o. DNN

Bindschaedler
and Shokri
[2016]

Plausible Deniability Hidden Markov Models Trajectory w.o. DNN

Wang et al.
[2023]

Differential Privacy Markov Chain Model Trajectory w.o. DNN

Narita et al.
[2024]

Differential Privacy Probabilistic Transform Trajectory w.o. DNN

Bindschaedler
et al. [2017]

Plausible Deniability Probabilistic Transform Attribute w.o. DNN

Tseng and
Wu [2020]

Compressive Privacy GAN Image DNN

Zhang et al.
[2018]

Differential Privacy GAN Image DNN

Xie et al.
[2018]

Differential Privacy GAN Image and EHR DNN

Xu et al.
[2019]

Differential Privacy GAN Image DNN

Liu et al.
[2019]

Differential Privacy GAN Image DNN

Triastcyn
and Faltings
[2020]

Differential Privacy GAN Attribute (Tabular) and
Graph

DNN

Ge et al.
[2020]

Differential Privacy GAN Image and EHR DNN

IX Evaluation
Evaluating the quality of synthetic data is essential to validate its effectiveness and applicability
in practical applications. Key strategies include human evaluation, which relies on expert

16

Table 3: Summary of Some Privacy-Enhancing Techniques in Generative AI for Synthetic Data [1]

11. Evaluation
Evaluating the quality of synthetic data is essential to validate
its effectiveness and applicability in practical applications. Key
strategies include human evaluation, which relies on expert
assessments to judge data quality but is often resource-intensive
and may not scale well for high-dimensional datasets. Statistical
evaluation offers a quantitative approach by comparing real
and synthetic datasets across various metrics, allowing for
objective assessments of data fidelity. Additionally, pre-trained
machine learning models can serve as discriminators, assessing
how closely synthetic data approximates real data, a common

technique in Generative Adversarial Networks (GANs) [31].
The”Train on Synthetic, Test on Real” (TSTR) approach
evaluates synthetic data by training models on it and measuring
performance on real data, thus gauging its utility for downstream
tasks. Lastly, application-specific evaluations consider unique
domain requirements, such as regulatory compliance and
usability, to ensure synthesized data meets specific standards.
By combining these methods, researchers can achieve a
comprehensive understanding of synthetic data’s strengths and
limitations, which is pivotal for advancing generation techniques
and expanding their applications across fields.

Volume 1 | Issue 2 | 11J Data Analytic Eng Decision Making, 2024

11.1 Human-Based Evaluation
Human evaluation is a fundamental, though often challenging,
method to assess the quality of synthetic data [32]. This
approach involves gathering feedback from domain experts
or general users to judge the data’s realism, usability, and
similarity to actual data within specific applications. Human
evaluation plays a particularly crucial role in tasks where
subjective interpretation is essential, such as speech synthesis
[33]. where evaluators rate the perceived naturalness and clarity
of synthesized voices compared to real human speech in a
blind, side-by-side manner [8]. This method allows evaluators
to provide insights into subtle nuances that automated metrics
might overlook, such as intonation, articulation, and fluidity,
which are vital for creating high-quality, user-friendly synthetic
voices. Similarly, in computer vision, human judges may assess
the accuracy and realism of synthetic images, examining details
like texture, lighting, and object consistency, which can be
critical for applications in virtual reality and gaming. Despite
its advantages, human evaluation has notable limitations. It is
resource-intensive, requiring both time and financial investment
to gather and analyze opinions from experts or a broad range of
users. This method is also subject to variability and potential bias,
as human judgments can differ due to individual perceptions,
experiences, and interpretation of quality standards. Scalability
becomes another hurdle, as this process does not easily extend
to evaluating large volumes of high-dimensional data, such
as complex image or video datasets, which cannot be fully
examined by a human evaluator due to time constraints. High-
dimensional synthetic data often contains intricate patterns or
attributes that are challenging to assess through visual inspection
alone. Moreover, for areas like medical image synthesis or
genomic data, human evaluators may lack the ability to validate
highly technical details, further limiting the utility of this
approach. As a result, while human evaluation provides valuable
qualitative insights, it is often best complemented with objective,
automated evaluation techniques to obtain a more comprehensive
assessment of synthetic data quality and applicability.

11.2 Statistical-Based Evaluation
Statistical difference evaluation is a widely-used strategy to
quantitatively assess the quality of synthetic data by comparing
statistical metrics between synthetic and real datasets. This
approach involves calculating key statistics, such as mean,
variance, and correlation, for individual features within both
datasets. The closer these statistical properties are, the better
the quality and fidelity of the synthetic data. For instance, in
electronic health record (EHR) data generation, metrics like the
frequency and correlation of medical concepts, as well as patient-
level clinical features, are examined to ensure that synthetic
data closely mirrors real-world patterns [8]. Smaller statistical
differences suggest that the synthetic data has successfully
captured the underlying distribution of the real data, making it a
valuable proxy for various downstream applications. Advanced
techniques such as Support Vector Machines (SVMs) can be
utilized to enhance statistical difference evaluation. By training
SVMs on synthetic and real datasets, researchers can examine
how well the models separate or align these two datasets. In
cases where the SVM achieves a high accuracy in differentiating
between real and synthetic data, it may indicate notable
differences in their distributions. Conversely, if the model
struggles to separate them, it suggests that the synthetic data

closely approximates the real data distribution. These methods
offer a robust, objective means to evaluate similarity, allowing
researchers to refine synthetic data generation techniques to
achieve better quality and utility across various applications.

11.3 Using Pretrained Models
Using a pre-trained machine learning model to evaluate
synthetic data quality provides an automated, robust method for
assessing how well the synthetic data approximates real data.
In the context of Generative Adversarial Networks (GANs) [3].
this approach leverages the discriminator, a model trained to
distinguish between real and synthetic (fake) data, as a quality
measure. As the generator improves, it learns to produce data that
increasingly”fools” the discriminator, making it difficult for the
discriminator to differentiate synthetic data from real data. The
discriminator’s accuracy or confidence level when evaluating
the synthetic data thus serves as an indicator of the generator’s
success in producing realistic data. A low performance of the
discriminator suggests that the synthetic data closely resembles
the real data, signifying a high-quality output.

This evaluation strategy is not limited to GANs. Pre-trained
machine learning models, such as image classifiers or language
models, can also serve this purpose across various types of
synthetic data. For example, in synthetic image generation, a
pre-trained image classifier can be used to evaluate the synthetic
images by measuring how well it classifies them compared to real
images. Similarly, for text data, a language model’s perplexity
on synthetic data relative to real data can provide insights into
quality. The strength of this approach lies in its ability to provide
automated, task-specific feedback on the realism of synthetic
data, making it a versatile evaluation tool across different
generative models and domains. This method helps researchers
refine generative techniques, ultimately enhancing the realism
and applicability of synthetic data in practical settings.

11.4 Train on Synthetic, Test on Real
The ”Train on Synthetic, Test on Real” (TSTR) strategy is a
powerful evaluation method for assessing the quality of synthetic
data in terms of its utility for machine learning applications.
In this approach, models are trained exclusively on synthetic
data, then tested on real data to measure their performance in
downstream tasks. High performance on real test data implies
that the synthetic data effectively captures the essential
characteristics and patterns of the real data, making it a viable
substitute for training purposes. This approach is particularly
useful in scenarios where access to real data is restricted due
to privacy or availability concerns, as it enables researchers to
assess whether models trained on synthetic data can generalize
well to real-world conditions. For example, in, synthetic data
is used to train machine-learning models, and their prediction
performance is then evaluated on real test data in healthcare
applications [34]. This method provides valuable insights into
the generalizability of models trained on synthetic datasets, as
high TSTR performance across diverse applications—such as
classification, regression, or segmentation tasks—indicates that
the synthetic data can serve as an effective proxy. Additionally,
TSTR enables developers to identify specific aspects where
synthetic data may fall short, guiding further improvements in
data generation methods to enhance real-world applicability.
This strategy thus not only evaluates synthetic data quality but

Volume 1 | Issue 2 | 12J Data Analytic Eng Decision Making, 2024

also supports broader adoption of synthetic data in fields where
high-quality, representative data is often scarce or sensitive.

12. Future Work
To further advance the field of synthetic data generation, several
key areas warrant additional exploration and development.
One significant avenue is the capability to generate larger and
more diverse datasets. Expanding the capacity to synthesize
extensive datasets with high variability would greatly enhance
the applicability of synthetic data in machine learning tasks,
especially in domains where data scarcity remains a challenge.
Moreover, exploring innovative architectures beyond the current
models can lead to substantial advancements. Investigating
new generative models or enhancing existing ones could
improve the quality and diversity of synthetic data. Importantly,
demonstrating that these advancements can be achieved
using accessible computational resources, such as a personal
computer with a well-coded pipeline, would underscore
the feasibility of cutting-edge AI developments without the
need for extensive infrastructure. This democratization of
technology could encourage broader participation in the field
and accelerate innovation. Additionally, integrating more robust
privacy-preserving techniques into the data generation process
remains a critical area for future work. As privacy, concerns
continue to grow, developing methods that ensure data utility
while rigorously protecting sensitive information is essential.
Combining differential privacy mechanisms with generative
models could provide stronger guarantees and expand the
adoption of synthetic data in sensitive domains.

Finally, applying synthetic data generation techniques to a
wider range of applications, including those with complex data
types such as time-series, graphs, and multimodal data, would
significantly broaden the impact of this research. Tailoring
generative models to handle these complex data structures
effectively could open new opportunities in various fields, from
healthcare to finance, where such data types are prevalent.

13. Conclusion
In conclusion, our framework for synthetic data generation,
complemented by an extensive survey of existing methods,
has demonstrated its effectiveness in producing high-quality
synthetic data across a range of applications. Through this
survey, we highlighted the strengths and limitations of various
approaches, offering insights into their real-world applicability
and potential for enhancing privacy-preserving practices.
Our results show that sequence models, in particular, can be
effectively utilized to generate large-scale, structured numerical
datasets, even in scenarios where original data is limited or
subject to strict privacy constraints. By addressing these key
limitations and integrating privacy-preserving techniques, our
approach not only improves data availability but also ensures
the integrity and confidentiality of sensitive information. The
scalability and adaptability of our framework, combined with
the insights from our survey, position it as a valuable tool for
advancing machine learning systems across diverse domains,
enabling secure, ethical, and effective synthetic data generation
[35-56].

Acknowledgments

The authors would like to express their sincere gratitude to
Dr. Samir Mustapha for his invaluable guidance and insightful
contributions to the structuring and development of this paper.
His support and feedback have been instrumental in enhancing
the clarity and organization of our work.

References
1.	 Lu, Y., Shen, M., Wang, H., Wang, X., van Rechem, C., Fu,

T., & Wei, W. (2023). Machine learning for synthetic data
generation: a review. arXiv preprint arXiv:2302.04062.

2.	 Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,
Mironov, I., Talwar, K., & Zhang, L. (2016, October).
Deep learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC conference on computer and
communications security (pp. 308-318).

3.	 Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative
adversarial nets. Advances in neural information processing
systems, 27.

4.	 Antoniou, A. (2017). Data Augmentation Generative
Adversarial Networks. arXiv preprint arXiv:1711.04340.

5.	 Ring, M., Schlör, D., Landes, D., & Hotho, A. (2019).
Flow-based network traffic generation using generative
adversarial networks. Computers & Security, 82, 156-172.

6.	 Borji, A. (2019). Pros and cons of GAN evaluation measures.
Computer vision and image understanding, 179, 41-65.

7.	 Liang, D., Krishnan, R. G., Hoffman, M. D., & Jebara, T.
(2018, April). Variational autoencoders for collaborative
filtering. In Proceedings of the 2018 world wide web
conference (pp. 689-698).

8.	 Bengio, Y., Ducharme, R., & Vincent, P. (2000). A
neural probabilistic language model. Advances in neural
information processing systems, 13.

9.	 Vaswani, A. (2017). Attention is all you need. Advances in
Neural Information Processing Systems.

10.	 Ioffe, S. (2015). Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167.

11.	 He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving
deep into rectifiers: Surpassing human-level performance
on imagenet classification. In Proceedings of the IEEE
international conference on computer vision (pp. 1026-
1034).

12.	 Oord, A. V. D. (2016). WaveNet: A Generative Model for
Raw Audio. arXiv preprint arXiv:1609.03499.

13.	 William Cavnar and John Trenkle. N-gram-based text
categorization. Proceedings of the Third Annual Symposium
on Document Analysis and Information Retrieval, 05 2001.

14.	 Wu, Y., & Johnson, J. (2021). Rethinking" batch" in
batchnorm. arXiv preprint arXiv:2105.07576.

15.	 Sallab, A. E., Sobh, I., Zahran, M., & Shawky, M. (2019).
Unsupervised neural sensor models for synthetic lidar data
augmentation. arXiv preprint arXiv:1911.10575.

16.	 Marwala, T., Fournier-Tombs, E., & Stinckwich, S. (2023).
The use of synthetic data to train ai models: Opportunities
and risks for sustainable development. arXiv preprint
arXiv:2309.00652.

17.	 Azizi, S., Kornblith, S., Saharia, C., Norouzi, M., & Fleet,
D. J. (2023). Synthetic data from diffusion models improves
imagenet classification. arXiv preprint arXiv:2304.08466.

18.	 Sergey I. Nikolenko. Synthetic data for deep learning, 2019.

https://doi.org/10.48550/arXiv.2302.04062
https://doi.org/10.48550/arXiv.2302.04062
https://doi.org/10.48550/arXiv.2302.04062
https://dl.acm.org/doi/abs/10.1145/2976749.2978318
https://dl.acm.org/doi/abs/10.1145/2976749.2978318
https://dl.acm.org/doi/abs/10.1145/2976749.2978318
https://dl.acm.org/doi/abs/10.1145/2976749.2978318
https://dl.acm.org/doi/abs/10.1145/2976749.2978318
https://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://doi.org/10.1016/j.cose.2018.12.012
https://doi.org/10.1016/j.cose.2018.12.012
https://doi.org/10.1016/j.cose.2018.12.012
https://doi.org/10.1016/j.cviu.2018.10.009
https://doi.org/10.1016/j.cviu.2018.10.009
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/3178876.3186150
https://proceedings.neurips.cc/paper_files/paper/2000/hash/728f206c2a01bf572b5940d7d9a8fa4c-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2000/hash/728f206c2a01bf572b5940d7d9a8fa4c-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2000/hash/728f206c2a01bf572b5940d7d9a8fa4c-Abstract.html
https://www.google.com/search?q=URL+https%3A%2F%2Farxiv.+org%2Fabs%2F1706.03762&rlz=1C1JJTC_enIN969IN969&oq=URL+https%3A%2F%2Farxiv.+org%2Fabs%2F1706.03762&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIHCAEQABjvBTIKCAIQABiABBiiBDIKCAMQABiABBiiBNIBBzU0M2owajeoAgewAgE&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=URL+https%3A%2F%2Farxiv.+org%2Fabs%2F1706.03762&rlz=1C1JJTC_enIN969IN969&oq=URL+https%3A%2F%2Farxiv.+org%2Fabs%2F1706.03762&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIHCAEQABjvBTIKCAIQABiABBiiBDIKCAMQABiABBiiBNIBBzU0M2owajeoAgewAgE&sourceid=chrome&ie=UTF-8
https://asvk.cs.msu.ru/~sveta/%D1%80%D0%B5%D1%84%D0%B5%D1%80%D0%B0%D1%82/batch_normalization.pdf
https://asvk.cs.msu.ru/~sveta/%D1%80%D0%B5%D1%84%D0%B5%D1%80%D0%B0%D1%82/batch_normalization.pdf
https://asvk.cs.msu.ru/~sveta/%D1%80%D0%B5%D1%84%D0%B5%D1%80%D0%B0%D1%82/batch_normalization.pdf
http://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
http://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
http://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
http://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
http://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://dsacl3-2019.github.io/materials/CavnarTrenkle.pdf
https://dsacl3-2019.github.io/materials/CavnarTrenkle.pdf
https://dsacl3-2019.github.io/materials/CavnarTrenkle.pdf
https://doi.org/10.48550/arXiv.2105.07576
https://doi.org/10.48550/arXiv.2105.07576
https://doi.org/10.48550/arXiv.1911.10575
https://doi.org/10.48550/arXiv.1911.10575
https://doi.org/10.48550/arXiv.1911.10575
https://doi.org/10.48550/arXiv.2309.00652
https://doi.org/10.48550/arXiv.2309.00652
https://doi.org/10.48550/arXiv.2309.00652
https://doi.org/10.48550/arXiv.2309.00652
https://doi.org/10.48550/arXiv.2304.08466
https://doi.org/10.48550/arXiv.2304.08466
https://doi.org/10.48550/arXiv.2304.08466

Volume 1 | Issue 2 | 13J Data Analytic Eng Decision Making, 2024

URL https://arxiv.org/abs/ 1909.11512.
19.	 Mumuni, A., Mumuni, F., & Gerrar, N. K. (2024). A survey

of synthetic data augmentation methods in machine vision.
Machine Intelligence Research, 1-39.

20.	 Ziyuan Zhao, Kaixin Xu, Shumeng Li, Zeng Zeng, and
Cuntai Guan. MT-UDA: Towards Unsupervised Cross-
modality Medical Image Segmentation with Limited Source
Labels, pages 293–303. 09 2021. ISBN 978-3-030-87192-5.
doi: 10.1007/978-3-030-87193-2 28.

21.	 Chen, Y., Li, W., Chen, X., & Gool, L. V. (2019). Learning
semantic segmentation from synthetic data: A geometrically
guided input-output adaptation approach. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition (pp. 1841-1850).

22.	 Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain,
Ser Nam Lim, and Rama Chellappa. Unsupervised
domain adaptation for semantic segmentation with gans.
CoRR, abs/1711.06969, 2017. URL http://arxiv.org/
abs/1711.06969.

23.	 Sankaranarayanan, S., Balaji, Y., Jain, A., Lim, S. N.,
& Chellappa, R. (2018). Learning from synthetic data:
Addressing domain shift for semantic segmentation. In
Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 3752-3761).

24.	 Wood, E., Baltrušaitis, T., Hewitt, C., Dziadzio, S.,
Cashman, T. J., & Shotton, J. (2021). Fake it till you make
it: face analysis in the wild using synthetic data alone. In
Proceedings of the IEEE/CVF international conference on
computer vision (pp. 3681-3691).

25.	 Werchniak, A., Chicote, R. B., Mishchenko, Y., Droppo, J.,
Condal, J., Liu, P., & Shah, A. (2021, June). Exploring the
application of synthetic audio in training keyword spotters.
In ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (pp.
7993-7996). IEEE.

26.	 Tianfan Fu, Yanmin Qian, Yuan Liu, and Kai Yu. Tandem
deep features for text-dependent speaker verification. In
Interspeech 2014, pages 1327–1331, 2014. doi: 10.21437/
Interspeech. 2014-329.

27.	 Ling, Z. H., Deng, L., & Yu, D. (2013). Modeling spectral
envelopes using restricted Boltzmann machines and deep
belief networks for statistical parametric speech synthesis.
IEEE transactions on audio, speech, and language
processing, 21(10), 2129-2139.

28.	 Fazel, A., Yang, W., Liu, Y., Barra-Chicote, R., Meng,
Y., Maas, R., & Droppo, J. (2021). Synthasr: Unlocking
synthetic data for speech recognition. arXiv preprint
arXiv:2106.07803.

29.	 Ambulgekar, S., Malewadikar, S., Garande, R., & Joshi,
B. (2021). Next Words Prediction Using Recurrent
NeuralNetworks. In ITM Web of Conferences (Vol. 40, p.
03034). EDP Sciences.

30.	 Assefa, S. A., Dervovic, D., Mahfouz, M., Tillman, R.
E., Reddy, P., & Veloso, M. (2020, October). Generating
synthetic data in finance: opportunities, challenges and
pitfalls. In Proceedings of the First ACM International
Conference on AI in Finance (pp. 1-8).

31.	 Jordon, J., Yoon, J., & Van Der Schaar, M. (2018,
September). PATE-GAN: Generating synthetic data with
differential privacy guarantees. In International conference
on learning representations.

32.	 Feng, K., Ding, K., Ma, K., Wang, Z., Zhang, Q., & Chen,
H. (2024). Sample-Efficient Human Evaluation of Large
Language Models via Maximum Discrepancy Competition.
arXiv preprint arXiv:2404.08008.

33.	 Donahue, C., McAuley, J., & Puckette, M. (2018). Adversarial
audio synthesis. arXiv preprint arXiv:1802.04208.

34.	 Esteban, C., Hyland, S. L., & Rätsch, G. (2017). Real-valued
(medical) time series generation with recurrent conditional
gans. arXiv preprint arXiv:1706.02633.

35.	 Acs, G., Melis, L., Castelluccia, C., & De Cristofaro, E.
(2018). Differentially private mixture of generative neural
networks. IEEE Transactions on Knowledge and Data
Engineering, 31(6), 1109-1121.

36.	 Bindschaedler, V., & Shokri, R. (2016, May). Synthesizing
plausible privacy-preserving location traces. In 2016 IEEE
Symposium on Security and Privacy (SP) (pp. 546-563).
IEEE.

37.	 Bindschaedler, V., Shokri, R., & Gunter, C. A. (2017).
Plausible deniability for privacy-preserving data synthesis.
arXiv preprint arXiv:1708.07975.

38.	 Cunningham, T., Cormode, G., Ferhatosmanoglu, H., &
Srivastava, D. (2021). Real-world trajectory sharing with
local differential privacy. arXiv preprint arXiv:2108.02084.

39.	 Du, Y., Hu, Y., Zhang, Z., Fang, Z., Chen, L., Zheng, B.,
& Gao, Y. (2023). Ldptrace: Locally differentially private
trajectory synthesis. Proceedings of the VLDB Endowment,
16(8), 1897-1909.

40.	 Ge, C., Mohapatra, S., He, X., & Ilyas, I. F. (2020). Kamino:
Constraint-aware differentially private data synthesis. arXiv
preprint arXiv:2012.15713.

41.	 Gursoy, M. E., Liu, L., Truex, S., Yu, L., & Wei, W.
(2018, October). Utility-aware synthesis of differentially
private and attack-resilient location traces. In Proceedings
of the 2018 ACM SIGSAC conference on computer and
communications security (pp. 196-211).

42.	 He, X., Cormode, G., Machanavajjhala, A., Procopiuc, C., &
Srivastava, D. (2015). DPT: differentially private trajectory
synthesis using hierarchical reference systems. Proceedings
of the VLDB Endowment, 8(11), 1154-1165.

43.	 Lee, D., Yu, H., Jiang, X., Rogith, D., Gudala, M., Tejani,
M., ... & Xiong, L. (2020). Generating sequential electronic
health records using dual adversarial autoencoder. Journal
of the American Medical Informatics Association, 27(9),
1411-1419.

44.	 Liu, Y., Peng, J., James, J. Q., & Wu, Y. (2019, December).
PPGAN: Privacy-preserving generative adversarial
network. In 2019 IEEE 25Th international conference on
parallel and distributed systems (ICPADS) (pp. 985-989).
IEEE.

45.	 Mir, D. J., Isaacman, S., Cáceres, R., Martonosi, M., &
Wright, R. N. (2013, October). Dp-where: Differentially
private modeling of human mobility. In 2013 IEEE
international conference on big data (pp. 580-588). IEEE.

46.	 Narita, J., Murakami, T., Hino, H., Nishigaki, M., & Ohki,
T. (2024). Synthesizing differentially private location traces
including co-locations. International Journal of Information
Security, 23(1), 389-410.

47.	 Roy, H., Kantarcioglu, M., & Sweeney, L. (2016). Practical
differentially private modeling of human movement data.
In Data and Applications Security and Privacy XXX: 30th
Annual IFIP WG 11.3 Conference, DBSec 2016, Trento,

https://doi.org/10.1007/s11633-022-1411-7
https://doi.org/10.1007/s11633-022-1411-7
https://doi.org/10.1007/s11633-022-1411-7
http://openaccess.thecvf.com/content_CVPR_2019/html/Chen_Learning_Semantic_Segmentation_From_Synthetic_Data_A_Geometrically_Guided_Input-Output_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Chen_Learning_Semantic_Segmentation_From_Synthetic_Data_A_Geometrically_Guided_Input-Output_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Chen_Learning_Semantic_Segmentation_From_Synthetic_Data_A_Geometrically_Guided_Input-Output_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Chen_Learning_Semantic_Segmentation_From_Synthetic_Data_A_Geometrically_Guided_Input-Output_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Chen_Learning_Semantic_Segmentation_From_Synthetic_Data_A_Geometrically_Guided_Input-Output_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sankaranarayanan_Learning_From_Synthetic_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sankaranarayanan_Learning_From_Synthetic_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sankaranarayanan_Learning_From_Synthetic_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sankaranarayanan_Learning_From_Synthetic_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sankaranarayanan_Learning_From_Synthetic_CVPR_2018_paper.html
http://openaccess.thecvf.com/content/ICCV2021/html/Wood_Fake_It_Till_You_Make_It_Face_Analysis_in_the_ICCV_2021_paper.html
http://openaccess.thecvf.com/content/ICCV2021/html/Wood_Fake_It_Till_You_Make_It_Face_Analysis_in_the_ICCV_2021_paper.html
http://openaccess.thecvf.com/content/ICCV2021/html/Wood_Fake_It_Till_You_Make_It_Face_Analysis_in_the_ICCV_2021_paper.html
http://openaccess.thecvf.com/content/ICCV2021/html/Wood_Fake_It_Till_You_Make_It_Face_Analysis_in_the_ICCV_2021_paper.html
http://openaccess.thecvf.com/content/ICCV2021/html/Wood_Fake_It_Till_You_Make_It_Face_Analysis_in_the_ICCV_2021_paper.html
https://doi.org/10.1109/ICASSP39728.2021.9413448
https://doi.org/10.1109/ICASSP39728.2021.9413448
https://doi.org/10.1109/ICASSP39728.2021.9413448
https://doi.org/10.1109/ICASSP39728.2021.9413448
https://doi.org/10.1109/ICASSP39728.2021.9413448
https://doi.org/10.1109/ICASSP39728.2021.9413448
https://doi.org/10.1016/j.specom.2015.07.003
https://doi.org/10.1016/j.specom.2015.07.003
https://doi.org/10.1016/j.specom.2015.07.003
https://doi.org/10.1016/j.specom.2015.07.003
https://doi.org/10.1016/j.specom.2015.07.003
https://doi.org/10.1016/j.specom.2015.07.003
https://doi.org/10.1016/j.specom.2015.07.003
https://doi.org/10.1016/j.specom.2015.07.003
https://doi.org/10.1016/j.specom.2015.07.003
https://doi.org/10.48550/arXiv.2106.07803
https://doi.org/10.48550/arXiv.2106.07803
https://doi.org/10.48550/arXiv.2106.07803
https://doi.org/10.48550/arXiv.2106.07803
https://doi.org/10.1051/itmconf/20214003034
https://doi.org/10.1051/itmconf/20214003034
https://doi.org/10.1051/itmconf/20214003034
https://doi.org/10.1051/itmconf/20214003034
https://doi.org/10.1145/3383455.3422554
https://doi.org/10.1145/3383455.3422554
https://doi.org/10.1145/3383455.3422554
https://doi.org/10.1145/3383455.3422554
https://doi.org/10.1145/3383455.3422554
https://openreview.net/pdf?id=S1zk9iRqF7
https://openreview.net/pdf?id=S1zk9iRqF7
https://openreview.net/pdf?id=S1zk9iRqF7
https://openreview.net/pdf?id=S1zk9iRqF7
https://doi.org/10.48550/arXiv.2404.08008
https://doi.org/10.48550/arXiv.2404.08008
https://doi.org/10.48550/arXiv.2404.08008
https://doi.org/10.48550/arXiv.2404.08008
https://doi.org/10.48550/arXiv.1802.04208
https://doi.org/10.48550/arXiv.1802.04208
https://doi.org/10.48550/arXiv.1802.04208
https://doi.org/10.48550/arXiv.1802.04208
https://doi.org/10.48550/arXiv.1802.04208
https://doi.org/10.1109/TKDE.2018.2855136
https://doi.org/10.1109/TKDE.2018.2855136
https://doi.org/10.1109/TKDE.2018.2855136
https://doi.org/10.1109/TKDE.2018.2855136
https://doi.org/10.1109/SP.2016.39
https://doi.org/10.1109/SP.2016.39
https://doi.org/10.1109/SP.2016.39
https://doi.org/10.1109/SP.2016.39
https://doi.org/10.48550/arXiv.1708.07975
https://doi.org/10.48550/arXiv.1708.07975
https://doi.org/10.48550/arXiv.1708.07975
https://doi.org/10.48550/arXiv.2108.02084
https://doi.org/10.48550/arXiv.2108.02084
https://doi.org/10.48550/arXiv.2108.02084
https://doi.org/10.14778/3594512.3594520
https://doi.org/10.14778/3594512.3594520
https://doi.org/10.14778/3594512.3594520
https://doi.org/10.14778/3594512.3594520
https://doi.org/10.48550/arXiv.2012.15713
https://doi.org/10.48550/arXiv.2012.15713
https://doi.org/10.48550/arXiv.2012.15713
https://doi.org/10.1145/3243734.3243741
https://doi.org/10.1145/3243734.3243741
https://doi.org/10.1145/3243734.3243741
https://doi.org/10.1145/3243734.3243741
https://doi.org/10.1145/3243734.3243741
https://wrap.warwick.ac.uk/id/eprint/74440/
https://wrap.warwick.ac.uk/id/eprint/74440/
https://wrap.warwick.ac.uk/id/eprint/74440/
https://wrap.warwick.ac.uk/id/eprint/74440/
https://doi.org/10.1093/jamia/ocaa119
https://doi.org/10.1093/jamia/ocaa119
https://doi.org/10.1093/jamia/ocaa119
https://doi.org/10.1093/jamia/ocaa119
https://doi.org/10.1093/jamia/ocaa119
https://doi.org/10.1109/ICPADS47876.2019.00150
https://doi.org/10.1109/ICPADS47876.2019.00150
https://doi.org/10.1109/ICPADS47876.2019.00150
https://doi.org/10.1109/ICPADS47876.2019.00150
https://doi.org/10.1109/ICPADS47876.2019.00150
https://doi.org/10.1109/BigData.2013.6691626
https://doi.org/10.1109/BigData.2013.6691626
https://doi.org/10.1109/BigData.2013.6691626
https://doi.org/10.1109/BigData.2013.6691626
https://doi.org/10.1007/s10207-023-00740-9
https://doi.org/10.1007/s10207-023-00740-9
https://doi.org/10.1007/s10207-023-00740-9
https://doi.org/10.1007/s10207-023-00740-9
https://doi.org/10.1007/978-3-319-41483-6_13
https://doi.org/10.1007/978-3-319-41483-6_13
https://doi.org/10.1007/978-3-319-41483-6_13
https://doi.org/10.1007/978-3-319-41483-6_13

Volume 1 | Issue 2 | 14J Data Analytic Eng Decision Making, 2024

Copyright: ©2024 Mohammad Zbeeb, et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.

https://opastpublishers.com

Italy, July 18-20, 2016. Proceedings 30 (pp. 170-178).
Springer International Publishing.

48.	 Triastcyn, A., & Faltings, B. (2020). Federated generative
privacy. IEEE Intelligent Systems, 35(4), 50-57.

49.	 Tseng, B. W., & Wu, P. Y. (2020). Compressive privacy
generative adversarial network. IEEE Transactions on
Information Forensics and Security, 15, 2499-2513.

50.	 Wang, H., Zhang, Z., Wang, T., He, S., Backes, M., Chen,
J., & Zhang, Y. (2023). {PrivTrace}: Differentially Private
Trajectory Synthesis by Adaptive Markov Models. In 32nd
USENIX Security Symposium (USENIX Security 23) (pp.
1649-1666).

51.	 Wang, S., & Sinnott, R. O. (2017). Protecting personal

trajectories of social media users through differential
privacy. Computers & Security, 67, 142-163.

52.	 Xie, L., Lin, K., Wang, S., Wang, F., & Zhou, J. (2018).
Differentially private generative adversarial network. arXiv
preprint arXiv:1802.06739.

53.	 Xu, C., Ren, J., Zhang, D., Zhang, Y., Qin, Z., & Ren, K.
(2019). GANobfuscator: Mitigating information leakage
under GAN via differential privacy. IEEE Transactions on
Information Forensics and Security, 14(9), 2358-2371.

54.	 Zhang, X., Ji, S., & Wang, T. (2018). Differentially private
releasing via deep generative model (technical report).
arXiv preprint arXiv:1801.01594.

https://doi.org/10.1007/978-3-319-41483-6_13
https://doi.org/10.1007/978-3-319-41483-6_13
https://doi.org/10.1109/MIS.2020.2993966
https://doi.org/10.1109/MIS.2020.2993966
https://doi.org/10.1109/TIFS.2020.2968188
https://doi.org/10.1109/TIFS.2020.2968188
https://doi.org/10.1109/TIFS.2020.2968188
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-haiming
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-haiming
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-haiming
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-haiming
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-haiming
https://doi.org/10.1016/j.cose.2017.02.002
https://doi.org/10.1016/j.cose.2017.02.002
https://doi.org/10.1016/j.cose.2017.02.002
https://doi.org/10.48550/arXiv.1802.06739
https://doi.org/10.48550/arXiv.1802.06739
https://doi.org/10.48550/arXiv.1802.06739
https://doi.org/10.1109/TIFS.2019.2897874
https://doi.org/10.1109/TIFS.2019.2897874
https://doi.org/10.1109/TIFS.2019.2897874
https://doi.org/10.1109/TIFS.2019.2897874
https://doi.org/10.48550/arXiv.1801.01594
https://doi.org/10.48550/arXiv.1801.01594
https://doi.org/10.48550/arXiv.1801.01594

